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XXV

Preface

This book is a substantially expanded sequel to the book Bioinformatics –
From Genomes to Drugs that appeared in 2002. Since the publication of the
predecessor book the field of bioinformatics has experienced continuing and
substantially accelerated growth in terms of the volume and diversity of avail-
able molecular data, as well as the development of methods for analyzing and
interpreting these data. This book is a reflection of the dynamic maturation
of the field. Like its predecessor, it discusses bioinformatics in the context
of pharmaceutical and medical challenges pertaining to the understanding,
diagnosis and therapy of diseases. The previous book covered bioinformatics
issues accompanying the stages from the collection of genomic data across
the elucidation of the molecular basis of disease and the identification of
target proteins for drug design to the search for leads for potential drugs.
This book extends this schema in various ways. First, the process line from
genome to drug is extended downstream towards the optimization of drug
leads and further towards the personalization of drug therapies, which is also
beginning to be supported with bioinformatics methods. Second, the book
covers the field in substantially more breadth. The different types of available
data are discussed more comprehensively and in more detail. On the sequence
side, two chapters on RNA have been added. The bioinformatics analysis of
evolutionary relationships is addressed in several chapters. The discussion of
protein structure has been significantly expanded. There are new sections on
molecular networks, mRNA expression data and protein function, covering
several chapters each. The disease-specific part of the book has also been
expanded, including discussions of bacterial and viral infections. Finally,
several chapters on informatics technologies employed for bioinformatics are
included.

Bioinformatics is continuing to present one of the grand challenges of our
times. It has a large basic research aspect, since we cannot claim to be close to
understanding biological systems on an organism or even cellular level. At the
same time, the field is faced with a strong demand for immediate solutions,
because the genomic and postgenomic data that are being collected harbor
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many biological insights whose deciphering can be the basis for dramatic
scientific and economical success, and is promising to have large impact on
society.

The book is directed at readers who are interested in how bioinformatics can
spur biological and medical innovation towards understanding, diagnosing
and curing diseases. The book is designed to be useful to readers with a va-
riety of backgrounds. Biologists, biochemists, pharmacologists, pharmacists
and medical doctors can get an introduction into basic and practical issues
of the computer-based part of handling and interpreting genomic, postge-
nomic and clinical data. In particular, many chapters point to bioinformatics
software and data resources which are available on the Internet (often at no
cost), and make an attempt at classifying and comparing those resources. For
computer scientists and mathematicians, the book contains an introduction
to the biological background and the necessary information in order to begin
appreciating the difficulties and wonders of modeling complex biochemical
and biomolecular issues by computer. Since the book caters to a readership
with widely varying backgrounds, it also contains chapters with a diverse
makeup. There are chapters that put the biology in the foreground and only
sketch methodical issues, and a smaller number of chapters in which the
algorithmic and statistical content dominates. By and large, the way in which
the chapters are written reflects the viewpoint from which the authors, and
that also often means the world-wide research community, approaches the
respective topic.

The book contains a name and a subject index. A methodical index is
integrated inside the subject index and points to those sections that present
the master introductions to the quoted computational methods.

The world’s leading experts have contributed their expertise and written
largely autonomous chapters on the specific topics of this book. In order to
render added coherence to the book, the chapters contain a large number of
cross-references to aid in relating the topics of different chapters to each other.
In a few cases, overlap between the chapters has been allowed to ensure the
independent readability of the chapters.

I am grateful to the many people who helped make this book possible.
Above all, I thank the 91 authors of contributed chapters who have shown
extraordinary commitment during the draft and revision stages of their text.
Ruth Christmann spent many hours helping me to master the logistic feat of
collecting the texts, encouraging authors to keep to their commitments, han-
dling versions and completing revisions with a special focus on reference lists.
Joachim Büch kept the website for book authors alive and well maintained
during the preparation and production process. Ray Loughlin did a superb
job on copy-editing the book. Frank Weinreich and later Steffen Pauly were
always responsive partners on the side of the publisher. Finally, I would like
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to express my deep gratitude to my wife Sybille and my children Sara and
Nico who had to cope with my physical or mental absence too much while
the project was ongoing. They gave the most for receiving the least.

Saarbrücken Thomas Lengauer
October 2006
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Part 1 Introduction

1
Bioinformatics -- From Genomes to Therapies
Thomas Lengauer

1 Introduction

In order to set the stage for this book, this chapter provides an introduction
to the molecular basis of disease. We then continue to discuss modern bio-
logical techniques with which we have recently been empowered to screen
for molecular drugs targets as well as for the drugs themselves. The chapter
finishes with an overview of the organization of the book.

2 The Molecular Basis of Disease

Diagnosing and curing diseases has always been and will continue to be an
art. The reason is that man is a complex being with numerous facets, many of
which we do not and probably will never understand. Diagnosing and curing
diseases has many aspects, include biochemical, physiological, psychological,
sociological and spiritual aspects.

Molecular medicine reduces this variety to the molecular aspect. Living
organisms, in general, and humans, in particular, are regarded as complex
networks of molecular interactions that fuel the processes of life. This “molec-
ular circuitry” has intended modes of operation that correspond to healthy
states of the organism and aberrant modes of operation that correspond to
diseased states. The main goal of molecular medicine is the identification of
the molecular basis of a disease, i.e. to answer the question: “What goes wrong
in the molecular circuitry?”. The goal of therapy is to guide the biochemical
circuitry back to a healthy state. The molecular approach has already proven
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its effectiveness for understanding diseases, and is dramatically enhanced by
genomics and proteomics technology [5]. It is the prime purpose of this book
to explore the contributions that this technology, particularly its computa-
tional aspect, can have to advancing molecular medicine.

As already noted, the molecular basis of life is composed of complex bio-
chemical processes that constantly produce and recycle molecules, and do so
in a highly coordinated and balanced fashion. The underlying basic principles
are quite alike throughout all kingdoms of life, even though the processes
are much more complex in highly developed animals and the human than in
bacteria, for instance. Figure 1 gives an abstract view of such an underlying
biochemical network, the metabolic network of a bacterial cell (the intestinal
bacterium Escherichia coli) – it affords an incomplete and highly simplified
account of the cell’s metabolism, but it nicely visualizes the view of a living
cell as a biochemical circuit. The figure has the mathematical structure of a
graph. Each dot (node) stands of a small organic molecule that is metabolized
within the cell. Alcohol, glucose and ATP are examples for such molecules.
Each line (edge) indicates a chemical reaction. The two nodes connected by
the edge represent the substrate and the product of the reaction. The colors
represent the role that the respective reaction plays in metabolism. These roles
include the construction of molecular components that are essential for life
– nucleotides (red), amino acids (orange), carbohydrates (blue), lipids (light
blue), etc. – or the breakdown of molecules that are not helpful or even
harmful to the cell. Other tasks of chemical reactions in a metabolic network
pertain to the storage and conversion of energy. (The blue cycle in the center
of Figure 1 is the citric acid cycle.) A third class of reactions facilitates the
exchange of information in the cell or between cells. This includes the control
of when and in what way genes are expressed (gene regulation), as well as such
tasks as the opening and closing of molecular channels on the cell surface, and
the activation or deactivation of cell processes such as replication or apoptosis
(programmed cell death). The reactions that regulate cellular processes are
often collectively called the regulatory network. Recently, molecular networks
that facilitate the propagation of signals within the cell are being selectively
called signal transduction networks. Figure 1 only includes metabolic reactions,
without any regulatory reactions or signal transduction cascades. Of course,
all molecular networks of a cell are closely intertwined and many reactions
can have metabolic as well as regulatory aspects. In general, much more is
known about metabolic than regulatory networks, even though many relevant
diseases involve regulatory rather than metabolic dysfunction.

The metabolic and regulatory networks can be considered as composed of
partial networks that we call pathways. Pathways can fold in on themselves,
in which case we call them cycles. A metabolic pathway is a group of reactions
that turns a substrate into a product over several steps (pathway) or recycles
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Figure 1 Abstract view of part of the metabolic network of the
bacterium E. coli (from http://www.genome.ad.jp/kegg/kegg.html).

a molecule by reproducing it in several steps (cycle). The glycolysis pathway
(the sequence of blue vertical lines in the center of Figure 1) is an example of
a pathway that decomposes glucose into pyruvate. The citric acid cycle (the
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blue cycle directly below the glycolysis pathway in Figure 1) is an example
of a cycle that produces ATP – the universal molecule for energy transport.
Metabolic cycles are essential in order that the processes of life do not accu-
mulate waste or deplete resources. (Nature is much better at recycling than
man.)

There are several ways in which Figure 1 hides important details of the
actual metabolic pathway. In order to discuss this issue, we have extracted
a metabolic cycle from Figure 1 (see Figure 2). This cycle contributes to cell
replication; more precisely, ;t is one of the motors that drive the synthesis
of thymine – a molecular component of DNA. In Figure 2, the nodes of the
metabolic cycle are labeled with the respective organic molecules and the
edges point in the direction from the substrate of the reaction to the prod-
uct. Metabolic reactions can take place spontaneously under physiological
conditions (in aqueous solution, under room temperature and neutral pH).
However, nature has equipped each reaction (each line in Figure 1) with
a specific molecule that catalyzes that reaction. This molecule is called an
enzyme and, most often, it is a protein. An enzyme has a tailor-made binding
site for the transition state of the catalyzed chemical reaction. Thus, the
enzyme speeds up the rate of that reaction tremendously, by rates of as much
as 107. Furthermore, the rate of a reaction that is catalyzed by an enzyme can
be regulated by controlling the effectiveness of the enzyme or the number of
enzyme molecules that are available.

How does the enzyme do its formidable task? As an example, consider
the reaction in Figure 2 that turns dihydrofolate (DHF) into tetrahydrofolate
(THF). This reaction is catalyzed by an enzyme called dihydrofolate reductase
(DHFR). The surface of this protein is depicted in Figure 3. One immediately
recognizes a large and deep pocket that is colored blue (representing its
negative charge). This pocket is a binding pocket or binding site of the enzyme,
and it is ideally adapted in terms of geometry and chemistry so as to bind to
the substrate molecule DHF and present it in a conformation that is conducive
for the desired chemical reaction to take place. In this case, this pocket is also

Figure 2 A specific metabolic cycle.
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Figure 3 The 3-D structure of
DHFR colored by its surface
potential. Positive values are
depicted in red, negative values
in blue.

Figure 4 DHFR (gray) complexed
with DHF (green) and NADPH
(red).

where the reaction is catalyzed. We call this place the active site. (There can be
other binding pockets in a protein that are far removed from the active site.)

There is another aspect of metabolic reactions that is not depicted in Figure 1
– many reactions involve cofactors. A cofactor is an organic molecule or a metal
ion that has to be present in order for the reaction to take place. If the cofactor
is itself modified during the reaction, we call it a cosubstrate. In the case of
our example reaction, we need the cosubstrate NADPH for the reaction to
happen. The reaction modifies DHF to THF and NADPH to NADP+. Figure 4
shows the molecular complex of DHFR, DHF and NADPH before the reaction
happens. After the reaction has been completed, both organic molecules
dissociate from DHFR and the original state of the enzyme is recovered.

Now that we have discussed some of the details of metabolic reactions, let
us move back to the global view of Figure 1. We have seen that each of the
edges in Figure 1 represents a reaction that is catalyzed by a specific protein.
(However, the same protein can catalyze several reactions.) In E. coli there
are an estimated 1500 enzymes [6]; in human there are thought to be about
least twice as many. The molecular basis of a disease lies in modifications of
the action of these biochemical pathways. Some reactions do not happen at
their intended rate (e.g. in gout), resources that are needed are not present
in sufficient amounts (vitamin deficiencies) or waste products accumulate in
the body (Alzheimer’s disease). In general, imbalances induced in one part
of the network spread to other parts. The aim of therapy is to replace the
aberrant processes with those that restore a healthy state. The most desirable
fashion in which this could be done would be to control the effectiveness of
a whole set of enzymes in order to regain the metabolic balance. This set
probably involves many, many proteins, as we can expect many proteins to
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be involved in manifesting the disease. Also, each of these proteins would
have to be regulated in quite a specific manner. The effectiveness of some
proteins would possibly have to be increased dramatically, whereas other
proteins would have to be blocked entirely, etc. It is obvious that this kind
of therapy involves a kind of global knowledge of the workings of the cell
and a refined pharmaceutical technology that is far beyond what man can do
today and for some time to come.

3 The Molecular Approach to Curing Diseases

For this reason, the approach of today’s pharmaceutical research is far more
simplistic. The aim is to regulate a single protein. In some cases we aim at
completely blocking an enzyme. To this end, we can provide a drug molecule
that effectively competes with the natural substrate of the enzyme. The drug
molecule, the so-called inhibitor, has to be made up such that it binds more
strongly to the protein than the substrate. Then, the binding pockets of
most enzyme molecules will contain drug molecules and cannot catalyze the
desired reaction in the substrate. In some cases, the drug molecule even binds
very tightly (covalently) to the enzyme (suicide inhibitor). This bond persists
for the remaining lifetime of the protein molecule. Eventually, the deactivated
protein molecule is broken down by the cell and a new identical enzyme
molecule takes its place. Aspirin is an example of a suicide inhibitor. The effect
of the drug persists until the drug molecules themselves are removed from the
cell by its metabolic processes and no new drug molecules are administered
to replace them. Thus, one can control the effect of the drug by the time and
dose it is administered.

There are several potent inhibitors of DHFR. One of them is methotrexate
(MTX). Figure 5 shows MTX (color) both unbound (left) and bound (right) to
DHFR (gray). MTX has been administered as an effective cytostatic cancer
drug for over two decades.

There are many other ways of influencing the activity of a protein by
providing a drug that binds to it. Drugs interact with all kinds of proteins:

• With receptor molecules that are located in the cell membrane and fulfill
regulatory or signal transduction tasks.

• With ion channels and transporter systems (again protein residing in the
cell membrane) that monitor the flux of molecules into and out of the cell.

The mode of interaction between drug and protein does not always have the
effect of blocking the protein. In some cases, the drug mimics a missing small
molecule that is supposed to activate a protein. We call such drugs agonists.
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(a) (b)
Figure 5 MTX (colored by its surface potential, see Figure 3):
(a) unbound, (b) bound to DHFR (gray).

In general, we are looking for drugs that bind tightly to their protein target
(effectiveness) and to no other proteins (selectivity).

Most drugs that are on the market today modify the enzymatic or regulatory
action of a protein by strongly binding to it as described above. Among these
drugs are long-standing, widespread and highly popular medications, and
more modern drugs against diseases such as AIDS, depression or cancer. Even
the lifestyle drugs that have come into use in recent years, e.g. Viagra and
Xenical, belong to the class of protein inhibitors.

In this view, the quest for a molecular therapy of a disease decomposes into
three parts:

• Question 1: Which protein should we target? As we have seen, there are many
thousands of candidate proteins in the human. We are looking for one that,
by binding the drug molecule, provides the most effective remedy of the
disease. This protein is called the target protein.

• Question 2: Which drug molecules should be used to bind to the target pro-
tein? Here, the molecular variety is even larger. Large pharmaceutical
companies have compound archives with millions of compounds at their
disposal. Every new target protein raises the question of which of all of
these compounds would be the best drug candidate. Nature uses billions
of molecules. With the new technology of combinatorial chemistry, where
compounds can be synthesized systematically from a limited set of b uilding
blocks, this number of potential drug candidates is also becoming accessible
to the laboratory.

• Question 3: Given a choice of different drugs to administer to a patient, in order to
alleviate or cure a specific disease, what is the best selection of drugs to give to that
individual patient? Questions 1 and 2 have been posed without the specifics
of an individual patient in mind. Target protein and drug were selected
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for all putative patients collectively. With Question 3 we are entering the
more advanced stage of personalized medicine – we want to understand the
different ways in which different patients react to the same drug.

Question 3 has only come into the focus of research recently. The inclusion of
the discussion of this question presents a major new feature of this book over
its predecessor.

We will now give a short summary of the history of research on all three
questions.

4 Finding Protein Targets

Let us start our discussion of the search for target proteins by continuing our
molecular example of DHFR/MTX. As mentioned, DHFR catalyzes a reaction
that is required for the production of thymine – a component of DNA. Thus,
blocking DHFR impairs DNA synthesis and, therefore, cell division. This is
the reason that MTX, an inhibitor of DHFR, is administered as a cytostatic
drug against cancer. Is DHFR the “right” target protein in this context? The
frank answer to this question must be “no”. DHFR is active in every dividing
cell, tumor cells as well as healthy cells. Therefore, MTX impairs the division
of all dividing cells that it can get to. This is the cause of the serious side-
effects of the drug such as loss of hair and intestinal lining. We see that in this
case the limits of the therapy are mostly dictated by the choice of the wrong
target protein. Why then is this protein chosen as a target? The answer to this
question is also very simple: we cannot find a better one. This example shows
how central the search for suitable target proteins is for developing effective
drug therapies.

Target proteins could not really realistically be searched for until a few
years ago. Historically, few target proteins were known at the time that the
respective drug had been discovered. The reason is that new drugs were
developed by modifying natural metabolites or known drugs, based on some
intuitive notion of molecular similarity. Each modification was immediately
tested in the laboratory either in vitro or in vivo. Thus, the effectiveness of the
drug could be assessed without even considering the target protein. To this
day, all drugs that are on the marketplace worldwide target an estimated set
of not much more than 500 proteins [3]. Thus, the search for target proteins is
definitely the dominant bottleneck of current pharmaceutical research.

Today, new experimental methods of molecular biology, the first versions of
which were developed just a few years ago, provide us with a fundamentally
new way – the first systematic way – of looking for protein targets. The
basis for all of these methods was the technological progress made in the
context of the quest for sequencing the human genome [1]. Based on this
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Figure 6 A DNA chip (from
http://cmgm.stanford.edu/pbrown/explore/).

technology, additional developments have been undertaken to be able to
measure the amount of expressed genes and proteins in cells. We exemplify
this progress using a specific DNA chip technology [2]; however, the general
picture extends to many other experimental methods under development.

Figure 6 shows a DNA chip that provides us with a differential census of
the gene expressed by a yeast cell in two different cell states – one governed
by the presence of glucose (green) and one by the absence of glucose (red). In
effect the red picture is that of a starving yeast cell, whereas the green picture
shows the “healthy” state. Each bright green dot indicates a protein that is
manufactured (expressed) in high numbers in the “healthy” state. Each bright
red dot indicates a protein that is expressed in high numbers in the starving
cell. If the protein occurs frequently in both the healthy and the starving state,
the corresponding dot is bright yellow (resulting from an additive mixture of
the colors green and red). Dark dots indicate proteins that are not frequent,
the tint of the color again signifies whether the protein occurs more often in
the healthy cell (green), equally often in both cells (yellow) or more often in
the diseased cell (red).

At this point, the exactly nature of the experimental procedures that gener-
ate the picture in Figure 6 is of secondary importance. What is important is
how much information is attached to the colored dots in the picture. Here, we
can make the following general statements.
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(i) The identity of the protein is determined by the coordinates of the colored
dot. We will assume, for simplicity, that dots at different locations also
represent different proteins. (In reality, multiple dots that represent the
same protein are introduced, on purpose, for the sake of calibration.) The
exact arrangement of the dots is determined before the chip is manufac-
tured. This involves identifying a number of proteins to be represented on
the chip and laying them out on the chip surface. This layout is governed
by boundary conditions and preferences of the experimental procedures,
and is not important for the interpretation of the information

(ii) Only rudimentary information is attached to each dot. At best, the exper-
iment reveals the complete sequence of the gene or protein. Sometimes,
only short segments of the relevant sequence are available.

Given this general picture, the new technologies of molecular biology can be
classified according to two criteria, as shown in the following two subsections.

4.1 Genomics versus Proteomics

In genomics, it is not the proteins themselves that are monitored, but rather
we screen the expressed genes whose translation ultimately yields the re-
spective proteins. In proteomics, the synthesized proteins themselves are
monitored. The chip in Figure 6 is a DNA chip, i.e. it contains information on
the expressed genes and, thus, only indirectly on the final protein products.
The advantage of the genomics approach is that genes are more accessible
experimentally and easier to handle than proteins. For this reason, genomics
is ahead of proteomics, today. However, there also are disadvantages to ge-
nomics. First, the expression level of a gene need not be closely correlated with
the concentration of the respective protein in the cell, although the latter figure
may be more important to us if we want to elicit a causal connection between
protein expression and disease processes. Even more important, proteins
are modified post-translationally (i.e. after they are manufactured). These
modifications involve glycosylation (attaching complex sugar molecules to
the protein surface) and phosphorylation (attaching phosphates to the protein
surface), for instance, and they lead to many versions of protein molecules
with the same amino acid sequence. Genomics cannot monitor these modifica-
tions, which are essential for many diseases. Therefore, it can be expected that,
as the experimental technology matures, proteomics will gain importance
over genomics (see also Chapter 45).
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4.2 Extent of Information Available on the Genes/Proteins

Technologies vary widely in this respect. The chip in Figure 6 is generated
by a technology that identifies (parts of) the gene sequence. We are missing
information on the structure and the function of the protein, its molecular in-
teraction partners, and its location inside the metabolic or regulatory network
of the organism. All of this information is missing for the majority of the genes
on the chip.

There are many variations on the DNA chip theme. There are technologies
based on so-called expressed sequence tags (ESTs) that tend to provide more
inaccurate information on expression levels and various sorts of microarray
techniques (see Chapter 24). All technologies have in common that the data
they produce require careful quality control (Chapter 25). In general, it is sim-
pler to distinguish different disease states from gene expression data (Chap-
ter 26) than to learn about the function of the involved proteins from these
data (Chapter 27). Proteomics uses different kinds of separation techniques,
e.g. chromatography or electrophoresis combined with mass spectrometry,
to analyze the separated molecular fractions (see Chapter 28). As is the
case with genomics, proteomics technologies tend to generate information on
the sequences of the involved proteins and on their molecular weight, and
possibly information on post-translational modifications such as glycosylation
and phosphorylation. Again, all higher-order information on protein function
is missing. It is not feasible to generate this information exclusively in the
wet laboratory – we need bioinformatics to make educated guesses here.
Furthermore, basically all facets of bioinformatics that start with an assembled
sequence can be of help. This includes the comparative analysis of genes and
proteins (Chapter 37), protein structure prediction (Chapters 9–13), protein
function prediction (Chapters 30–34), analysis and prediction of molecular
interactions involving proteins (Chapters 16 and 17) as well as bioinformatics
for analyzing metabolic and regulatory networks (Chapters 20–22). This is
why all of bioinformatics is relevant for the purpose of this book.

If, with the help of bioinformatics, we can retrieve enough information on
the molecular networks that are relevant for a disease, then we have a chance
of composing a detailed picture of the disease process that can guide us to the
identification of possible target proteins for the development of an effective
drug. Note that the experimental technology described above is universally
applicable. The chip in Figure 6 contains all genes of the (fully sequenced)
organism Saccharomyces cerevisiae (yeast). The cell transition analyzed here
is the diauxic shift – the change of metabolism upon removal of glucose.
However, we could exchange this with almost any other cell condition of any
tissue of any conceivable organism. The number of spots that can be put on a
single chip goes into the hundreds of thousands. This is enough to put all of
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the human genes on a single chip. Also, we do not have to restrict ourselves to
disease conditions; all kinds of environmental conditions (temperature, pH,
chemical stress, drug treatment, diverse stimuli, etc.) or intrinsic conditions
(presence or absence of certain genes, mutations, etc.) can be the subject of
study.

The paradigm of searching for target proteins in genomics data has met
with intense excitement from the pharmaceutical industry, which has invested
heavily in this field over recent years. However, the first experiences have
been sobering. It seems that we are further away from harvesting novel
target proteins from genomics and proteomics data than we initially thought.
However, in principle, a suitable novel target protein can afford a completely
new approach to disease therapy and a potentially highly lucrative worldwide
market share. For a critical review of the target-based drug development
process, see Sams-Dodd [7].

Providing adequate bioinformatics support for finding new target proteins
is a formidable challenge that is the focus of much of this book. However,
once we have a target protein, our job is not done.

5 Developing Drugs

If the target protein has been selected, we are looking for a molecule that
binds tightly to the relevant binding site of the protein. Nature often uses
macromolecules, such as proteins or peptides, to inhibit other proteins. How-
ever, proteins do not make good drugs – they are easily broken down by the
digestive system, they can elicit immune reactions and they cannot be stored
for a long period of time. Thus, after an initial excursion into drug design
based on proteins, pharmaceutical research has basically gone back to looking
for small drug molecules. Here, one idea is to use a peptide as the template
for an appropriate drug (peptidomimetics).

Due to the lack of fundamental knowledge of the biological processes in-
volved, the search for drugs was, until recently, governed by chance. How-
ever, as long as chemists have thought in terms of chemical formulae, pharma-
ceutical research has attempted to optimize drug molecules based on chemical
intuition and on the concept of molecular similarity. The basis for this ap-
proach is the lock-and-key principle formulated by Emil Fischer [4] over 100
years ago. Figures 3 to 5 illustrate that principle: in order to bind tightly, the
two binding molecules have to be complementary to each other both sterically
and chemically (colors in Figures 3 and 5). The drug molecule fits into the
binding pocket of the protein like a key inside a lock. The lock-and-key
principle has been the dominating paradigm in drug research ever since its
proposal. It has been refined to include the phenomenon of induced fit, by
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which the binding pocket of the protein undergoes subtle steric changes in
order to adapt to the geometry of the drug molecule.

For most of the past century the structure of protein-binding pockets has
not been available to the medicinal chemist. Even to this day the structure
of the target protein will not be known for many pharmaceutical projects for
some time to come. For instance, many diseases involve target proteins that
reside in the cell membrane and we cannot expect the three-dimensional (3-D)
structure of such proteins to become known soon. If we have no information
on the structure of the protein-binding site, drug design is based on the idea
that molecules that are similar in terms of composition, shape and chemical
features should bind to the target protein with comparable strength. The re-
spective drug-screening procedures are based on comparing drug molecules,
either intuitively or, more recently, systematically with the computer. The
resulting search algorithms are very efficient and allow searching through
compound libraries with millions of entries (Chapter 18).

As 3-D protein structures became available, the so-called rational or structure-
based approach to drug development was invented, which exploited this
information to develop effective drugs. Rational drug design is a highly in-
teractive process with the computer originally mostly visualizing the protein
structure and allowing queries on its chemical features. The medicinal chemist
interactively modified drug molecules inside the binding pocket of the protein
at the computer screen. As rational drug design began to involve more
systematic optimization procedures interest arose in molecular docking, i.e.
the prediction of the structure and binding affinity of the molecular complex
involving a structurally resolved protein and its binding partner (Chapter 16).
Synthesizing and testing a drug in the laboratory used to be comparatively
expensive. Thus, it was of interest to have the computer suggest a small set
of highly promising drug candidates. After an initial lead molecule has been
found that binds tightly to the target protein, secondary drug properties have
to be optimized that maximize the effectiveness of the drug and minimize
side-effects (Chapter 19).

With the advent of high-throughput screening the binding affinity of as many
as several hundred thousands drug candidates to the target protein can now
be assayed within a day. Furthermore, combinatorial chemistry allows for the
systematic synthesis of molecules that are composed of preselected molecular
groups that are linked with preselected chemical reactions. The number of
molecules that is accessible in such a combinatorial library can, in principle,
exceed many billions. Thus, we need the computer to suggest promising
sublibraries that promise to contain a large number of compounds that bind
tightly to the protein (Chapters 16 and 18).

As in the case of target finding, the new experimental technologies in drug
design require new computer methods for screening and interpreting the
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voluminous data assembled by the experiment. These methods are seldom
considered part of bioinformatics, since the biological object, i.e. the target
protein, is not the focus of the investigation. Rather, people speak of chemin-
formatics – the computer aspect of medicinal chemistry. Whatever the name,
it is our conviction that both aspects of the process that guides us from the
genome to the drug have to be considered together and we will do so in this
book.

6 Optimizing Therapies

How is it that different patients react differently to the same drug? Reasons for
this phenomenon can be manifold. Some are easier to investigate with meth-
ods of modern biology and bioinformatics than others. Here, we distinguish
between infectious diseases and other diseases.

The molecular basis of any infectious disease is the interplay of a usually
large population of a pathogen with the human host. The pathogen takes
advantage of the human host or, in the case of virus, even hijacks the infected
cells of the patient. Chapter 23 relates a story about the interplay of a viral
pathogen with the infected host cell.

With infectious diseases, the drug often targets proteins of the infecting
pathogen rather than the human host. The reason is the hope that drugs
for such targets harbor less serious side-effects for the patient. However, in
all infectious diseases, there is a constant battle going on between the host,
whose immune system tries to eradicate the pathogen, and the pathogen that
tries to evade the immune system. If the disease is treated with drugs, the
administered drugs impose an additional selective pressure on the pathogen.
On the road to resistance the pathogen constantly changes its genome and,
thus, also the shape of the target proteins for drug therapy. Changes that
are beneficial for the pathogen are those that render the drugs less effective,
i.e. the pathogen becomes resistant. The results of this process are widely
known. With bacteria, we observe increasingly resistant strains against antibi-
otic therapies (Chapter 41). With viral diseases such as AIDS the drug therapy
has to be adapted continually to newly developing resistant strains within
the patient (Chapter 40). Therapy selection must be individualized, in both
cases, at least by taking the present strain of the pathogen into account and,
at best, by also considering the individual characteristics of the host. Since
the pathogen is a much simpler organism than the human host, the former is
significantly easier than the latter.

Although the drug acts on its intended protein target, the drug has to
find its way to the site of action and, eventually, has to be metabolized or
excreted again. Along that path there are multiple ways in which the drug can
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interact with the patient. The resulting side-effects depend on the molecular
and genetic status of the individual patient. Furthermore, the protein target
often has different functions, such that its inhibition or agonistic activation
can incur side-effects on molecular processes that were not intended to be
changed. Again, the form and magnitude of such side-effects depends on
the individual patient. This process of bringing about different reactions to
drugs in different patient is much harder to analyze. The reason is that larger,
often widespread, networks of interactions in the patient have to be taken
in account. Analyzing them necessitates complex and accurately assembled
patient histories and diverse molecular data that are seldom collected in
today’s clinical practice. Therefore, this approach to personalized medicine
is still in its infancy (Chapter 39).

Another issue with diseases is the genetic predisposition of the human indi-
vidual to the disease. Monogenetic diseases have been known for a long time
and are relatively easy to analyze. Here, a defect in a single gene gives rise to
the disease. However, these diseases are rare, in general. The major diseases
like cancer, diabetes, and inflammatory and neurodegenerative diseases are
based on a complex interplay between environmental and genetic factors
with probably many genes involved. With data on the genomic differences
between individuals just coming into being, the analysis of the genetic basis
for complex diseases is embarking on a route that hopefully will lead to more
effective means of prognosis, diagnosis and therapy.

7 Organization of the Book

This book is composed of three volumes. It is organized along the line from
the genotype to the phenotype.

Volume 1: The building blocks: sequences and structures. This volume discusses
the analysis of the basic building blocks of life, such as genes and proteins.

Volume 2: Getting at the inner workings: molecular interactions. This volume
concentrates on the “switches” of the biochemical circuitry, the molecu-
lar interactions, as well as the circuits composed by these switches, the
biochemical networks. In the former context, it partly also ventures into
applied issues of drug design and optimization.

Volume 3: The Holy Grail: molecular function. This volume ties the elements
provided by the first two volumes together and attempts to draw an inte-
grated picture of molecular function – as far as we can do it today. The
volume also discusses ramifications of this picture for the development and
administration of drug therapies.
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Each volume is subdivided in parts that are summarized below. The total
book has 11 parts. Volume 1 covers Parts 1–4.

Part 1 consists only of this chapter, and gives an introduction to the field
and an overview of the book.

Part 2, consisting of Chapter 2, discusses bioinformatics support for assem-
bling genome sequences. This is basic technology which is required to arrive
at the genome sequence data that are the basis for much of what follows in
the book. Major advances have been made in this area, especially during the
finishing stages of completing the human genome sequence. The field has
not lost its importance as we are embarking on sequencing many complex
genomes, including over a dozen mammalian genomes. Furthermore, the
technology is employed in projects that sequence closely related species, such
as over a dozen species of Drosophila, in order to obtain a more effective
database for functional genomics1. The authors of the chapter were part of
the team that developed the assembler for the draft of the human genome
sequence generated by Celera Genomics.

Part 3 is on molecular sequence analysis and comprises Chapters 3–8. Chap-
ter 3 introduces the basic statistical and algorithmic technology for aligning
molecular sequences. This technology forms the basis of much that is to
follow. The author of the chapter has made seminal contributions to the field.
Chapter 4 discusses methods for inferring ancestral histories from sequence
data. This is one of the mainstays of comparative genomics. Similar to
people, one can learn a lot about genes and proteins from looking at their
ancestors and relatives, arguably more so with today’s methods than from
inspecting the gene or protein by itself. This attributes particular significance
to this chapter in the context of this book. The authors of the chapter have
made important contributions to the development of methods for inferring
phylogenies and applied them to analyzing the evolution of Homo sapiens.
Chapter 5 discusses the first major step from the genotype to the phenotype,
i.e. the identification of protein-coding genes. The author of the chapter has
developed one of the leading gene-finding programs. The ongoing debate
on exactly what is the number of genes in the human chromosome years
after the first draft of the human genome sequence was available shows
that the issue of this chapter is still quite up-to-date. Furthermore, genes
are a primary unit of linkage between the human genome and disease, as
Chapter 38 discusses. Going into the gene’s structure, most of the linkage
with disease happens not in the coding regions of the genes that affect the
structure of the coded protein. In general, proteins are far too well refined to
be tampered with. Mostly, changing a protein means death to the individual

1) see http://preview.flybase.net/docs/
news/announcements/drosboard/GenomesWP2003.html for
the respective community white paper
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and only a few severe diseases (such as sickle cell anemia, Huntington’s
chorea or cystic fibrosis) are linked to changes in the coding regions of genes.
More subtle influences of the genotype on disease involve polymorphisms
in the noncoding regulatory regions of the disease gene that do not affect
the structure of the protein, but the mechanism and level of its expression.
This lends special importance to Chapter 6, which addresses bioinformatics
methods for analyzing these regions. The author of the chapter has led the
development of a widely used set of software tools for analyzing regulatory
regions in genomes. The analysis of regulatory regions ventures into the more
difficult to analyze noncoding regions of genes. However, the really dark
turf of the human genome is presented by the long and mysterious repetitive
sections. Up to 40% of the human genome is covered with these regions
whose relevance (or irrelevance?) is under hot debate, especially since some
of these regions seem to harbor potential silenced retroviral genes that may
become active again at some suitable or unsuitable time. The identification
of these regions (although not the elucidation of their function) is discussed
in Chapter 7. The authors of this chapter have made seminal contributions
and provided widely used software for computational gene finding, genome
alignment and repeat finding. Chapter 8, finally, discussed the algorithmic
and statistical basis of analyzing major genome reorganizations that happened
as the kingdoms of life evolved, and that include splitting, fusing, mixing and
reshuffling at a chromosomal level. Again, we are just beginning to under-
stand the evolutionary role of these transactions. The author of this chapter
has provided important contributions to the methodical and biological side of
the field, many of them together with David Sankoff and Pavel Pevzner.

Part 4 of the book is on molecular structure prediction and comprises Chap-
ters 9–15. The part starts with a chapter on a half-way approach to protein
structure prediction which only aims at identifying the regions of secondary
structure of the protein (α-helices and β-strands) and related variants. The
resulting information on protein structure is very important in its own right
and, in addition, helps guide or verify tertiary structure prediction. The
authors of the chapter have made seminal contributions to protein structure
prediction starting in the early 1990s that increased the prediction accuracy
significantly (from around 65 to well over 70%).

The most promising approach to identifying the fold of a protein, today,
selects a template protein from a database of structurally resolved proteins
and models the structure of the protein under investigation (the target protein)
after that of the template protein with sequence alignment methods. If the se-
quence similarity between the template and the target is high enough (roughly
40% or larger), then this alignment can even serve as a scaffold for providing
a full-atom model of the protein structure. The respective structure prediction
method is called homology-based modeling and is described in Chapter 10.
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The author of this chapter has developed one of the most advanced homology-
based structure prediction tools to date. If the sequence similarity between
the template and target is below 40% then generating full-atom models for the
target using the template structure becomes increasingly difficult and risky.
In such low-sequence-similarity ranges aligning the backbone of the target
protein to that of the template protein becomes the critical issue. If this is
done correctly, one obtains a 3-D model of target backbone that can serve as
an aid for structural classification of the target protein. Chapter 11 describes
this process. The author of Chapter 11 has codeveloped a well-performing
Internet server for this structural alignment task.

Homology-based modeling can only rediscover protein structures since it
models the target on the basis of a known template structure. In de novo struc-
ture prediction, we try to come up with the structure of the protein, even if it
is novel and has never been seen before. This subject is still a major challenge
for the field of computational biology, but significant advances have been
made in the past 10 years by David Baker’s group (University of Washington,
Seattle, WA) and the author of the chapter was one of the major contributors
in this context. Today, there are several projects that aim at resolving protein
structures globally, e.g. over whole proteomes. The approach is a combination
of experimental structure resolution of a select set of proteins that promise to
crystallize easily and fold into new structures, and homology-modeling other
proteins using the thus increased template set. Chapter 13 describes these
structural genomics projects. One author of the chapter codirects the Protein
Data Bank (the main repository for publicly available proteins structures) and
the other directs a major structural genomics initiative.

The last two chapters discuss structure prediction of another important
macromolecule in biology – RNA. In contrast to DNA, which basically folds
into a double-helical structure, RNA is structurally diverse. There is a well-
understood notion of secondary structure in RNA, i.e. the scaffold that is
formed by base pairs within the same RNA chain. This algorithmically and
biologically well-developed field is presented in Chapter 14. The authors of
the chapter have contributed a major software package for analyzing RNA
secondary structures. The last chapter in this part looks at tertiary structure
prediction for RNA, a comparatively much less mature field, and its author is
one of the major experts in that field, worldwide.

Volume 2 covers Parts 5–7. Based on the knowledge about molecular build-
ing blocks afforded by Volume 1, Volume 2 ventures into questions of molec-
ular function.

Part 5 starts by considering atomic events in molecular networks, i.e. the
interactions between pair of molecules. Molecular interactions are important
in two ways. First, understanding which molecules bind in an organism,
when and how, is fundamental for understanding of the dynamic basis of life.
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Second, as we have seen in the first parts of this chapter, modifying molecular
interactions in the body with drugs is the main tool for pharmaceutical ther-
apy of diseases. Drugs bind to target proteins. Understanding the interactions
between a drug and its target protein is a prerequisite for rational and effective
drug therapy. Part 5 addresses both these questions. The part comprises
four chapters. Chapter 16 discusses protein–ligand docking, with the implicit
understanding that the ligands of interest are mostly drugs or drug candi-
dates. The chapter discusses how to computationally dock known ligands into
structurally resolved protein-binding sites and also how to computationally
assemble new ligands inside the binding site of a protein. The senior author
is the developer of one of the most widely used protein–ligand docking tools,
worldwide. Chapter 17 discusses molecular docking if both docking partners
are proteins. This problem is of lower pharmaceutical relevance, as most
drugs are small molecules and not proteins, but of high medical relevance,
as the basis of a disease can often be an aberration of protein–protein binding
events. Furthermore, the chapter also discusses protein–DNA docking, which
is at the heart of gene regulation. (Here, the protein is a transcription factor
binding to its site along the regulatory region of a gene, for instance.) The
authors of this chapter have developed advanced software for protein–protein
docking. The last two chapters in this part discuss problems in finding drugs.
As described above, the drug design process is decomposed into a first step,
in which a lead structure is sought, and a second step, in which the lead
is optimized with respect to secondary drug properties. If the binding site
of the target protein is resolved structurally, lead finding can be done by
docking (Chapter 16). Otherwise, one takes a molecule that is known to
bind to the binding site of the target protein as a reference and searches for
similar molecules as drug candidates. Here, the notion of similarity must be
defined suitably such that similar molecules have similar characteristics in
binding to the target protein. Chapter 18 discusses this type of drug screening.
Finally, Chapter 19 addresses the optimization of drug leads. The authors of
Chapter 19 are from the pharmaceutical industry. They are experts in applying
and advancing methods for drug optimization in the pharmaceutical context.

Part 5 has advanced considerably beyond fundamental research questions
and into pharmaceutical practice.

In Part 6 we take a step back towards fundamental research. This part
discusses the biochemical circuitry that is composed of the kind of molecular
interactions that were the subject of Part 5. Understanding these molecular
networks is clearly the hallmark of understanding life’s processes, in general,
and diseases and their therapies, in particular. However, the understanding of
molecular networks is in its infancy, and is not advanced enough, in general,
to be directly applicable to pharmaceutical and medical practice. Still, the
vision is to advance along this line and the four chapters in this part present
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various aspects of this process. Chapter 20 is on metabolic networks, the kind
discussed in a little more detail in the beginning of this chapter. Metabolic
networks are quite homogeneous with respect to the roles of the participating
molecules. In general, we have a substrate that is converted to a product
by a chemical reaction that is catalyzed by an enzyme, possibly with the
aid of a cofactor. This homogeneity makes metabolic networks especially
amenable to theoretical analysis. In addition, much is known about the
topology (connection structure) of metabolic networks. However, we are still
lacking much of the kinetic data needed to accurately simulate the dynamics
of metabolic networks. The chapter presents methods for analyzing networks
both statically and dynamically. The authors are among the main methodical
contributors to the analysis of metabolic networks, worldwide. Chapter 21
analyzes gene regulation networks. These networks are more heterogeneous,
since they incorporate different kinds of interactions – direct interactions,
as when transcription factors bind to the regulatory regions of genes, and
indirect interactions, as when transcription factors regulate the expression of
genes that code for other transcription factors. Furthermore, proteins, as well
as DNA and RNA, are involved in gene regulation. Inferring gene regulation
networks necessitates much genomic information which is just on the verge
of becoming available and, thus, the field is less mature than the area of
analyzing metabolic networks. The author of Chapter 21 is one of the prime
experts in the field of analyzing gene regulation networks. A very special
type of molecular networks is concerned with transmission of information
inside the cell. Usually, these signaling networks can be analyzed in terms of
smaller modules than regulatory or metabolic networks. The special methods
for analyzing these networks are presented in Chapter 22 by a group of
outstanding experts in the field. Chapter 23 finally moves beyond the single
cell and discusses interactions between a viral pathogen and its infected host
cell – a major step from basic research to its application in a medical setting.
This is a very young field and the author is one of its main proponents.

Part 7 is focused on a special types of experimental data that form the basis
of much research (and debate) today – expression data. We have discussed the
microarray (mRNA) expression data in the chapter above, when we addressed
the quest of finding new target proteins for drug therapy. Expression data
were the first chance to venture beyond the genome, which is the same in
all cells of an organism, and analyze the differences between different cells,
tissues and cell states. Therefore, these data have a special relevance for
advancing molecular medicine and this justifies dedicating a separate part
of the book with five chapters to them. Chapter 24 gives a summary of
the whole field, from the experimental side of the technology of measuring
mRNA expression and its implications on computational analysis methods to
the bioinformatics methods themselves. Since expression data are typically
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quite noisy, with many sources of variance residing both in the technology
(which can be improved, in principle) and the underlying biology (which
can and should not be changed), issues of quality control of the data play
a prominent role in this chapter. The author is a global expert in the field of
analysis of expression data. The following four chapters go into more detail on
computational issues. Chapter 25 presents statistical methods for pretreating
the data so as to arrive at an optimally interpretable dataset and it is written
by a leading group of researchers in the area. The following two chapters
discuss two fundamentally different kinds of analysis of mRNA expression
data. Chapter 26 discusses methods that analyze and group different datasets
(microarrays), generated under different circumstances (e.g. from different
patients or from the same patient at different time points). Such methods
afford the distinction of healthy from sick individuals as well as the analysis of
disease type and disease progression, thus providing effective help in disease
diagnosis. Chapter 27 groups data differently. Here, we are not interested
in distinguishing different experiments, but in understanding the roles of
(groups of) genes in, say, the progression of a disease that has been monitored
with a sequence of microarray experiments. The results of the analysis are
supposed to afford insight into the disease process and clues for drug therapy.
This is a much harder task than just grouping microarray datasets and it has
turned out that it cannot be solved, in general, just on the basis of expression
data. Therefore, this chapter also prepares for later chapters that discuss the
analysis of gene and protein function in a more general context (Part 8). The
authors of Chapters 26 and 27 participate in a joint German national project
that aims both at advancing the methods, and at applying them to biological
and medical datasets. mRNA expression data (so-called transcriptomics data,
because the data assess the expression level of mRNA transcripts of genes)
have the advantage of being generated comparatively easily, due to the ho-
mogeneous structure of DNA (to which the mRNA is backtranscribed before
measuring expression levels). However, these data correlate only weakly
with the expression level of the actual functional unit, i.e. the synthesized
and post-translationally modified protein. Measuring expression directly at
the protein level is a more direct approach, but experimentally significantly
more challenging. Therefore, the state of the field of proteomics, which
analyzes protein expression directly, is behind that of transcriptomics, as
far the experimental side is concerned. Nevertheless, proteomics is rapidly
emerging, with several promising experimental technologies and the respec-
tive computational methods for data assembly/analysis. Chapter 28 presents
the state of this field. It is written by a leading academic group engaged in
software development for the field of proteomics.
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Volume 3 builds on Volumes 1 and 2, and aims at embarking along an
integrated picture of molecular function, and its consequences for the devel-
opment and administration of drug therapies. The volume covers Parts 8–11.

Part 8 comprises eight chapters and is devoted to molecular (mostly protein)
function. We have has already addressed aspects of molecular function (e.g.
the chapters on molecular interactions and molecular networks, as well as the
chapters on expression data), and, along the way, it has become increasingly
evident that molecular function is a colorful term that has many aspects and
whose elucidation relies on many different kinds of experimental data. In
fact, molecular function is such an elusive notion that we dedicate a special
chapter to discussing exactly this term, and the way it is and should be coded
in the computer, respectively. This Chapter 29 is written by two authors
that are main proponents of advancing the state of ontologies for molecular
biology. Then we dedicate four chapters to inferring information on protein
function from different kinds of data: sequence data (Chapter 30), protein
interaction data that are based on special experimental technologies that can
measure whether proteins bind to each other or not, and do so proteome-
wide, in the most advanced instances (Chapter 31), genomic context data,
affording an analysis based on the comparison of genomes of many species
(Chapter 32), and molecular structure data (Chapter 33). Since all of these data
still do not cover protein function adequately, we add another chapter that
addresses methods for inferring aspects of protein function directly from free
text in the scientific literature (Chapter 34). Chapter 35 presents methods for
fusing all the various kinds of information gathered by the methods presented
in the preceding chapters to arrive at a balanced account of the available
knowledge on the function of a given protein. Finally, Chapter 36 discusses
the druggability of targets, i.e. the adequacy of proteins to serve as a target for
drug design. This quality encompasses properties such as a suitable shape of
the binding pocket to suit typical drug molecules and a certain uniqueness of
the shape of the binding pocket, such that drugs that bind to this pocket avoid
binding to other proteins that are not targets for the drug. Again, all of these
chapters are written by outstanding proponents of the respective fields.

With Parts 1–8 we have covered the space from the genotype (the genome
sequence) to the phenotype (the molecular function). However, we can still
take additional steps to making all of this knowledge work in applied medical
settings. This is the topic of Part 9. To this end, Part 9 focuses on the anal-
ysis of relationships and differences between genomes. In the first chapter,
Chapter 37, the topic is rolled up in a general fashion by asking the question:
“What can we learn from analyzing the differences between genomes?”. Then,
we focus on the medically most relevant differences between genomes of
individuals of the same species. Specifically, we are interested in the human
and in pathogens infecting the human. Chapter 38 discusses what we can
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learn from genetic differences between people about disease susceptibility.
Chapter 39 then addresses the topic of personalized medicine: how can we
learn from suitable molecular and clinical data how a patient reacts to a given
drug treatment? The final two chapters address the evolution of pathogens in
the human host (mostly to become resistant against the host’s immune system
and drug treatment). Chapter 40 discusses viral pathogens, specifically HIV,
the virus that leads to AIDS. Chapter 41 covers the bacterial world. The
authors of all chapters have made seminal contributions to the topic they are
describing.

Part 10 is an accompanying section of the book that addresses important
informatics technologies that drive the field of computational biology and
bioinformatics. There are three chapters. Chapter 42 is on data handling.
Chapter 43 discusses visualization of bioinformatics data; here, molecular
structures are not the center of the discussion, since their visualization is in
a quite mature state, but we focus on microscopic images data, molecular net-
works and statistical bioinformatics data. Chapter 44 focuses on acquiring the
necessary computational power for performing the analysis from computer
networks (intranets and the Internet). There is a special research community
that provides the progress in the underlying informatics technologies and the
authors of these chapters are outstanding proponents of this community.

In Part 11, finally, Chapter 45 addresses in a cursory manner emerging
trends in the field that were too new at the time of the conceptualization of
the book to receive full chapters, but have turned out to become relevant issue
at the time that the book was written. Thus, this chapter gives a cautious and
anecdotal look into the future of the field of bioinformatics.

The goal of this book is to provide an integrated and coherent account of the
available and foreseeable computational support for the molecular analysis
of diseases and their therapies. The authors that have contributed to the
book represent the leading edge of research in the field. We hope that the
book serves to further the understanding and application of bioinformatics
methods in the fields of pharmaceutics and molecular medicine.
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Part 2 Sequencing Genomes

2
Bioinformatics Support for Genome-Sequencing Projects
Knut Reinert, Daniel Huson

1 Introduction

Even though the landscape of molecular data in biology has diversified sig-
nificantly in the past decade, DNA sequence data still remain the principle
basis of data collection and contribute to most bioinformatics analyses. Also,
the field of bioinformatics was propelled to its current magnitude mostly by
the rapid development in DNA-sequencing technology. Since experimental
technology only allows the reading of short stretches of DNA, encompassing
just a few hundred basepairs, the assembly of these pieces into contiguous
chromosomes is still a major computational challenge.

In this chapter we first describe current assembly strategies for large gen-
omes in Section 2. We then present some of the main algorithm problems and
their treatment in Section 3 and give an overview of existing assemblers in
Section 4.

2 Assembly Strategies for Large Genomes

2.1 Introduction
Humans have always been fascinated by the “secret of life”, i.e. the question of
how new organisms come into existence, how they develop from “nothing”?
What is and where is the “blueprint”, the set of instructions that determines
the genesis of an animal or plant? In the course of the last century, science
has begun to unravel parts of the puzzle. We know now that the instructions
to build a complex organism are contained in each of its cells, encoded by a
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simple, yet fascinating mechanism. In 1928, Frederick Griffith, and, later, in
1944, Oswald Avery and coworkers pointed out that DNA (consisting of four
very simple biochemical building blocks named adenine, cytosine, guanine
and thymine) plays a vital role in heredity. In 1953, Francis Crick and James
Watson discovered the double-helix structure of DNA which suggested that
a simple linear sequence of nucleic acids gives rise to an intricate code for
describing the blueprint of life. It was not until 1961 that researchers revealed
the genetic code that employs codons, nonoverlapping triplets of nucleotides,
to form a redundant code for the 20 amino acids that are the basic building
blocks of proteins.

For a long time it was unthinkable to determine the actual sequence of
nucleotides of a DNA molecule, i.e. to sequence a fragment of DNA. In
the 1970s, a number of different approaches to sequencing DNA were pur-
sued, and the method developed by Fred Sanger and his group prevailed.
This method and other advances in biotechnology led to the sequencing
of the 49kb-bacteriophage λ genome in 1982. For this work Fred Sanger
was awarded the Nobel prize in chemistry in 1980, together with Walter
Gilbert and Paul Berg. In the late 1980s, the question arose whether to
attempt to determine the sequence of the human genome [42,48], a formidable
technological challenge, given the huge size of the genome of approximately
3 billion base pairs. As a consequence, the Human Genome Project (HGP) [30]
was established in 1990 to tackle the problem, armed with with a 15-year plan
and a budget of approximately US$ 3 billion.

A major milestone in genome sequencing was achieved in 1995, when
the 1.8-Mb genome of Haemophilus influenza was completed [14]. This was
followed by the sequencing of other genomes, among them most notably that
of yeast [35]. A main scientific issue in the 1990s was whether large eukaryotic
genomes could be sequenced using a global “whole-genome shotgun assem-
bly” (WGS) approach or whether such genomes needed to be broken down
into smaller pieces and each piece sequenced separately. The assembly of the
genome of the fruit fly (Drosophila melanogaster) in 2000 [38], of the human
(Homo sapiens) in 2001 [54] and of the mouse (Mus musculus) in 2002 [37]
demonstrated that the WGS approach is indeed feasible, and WGS has now
become the leading paradigm.

The sequence of the human genome is of immense medical and biological
importance. Significant advances in sequencing technology (in particular, the
invention of the capillary gel sequencer), the availability of sufficient compu-
tational power and storage technology, and the existence of an appropriate
algorithmic approach [56] inspired the founding of a private company, Celera
Genomics, in 1998 with the stated goal of sequencing the human genome at a
low cost and within a very short time.
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Figure 1 Experimental protocol of paired-end shotgun sequencing.

This sparked off intense competition to produce a first assembly of the
sequence of the human genome as quickly as possible, which led to the
publication of two papers in February 2001 that both describe a draft sequence
of the human genome [25, 54].

All major sequencing projects are based on the same experimental tech-
nique, called shotgun sequencing. This technique is based on automated gel
sequencers that use electrophoresis and fluorescent markers to determine the
sequence of the nucleotides. The ability of these machines to read consecutive
pieces of DNA degrades quickly with the length of the sequence and today
a sequencing machine can read up to around 1000 consecutive base pairs
of a fragment of DNA, depending on the degree of accuracy required. The
sequence of a fragment determined in this way is called a read. The fragments
are sampled from a stretch of DNA that is often referred to as the source se-
quence (the sequence that we take the fragment from) or as the target sequence
(the sequence we want to reconstruct from the reads).

To determine the content of a long source sequence, one produces many
copies of the source sequence (e.g. through cloning or growing colonies from a
single progenitor) and then randomly breaks them into smaller pieces. Pieces
of a given length are selected and one or both ends of such pieces are read
by the automated sequencers. If both ends are read one does not only obtain
the sequence at both ends of the piece of DNA, but also information about
the relative orientation and distance of the two reads. This variant of shotgun
sequencing was named paired-end shotgun sequencing by Myers and Weber
[56], who also were the first to recognize the importance of collecting paired-
end reads for sequence assembly. A pair of reads with associated distance
information is called a mate-pair. Note that not all reads are in mate-pairs since
the sequencing of one of the two mates can fail (see Figure 1 for an illustration
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Figure 2 Fragments and mate-pairs.

of the shotgun sequencing process and Figure 2 for a more detailed illustration
of a mate-pair).

The read and mate-pair information together with quality estimates of the
data is fed into a computer program called an assembler that will attempt to
reconstruct the original DNA source sequence. Note that there is no infor-
mation on the location of any given read in the source sequence. However,
by construction, many of the reads will come from overlapping regions of the
source sequence and the first step in sequence assembly is to search for overlap
alignments of high similarity between different reads. The pattern of overlaps
between reads can be used to string together longer pieces of contiguous
sequence, called contigs. The mate-pair information can then be used to order
and orient sets of contigs with respect to each other, thus producing scaffolds.
This process is called sequence assembly, and the resulting set of contigs and
scaffolds is called an assembly. See Figure 3 for an illustration of the process.

Obviously, the large size of genomes makes sequence assembly a very
difficult computational problem. Moreover, there are a number of additional
difficulties. The read and mate-pair data contain errors and since DNA is a

Figure 3 Pair-end reads are assembled into contigs based on how
the reads overlap with each other. The contigs are then organized into
scaffolds using the mate-pair information.
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double-stranded molecule we do not know which strand a read is from. Also,
a read may be chimeric, i.e. it may be the result of a fusion of two different
pieces from different parts of the source sequence. Another problem is caused
by polymorphism. If reads are taken from genomes of different individuals of
the same species, they usually differ, in the case of humans at a rate of about
1 in 1000 bp. Even single organisms can be diploid or polyploid (i.e. they
contain more than one copy of the same chromosome). Hence, if the data is
acquired from different individuals that are not inbred, one must deal with
a mixture of reads that come from seemingly different genomes. The largest
difficulty is due to the fact that DNA sequences contain many different repeats
of different size and fidelity. The detection and analysis of repeats is discussed
in Chapter 7.

2.2 Properties of the Data

In this section we discuss some of the properties and error rates of the data
generated in large genome-sequencing projects.

2.2.1 Reads, Mate-pairs and Quality Values

Sequencing large genomes is expensive, and over the past 10 years there has
been a strong focus on developing faster, cheaper and more accurate ways
of determining the sequence of DNA molecules. This includes substantial
improvements in methods for DNA shearing, plaque and colony pickers,
DNA template preparation systems, and, above of all, huge improvements
in the throughput and data quality of automated sequencers (for a review, see
Refs. [33, 34]).

Most of the modern sequencers employ different fluorescent markers to dis-
tinguish between the four types of nucleotides. After a prefix of the fragment
has left the sequencer, the marker attached to the last base of the prefix is
excited by a laser and the resulting signal is measured. This analog mea-
surement is converted into a digital base call. Each base determined in this
way is assigned a quality value, given by q = −10 · log10(p), where p is the
estimated error probability for the base [13]. For example, a quality value
of 10 corresponds to an error rate of 1 in 10, whereas a quality value of 30
corresponds to an error rate of 1 in 1000. The value q is usually encoded in
a single character that is stored together with the base character. Due to the
nature of the sequencing process, it is clear that the distribution of the quality
values is not uniform over the length of a read. The middle part usually has
the best quality, whereas the quality drops at both ends of a read [12, 13].

Older sequencers were slab-based and parallel sequencing lanes on an
agarose gel were often mis-tracked, thereby generating incorrect mate-pairs.
Modern capillary-based sequencers have eliminated this problem, but even
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with these machines human error (rotating or mislabeling of sequencing
plates) can result in a wrong association of mate-pairs, leading to chimeric
mate-pairs of unrelated reads. The error rate for mis-association of mate-pairs
used to be about 10% for the older slab-based sequencers, but is now about
1%. Still, most assembly algorithms insist on the presence of more than one
mate-pair to infer the relative ordering of two contigs.

In order to generate many copies of a fragment before sequencing, cloning
vectors such as plasmids are used. The fragment is incorporated into the
cloning vector and a sufficient number of copies is extracted after cloning.

A spur read is a read that aligns only partially to other reads from the
same region of the source sequence. Spur reads can be the result of chimeric
fragments that are obtained when two unrelated fragments fuse together
during the creation of a clone library. They may also arise when fragments
are contaminated with DNA from the linker or cloning vector.

To address these problems, the reads and mate-pairs obtained in the shot-
gun sequencing process are subjected to preprocessing steps that try to detect
and remove most of the mentioned artifacts. For example, in a process
called vector and quality trimming all reads are computationally inspected for
pieces of the cloning vector genome and any traces of cloning vector sequence
are removed. In addition, the quality values can be used to compute the
expected number of errors in a window of the read. Any region (usually at
the beginning or end of a read) for which this number is too high is then
discarded. Such preprocessing steps will remove many of the artifacts, but not
all. Hence, an assembly algorithm has to be able to cope with these problems
to some degree.

2.2.2 Physical Maps

A physical map (see Ref. [47] for a description of the physical map used in
the assembly of the human genome) of a genome G is given by the physical
location of certain markers along G. The markers are used for navigation and
can also be used for anchoring an assembly at its genomic coordinates. If parts
of the target sequence are stored in clone libraries, then the correct order of the
markers can be used to infer the order of the clones.

One can distinguish between two different families of methods for con-
structing a physical map [44]:

(i) Restriction mapping. Here one uses restriction enzymes to digest the DNA
and then uses the lengths of the restriction fragments to reconstruct the
positions of the restriction sites along the sequence. However, this tech-
nique works only for quite short genomic pieces.

(ii) Fingerprint mapping. Here we have a set of overlapping clones that we
want to order based on common fingerprints. Therefore, one needs a set
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of clones that covers the target sequence redundantly. To determine which
pairs of clones overlap with each other, we compute a fingerprint for each
clone in such a way that overlapping clones have very similar fingerprints.
The overlap information is used to order both the markers and the clones.

Fingerprints can be derived in a number of ways. One approach is to digest
the DNA with a suitable restriction enzyme (e.g. HindIII was used in Ref. [25])
and use the restriction fragment sizes as a fingerprint. Alternatively, a whole
restriction map of a clone can be used as a fingerprint.

Another way to obtain fingerprints is to use STS markers, which are short
(200–500 bp) DNA sequences that occur exactly once in the given genome
and are detectable by polymerase chain reaction (PCR). A number of other
entities can also be used as markers. An EST is an expressed sequence tag that is
derived from a cDNA [32]. It can be detected via a hybridization experiment
or by PCR. The point is that one needs reliable, (essentially) unique markers,
the presence of which is easily tested for. The assumption is that two clones
overlap if they share a common set of markers.

Since the process of obtaining the fingerprints is error prone, it is very
difficult to obtain a complete and accurate physical map of an entire genome.
Physical maps are believed to have a high error rate of 10–20% [11] which
makes the construction of a (correct) minimum tiling path a daunting task.

2.3 Assembly strategies

Given their higher complexity and larger size, it is not surprising that eukary-
otic genomes are much more difficult to assemble than prokaryotic genomes.
The assembly of a prokaryotic genome has become a routine task, whereas the
assembly of a eukaryotic genome remains difficult. In the large sequencing
projects of the last decade two different strategies were employed to deter-
mine the sequence of large eukaryotic genomes, i.e. the clone-by-clone (CBC)
approach, which was used by the HGP to produce their assembly of the
human genome [25], and the WGS approach, which was originally applied
only to small genomes and was extended to large eukaryotic genomes by
researchers at Celera Genomics [38, 54].

Both approaches are based on shotgun sequencing technology, but differ
in an essential preparatory step. In the CBC approach, the target sequence
is broken up into a redundant collection of overlapping pieces of an easily
manageable size of approximately 100–150 kb. DNA molecules of this size
can be incorporated into a vector such as a BAC and they are often referred
to as bacterial artificial chromosome (BAC) clones. The problem of determining
the sequence of a BAC clone is easily solved by using shotgun sequencing and
subsequent assembly. For the human genome this step reduces the problem
of assembling 3 Gb to approximately 40 000 small assembly problems, each of
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size around 100–150 kb. This is done with the help of available physical maps
and computer programs [8, 29].

The CBC approach has a number of advantages. Each individual assembly
problem is easily solved, since the data sets are small and contain only local
repeats. In a joint effort, work can be distributed by assigning different clones
to different institutions for sequencing and assembly. The assembly itself is
easier and can often be done without mate-pair information. However, during
the course of the HGP it became evident that these advantages come at a high
price. First, the physical maps used to place the location of assembled BAC
clones are incomplete and have very high error rates. Second, since overlaps
of the BACs are required to determine their order, there is a certain amount
of redundant sequencing necessary, which results in higher costs. Third,
one needs to construct many individual libraries of sequences for both the
individual BAC clones and all their fragments. This allows the introduction
of many artifacts; in particular, the creation of chimeric BAC clones. Fourth, it
turned out that for the final assembly mate-pairs are necessary to improve
the local ordering of contigs (see also description of current assemblers in
Section 4). Finally, the assignment of sequencing a subset of the clones to
different institutions using different protocols and standards leads to data of
uneven quality.

The WGS approach is very bold. Rather than reducing the genome as-
sembly problem to a large set of small BAC clone assembly problems, in
this approach the shotgun strategy is applied to the whole genome. This
method has essentially the opposite advantages and disadvantages of the CBC
approach. The computational problem of assembling the reads is by no means
trivial, requiring sophisticated algorithms, sufficient mate-pair information in
the input and substantial computational resources. In particular, the assem-
bler software has to cope with the full set of repetitive elements. However,
the problem of mapping the resulting contigs and scaffolds to the genomic
axis is not significantly more difficult than in the CBC approach. WGS data is
much less effected by uneven sampling. The main advantage of this approach
is that it is far easier to automate. Only very few libraries need to be created
and sequenced, and all sequenced data is processed in a single computation,
usually in an incremental fashion.

There was much debate over whether the WGS approach could possi-
bly work for large eukaryotic genomes [17, 56]. However, the feasibility
of the WGS approach in conjunction with paired-end reads as input was
demonstrated by the assemblies of D. melanogaster [38], H. sapiens [54] and
M. musculus [4, 26, 37]. WGS is now the predominant approach, and most
current assembly programs are based on it (see Table 1 for an overview).
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3 Algorithmic Problems and their Treatment

The sequence assembly problem is to reconstruct the sequence of a target
DNA molecule from read and mate-pair information, in the presence of errors
and repeats. The simplest mathematical formulation of this problem is the
“shortest common super-string” (SCS) problem. Given a set of strings as
input, the task is to find string s that contains all input strings as substrings
and is shortest among all such super-strings.

Although this formulation is an extreme simplification of the sequencing
problem, it is known to be NP-hard [15] and thus is believed to be impossible
to solve optimally for large instances. A more sophisticated approach is to cast
the problem as a maximum-likelihood problem [41], but this has not led to a
deterministic approximation algorithm.

Current assemblers were developed using an engineering approach and
are not designed to optimize some explicitly stated mathematical objective
function. In this section we will discuss the fundamental tasks that any
assembler program must address and we will outline some of the algorith-
mic approaches that are employed. The process of sequence assembly must
address the following fundamental tasks:

(i) Computation of overlaps in the presence of repeats. To determine the layout
of the reads on the genomic axis each assembly algorithm is based on the
fact that the sequencing is redundant, in the sense that any given position
in the sequence is covered by an average of x reads, where x is usually
between 3 and 12. The value of x is called the x-coverage. Reads that were
sampled from overlapping locations in the source sequence will exhibit a
high scoring overlap alignment. The goal here is to determine which pairs
of reads overlap. Unfortunately, reads may also exhibit a high-scoring
overlap alignment if they stem from different instances of a repeat in the
source sequence.

(ii) Layout of reads. Based on the overlap information, a second fundamental
task is to determine a layout of the reads that overlap in a consistent way.
This amounts to reconstructing nonrepetitive parts of the target sequence.

(iii) Error correction and repeat resolution. The goal here is to distinguish be-
tween sequencing errors and differences induced by the micro-hetero-
geneity of different instances of a repeat, and to attempt to reconstruct
parts of the repetitive sequence.

(iv) Layout of contigs using mate-pairs. The goal here is to use mate-pair infor-
mation to order and orient contigs relative to each other.

(v) Computation the consensus sequence. Finally, the sequence of each contig in
the assembly must be determined.
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In the following sections we will discuss the main methods for solving these
tasks.

3.1 Overlap Comparison of all Reads

The input to an assembly program (or “assembler”) is a set F = { f1, . . . , fr}
of reads, together with mate-pair information and quality values. In order to
assemble a set of reads, the assembler must be able to decide whether or not
two reads fi and fj were sampled from overlapping locations in the source
sequence.

Conceptually, this can be done by computing an overlap alignment between
each pair of reads or their reverse complements. The detection of an overlap
does not necessarily imply adjacency in the target sequence, since an overlap
can be repeat-induced. In Figure 4 the regions marked R1 and R2 indicate two
instances of the same repeat with near identical sequences. Hence, reads fk
and fl form a repeat-induced overlap, whereas reads fi and fj form a true
overlap.

Figure 4 Reads that form true and repeat-induced overlaps.
R1 and R2 indicate two instances of a repeat.

In a naive approach, one would require O(r2) sequence comparisons to
determine all fragment overlaps. This is not feasible for large genomes where
r ≈ 30–50 million. Since most reads do not actually overlap, this computa-
tional expense seems unnecessary. In fact, one can quickly reduce the number
of required overlap computations to O(r), by using the “seed-and-extend-
and-refine” paradigm. All current assemblers use some version of this idea
(Figure 5):

Figure 5 Overlap alignment of reads.
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(i) Build a k-mer index H for all reads. This index maps any “k-mer” w (a
word of length k) to the set of all occurrences of w in the reads. The value
of k should be large enough such that in a random sequence of the same
length as the target sequence, the expected number of k-mers is small.
In contrast, k should not be too large so as to miss true overlaps due to
sequencing errors. This index has two main applications:

(a) If a pair of reads fi and fj do not share at least one k-mer (more
sophisticated methods may have more complex requirements), they
cannot possibly have a high fidelity overlap alignment and we need
not attempt to compute one. If fi and fj contain one or more identical
k-mers, these k-mers are referred to as seeds and the reads are candi-
dates for an extension, which entails a more sophisticated and costly
overlap computation (see Figure 5).

(b) If a k-mer w appears significantly more often in the genome than
expected, it probably lies in a repeat region of the genome. In this
case, to avoid the computation of repeat-induced extensions, the k-
mer is not used as a seed.

A k-mer index can be computed in linear time and space. A first scan
over all reads counts the number of k-mers. This allows us to efficiently
allocate adjacent memory cells for all positions in the sequences that
contain the same k-mer. In a second scan, the positions are written in
the allocated positions (see, e.g. Refs. [5, 45]).

(ii) The second phase is an extension phase, which makes use of the k-mers
computed in the seed phase. Most ideas used here are very similar to
BLAST [1,40]. Usually one combines two or more k-mer hits that are near
to each other. Then the local alignment is extended in both directions
until the quality of the extension starts to deteriorate. The result of
this phase is a set of local alignments (they are depicted as longer black
diagonals in Figure 6).

(iii) Finally, most algorithms end this stage by refining a set of local align-
ments with a fast version of the global Needleman–Wunsch algorithm.
This can be done by using the shared k-mer information in a number of
ways. (i) One can obtain a bound on the quality of the alignment and use
it to compute a banded alignment [7]. (ii) One can compute an alignment
allowing only k mismatches [6, 39, 40]. (iii) One can use the position
of the shared k-mers and compute a chain of the local alignments from
the extension phase together with smaller local alignments between their
ends (see Figure 6 for an illustration).

The described “overlap” phase of assembly produces a collection of pair-
wise overlaps between reads which predominantly consists of true positive
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Figure 6 Seed, extend and refine paradigm. First, k-mer seeds
being extended, then a banded alignment is computed that explores
narrow bands around the extended seeds and, possibly, larger regions
between them.

overlaps (Figure 7), i.e. overlaps that result from the fact that the involved
reads stem from overlapping positions in the target sequence. However,
there will be a number of false positives (repeat-induced overlaps) and false
negatives (which may result from the seed-and-extend strategy missing an
overlap due to sequencing errors). In Section 3.3 we will discuss how true
and repeat-induced overlaps can be used to correct sequencing errors and to
classify different repeat instances.

Figure 7 A collection of pairwise overlapping reads

We can view the collection of overlaps in terms of an edge-weighted, semi-
directed graph, the overlap graph OG(F ) (Figure 8). There are two types
of edges in this graph. A directed read-edge represents a read; the source
and target nodes of the edge corresponding to the 5′ and 3′ ends of the
read, respectively. The weight of a read-edge is simply the length of the
corresponding read.

An overlap-edge represents an overlap between two reads and joins the two
appropriate vertices contained in the corresponding read-edges. The weight
of an overlap-edge is set to the negative length of the overlap. If the overlap
corresponds to a gapped alignment of the ends of two reads, the amount of
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Figure 8 Overlap graph corresponding to the collection of overlaps in
Figure 7. Read-edges are shown in bold.

overlap can be more accurately represented by a pair of numbers indicating
the length of the two subsequences involved in the alignment.

3.2 Contig Phase: Layout of Reads

Ideally, in the absence of repeat-induced overlaps each connected component
C of the overlap graph OG(F ) will correspond to a collection of reads sampled
from the same local region of the target sequence. However, in practice, due
to the abundance of long-range repeats, the overlap graph always consists of
one huge, highly connected component.

The goal of the layout phase is to determine sets of reads that possess a
consistent layout. Here, a layout is defined as an assignment of coordinates to
all nodes of C that specify the start position si and the end position ei of each
read fi in C. A layout is called consistent if every overlap-edge e is realized
in the layout, which is the case when the coordinates assigned by the layout
induce the corresponding overlap of the two appropriate reads. A layout is
called correct if the relative positioning of the reads in the layout corresponds
to their relative positioning in the source sequence. Any layout represents
the reconstruction of a stretch of contiguous sequence in the target genome (a
contig).

A read fi is said to be contained in another read fj if fi is equal or highly
similar to an internal portion of fj or the reverse complement of fj. Since con-
tained reads contribute no additional overlap information, they are usually set
aside in the layout phase of assembly. They are brought back into play later
to contribute to the computation of arrival statistics and to the scaffolding of
contigs using mate-pairs.

The problem of determining a minimal consistent layout of a set of over-
lapping reads is equivalent to the SCS. As the latter problem is known to be
NP-hard [15], assemblers use heuristics to address the problem.

One widely used heuristics greedily “selects” a subset of overlap-edges S
such that the union of S and the set of all read-edges F defines an alternating
path of reads and overlaps that spans the set of read-edges. Initially, the edge
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Figure 9 (a) An example of an overlap graph for six reads { f1, . . . , f6}
that are as assumed to overlap as indicated in Figure 7. The edges of
a maximal spanning tree are highlighted. (b) The layout of the reads is
defined by the maximal spanning tree.

representing the longest overlap is selected. Then, all overlap-edges in the
overlap graph are considered in ascending order of length of overlap. An
overlap-edge e is selected if neither of the two nodes of e is already incident to
a selected overlap edge.

Another simple heuristics for assigning the coordinates to a component
C is to compute a maximal spanning tree that includes all read-edges, and
maximizes the amount of overlap between reads (Figure 9).

In the presence of repeat-induced overlaps, any read that spans a repeat
boundary may potentially overlap with reads from unrelated regions of the
genome and thus bring them together in the same component C of the over-
lap graph. In this case, some of the overlap-edges in C will represent true
overlaps, while others will represent repeat-induced overlaps. Both heuristics
described above will fail to produce a correct layout whenever they utilize one
or more repeat-induced overlap-edges.

As discussed before, many repeat-induced overlap-edges can be avoided
in the overlap phase. To alleviate the problem further, one can attempt to
distinguish between true overlaps and repeat-induced overlaps by taking
a closer look at the overlap alignment. A number of mismatches in the
alignment that is significantly higher than expected for the given level of
sequencing error indicates that the two reads come from different instances
of an inexact repeat, ideally taking the quality values into account.

Once a layout has been computed, a closer study of a multiple alignment
of the reads in the layout may yield additional information, provided that
sequencing errors will be randomly distributed, whereas repeat-induced dis-
crepancies will occur in a correlated fashion. This is discussed in more detail
below.

The most useful combinatorial insight is that if the reads contained in a
connected component C of the overlap graph were recruited from different
instances of a repeat and if some of the reads span the repeat boundaries, then
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Figure 10 From left to right the reads overlap consistently until we
reach the “branch point” at the position indicated by a dotted line.
From this position onward, the data is partitioned into two incompatible
chains of overlapping reads. Here, the reads on the left of the branch
point lie in the interior of a repeat, whereas the reads that span the
branch point overlap with a unique flanking sequence.

the latter reads will give rise to inconsistencies in the layout. That means,
there will be overlap-edges in C that are not compatible with the overlaps
induced by the layout. These incompatible overlaps will involve those reads
that span repeat boundaries and a detailed analysis of the pattern of overlaps
will uncover potential branch points in the layout (Figure 10).

A branch point is a position of a layout within a read at which a single
consistent chain of overlapping reads possesses at least two different and
mutually exclusive extensions. Whenever a branch point is detected, the ad-
jacent overlaps are removed from the graph and, consequently, the connected
component C is partitioned into smaller components, each giving rise to an
individual contig.

As mentioned above, a consistent layout of reads defines a contig, which
in this case is also called a unitig ( “uniquelly assemble-able contig”), as any
given set of reads possesses at most one consistent layout.

Ideally, any unitig u computed in the layout phase will represent a unique
stretch of the source sequence and will consist only of reads from that region.
We refer to a unitig of this type as a unique-unitig or U-unitig (Figure 11).
Alternatively, and in the absence of inconsistent overlaps, a unitig u may also
represent a stretch of sequence that is repeated twice or more in the source
sequence and may consist of reads collected from different instances of the
repeat.

Methods for distinguishing between U-unitigs and non-unique unitigs
make use of the sequencing coverage. For a given level of sequencing
coverage, we can work out how many reads we expect to see in a unitig
of a given length under the assumption that the unitig represents a unique
stretch of the source sequence or that the unitig represents repetitive sequence,
respectively.

In other words, a non-unique unitig can often be detected because it con-
tains significantly more reads than expected. Let r be the number of reads and
G be the estimated length of the source sequence. It can be shown [31] that for
a unitig consisting of r reads and of approximate length ρ, the probability of
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Figure 11 A unitig represents a chain of consistently overlapping
reads. However, a unitig does not necessarily represent a segment of
unique source sequence. For example, its fragments may come from
the interior of the different instances of a long repeat, as shown here.
R, R′ and R′′ represent three instances of the same repeat.

seeing k− 1 start positions in an interval of length ρ is:

e−cck

k!
,

with c := ρr
G , if the unitig is not oversampled, and:

e−2c(2c)k

k!
,

if the unitig consists of reads recruited from two instances of a repeat. The
arrival statistic is the log of the the ratio of these two probabilities:

c− (log 2)k.

In practice, a unitig is considered to be unique if its arrival statistic is 10 or
above, say.

3.3 Error Correction and Resolving Repeats

In the previous section we discussed how a layout of reads can be collapsed
into a contig and how one can detect inconsistencies in the layout that indicate
repeat boundaries or how arrival statistics can be used to classify contigs as
repetitive.

In this section, we use similar techniques, but with a different goal. Branch-
point detection only determines the boundary of a repetitive region to a
unique region in the genome and an arrival statistic can merely point to
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problematic regions. Error correction and repeat resolution approaches take
a closer look at the distributions of errors in the layout of a collection of
reads and their main task is to determine whether a mismatch in a pairwise
alignment is due to a sequencing error, a single nucleotide polymorphism
(SNP) or a low copy repeat.

The errors in a repetitive contig and the errors in a nonrepetitive contig
are differently distributed. In a nonrepetitive contig errors in overlaps can be
explained by sequencing errors which should occur independently from each
other in each read. In contrast to this, repetitive contigs by definition consist
of reads that are from instances of a repeat from different genomic locations.
Depending on the nature of a repeat, two instances differ from each other by
a certain amount.

In order to be able to classify sequences as repetitive or nonrepetitive, one
needs a suitable null model, i.e. the sequencing error rate in the local genomic
region. This error rate was often assumed to be a constant that could be
refined using bootstrapping methods [9]. Alternatively, it was estimated using
the quality values of bases in the reads. Huang [22] estimated the amount
of sequencing errors in a local neighborhood based on the overlaps of an
individual read with its overlapping partners (see also Ref. [21]). Developing
this idea further, one could obtain an even better estimate of the error rate by
constructing a multiple alignment in the layout phase. Such approaches work
well if no additional source of error confuses the estimation of the sequencing
error. If, however, repetitive overlaps are present, then these approaches
cannot be applied directly. Nevertheless, we can assume that we have a rather
good idea of the sequencing error for a collection of overlaps.

The fact that the reads are collapsed into a contig means that this difference
is small, i.e. in the range of 1–3%. This is still significantly higher than
the assumed rate of SNPs and hence this microheterogeneity can be used for
detecting the different repeat instance (Figure 12).

This simply means that we use the fact that an instance of a repeat differs
slightly from other instances. Hence, reads from a certain genomic location
always differ from the reads in the other location, except in the unlikely event
that the corresponding positions are changed by a sequencing error. Some

Figure 12 Sequencing errors (in red) and micro-heterogeneity of a
collapsed repeat (in blue).
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assembly programs like Euler [43] and ARACHNE [4] have a built-in, simple
error correction phase that corrects numerous mistakes.

However, since the problem is modular, several papers addressed it indi-
vidually. In Figure 12 differences caused by repeats are shown in blue and
differences caused by sequencing errors are shown in red. The blue columns
are called DNPs (defined nucleotide positions) [52] or separating columns [28]
and can be used to separate the individual copies of a repeat.

The method of Tammi and coworkers proceeds in a straightforward way. It
first prepares multiple alignments which it then refines, using a realignment
algorithm [2]. Then, the consensus base in a column is defined as the most
frequent base of the column. Whenever we see a certain number of coinciding
differences from the consensus, the column is a candidate for usage in repeat
separation (e.g. the first blue columns in Figure 12). If another candidate
column can be found, these candidate columns define a DNP (e.g. the second
blue column Figure 12).

Since the above procedure identifies errors that are due to micro-heterogen-
eity in repeats, we can attribute the remaining errors to the sequencing phase.
Hence, the DNPs can also be used for correcting sequencing errors [51].

3.4 Layout of Contigs

In the layout phase, reads are assembled into contigs based on their overlaps,
as reported in the overlap graph. Ideally, one may hope that this will give rise
to a small number of very large contigs, perhaps one per chromosome arm.
However, due to two problems this cannot happen. (i) Shotgun sequencing
produces a random sampling of the source sequence, thus the coverage fluctu-
ates along the sequence and some regions will remain unsampled, giving rise
to sequencing gaps (see Ref. [31] for a mathematical treatment of the statistics
for the length and number of such gaps). (ii) Repeats in the source sequence
lead to the break-up of potential contigs into smaller ones, as described above.

Hence, a common strategy is to arrange sets of contigs into so-called scaffolds
or super-contigs with the help of mate-pair information. More precisely, a
scaffold consists of an ordered list of contigs (c1, c2, . . . , ct), alongside a specifi-
cation of the orientation of each individual contig (i.e. whether to use ci or the
reverse complement c̄i) and an estimation of the distance between any two
consecutive contigs. A scaffold is deemed correct if the relative positioning
and orientation of its contigs corresponds to the true locations in the source
sequence.

As described above, shotgun sequencing projects often use a paired-end or
double-barreled shotgun protocol, in which clones of a given fixed length are
sequenced from both ends. This approach produces pairs of reads, called
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Figure 13 If two assembled contigs c1 and c2 correspond to
neighboring regions of the source sequence, then we can expect to
find mate-pairs that span the gap between them.

mate-pairs, whose relative orientation and mean distance l (with standard
deviation σ) are known (Figure 2).

Standard size-selection techniques are used to produce a collection (library),
of clones that have approximately the same length. A typical mixture of
clone lengths is l = 2, 10 and 150 kb. With care, a standard deviation σ of
approximately 1/10 of l can be achieved.

Consider two contigs c1 and c2 produced in the layout phase of assembly.
If they correspond to neighboring regions in the source sequence, we can
expect to find mate-pairs that span the gap between them, as indicated in
Figure 13. Such mate-pairs can be used to determine the relative orientation
and estimated distance between c1 and c2.

Assume that the two contigs c1 and c2 are connected by mate-pairs m1, m2,
. . . , mk. Each mate-pair provides an estimate of the distance between the
two contigs. If these estimates are viewed as independent measurements,
then they can be combined into a single estimate using standard statistical
calculations.

As the assignment of reads to their mates is error prone, the existence of a
single mate-pair linking two different contigs is not deemed significant. It is,
however, of great statistical significance if two U-unitigs c1 and c2 are linked
by two different mate-pairs in a consistent way. Similarly it is very unlikely
that two mate-pair specification errors would put together two pairs of reads
from the same two local regions of the source genome.

Assume that we are now given a collection of contigs {c1, c2, . . . , ck} and a
table of mate-pair information that links pairs of reads that are embedded in
the contigs. To discuss the problem in more detail, we introduce the contig-
mate graph. In this graph, each contig ci is represented by a directed contig-edge
having nodes si (the start node) and ei (the end node). So-called mate-edges are
added between such nodes to indicate that the corresponding contigs contain
reads that are mates. For example, the two contigs c1 and c2, together with the
collection of mates depicted in Figure 14 give rise to the contig-mate graph
indicated in Figure 15.

If a set of different mate-pairs link two different contigs c1 and c2 in a
consistent manner, then the contig-mate graph can be simplified by replacing
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Figure 14 Here we depict two contigs that are linked by four mate-
pairs. Each mate-pair provides an estimate (li, σi) of the gap between
the two contigs, and simple statistics can be used to estimate a
resulting mean distance D and standard deviation σ.

Figure 15 The two contigs and four mate-pairs shown in Figure 14
give rise to two contig-edges and four mate-edges in the contig-mate
graph, as shown here.

the set of edges by a single bundled mate-edge e, whose mean length μ and
standard deviation can be computed from the values for the original mate-
edges, using straightforward statistics. Additionally, e is assigned a weight to
reflect the number of mate-pairs that support it. Further edges can be bundled
using so-called transitive reduction, which we do not describe here.

The goal of the scaffolding phase is to use the contig-mate graph to determine
the true relative order and orientation of a set of contigs that are linked by
mate-pairs. Most assemblers use different heuristics to address this problem.

We briefly discuss how this problem can be formalized (see Ref. [23] for
details). An ordering or scaffolding of a set of contigs can be specified as a
path P through the corresponding contig-mate graph. To this end, it may be
necessary to infer “missing edges” between consecutive contig-edges in the
path. To evaluate such a scaffolding one can look at all the mate-edges in the
graph. We say that a mate-edge e is satisfied if the mate-pair layout implied
by e is compatible with the ordering and orientation of contigs implied by P,
otherwise e is called unsatisfied. Thus, the scaffolding phase can be stated as
the following optimization problem: for a connected contig-mate graph, find
a path P through the graph that contains all contig-edges, that possibly uses
additional inferred edges and maximizes the number of satisfied mate-edges.
This problem has been shown to be NP-hard [23].

Existing assemblers use straightforward heuristics in an attempt to form
scaffolds. One heuristics that addresses the stated optimization problem
directly is the “greedy path-merging” algorithm [23]. Given a connected



3 Algorithmic Problems and their Treatment 45

contig-mate graph, the algorithm proceeds “bottom-up” as follows, main-
taining a valid scaffolding S ⊆ E. Initially, all contig-edges c1, c2, . . . ck are
selected, but no others. At this stage, the graph consists of k selected paths
P1 = (c1), . . . , Pk = (ck). Then, in ordering of decreasing weight, each mate-
edge e = {v, w} is considered. If v and w lie in the same selected path Pi, then
e is a chord of Pi and no action is necessary. If v and w are contained in two
different paths Pi and Pj, we attempt to merge the two paths to obtain a new
path Pk and accept such a merge, provided the increase of S(G) (the number
of satisfied mate-edges) is larger than the increase of U(G) (the number of
unsatisfied ones).

3.5 Computation of the Consensus Sequences

In a final step we need to determine the actual sequence for the target
molecule. So far, we have discussed how to construct contigs, how to order
them in scaffolds and how to address the problem of repeat resolution. The
pairwise overlaps between reads provide only an approximate layout of the
reads with respect to each other. To obtain a final layout, one needs to solve a
special multiple alignment problem, with the following properties:

• The reads of the multiple alignment are almost identical.

• Quality values can be incorporated in the computation of the consensus
sequence and be used to assign quality scores to consensus characters.

• The alignment is usually of depth 5–10 and very long (up to millions of base
pairs).

• We need to compute the alignment very fast.

The fact that the initial read layout already gives an approximate alignment
and the need to compute the alignment quickly results in the application of
heuristics to solve the multiple alignment problem, since a generalization of
the dynamic programming-based approach would result in a running time of
O(nk) where k is about 5–10.

Most assemblers [4,26,50] implement the idea depicted in Figure 16 in some
way. For each contig an alignment is “grown”, starting with the pairwise
alignment of the two left-most reads or the two reads with the best pairwise
similarity. Then, the next read is aligned to the multiple alignment of the
previous two reads and so on. Aligning a read to an alignment is usually
done by converting the multiple alignment into a profile, and then employing
an adaption of the pairwise alignment algorithm to the profile and the read
(Figure 16). If quality values are at hand, they can be incorporated in to the
alignment computation.
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Figure 16 Computation of the consensus sequence.

Once a multiple alignment has been determined, a consensus character is
computed for each column of the multiple alignment. This can be done by
simply voting on the majority character or, alternatively, by weighing the vote
using the quality values [4]. If prior knowledge of the base composition is at
hand, it can even be incorporated in a Bayesian approach [9] which computes
the most likely consensus character and also derives a quality value for it.
Some assembly programs employ ad hoc heuristics to incorporate the quality
values [21] or use the approach implemented in the Phrap package [16,18,36].
Phrap avoids computing a multiple alignment altogether. Instead, it chooses
a chain of single reads which are chosen such that they provide adjacent
intervals of high-quality base calls. In each interval this single high-quality
base is chosen for the consensus sequence.

Although this strategy does not use all available information, it avoids
some artefacts introduced by the progressive method commonly used for
the computation of multiple alignments. For example, Figure 17 shows a
typical output of a progressive alignment on the left. Depending on the
score function, the last read may result in three different alignments with
other reads which are merged into a multi-alignment that introduces two
Ts into the consensus sequence (depicted in blue). However, the multi-
alignment on the right is more likely to be correct, since it can be explained
with only two sequencing errors in the last read. Such additional characters
are to be avoided, since they confound gene prediction algorithms and other

Figure 17 Common error in consensus computation.
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computational sequence analysis tools. A possible strategy to achieve this is
to use iterative refinement strategies that correct such mistakes [2].

4 Examples of Existing Assemblers

In Table 1 we give an overview of current assemblers that are able to compute
an assembly of large eukaryotic genomes and list some of the genomes that
have been applied to. We use the attributes CBC and WGS to indicate whether
the assembler follows more the CBC or the WGS paradigm. Assemblers that
take clone information and a WGS data set as input are marked as hybrid.

Table 1 Recent assembly programs for eukaryotic genomes.

Name Year Strategy Genomes (examples)

Celera 2000 WGS H. sapiens [54], M. musculus [37],
D. melanogaster [38], Anopheles gambiae [19],

GigAssembler 2001 CBC H. sapiens [29]
ARACHNE 2002 WGS M. musculus [4, 26]
JAZZ 2002 WGS Fugu rubripes, Ciona intestinalis [3, 10]
RePS 2002 WGS Oryza sativa [55, 57]
Barnacle 2003 CBC H. sapiens [8]
PCAP 2003 WGS Caenorhabdtis briggsae, M. musculus [20]
Phusion 2003 WGS M. musculus [36]
Atlas 2004 hybrid Rattus norvegicus [18, 46]

In the following we give short descriptions of the assemblers listed in Table
1. This will give the flavor of the latest algorithmic approaches and show that
all assemblers use similar ideas.

4.1 The Celera Assembler

The Celera assembler was the first WGS assembler to assemble large eukary-
otic genomes [38, 54]. It screens the reads, removes vector or linker sequence
and keeps only the interval with an average sequence identity of 98%. The
overlapper module compares all pairs of reads to detect high-fidelity overlaps.
To avoid a quadratic number of overlap computations, the overlapper uses a
k-mer index to exclude nonrelated pairs from the expensive overlap. This
results in a read-overlap graph as described in Section 3.1. Regions of this
graph are assembled into contigs whenever the initial arrangement of reads in
this region is unique. The Celera assembler incorporates mate-pair informa-
tion, and orders and orients the contigs. The remaining gaps are closed in a
sequence of less and less conservative steps. First contigs are placed if they are
“anchored” by two mate-pairs, then if they are anchored by one mate-pair and
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an overlap path and so on. For each contig a consensus sequence is computed
based on a progressive multiple alignment and a local heuristics to remove
merging artefacts.

4.2 The GigAssembler

The GigAssembler [29] was designed to assemble the human genome from
the CBC data obtained from the HGP [25]. It had to assemble all BACs in a
tiling layout of clones. In addition to this input set, it uses mate-pairs, mRNA
and EST information to bridge gaps in scaffolds. The GigAssembler screens
the input sequences for contaminations and masks known repeats. Additional
sequence information (reads of mate-pairs, ESTs, mRNA and BAC end reads)
is aligned to the input. Similar to the description in Section 3.1, GigAssembler
builds a lookup table of 10-mers and then conducts a detailed alignment in
regions where consecutive 10-mers match. The main routine of the GigAssem-
bler builds sequence contigs (called “rafts”) from overlapping initial sequence
contigs within a clone. Then it builds clone contigs (called “barges”) from
overlapping clones, and orders and orients the resulting contigs into “super-
contigs”. These assemblies are combined into full chromosome assemblies.

4.3 The ARACHNE Assembler

The ARACHNE assembler was developed by a group at the MIT that was also
a major partner in the HGP. In its first version [4] its functionality was tested
by reassembling the genomes of H. influenza, Saccharomyces cervisiae and D.
melanogaster, as well as the two smallest human chromosomes, 21 and 22. A
later version of ARACHNE [26] was used in the public assembly of the mouse
genome. ARACHNE appears to be modeled after the Celera assembler, with
a few differences.

As a true WGS assembler its input consists of a set of reads and mate-pairs
where the mate-pairs are taken from carefully length selected clone libraries.
An overlap phase is conducted as outlined in Section 3.1. In addition, it
employs an error correction phase using multiple alignments deduced from
the pairwise overlaps.

The contig assembly phase differs from the one employed in the Celera
assembler, since it directly incorporates mate-pairs by identifying ”paired
reads”, which are reads of two mate-pairs where the two left and the two
right reads overlap, respectively. This is a clever way to form contigs that are
consistent in overlap and mate-pair information.

ARACHNE computes repeat boundaries by inspecting the pairwise over-
laps. To detect remaining repetitive contigs ARACHNE uses an arrival statis-
tic similar to the one described above, together with the fact that repetitive
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contigs are likely to have mate-pairs that link them in a contradictory way to
other contigs.

ARACHNE uses mate-pairs to build scaffolds using a greedy algorithm
that gives priority to merging contigs that are supported by the most links
involving the shortest distance. This phase is followed by an attempt to fill
gaps using contigs that were previously labeled as repetitive. Since the first
labeling was conservative, this will often succeed. A consensus sequence is
derived by heuristicly computing a multiple alignment.

4.4 The JAZZ Assembler

The JAZZ assembler is a modular assembler making use of different, some-
times already existing modules. The input reads are trimmed with respect
to a window average of the quality values. In addition, they are checked for
vector contamination which is then removed. The overlap phase is similar
to the description of Section 3.1. An index of 16-mers is constructed. All
16-mers that occur too often are not used for triggering a more expensive
alignment step. Then all reads that share more than ten non repetitive 16-mers
are aligned using a banded Smith–Waterman algorithm. JAZZ constructs a
scaffolded layout of reads. In particular, JAZZ postpones the computation
of contigs until the consensus phase, which employs a consensus algorithm
similar to Phrap. JAZZ tries to close gaps in scaffolds that are due to repeats
in the genome.

4.5 The RePS Sssembler

The RePS uses also Phrap as its main assembly engine. It was primarily used
to assemble the rice genome [55]. RePS masks out repeated 20-mers. The
masked reads are handed to Phrap. As a post-Phrap step, RePS uses mate-
pairs to fill gaps and build scaffolds. The strategies RePS uses are concepts
borrowed from the Celera assembler.

4.6 The Barnacle Assembler

Barnacle [8] is an assembler that was used to reassemble the human genome
from the public CBC data. In contrast to GigAssembler it does not make use
of a physical map, but uses mate-pairs and clone data only (possibly aug-
mented with chromosome assignments). Barnacle computes all pairwise local
alignments of the input sequence. This is done using a strategy as described
in Section 3.1. Using those overlaps, contigs in the input set are merged
whenever possible, thereby reducing the number of contigs by an order of
magnitude. The clone overlaps are deduced (two clones overlap if, and only
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if, at least one contig pair of the corresponding clones overlaps) and conflicts
are resolved by heuristically enforcing the layout graph (clones are vertices,
overlaps induce edges) to be an interval graph. Barnacle orients the contigs
starting from the interval representation of clones and assign coordinates to
sub-contigs. Again, possible inconsistencies result in the discarding of the
contigs involved.

4.7 The PCAP Assembler

The PCAP assembler is a true WGS assembler that incorporates many aspects
of the well known CAP3 assembler [21]. One interesting aspect of PCAP is the
way repeats are identified de novo during the overlap computation. For this,
the set of reads is partitioned into subsets that can be distributed on many
computers. Then, in an iterative process, repeats are identified during the
overlap computation and used to avoid the computation of repeat induced
overlaps. To do this, some overlaps are computed and repetitive regions are
identified based on those overlaps. These repeats are used in the next round
of overlap computations, and so on.

The overlaps themselves are computed in a manner similar to the approach
outlined in Section 3.1. Prior to the construction of contigs, the depth of
coverage at every point in the initial layout determined by the overlaps is
computed. Using the depth of coverage, overlaps are assigned a score that
reflects whether they are repeat induced or not. Only overlaps that are likely
to be unique are used in the contigging step. In addition, poor ends of reads
are located and clipped and chimeric reads discarded (all based on pairwise
overlaps).

Contigs are formed by inspecting read overlaps in decreasing order of their
adjusted score. Then the CAP3 algorithm for scaffolding is applied. It consists
of finding groups of mate-pairs that indicate a mis-assembly of the contig.
If such mate-pairs can be found, the contig is corrected and the mate-pair
consistency is checked again.

A simple gap filling strategy based on finding overlap paths is applied,
multiple alignments are computed and a consensus sequence is derived as
in CAP3. The computation of the consensus sequence involves a heuristic
procedure that makes use of the quality values of the reads.

4.8 The Phusion Assembler

The Phusion assembler was primarily designed to assemble the mouse
genome from a WGS data set at 7.5× coverage [36] and was developed in
parallel with the ARACHNE assembler [4, 27]. It is a modular assembler in
the sense that it incorporates an older program, i.e. Phrap, as an integral part
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of its operation. It screens the input reads for poor quality reads, which are
completely removed, and conducts a screening for vector contamination.

Phusion computes a histogram of all k-mers for a suitable k. Similar to
the Atlas assembler, it uses this histogram to exclude k-mers that occur too
seldomly (probably sequencing errors) and too often (probably repeats). The
remaining k-mers are used to group the reads into contiguous groups, which
are then passed to Phrap for assembly. This strategy is quite similar to the
Atlas assembler and the compartmentalized assembler used by Celera to
assemble a version of the human genome [24].

Phusion uses Phrap as its assembly engine and iteratively computes as-
semblies of sets of reads. It checks the consistency of the mate-pairs in
this set. Whenever an inconsistency is detected, Phusion splits the set and
reassembles the parts using Phrap. This results in a number of contigs that
might share sequence parts. Phusion tries to join contigs based on the number
of shared reads and sequence overlaps, a strategy not unlike that of the
GigAssembler [29]. The resulting, larger contigs are scaffolded, using the
mate-pair information.

4.9 The Atlas Assembler

The Atlas assembly system is a suite of programs that form a hybrid assembler
which uses reads from WGS and from CBC data sets. Thus, it is very similar
to the compartmentalized assembler developed at Celera Genomics [24, 54].

Atlas trims the input reads based on the error rate in a local window.
It builds a k-mer index of the WGS reads, since these cover the genome
uniformly. Similar to the Phusion assembler, it uses the fact that seldomly
occurring k-mers are likely to contain sequencing errors, while abundant k-
mers are likely to be repetitive. Atlas establishes the “rarity” of a k-mer in the
overlap phase, using such k-mers to seed a banded alignment as described in
Section 3.1.

The WGS reads are binned by using the localized BAC clone reads to
“catch” the corresponding WGS reads. The reads in each BAC bin are assem-
bled using Phrap. Since Phrap does not use mate-pairs during the assembly,
the resulting contigs are checked for consistency and, if found to be inconsis-
tent, split using the mate-pair information. The same information is then used
to scaffold the resulting contigs. The improved BACs are called eBACs.

Atlas performs a meta-assembly of the eBACs. Based on overlap informa-
tion and independent mapping data, a tiling path of eBACs is computed. The
assembly induced by this tiling path is refined using rolling-Phrap, which is
an iterative procedure calling Phrap in a window that is cleverly moved over
the tiling path. The resulting large contigs are linked using mate-pairs and
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localized BAC reads, and then anchored on the genomic axis using external
mapping data.

4.10 Other Assemblers

There are a number of other assemblers that are not described here, either
because they have been outdated by more recent developments (e.g. Refs. [14,
50]) or because they have not been used to assemble large eukaryotic genomes.
Specifically, we would like to mention the Euler (or Euler-DB) assembler [43],
which formulates the assembly problem differently, using a k-mer graph.

The last years have seen the development of a host of different assembly
programs, which nevertheless share a significant portion of algorithmic ideas.
In general, sequence assembly can be seen as a concatenation of algorithmic
modules with well-defined interfaces. Hence, we believe that it would be
worthwhile to combine the best implementations of these modules, an ap-
proach that has been taken by the Amos consortium hosted by The Institute
for Genomic Research (TIGR) [53].

5 Conclusion

Assembling whole eukaryotic genomes was deemed impossible only 15 years
ago. Yet, an initiative was founded to tackle the seemingly gargantuan task
of assembling the human genome. Whole-genome assembly of eukaryotic
genomes, once strongly criticized as impractical, has now been successfully
applied to a number of large genomes and has become the standard ap-
proach. This would not have been possible without bioinformatics support,
the development of efficient assembly algorithms and solid engineering to
implement those algorithms into robust computer programs that also handle
all peculiarities of the data that are not captured in the mathematical models.
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Part 3 Sequence Analysis

3
Sequence Alignment and Sequence Database Search
Martin Vingron

1 Introduction

In evolutionary studies two characters are called homologous when they
share common evolutionary ancestry. Genes may also be homologous, which
usually is reflected by similarity among their DNA or amino acid sequences.
Furthermore, homology among genes frequently implies that they are func-
tionally similar. Thus, there are two good reasons to compare the sequences
of genes or proteins, i.e. the unraveling of evolutionary relationships and
extrapolating function from one gene to another.

The basis for the study of sequence similarity is the comparison of two
sequences which will be dealt with in Section 2. Sequence comparisons
are performed in large numbers when searching sequence databases for se-
quences that are similar to a query sequence. Algorithms for this purpose
need to be fast, even at the expense of sensitivity. Section 3 discusses the
widely used heuristic approaches to database searching. However, the algo-
rithms we are designing for the purpose of quantifying sequence similarity
can only be as good as our understanding of evolutionary processes and thus
they are far from perfect. Therefore, results of algorithms need to be subjected
to a critical test using statistics. Methods for the assessment of the statistical
significance of a finding are introduced in Section 4.

Genes do not come in pairs, but rather in large families. Consequently,
the need arises to align more than two sequences at a time, which is done
by multiple alignment programs. Computationally a very hard problem,
it has attracted considerable attention from the area of algorithm develop-
ment. Section 5 presents the basic approaches to multiple sequence alignment.
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Section 6 builds on the knowledge of a multiple alignment and introduces
how to exploit the information contained in several related sequences for the
purpose of identifying additional related sequences in a database. The last
section covers methods and resources to structure the entire space of protein
sequences.

2 Pairwise Sequence Comparison

2.1 Dot plots

Dot plots are probably the simplest way of comparing sequences [55]. A
dot plot is a visual representation of the similarities between two sequences.
Each axis of a rectangular array represents one of the two sequences to be
compared. A window length is fixed, together with a criterion under which
two sequence windows are deemed to be similar. A typical choice for this
similarity criterion would be a certain fraction of matching residues within a
window. Whenever one window in one sequence resembles another window
in the other sequence, a dot or short diagonal is drawn at the corresponding
position of the array. Thus, when two sequences share similarity over their
entire length a diagonal line extends from one corner of the dot plot to the
diagonally opposite corner. If two sequences only share patches of similarity
this is revealed by diagonal stretches.

Figure 1 shows an example of a dot plot. There, the coding DNA sequences
of the α- and β-chains of human hemoglobin are compared to each other. For
this computation the window length was set to 31. The program adds up the
matches within a window and the gray value at the position corresponding to
the center of the window is set according to the quality of the match at that
position. One can clearly discern a diagonal trace along the entire length of the
two sequences. Note the jumps where this trace changes to another diagonal
of the array. These jumps correspond to the position where one sequence has
more (or fewer) letters than the other one. Figure 1 was produced using the
program “dotter” [71].

Dot plots are a powerful method of comparing two sequences. They do not
predispose the analysis in any way such that they constitute the ideal first-pass
analysis method. Based on the dot plot the user can decide whether they deal
with a case of global, i.e. beginning-to-end, similarity or local similarity. “Lo-
cal similarity” denotes the existence of similar regions between two sequences
that are embedded in the overall sequences which lack similarity. Sequences
may contain regions of self-similarity which are frequently termed internal
repeats. A dot plot comparison of the sequence itself will reveal internal
repeats by displaying several parallel diagonals (see also Chapter 7).
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Figure 1 Dot plot comparing two hemoglobin sequences. The
horizontal axis corresponds to the sequence of the human
β-hemoglobin chain; the vertical sequence (numbered from top
to bottom) represents the human α-hemoglobin chain.

Instead of simply deciding if two windows are similar, a quality function
may be defined. In the simplest case, this could be the number of matches
in the window. For amino acid sequences the physical relatedness between
amino acids may give rise to a quantification of the similarity of two win-
dows. For example, when a similarity matrix on the amino acids (like the
Dayhoff matrix, see below) is used one might sum up these values along the
window. However, when this similarity matrix contains different values for
exact matches this leads to exactly matching windows of different quality. The
dot plot method of Argos [5] is an intricate design that reflects the physical
relatedness of amino acids. The program dotter [71] is an X-windows-based
program that allows for displaying dot plots for DNA, for proteins and for
comparison of DNA to protein.
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Figure 2 Sequence alignment between the amino acid sequences
of human hemoglobin α- and β-chains. Note that these are the
same genes for which the dot plot of the corresponding coding DNA
sequences is shown in Figure 1.

2.2 Sequence Alignment

A sequence alignment [81] is a scheme of writing one sequence on top of
another such that the residues in the same position are deemed to have a
common evolutionary origin. If the same letter occurs at the same position
in both sequences, then this position has been conserved in evolution (or,
coincidentally, mutations from another ancestral residue have given rise to the
same letter twice). If the letters differ it is assumed that both derive from the
same ancestral letter, which could be one of the two or neither. Homologous
sequences may have different length, though, which is generally explained
through insertions or deletions in sequences. Thus, a letter or a stretch of
letters may be paired up with dashes in the other sequence to signify such an
insertion or deletion. Since an insertion in one sequence can always be seen as
a deletion in the other one sometimes uses the term “indel” (or, simply, “gap”).
Figure 2 depicts an example of an alignment. The sequences aligned there are
the proteins derived from the coding sequences compared in Figure 1. Note
that the first stretch of contiguously aligned amino acids (up to the WGKV
match) corresponds to the first diagonal stretch in the dot plot of Figure 1. The
subsequent insertion of 2 amino acids in the α-chain corresponds to linking
this first diagonal to the second one, which is located around position 100.
Likewise, the next five-letter gap in the alignment corresponds to the join from
the second diagonal to the third, starting around position 200 in the dot plot.

In such a simple evolutionarily motivated scheme, an alignment mediates
the definition of a distance for two sequences. One generally assigns a score
of zero to a match, some positive number to a mismatch and a larger positive
number to an indel. By adding these values along an alignment one obtains a
score for this alignment. A distance function for two sequences can be defined
by looking for the alignment which yields the minimum score.
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Figure 3 Schematic representation of the edit matrix comparing two
sequences. The arrows indicate how an alignment may end according
to the three cases described in the text.

Naively, the alignment that realizes the minimal distance between two
sequences could be identified by testing all possible alignments. This num-
ber, however, is prohibitively large; luckily, using dynamic programming,
the minimization can be effected without explicitly enumerating all possible
alignments of two sequences. To describe this algorithm [64] denote the two
sequences by s = s1, . . ., sn and t = t1, . . ., tm. The key to the dynamic pro-
gramming algorithm is the realization that for the construction of an optimal
alignment between two stretches of sequence s1, . . ., si and t1, . . ., tj it suffices
to inspect the following three alternatives:

(i) The optimal alignment of s1, . . ., si−1 with t1, . . ., tj−1, extended by the
match between si and tj;

(ii) The optimal alignment of s1, . . ., si−1 with t1, . . ., tj, extended by matching
si with a gap character “–”;

(iii) The optimal alignment of s1, . . ., si with t1, . . ., tj−1, extended by matching
a gap character “–” with tj.

Each of these cases also defines a score for the resulting alignment. This score
is made up of the score of the alignment of the so far unaligned sequences
that used plus the cost of extending this alignment. In case (i), this cost is
determined by whether or not the two letters are identical; in cases (ii) and (iii),
the cost of extension is the penalty assigned to a gap. The winning alternative
will be the one with the best score (Figure 3).

To implement this computation one fills in a matrix the axes of which are
annotated with the two sequences s and t. It is helpful to use north, south,
west and east to denote the sides of the matrix. Let the first sequence extend
from west to east on the north side of the matrix. The second sequence extends
from north to south on the west side of the matrix. We want to fill the matrix
starting in the north-western corner, working our way southward row by
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row, filling each row from west to east. To start, one initializes the northern
and western margin of the matrix, typically with gap penalty values. After
this initialization the above rules can be applied. A cell (i, j) that is already
filled contains the score of the optimal alignment of the sequence s1, . . ., si
with t1, . . ., tj. The score of each such cell can be determined by inspecting
the cell immediately north-west of it [case (i)], the cell west [case (ii)] and the
one north [case (iii)] of it, and deciding for the best scoring option. When the
procedure reaches the south-eastern corner, that last cell contains the score of
the best alignment. The alignment itself can be recovered as one backtracks
from this cell to the beginning, each time selecting the path that had given rise
to the best option.

The idea of assigning a score to an alignment and then minimizing or maxi-
mizing over all alignments is at the heart of all biological sequence alignment.
However, many more considerations have influenced the definition of the
scores and made sequence alignment applicable to a wide range of biological
settings. First, note that one may either define a distance or a similarity
function of an alignment. The difference lies in the interpretation of the values.
A distance function defines positive values for mismatches or gaps and then
aims at minimizing this distance. A similarity function assigns high values
to matches and low values to gaps, and then maximizes the resulting score.
The basic structure of the algorithm is the same for both cases. In 1981, Smith
and Waterman [69] showed that for global alignment, i.e. when a score is
computed over the entire length of both sequences, the two concepts are in
fact equivalent. Thus, it is now customary to choose the setting that gives
more freedom for appropriately modeling the biological question of interest.

In the similarity framework one can easily distinguish among the different
possible mismatches and also among different kinds of matches. For example,
a match between two tryptophans is usually regarded to be more important
than a match between two alanines. Likewise, the pairing of two hydropho-
bic amino acids like leucine and isoleucine is preferable to the pairing of a
hydrophobic with a hydrophilic residue. Scores are used to describe these
similarities and are usually represented in the form of a symmetric 20 × 20
matrix, assigning a similarity score to each pair of amino acids. Although
easy to understand from the physical characteristics of the amino acids, the
values in such a matrix are usually derived based on an evolutionary model
that enables one to estimate whether particular substitutions are preferred or
avoided. To be more precise, the similarity score for 2 amino acids is defined
as the logarithm of the likelihood ratio of the two residues being homologous
versus finding them at their corresponding positions due to chance. This
approach has been pioneered by Dayhoff [17] who computed a series of amino
acid similarity matrices. Each matrix in this series corresponds to a particular
evolutionary distance among sequences. This distance is measured in a unit
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called 1 PAM, for 1 Accepted Point Mutation (in 100 positions). The matrices
carry names like PAM120 or PAM250, and are supposed to be characteristic
for evolutionary distances of 120 or 250 PAM, respectively. Other more recent
series of matrices are the BLOSUM matrices [27] or the VT series of matrices
[57]. For every matrix one needs to find appropriate penalties for gaps.

The treatment of gaps deserves special care. The famous algorithm by
Needleman and Wunsch [60] did not impose any restrictions on the penalty
assigned to a gap of a certain length. For reasons of computational speed,
later gap penalties were restricted to a cost function linear in the number
of deleted (inserted) residues [64]. This amounts to penalizing every single
indel. However, since a single indel tends to be penalized such that it is
considerably inferior to a mismatch, this choice resulted in longer gaps being
quite expensive and thus unrealistically rare. As a remedy, one mostly uses
a gap penalty function which charges a gap open penalty for every gap that
is introduced and penalizes the length with a gap extension penalty which is
charged for every inserted or deleted letter in that gap. Clearly, this results
in an affine linear function in the gap length, frequently written as g(k) =
a + b ∗ k [80].

With the variant of the dynamic programming algorithm first published
by Gotoh [23] it became possible to compute optimal alignments with affine
linear gap penalties in time proportional to the product of the lengths of
the two sequences to be aligned. This afforded a speed-up by an order
of magnitude compared to a naive algorithm using the more general gap
function. A further breakthrough in alignment algorithms development was
provided by an algorithm that could compute an optimal alignment using
computer memory only proportional to the length of one sequence instead of
their product. This algorithm by Myers and Miller [59] is based on work by
Hirshberg [29].

Depending on the biological setting, several kinds of alignment are in
use. When sequences are expected to share similarity extending from the
beginning of the sequences to their ends, they are aligned globally. This
means that each residue of either sequence is part either of a residue pair or a
gap. In particular, it implies that gaps at the ends are charged like any other
gap. This, however, is a particularly unrealistic feature of a global alignment.
While sequences may very well share similarity over their entire length (see
the example dot plot of two hemoglobin chains in Figure 1), their respective
N- and C-termini usually are difficult to match up, and differences in length
at the ends are more of a rule than an exception. Consequently, one prefers
to leave gaps at the ends of the sequences unpenalized. This variant is easy
to implement in the dynamic programming algorithm. Two modifications are
required. First, the initialization of the matrix needs to reflect the gap cost of
zero in the margin of the matrix. Second, upon backtracking, one does not
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necessarily start in the corner of the matrix, but rather searches the margins
for the maximum from which to start. Variants of this algorithm that penalize
only particular end-gaps are easy to derive and can be used, for example, to
fit one sequence into another or to overlap the end of one sequence with the
start of another.

In many cases, however, sequences share only a limited region of similarity.
This may be a common domain or simply a short region of recognizable simi-
larity. This case is dealt with by so-called local alignment in an algorithm due
to Smith and Waterman [69]. Local alignment aims at identifying the best pair
of regions, one from each sequence, such that the optimal (global) alignment
of these two regions is the best possible. This relies on a scoring scheme that
maximizes a similarity score because otherwise an empty alignment would
always yield the smallest distance. Naively, the algorithm to compute a local
alignment would need to inspect every pair of regions and apply a global
alignment algorithm to it. The critical idea of Smith and Waterman was
to offer the maximization in each cell of the matrix a fourth alternative: a
zero to signify the beginning of a new alignment. After filling the dynamic
programming matrix according to this scheme, backtracking starts from the
cell in the matrix that contains the largest value.

Upon comparing a dot plot and a local alignment one might notice regions
of similarity visible in the dot plot, but missing in the alignment. While in
many cases there exist gap penalty settings that would include all interest-
ing matching regions in the alignment, generally it requires the comparison
with the dot plot to notice possible misses. This problem is remedied by
an algorithm due to Waterman and Eggert [82] which computes suboptimal,
local and nonoverlapping alignments. It starts with the application of the
Smith–Waterman algorithm, i.e. a dynamic programming matrix is filled
and backtracking from the matrix cell with the largest entry yields the best
local alignment. Then the algorithm proceeds to delineate a second-best
local alignment. Note that this cannot be obtained by backtracking from the
second-best matrix cell. Such an approach would yield an alignment largely
overlapping the first one and thus containing little new information. Instead,
those cells in the dynamic programming matrix are set to zero from where
backtracking would lead into the prior alignment. This can be regarded as
“resetting” the dynamic programming matrix after having deleted the first
alignment. Then the second best alignment is identified by looking for the
maximal cell in the new matrix and starting backtracking from there. Iteration
of this procedure yields one alternative, nonoverlapping alignment after the
other in order of descending quality. Application of this algorithm avoids
possibly missing matching regions because even under strong gap penalties
the procedure will eventually show all matching regions.
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There is an interesting interplay between parameters, particularly the gap
penalty, and the algorithmic variant used. Consider a pair of sequences whose
similar regions can in principle be strung together into an alignment. Under
a weak gap penalty the Smith–Waterman algorithm has a chance to identify
this entire alignment. On the other hand, not knowing about the similarity
between the sequences ahead of time, a weak gap penalty might also yield
all kinds of spurious aligned regions. The Waterman–Eggert algorithm is a
valid alternative. The gap penalty can be chosen fairly stringently. The first
(i.e. the Smith–Waterman) alignment will then identify only the best-matching
region out of all the similar regions. By iterating the procedure, though, this
algorithm will successively identify the other similar regions as well. For a
detailed discussion of these issues, see Vingron and Waterman [79].

3 Database Searching I: Single-sequence Heuristic Algorithms

This section takes a first look at the problem of identifying those sequences in
a sequence database that are similar to a given sequence. This task arises, for
example, when a gene has been newly sequenced and one wants to determine
whether a related sequence already exists in a database. Generally, two
settings can be distinguished. The starting point for the search may either
be a single sequence, with the goal of identifying its relatives, or a family
of sequences, with the goal of identifying further members of that family.
Searching through a database needs to be fast and sensitive, but the two
objectives contradict each other. Fast methods have been developed primarily
for searching with a single sequence and this will be the topic of this section.

When searching a database with a newly determined DNA or amino acid
sequence – the so-called query sequence – the user typically lacks knowledge
of whether an expected similarity might span the entire query or just part of
it. Likewise, they will be ignorant of whether the match will extend along
the full length of some database sequence or only part of it. Therefore, one
needs to look for a local alignment between the query and any sequence in the
database. This immediately suggests the application of the Smith–Waterman
algorithm to each database sequence. One should take care, though, to apply
a fairly stringent gap penalty such that the algorithm focuses on the regions
that really match. After sorting the resulting scores the top scoring database
sequences are the candidates of interest.

Several implementations of this procedure are available, most prominently
the SSEARCH program from the FASTA package [63]. There exist implemen-
tations of the Smith–Waterman algorithm that are tuned for speed like one
using special processor instructions [85] and, among others, one by Barton [9].
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Depending on implementation, computer and database size, a search with
such a program takes on the order of 1 min.

The motivation behind the development of other database search programs
has been to emulate the Smith–Waterman algorithm’s ability to discern related
sequences while at the same time performing the job in much less time. To
this end, one usually makes the assumption that any good alignment that one
wishes to identify contains, in particular, some stretch of ungapped similarity.
Furthermore, this stretch will tend to contain a certain number of identically
matching residues and not only conservative replacements. Based on these
assumptions, most heuristic programs rely on identifying a well-matching
core and then extending it or combining several of these. With hindsight,
the different developments in this area can further be classified according to a
traditional distinction in computer science by which one either preprocesses
the query or the text (i.e. the database). Preprocessing means that the string
is represented in a different form that allows for faster answers to particular
questions, e.g. whether the string contains a certain subword.

The FASTA program (part of a package [63] that usually goes by the same
name) sets a size k for k-tuple subwords. For DNA sequences, the parameter
k might typically be set to 7, while for amino acid sequences 2 would be a
reasonable choice. The program then looks for diagonals in the comparison
matrix between the query and search sequence along which many k-tuples
match. This can be done very quickly based on a preprocessed list of k-tuples
contained in the query sequence. The set of k-tuples can be identified with
an array whose length corresponds to the number of possible tuples of size
k. This array is linked to the indices of the positions at which the particular
k-tuples occur in the query sequence. Note that a matching k-tuple at index
i in the query and at index j in the database sequence can be attributed to a
diagonal by subtracting one index from the other. Therefore, when inspecting
a new sequence for similarity one walks along this sequence inspecting each
k-tuple. For each of them one looks up the indices of the positions at which
it occurs in the query, computes the index-difference to identify the diagonal
and increases a counter for this diagonal. After inspecting the search sequence
in this way a diagonal with a high count is likely to contain a well-matching re-
gion. In terms of the execution time, this procedure is only linear in the length
of the database sequence and can easily be iterated for a whole database. Of
course this rough outline needs to be adapted to focus on regions where the
match density is high and link nearby, good diagonals into alignments.

The other widely used program to search a database is called BLAST [1, 3].
BLAST follows a similar scheme in that it relies on a core similarity, although
with less emphasis on the occurrence of exact matches. This program also
aims at identifying core similarities for later extension. The core similarity is
defined by a window with a certain match density on DNA or with an amino
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acid similarity score above some threshold for proteins. Independent of the
exact definition of the core similarity, BLAST rests on the precomputation of
all strings which are similar in the given sense to any position in the query. The
resulting list may contain on the order of 1000 or more words, each of which if
detected in a database gives rise to a core similarity. In BLAST nomenclature
this set of strings is called the neighborhood of the query. In fact, the code to
generate this neighborhood is exceedingly fast.

Given the neighborhood, a finite automaton is used to detect occurrences
in the database of any string from the neighborhood. This automaton is a
program constructed “on the fly” and specifically for the particular word
neighborhood that has been computed for a query. Upon reading through
a database of sequences, the automaton is given an additional letter at a
time and decides whether the string that ends in this letter is part of the
neighborhood. If so, BLAST attempts to extend the similarity around the
neighborhood and if this is successful reports a match.

As with FASTA, BLAST has also been adapted to connect good diagonals
and report local alignments with gaps. BLAST converts the database file into
its own format to allow for faster reading. This makes it somewhat unwieldy
to use in a local installation unless someone takes care of the installation.
FASTA, however, is slower, but easier to use. There exist excellent web
servers that offer these programs, in particular at the National Center for
Biotechnology Information [43] and at the European Bioinformatics Institute
[41] where BLAST or FASTA can be used on up-to-date DNA and protein
databases.

According to the above-mentioned distinction among search methods into
those that preprocess the pattern and those that preprocess the text, there
also is the option of transforming a DNA or amino acid database such that it
becomes easier to search. This route was taken, for example, by a group from
IBM developing the FLASH [14] program. They devised an intricate, although
supposedly very space-consuming technique of transforming the database
into an index for storing the offsets of gapped k-tuples. The QUASAR pro-
gram by Burkhard and coworkers [13] preprocesses the database into a so-
called suffix array, similar to a suffix tree, yet simple to keep on disk. Pro-
grams in practical use for quickly searching entire genomes are BLAT [50] and
SSAHA [61].

With the availability of expressed sequence tags (ESTs) it has become very
important to match DNA sequence with protein sequence in such a way that a
possible translation can be maintained throughout the alignment. Both FASTA
and BLAST packages contain programs for this and related tasks. When
coding DNA is compared to proteins, gaps are inserted in such a way as
to maintain a reading frame. Likewise, a protein sequence can be searched
versus a DNA sequence database. The search of DNA versus DNA with an
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emphasis on matching regions that allow for a contiguous translation is not so
well supported. Although a dynamic programming algorithm for this task is
feasible, the existing implementation in BLAST compares all reading frames.

4 Alignment and Search Statistics

Alignment score is the product of an optimization, mostly a maximization
procedure. As such it tends to be a large number sometimes suggesting
biological relatedness where there is none. In pairwise comparisons the user
still has a chance to study an alignment by eye in order to judge its validity;
however, upon searching an entire database automatic methods are necessary
to attribute a statistical significance to an alignment score.

In the early days of sequence alignment, the statistical significance of the
score of a given pairwise alignment was assessed using the following pro-
cedure. The letters of the sequences are permuted randomly and a new
alignment score is calculated. This is repeated roughly 100 times, and the
mean and standard deviation of this sample are calculated. The significance
of the given alignment score is reported in “number of standard deviations
above the mean”, also called the Z-score. Studying large numbers of random
alignments is correct, in principle. However, the significance of the alignment
should then be reported as the fraction of random alignments that score better
than the given alignment. The procedure described assumes that these scores
are distributed normally. Since the random variable under study – the score of
an optimal alignment – is the maximum over a large number of values, this is
not a reasonable assumption. In fact, the lack of fit quickly becomes obvious
when trying to fit a normal distribution to the data. The second argument
against this way of calculating significance is a pragmatic one: the procedure
needs to be repeated for every alignment under study because the effect of the
sequence length cannot be accounted for.

Based on the work of several researchers [48, 70], it has meanwhile be-
come apparent that alignment score as well as scores from database searches
obey a so-called extreme-value distribution. This is not surprising given that
extreme-value distributions typically describe random variables that are the
result of maximization. In sequence alignment, there are analytical results
confirming the asymptotic convergence to an extreme-value distribution for
the case of local alignment without gaps, i.e. the score of the best-matching
contiguous diagonal in a comparison [18]. This is also a valid approximation
to the type of matching effected in the database search program BLAST. Thus,
this approach has become widely used and, in fact, has contributed signif-
icantly to the popularity of database search programs because significance
measures have made the results of the search much easier to interpret.
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The statistical significance of an event like observing a sequence alignment
of a certain quality is the probability to observe a better value as a result of
chance alone. This quantity is refereed to as the p-value. For example, a p-
value of 10−3 is interpreted as expecting to see an excess of the given threshold
in one in a 1000 experiments. To compute this one needs to model chance
alignments, which is precisely what the statistician means by deriving the
distribution of a random variable. The probability that a chance result would
exceed an actually obtained threshold S is 1 minus the value of the cumulative
distribution function evaluated at that threshold. In sequence alignment, this
cumulative distribution function is generally expressed as [48]:

exp(mnKeλS)

where m and n are the lengths of the sequences compared, and K and λ
are parameters which need to be computed (where possible) or derived by
simulation. K and λ depend on the scoring matrix used (e.g. the PAM120
matrix) and the distribution of residues. Hence, for any scoring system these
parameters are computed beforehand and the statistical significance of an
alignment score S is then computed by evaluating the formula with the length
of the two sequences compared.

The most prominent case for which the parameters K and λ can be defined
analytically is local alignment without gaps. Algorithmically this amounts to
computing a Smith–Waterman alignment under very high gap penalties such
that the resulting alignment will simply not contain any gaps. Since this no-
tion of alignment also guides the heuristic used by the BLAST database search
program, the resulting statistical estimates are primarily used in database
searching. In this application, one of the lengths is the length of the input
sequence and the other length can be chosen on the order of the length of
the concatenated sequences from the database that is being searched. Al-
ternatively, one can think of the database search as a repetition of many
individual pairwise comparisons, which amounts to repeating the experiment
“sequence comparison” many times. In this setting, the number of false
positives one expects to find can be determined as the product of the p-
value of the individual comparison and the number of times the experiment is
repeated, i.e. the number of sequences in the database. This expected number
of false positives is referred to as the E-value. A typical E-value threshold for
a database search would be, for example, 1, indicating that the score cutoff is
chosen such that among the sequences faring better than the cutoff one expects
to find one false-positive hit.

When gaps are allowed, the determination of K and λ is more complex be-
cause an approximation of the distribution function of alignment score by an
extreme-value distribution as above is not always valid. Generally speaking, it
is allowed only for sufficiently strong gap penalties where alignments remain
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compact as opposed to spanning the entire sequences. Under sufficiently
strong gap penalties, though, it has been demonstrated that the approximation
is indeed valid just like for infinite gap penalties [79]. However, it is not pos-
sible any more to compute the values of the parameters K and λ analytically.
As a remedy one applies simulations in which many alignments of randomly
generated sequences are computed and the parameters are determined based
on fitting the empirical distribution function with an extreme-value distri-
bution [83]. As in the case above, this procedure allows for determining
parameters beforehand and computing significance by putting the lengths of
the sequences into the formula.

The question remains of how to determine whether approximation by an
extreme-value distribution is admissible for a certain scoring scheme and
gap penalty setting one is using. This can be tested on randomly generated
(or, simply, unrelated) sequences by computing a global alignment between
sequences under that particular parameter setting. If the result has a negative
sign (averaged over many trials or on very long random sequences), then
the approximation is admissible. This is based on a theorem due to Arratia
and Waterman [6], and subsequent simulation results reported by Waterman
and Vingron [84]. In particular, a gap open penalty of 12 with an extension
penalty of 2 or 3 for the case of the PAM250 matrix, as well as any stronger
combination, allows for approximation by the extreme-value distribution.

In database searching the fitting need not be done on randomly generated
sequences. Under the assumption that the large majority of sequences in a
database are not related to the query, the bulk of the scores generated upon
searching can be used for fitting. This approach is taken by Pearson in the
FASTA package. It has the advantage that the implicit random model is more
realistic since it is taken directly from the data actually searched. Along a
similar line of thought, Spang and Vingron [72] tested significance calculations
in database searching by evaluating a large number of search results. Their
study showed that one should not simply use the sum of the lengths of all
the sequences in the database as the length parameter in the formula for the
extreme-value distribution. This would overestimate the length that actually
governs the statistics. Instead, a considerably shorter effective length can
determined for a particular database using simulations. This effect is probably
due to the fact that alignments cannot start in one sequence and end in the
next one, which makes the number of feasible starting points for random
alignments smaller than the actual length of the database.
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5 Multiple Sequence Alignment

For many genes a database search reveals a whole number of homologous
sequences. Then, one wishes to learn about the evolution and the sequence
conservation in such a group. This question surpasses what can reasonably
be achieved by the sequence comparison methods described in Section 3.
Pairwise comparisons do not readily exhibit positions that are conserved
among a whole set of sequences and tend to miss subtle similarities that
become visible when observed simultaneously among many sequences. Thus,
one wants to simultaneously compare several sequences.

A multiple alignment arranges a set of sequences in a scheme such that po-
sitions believed to be homologous are written in a common column (Figure 4).
As in a pairwise alignment, when a sequence does not possess an amino acid
in a particular position, this is denoted by a dash. There also are conventions
similar to the ones for pairwise alignment regarding the scoring of a multiple
alignment. The so-called sum-of-pairs (SOP) [2] score adds the scores of all the
induced pairwise alignments contained in a multiple alignment. For a linear

Figure 4 Example of a multiple sequence alignment: an alignment of
amino acid sequences of myoglobins and hemoglobins from a number
of species. Each sequence begins in the top block and continues in
the bottom block. The color code indicates physicochemical attributes
of amino acids. The bar diagram below the alignment quantifies the
degree of conservation in the column above.
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gap penalty this amounts to scoring each column of the alignment by the sum
of the amino acid pair scores or gap penalties in this column. Although it
would be biologically meaningful, the distinctions between global, local and
other forms of alignment are rarely made in a multiple alignment. The reason
for this will become apparent below when we describe the computational
difficulties in computing multiple alignments.

In general, the columns of a multiple alignment cannot be determined based
on the set of all pairwise alignments. Quite the contrary, pairwise alignments
may contradict each other in that one set of alignments opts to place, say,
residue a from sequence i in one column with residue b from sequence j,
while from another set of pairwise alignments it may follow that a should
be in one column with another letter c from sequence j. If one wishes to
assemble a multiple alignment from pairwise alignments one has to avoid
“closing loops”, i.e. one can put together pairwise alignments as long as no
new pairwise alignment is included involving a sequence which is already
part of the multiple alignment. In particular, pairwise alignments can be
merged when they align one sequence to all others, when a linear order of the
given sequences is maintained or when the sequence pairs for which pairwise
alignments are given form a tree. While all these schemes allow for the ready
definition of algorithms that output multiply aligned sequences, they do not
include any information stemming from the simultaneous analysis of several
sequences.

An alternative approach is to generalize the dynamic programming opti-
mization procedure applied for pairwise alignment to the delineation of a
multiple alignment that maximizes, for example, the SOP score. The algo-
rithm used [80] is a straightforward generalization of the global alignment
algorithm. This is easy to see, in particular, for the case of the column-oriented
SOP scoring function avoiding an affine gap penalty in favor of the simpler
linear one. With this scoring, the arrangement of gaps and letters in a column
can be represented by a Boolean vector indicating which sequences contain
a gap in a particular column. Given the letters that are being compared, one
needs to evaluate the scores for all these arrangements. However conceptually
simple this algorithm may be, its computational complexity is rather forbid-
ding. For n sequences it is proportional to 2n times the product of the lengths
of all sequences. The space requirement of this algorithm is on the order of the
product over the lengths of the n sequences, which constitutes an even greater
obstacle to its practical application.

There exists software to compare three sequences with this algorithm that
additionally implements a space-saving technique [46]. For more than three
sequences, algorithms have been developed that aim at reducing the search
space while still optimizing the given scoring function. The most prominent
program of this kind is MSA2 [25,44]. An alternative approach is used by DCA
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[36, 73], which implements a “divide-and-conquer” philosophy. The search
space is repeatedly subdivided by identifying anchor points through which
the alignment is highly likely to pass.

However, none of these approaches scales well to large numbers of se-
quences to be aligned. The most common remedy is reducing the multiple
alignment problem to an iterated application of the pairwise alignment al-
gorithm. However, in doing so, one also aims at drawing on the increased
amount of information contained in a set of sequences. Instead of simply
merging pairwise alignments of sequences, the notion of a profile [24] has
been introduced in order to grasp the conservation patterns within subgroups
of sequences. A profile is essentially a representation of an already computed
multiple alignment of a subgroup of sequences. This alignment is “frozen”
for the remaining computation. Other sequences or other profiles can be
compared to a given profile based on a generalized scoring scheme defined
for this purpose. The advantage of scoring a sequence versus a profile over
scoring individual sequences lies in the fact that the scoring schemes for
profile matching reflect the conservation patterns among the already aligned
sequences. (Profiles are discussed in more detail in Chapter 11.)

Given a profile and a single sequence, the two can be aligned using the basic
dynamic programming algorithm together with the accompanying scoring
scheme. The result will be an alignment between sequence and profile that can
readily be converted into a multiple alignment now comprising the sequences
underlying the profile plus the new one. Likewise, two profiles can be aligned
with each other, resulting in a multiple alignment containing all sequences
from both profiles. Various multiple alignment strategies can be implemented
with these tools. Most commonly, a hierarchical tree is generated for the given
sequences, which is then used as a guide for iterative profile construction
and alignment. This alignment strategy is called “progressive“, and was
introduced in papers by Taylor [76], Corpet [16] and Higgins [28]. Higgins’
program Clustal [42] and, in particular, its latest version ClustalW are proba-
bly the most widely used programs for multiple sequence alignment [47]. Two
recent variants of progressive alignment are MUSCLE [21] and PROBCONS
[19]. Other programs in practical use are the MSA2 program and DCA. Lee
and coworkers [54] developed a program that focuses on fast alignment of
highly similar sequences, e.g. ESTs, using an algorithm termed partial order
alignment.

Progress has been made also on the problem of local multiple alignment.
The algorithm behind the Dialign [37, 56] program relies on collecting local
similarities among all pairs of sequences and then assembles those into multi-
ply aligned regions. Similarly, T-Coffee [62] allows for inclusion of both local
and global alignments, as well as other possible information like structural
similarity, and merges those consistently into a multiple alignment.
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Since iterative profile alignment tends to be guided by a hierarchical tree,
this step of the computation also influences the final result. Usually the
hierarchical tree is computed based on pairwise comparisons and their re-
sulting alignment scores. Subsequently, this score matrix is used as input to
a clustering procedure like single linkage clustering or UPGMA (unweighted
pair group method with arithmetic mean) [74]. However, it is well under-
stood that in an evolutionary sense such a hierarchical clustering does not
necessarily result in a biologically valid tree. Thus, when allowing this tree
to determine the multiple alignment there is the danger of pointing further
evolutionary analysis of this alignment in the wrong direction. Consequently,
the question has arisen of a common formulation of evolutionary reconstruc-
tion and multiple sequence alignment. The cleanest, although biologically
somewhat simplistic, model attempts to reconstruct ancestral sequences to
attribute to the inner nodes of a tree [65]. Such reconstructed sequences at
the same time determine the multiple alignment among the sequences. In
this “generalized tree alignment” one aims at minimizing the sum of the
edge lengths of this tree, where the length of an edge is determined by
the alignment distance between the sequences at its incident nodes. As to
be expected, the computational complexity of this problem again makes its
solution unpractical. The practical efforts in this direction go back to the work
of Sankoff [65, 66]. Hein [26] and Schwikowski and Vingron [68] produced
software [38, 40] relying on these ideas.

With the increased interest in analysis of regulatory regions in DNA, the
problem of finding subtle local similarities, in particular in DNA sequences,
has received much interest. Many programs for the detection of common
sequence motifs use probabilistic modeling and/or machine learning ap-
proaches. In particular, the mathematical technique of the Gibbs sampler has
lent its name also to a motif-finding program, the Gibbs Motif Sampler [31,53].
Bailey and Elkan [7] designed the MEME [33] program which relies on an
expectation maximization algorithm. A number of pattern-finding programs
have been compared by Tompa and coworkers [78].

6 Multiple Alignments, Hidden Markov Models (HMMs)
and Database Searching II

Information about which residues are conserved and thus important for a
particular family is crucial not only for the purpose of multiply aligning a
set of sequences, but is also very valuable in the context of identifying related
sequences in a database. A multitude of methods has been developed that aim
at identifying sequences in a database which are related to a given family. The
first one was the notion of a profile that was described above and was actually
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introduced in the context of database searching. As in multiple alignment,
profiles help in emphasizing conserved regions in a database search. Thus, a
sequence that matches the query profile in a conserved region will receive a
higher score than a database sequence matching only in a divergent part of
an alignment. This feature is of enormous help in distinguishing truly related
sequences.

Algorithmically, profile searching simply uses the dynamic programming
alignment algorithm for aligning a sequence to a profile on each sequence
in the database. Of course, this is computationally quite demanding and
much slower than the heuristic database search algorithms like BLAST or
FASTA. Typically, the multiple alignment underlying the profile describes a
conserved domain which one expects to find within a database sequence.
Therefore, in this context, it is important that end gaps should not be penal-
ized. Furthermore, gap penalties for profile matching frequently vary along
the profile in order to reflect the existence of gaps within the underlying
multiple alignment. Through this mechanism one attempts to allow new gaps
preferentially in regions where gaps have been observed already. However,
different suggestions exist as to the choice and derivation method for these
gap penalties [77].

In 1994, Haussler and coworkers [52] and Baldi and coworkers [8] intro-
duced HMMs for the purpose of identifying family members in a database.
An HMM is a generative probabilistic model in the sense that we can think
of it as a machine that generates strings of symbols; in biological applications,
typically the letters of a biological sequence. It has “states” and each state
will output a symbol according to a distribution associated to this state.
After a state has output a symbol, a transition to one of its successor states
occurs according to a specified transition probability. These transitions are
Markovian, meaning that the transitions leading out of a state are governed
only by this state’s transition probabilities and not by how the machine got to
arrive in this state. The “hidden“ element in the HMM comes from the image
that an observer gets to see the generated symbol series and then needs to
infer which series of states gave rise to it or what the underlying distributions
might look like. HMMs and related algorithms are discussed in depth by
Durbin and coworkers [20].

The structure of a profile HMM mimics a multiple alignment. We think of
it as a machine that emits a sequence which would typically be randomly
drawn based on a given multiple alignment, according to the distribution of
letters in its columns. If gaps were forbidden, the emitted sequence would
essentially draw one letter from each column of the alignment. Insertions and
deletions, however, imply that the generated sequence may differ in length
from the multiple alignment, with some columns possibly skipped or new
letters inserted in the emitted sequence. Figure 5 schematically shows the
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Figure 5 Sketch of the structure of a profile HMM.

states and transitions that realize this structure. The middle row represents a
series of match states (M). These represent the columns of the given alignment
and emit letters according to a distribution that is supposed to fit the corre-
sponding column of the alignment. A transition into an insert state (denoted
I, arranged in the top row) lets the machine emit an additional letter, with the
possibility of remaining in this insert state and emitting more additional letters
as indicated by the self-loop at the insert nodes. The transition from a match
state into a delete state (D, bottom row) leads to the emitted sequence skipping
one or more of the following columns of the alignment, which corresponds to
a deletion in the emitted sequence with respect to the alignment.

In this manner, the profile HMM can output sequences which, by way of
their generating state sequence, are aligned relative to the given multiple
alignment. The task of aligning a sequence to a profile HMM can therefore
be phrased in the probabilistic setting of “What is the most likely sequence of
states to have given rise to this sequence?”. This is solved by the so-called
Viterbi algorithm, which largely resembles the classical dynamic program-
ming sequence alignment algorithm in its structure. Alternatively, one can
ask for the probability of the observed sequence as such, independent of
which path generated it. This is computed by summing over the different
state sequences that could have produced the sequence. Here, the fully
probabilistic formalization is superior to an ad hoc score definition which
would not allow for posing and answering this question. Algorithmically, this
summation can be computed efficiently by the so-called forward algorithm.

There is a standard learning algorithm, the Baum–Welch algorithm, to
determine emission and transition probabilities of an HMM given a set of
learning data. When training a profile HMM, one has the sequences of the
multiple alignment at hand, which may be too small a set for parameter
determination in many cases. The problem becomes manageable, though,
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when one uses the residue distributions in the columns as a guideline for
the emission probabilities and chooses the transition probabilities to reflect, in
essence, the way gaps should be handled. Adding a possible correction (the
“pseudocounts”) for sampling artifacts, this choice of parameters can either be
used directly or as a starting configuration for a subsequent application of the
Baum–Welch algorithm in order to refine parameter estimation. Nevertheless,
training an HMM is a very difficult problem and the Baum–Welch algorithm
may only find a local optimum.

The first application of HMMs in sequence analysis seems to be due to
Churchill [15], who applied the technique to the segmentation of sequences
based on their composition. Profile HMMs followed later, addressing the
same problem as multiple alignment profiles. A widely used implementation
of profile HMMs is the HMMER package [32]. The two concepts of HMMs
and profiles are formally very similar, although set in a different language.
Bucher and Karplus [12] introduced generalized profiles, and showed that
the two concepts are equally powerful in their abilities to model sequence
families and detect related sequences. Nevertheless, due to the coherent
probabilistic description language and a broad spectrum of good software
implementations, HMMs have found widespread acceptance. Many other
areas in computational molecular biology, e.g. gene finding, have also profited
greatly from the introduction of HMMs.

The fact that a profile or HMM can pick out new sequences also related to
the given family suggests that these should be used to update the profile or
HMM used as search pattern. This idea leads to iterative search algorithms
which search the database repeatedly, each time updating the query pattern
with some or all of the newly identified sequences. PSI-BLAST [3] is a very
successful implementation of this idea. It starts with a single sequence, and
after the first search constructs profiles from conserved regions among the
query and newly identified sequences. Without allowing for gaps (to increase
search speed) these new profiles are used to repeat the search. Generally, PSI-
BLAST quickly converges after updating these profiles again and generally is
very successful in delineating all the conserved regions a sequence may share
with other sequences in a database. In the realm of HMMs, SAM is a very
careful implementation of the idea of iterated searches [39, 49].

It is the generally held view that searching a database with a profile or
HMM produces extreme-value distributed random scores just like single-
sequence database searching. The quality of the fit to the extreme-value
distribution may, however, depend on the particular given alignment. This
has been substantiated with mathematical arguments only for the case of
ungapped profile matching [22]. Nevertheless, this basic understanding of
the statistical behavior of database-matching methods is a crucial element
of iterative search programs. Without clear and reliable cutoff values one
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could not decide which sequences to integrate into the next search pattern
and would run the danger of including false positives, thus blurring the
information in the pattern.

Both single-sequence search methods and profile/HMM-based methods
have been thoroughly validated during recent years [11]. Databases of struc-
turally derived families, e.g. SCOP [34, 58], have made it possible to search
a sequence database with a query, and exactly determine the number of false
positives and false negatives. For every search one determines how many
sequences one misses (false negatives) in dependence of the number of false
positive matches. If the sequence statistics is accurate, the number of false
positives correlates well with the E-value, i.e. the number of false positives
expected by chance. This way of validating search methods allows for making
objective comparisons and for determining how much quality one actually
gains with slower methods over faster, less accurate methods.

7 Protein Families and Protein Domains

The companion question to the one that assigns related sequences from a
database to a given query sequence or family is the question that tries to
assign to a query sequence the family of which it is a member or the domains
that it contains. One resource for this purpose is the InterPro database [4],
which contains amino acid patterns that are descriptive for particular do-
mains, families or functions. The InterPro database summarizes information
from several other motif databases including, among others, Prosite [30] and
Pfam [10]. One can either scan a sequence against this database [86] or
rely on precomputed information that is stored along with the sequences in
the databases. The Pfam database contains precomputed HMMs for protein
domains. A query sequence can be matched against this library of HMMs in
order to identify known domains in the query sequence. Here, too, match
statistics plays a crucial role in order to determine the significantly matching
domains. A server that allows one to scan a sequence versus all Pfam domains
can be found at the Sanger center [45]. Software has also been developed to
recognize the Pfam HMMs in either coding DNA or in genomic DNA. In the
latter case, the program combines the HMM matching with the distinction
between coding and noncoding DNA.

Apart from finding and cataloguing domains of proteins, efforts have also
been made to structure the space of all protein sequences into homologous
groups or orthologous families. Linial and coworkers have developed the
Protonet [67] system, hierarchically structuring the set of all proteins. Krause
and coworkers [51] developed SYSTERS [35] to delineate protein families and
supply consensus sequences of these families to be searched with a DNA or
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protein query sequence. Koonin and coworkers put special emphasis on the
delineation of orthologous genes, and collect this information in the COG and
KOG databases [75].

8 Conclusions

The problems and methods introduced above have been instrumental in the
advance in our understanding of genome function, organization and struc-
ture. While some years ago human experts would check every program
output, nowadays sequence analysis routines are being applied in an auto-
matic fashion creating annotation that is included in various databases. This
holds true for similarity relationships among sequences and extends all the
way to the prediction of genomic structure or to function prediction based
on similarity. Although the quality of the tools has increased dramatically,
the possibility of error and, in particular, its perpetuation by further au-
tomatic methods exists. Thus, it is apparent that the availability of these
high-throughput computational analysis tools is a blessing and a problem at
the same time.
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4
Phylogeny Reconstruction
Ingo Ebersberger, Arndt von Haeseler, and Heiko A. Schmidt

1 Introduction

In 1973 Theodosius Dobzhansky said “Nothing in biology makes sense except
in the light of evolution” [27]. Although more than 30 years old, the citation
still remains valid. Biologists nowadays use the massive amount of sequence
data to infer the phylogenetic relationship of contemporary organisms. DNA,
long words over a finite alphabet of four nucleotides, is transmitted from one
generation to the next. The copying process and environmental factors lead
to an accumulation of mutations in the sequence. Such mutations manifest
themselves as slight changes in the DNA sequence, so-called substitutions.
The vertical transmission (in time) of DNA together with the discrete nature
of the mutations makes the molecule an ideal target to study phylogenetic
relationship of organisms. Consequently, sequence-based phylogenies of or-
ganisms have been determined from many different genes. Such gene-trees
have provided surprisingly new and sometimes controversial insights into
the evolutionary relationships of organisms. However, research and debates
still focus on the best methodology. That is, how do we measure similarity
or dissimilarity, how can we model the process of substitution, how can we
accurately infer the tree? Despite this ongoing discussion, molecular phyloge-
nies are nowadays a routine tool for biologists interested in the evolution of
organisms.

Moreover, the application of molecular phylogenies goes beyond the recon-
struction of phylogenetic trees for organisms. Gene trees or, more general,
sequence trees serve as an important source of information to understand how
sequences are related. From this relatedness it is then possible to infer the
function of an unknown sequence (see also Chapter 32). Not only function
can be inferred, but also structure can be deduced from trees (Chapter 11).
From sequence trees we can deduce the evolutionary history of the sequences
themselves. We can determine regions that are conserved or highly variable
and we can detect sequences that show a highly aberrant substitution pattern.
Moreover, we can detect duplications of genes or parts of the genome; thus,
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Figure 1 Phylogenetic relationships among a set of seven taxa
represented by a rooted (a) and an unrooted (b) tree.

trees serve as analytical tools in comparative genomics (Chapter 37). Even
the coevolution of host–pathogen interactions (Chapter 41) is mirrored in the
similarity of trees from both groups.

Again, the conclusions strongly depend on the accuracy of the reconstruc-
tion method. To critically evaluate the result a basic understanding of the
different approaches to phylogenetic inference is required. In this chapter we
present a very basic introduction. We set the stage by a brief introduction in
the terminology, followed by a summary about current approaches to model
evolutionary changes (Section 2). Section 3 describes the three fundamen-
tal principles of phylogenetic inference, i.e. maximum parsimony, distance-
based and maximum likelihood (ML) inference. The subsequent section deals
with the optimization problem of finding the "best" tree(s) with respect to
some objective function. With the advent of phylogenomics one wants to
reconstruct a species tree from a collection of multiple genetic loci. This
question leads naturally to supertree methods introduced in Section 5. Finally,
Section 6 summarizes attempts to infer evolutionary relationships if the data
do not evolve according to a tree. Processes like horizontal gene transfer or
recombination destroy the tree-likeness of the data. In such instances it is
better to reconstruct networks rather then trees.

1.1 Reconstructing a Tree from its Leaves

The fundamental axiom in evolutionary biology is the assumption that any
two taxa share a common ancestor at some time point in their history. Thus,
following backward in time the lineages along which these taxa have evolved,
they will eventually coalesce. Considering a large set of taxa, consecutive
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coalescent events result in an ever-decreasing number of predecessors until
only two lineages remain. The ancient taxon in which these lineages even-
tually merge then represents the most recent ancestor common to all taxa
in the dataset. The correspondence to a tree is apparent and it is therefore
of little surprise that trees play the key role in phylogenetic research. The
dominant role of trees in the area of phylogeny reconstruction is already man-
ifested in the phylogeneticist’s vocabulary (Figure 1). Contemporary taxa are
dubbed leaves, leaves are connected via external branches to internal nodes (their
common ancestors) and internal nodes themselves are connected via internal
branches. Nodes that give rise to two descendants are termed bifurcations,
nodes with a larger number of descendants are referred to as multifurcations
(Biologists usually judge it as unlikely that three or more lineages emerged
at precisely the same time from a shared ancestor; thus, we will concentrate
on bifurcating trees.) Eventually, if the direction of the evolutionary process
is known the ancestor of all leaves in the tree is identified. To stay in the
picture, this node is termed the root. If directional information is not available,
the relationships of the taxa is represented in an unrooted tree. However, in
this case the temporal succession of ancestors remains undetermined. The
reconstruction of the phylogenetic relationships for a set of taxa and their
representation by a tree can be separated into two subproblems. (i) What
is the order individual taxa split from their shared ancestors, i.e. what is
the topology of the tree? (ii) What is the evolutionary time that has passed
since any two taxa last shared a common ancestor, i.e. how long are the
corresponding branches of the tree? In most cases no hard evidence (such as
a comprehensive fossil record) exists to directly reconstruct the evolutionary
steps transforming one ancestral taxon into its descendants. Rather, we get
hold only of the end-points of this process and are more or less ignorant about
anything that has happened in the past. Thus, we are facing the problem of
reconstructing the phylogenetic tree just by looking at its leaves.

1.2 Phylogenetic Relationships of Taxa and their Characters

Although one is typically interested in the relationships of the taxa, the re-
construction procedure is usually not based on the taxon as a whole. For
practical reasons one vicariously concentrates on individual characteristics
of these taxa, usually either morphological or molecular features. We will
refer to such representative characteristics as characters and to their peculiar
expression in the individual taxa as the character state.

To collect the raw data for phylogenetic analyses, the variety of states for
a particular character in a set of taxa has to be assessed first. Next, the
possible transformations of the character states during evolution has to be
reconstructed, which can then be used for phylogenetic inference. Irrespective
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of what type of character has been chosen, two general approaches can be
followed to trace the phylogenetic signal in the data. One can identify those
(evolutionary novel) character states that are shared among a subset of the
taxa. Such a congruency is interpreted as a result of shared descent [68].
Based on the pattern and extent of congruent character states, the degrees of
relationships among the taxa can then be inferred. Alternatively, the extent
of evolutionary change for the particular character between any pair of taxa
can be assessed. From the resulting pairwise evolutionary distances again a
phylogenetic tree can be reconstructed. We will outline both approaches in
greater detail below (Section 3). Eventually, the evolutionary history of the
particular character is extrapolated to the taxon level.

Inherent to any character-based strategy for phylogeny reconstruction is
the assumption that comparisons are performed only between homologous
characters, i.e. characters related by descent. Although the assignment of
homology constitutes one of the major issues in evolutionary studies [68, 114,
134], we will take for granted that this postulation is met.

1.2.1 The Problem of Character Inconsistencies

To date, tree reconstruction is frequently based on more than only a single
character. This adds the advantage that different characters can complement
each other by adding resolution to different parts of the tree. However,
the reverse effect occurs as well: trees reconstructed from different charac-
ters can disagree. Given that incompatible groupings of taxa are supported
significantly by the respective data, two alternative explanations are pos-
sible. First, the incompatible groupings are based on a misinterpretation
of the data. For example, taxa can share the same character state not due
to a shared ancestry, but rather because the particular state arose indepen-
dently at least twice during evolution. Phylogeny reconstruction methods
that model the evolutionary process (see Sections 3.2 and 3.3) usually account
for this problem. However, if such parallel, convergent or back mutations
remain unrecognized (or are neglected) an erroneous tree reconstruction is
possible. In the second explanation, the evolution of each character state is
correctly reconstructed. Such genuine discrepancies between inferred trees
have various causes. Among the most frequently stated are processes like the
random sorting of ancestral polymorphisms (e.g. Ref. [130]) and horizontal
gene transfer [25, 28, 91] (Figure 2). If one is suspicious that either of these
scenarios could apply, several independently evolving characters should be
analyzed. The most frequently observed tree is then usually the tree reflecting
the evolutionary relationships of the taxa as a whole. Alternatively, if it seems
appropriate to visualize such discrepant phylogenetic signals in the data, a
network rather than a tree can be chosen to represent the phylogeny of the
taxa (see Section 6).
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Figure 2 Trees for individual characters
(inner trees) can differ from the species
tree (outer trees). (a) The phylogenetic
history of the character follows that of the
species. (b) The random sorting of ancestral
polymorphisms at subsequent speciation
events. (c) Horizontal gene transfer, i.e.

the lateral transfer of individual genes or
DNA sequences between species. Both
random sorting of ancestral polymorphisms
and horizontal gene transfer can result in
phylogenies that are incongruent to the
species tree or to trees reconstructed from
other characters.

1.2.2 Finding the Appropriate Character Set

In theory, phylogenetic relationships can be reconstructed from any set of
homologous characters subject to evolutionary change. Depending on the
scope of a study and the collection of taxa, however, certain types of characters
might be more suitable than others. Changes in shape, or morphology in
general, are the most conspicuous effects of evolution. Therefore, the field
of phylogeny reconstruction was dominated by the analysis of morpholog-
ical characters for a long time. However, with the expansion of molecular
biology the focus has shifted considerably. Initially, the immunological and
electrophoretic analysis of structural and electrical properties of proteins [85],
presence or absence of genomic features such as restriction enzyme recogni-
tion sites [47], or DNA–DNA hybridization [45, 137] were used to measure
the extent of character change on the molecular level. As time proceeded, the
presence and absence or linear order of regulatory elements and genes (see
also Chapter 8), and recently even expression data [83] have been employed
for phylogenetic inference. However, the most dominant role is still taken
by the direct comparison of biological sequences. Sequences change in the
course of time and any two sequences derived from a common ancestor
will diverge. The pattern and extent of differences between two related
sequences is then used to reconstruct their evolutionary history. Initially,
due to experimental constraints, the comparison of protein sequences was
prevalent. Nowadays, analyses rely almost entirely on DNA sequences and
even those studies comparing amino acid sequences usually derive these
from the corresponding DNA sequences. The advantages of DNA sequence
data are apparent. DNA sequences can be obtained with considerable ease



88 4 Phylogeny Reconstruction

from any taxon and even the comparison of entire genomes has now become
feasible. Allowing for some simplifications, each nucleotide position in the
DNA sequence can be regarded as an independently evolving character and
the number of possible states is strictly limited to the four bases: adenine
(A), guanine (G), cytosine (C) and thymine (T). Eventually, different DNA
sequences in a genome can evolve with different rates. This allows for easy
adaption of the dataset to the evolutionary time scale for which phylogenetic
resolution is required.

2 Modeling DNA Sequence Evolution

The substitution of nucleotides in a DNA sequence, i.e. the replacement of
one nucleotide by a different one, is usually considered a random event. As a
consequence, an important prerequisite for the reconstruction of phylogenetic
relationships among species is the prior specification of a model of substitution,
which provides a statistical description of DNA sequence evolution [97]. If we
consider the substitution of one nucleotide by another one at any given site in
a sequence as a random event and, furthermore, assume that a series of such
random events occurs during some time interval, then theses events form a
homogeneous Poisson process [37], if two very mild assumptions are met:

(i) The occurrence of a substitution in the time interval (t1, t2) is independent
of a substitution in another time interval (t3, t4), where (t1, t2) and (t3, t4)
do not overlap.

(ii) There is a constant μ > 0, such that for any time interval (t, t + h), h >
0 and h small, the probability that one event occurs is independent of t
and is proportional to μh. The probability that more than one substitution
occurs during (t, t + h) becomes vanishing small as h→ 0.

The latter condition implies the so-called time homogeneity and, moreover, it
implies that the probability of one substitution is proportional to the length
of the time interval, i.e. the size of h. As substitutions are assumed to occur
spontaneously and independently from past or future substitutions, homoge-
nous Poisson processes are a simple approach to model the evolution of DNA.
Moreover, under conditions (1) and (2) the number of substitutions X(t) that
occur up to any arbitrary time t is Poisson distributed with parameter μt [37].
Thus:

Pi(t) = [(μt)i exp(−μt)]/i! , (1)

is the probability that i = 0, 1, 2, . . . substitutions occur in the time interval
(0, t). On average, μt substitutions with variance μt are expected. Note
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that the parameters μ (nucleotide substitutions per site per unit time) and t
(the time) cannot be estimated separately, but only through their product μt
(number of substitutions per site up to time t).

The nucleotide substitution process of DNA sequences described by the
Poisson process can be generalized to a so-called Markov process that uses a
rate matrix (typically called Q with elements Qxy), which specifies the relative
rates of change for each nucleotide. The most general form of the Q-matrix is
shown in Figure 3. Rows follow the order A, C, G and T so that, for example,
the second term of the first row is the instantaneous rate of change from base
A to base C. This rate is given by the frequency of base C (πC) times a relative
rate parameter, describing (in this case) how often the substitution A to C
occurs during evolution with respect to all other possible substitutions. Thus,
each nondiagonal entry in the matrix represents the flow from nucleotide x
to nucleotide y, while the diagonal elements are chosen to make the sum of
each row equal to zero. They represent the total flow that leaves nucleotide x.
Accordingly, we can write the total number of substitutions per unit time (i.e.
the total substitution rate μ) as:

μ = −∑
x

Qxxπx, x ∈ {A, C, G, T}. (2)

Models like the one summarized in Figure 3 belong to the general class of
time-homogenous time-continuous Markov models. When applied to model-
ing nucleotide substitutions, they share the following set of assumptions:

• The rate of change from x to y at any nucleotide position in a sequence is
independent of the nucleotide that occupied this position prior to x (Markov
property).

• Substitution rates do not change over time (homogeneity).

• The waiting time until the first substitution occurs follows a continuous
distribution (time continuity).

Figure 3 Instantaneous rate matrix Q.
Each entry in the matrix represents the
instantaneous substitution rate from
nucleotide x to nucleotide y (rows and
columns follow the order A, C, G and T). a to l
are rate parameters describing the relative

rate one nucleotide is substituted by any
other nucleotide. πA, πC, πG, πT correspond
to the nucleotide frequencies. Diagonal
elements are chosen such that each row
sums up to zero.



90 4 Phylogeny Reconstruction

Once the evolutionary model (and thus the Q-matrix) is specified, the proba-
bilities P(t) of change from one nucleotide to any other during evolutionary
time t is computed as follows:

P(t) = exp(Qt) . (3)

Each entry Pxy(t) of the resulting probability matrix P(t) specifies the proba-
bility to observe nucleotide y at time point t if the original nucleotide at this
site was x.

2.1 Nucleotide Substitution Models

From the instantaneous substitution rate matrix Q in Figure 3 various sub-
models can be derived. Among these, the so-called stationary time-reversible
models are the ones most commonly used. These models introduce the
constraint that for any two nucleotides i and j the rate of change from i to j is
the same as from j to i (thus, a = g, b = h, c = j, d = i, e = l, f = l in Figure 3).
Under these conditions the values of πN (N = A, G, C, T) correspond to the
stationary frequencies of the four nucleotides, respectively (i.e. π · Q = 0).
If all eight parameters of a reversible Q-matrix are specified separately, the
general time reversible model [92] is derived. The most simplest (fewest
number of parameter) model assumes that the equilibrium frequencies of the
four nucleotides are 0.25 each and that any nucleotide has the same rate to
be replaced by any other. These assumptions correspond to a Q-matrix with
πA = πC = πG = πT = 1/4, and a = b = c = d = e = f = 1. This resembles
the well-known Jukes-Cantor model [82]. An overview of the hierarchy of the
most common substitution models is shown in Figure 4.

2.2 Modeling Rate Heterogeneity

The nucleotide substitution models described so far implicitly assume that
the rate of nucleotide substitution is the same for any position in the DNA
sequence. However, it is well known that this is an oversimplification. For
example, substitutions occur at an about 10 times higher frequency at C
and G nucleotides when the C is followed by a G along the sequence [71].
Similarly, selective constraints maintaining functional DNA sequences result
in varying substitution rates along a DNA sequence. To account for such site-
dependent rate variations, a plausible model for the distribution of rates over
sites is required. Most commonly, a continuous probability distribution, the
Γ-distribution with expectation 1 and variance 1/α, is used [61]. By adjusting
the shape parameter α, the Γ-distribution allows varying degrees of rate
heterogeneity (Figure 5). For α > 1, the distribution is bell-shaped and models
weak rate heterogeneity among sites. For α < 1, the Γ-distribution takes on



2 Modeling DNA Sequence Evolution 91

Figure 4 A hierarchy of the most commonly
used nucleotide substitution models.
JC69: Jukes and Cantor (1969) [82]; F81:
Felsenstein (1981) [42]; K2P: Kimura two-
parameter model (1980) [84]; HKY85:

Hasegawa, Kishino and Yano (1985) [65];
TN93: Tamura and Nei (1993) [149]; GTR:
general time reversible model [92]. Many
more models are possible and an extensive
overview is given in Ref. [74].

Figure 5 Probability density functions of the Γ-distribution for different
values of the shape parameter α. The x-axis represents the relative
substitution rate r of a site.

a characteristic L-shape, which describes strong rate heterogeneity, i.e. some
sites have very high substitution rates, while the other sites are practically
invariable.

2.3 Codon Models

Heterogeneous substitution rates become a particular issue for DNA that
codes for proteins. Amino acid sites in a protein sequence are under differ-
ent selective constraints, depending on their relevance for the protein func-
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Figure 6 Instantaneous rate that codon x at site h is replaced by
codon y. πy represents the stationary marginal frequency of codon
y, κ denotes the transition/transversion rate ratio and ω(h) the
nonsynonymous/synonymous substitution rate ratio at site h.

tion. Accordingly, nucleotide substitutions causing the encoded amino acid
to change (replacement substitutions) will have fixation probabilities that
depend on the selective constraint imposed on the encoded amino acid. In
contrast, silent substitutions, i.e. a change in the DNA sequence has no effect
on the encoded protein, are invisible to selective forces acting on the protein
sequence. As a result, the ratio of nonsynonymous and synonymous substitu-
tion rates (ω) will vary among sites in a DNA sequence, with ω = 1 indicating
no selection, ω < 1 representing purifying selection by removing replacement
mutations and ω > 1 representing diversifying positive selection/adaptive
evolution. Codon models have been specifically designed to model the evolu-
tion of protein-coding DNA sequences [59]. An example is shown in Figure 6
based on an extension of the HKY85 model [65] (see Figure 4). Note that, in
contrast to the conventional substitution models, codon models consider the
replacement of one nucleotide triplet (codon) by another. Thus, we obtain
43 − 3 = 61 possible character states at a site, the codon (the three stop
codons are not taken into account). Obviously, the assignment of a distinct
substitution rate ratio ω to each codon position would lead to a vast over-
parameterization of the model. Therefore, either a set of predefined ω-values
or statistical distributions, both discrete and continuous, are used to account
for varying ω-values among sites [104, 156, 157].

3 Tracing the Evolutionary Signal

Given a set of homologous DNA sequences whose phylogeny is known, infer-
ences can be made about the evolutionary forces molding the contemporary
DNA sequences from their shared ancestral sequence. Conversely, with a
concept or a model at hand of how DNA sequences evolve one can aim to
reconstruct the phylogenetic tree based on the DNA sequences. In either case,
however, a meaningful sequence alignment is required. Thus, the sequences
need to be aligned such that homologous nucleotides in different sequences
form a column. To account for the insertion and deletion of nucleotides during
evolution, gaps are introduced to achieve this positional homology. Chapter
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3 deals with methods to compute sequence alignments. We will not dwell
on further methodological details and take it for granted that an alignment is
available. Based on this alignment, several criteria exist to compute the tree
that best reflects the evolutionary relationships of the data. We will explain
four principles for tree generation.

3.1 The Parsimony Principle of Evolution

Parsimony methods share as an optimality criterion that among various alter-
native hypotheses the one that requires the minimal number of assumptions
should be chosen. In the context of DNA sequence evolution one searches for
the tree(s) that explain the observed diversity in the contemporary sequences
with the minimal number of nucleotide substitutions (Figure 7). Usually
only a fraction of the differences in a sequence alignment determine the so-
called parsimonious tree(s). They are called phylogenetically informative in a
parsimony analysis. For instance, position 8 in the alignment (Figure 7) best
supports a tree grouping sequences W and X, and Y and Z, respectively. In

Figure 7 Maximum parsimony tree
reconstruction from an alignment of four
DNA sequences. For the alignment columns
labeled with a “*” all three possible unrooted
tree topologies are shown. Labels at the
leafs denote the taxon and the represented
nucleotide. Nucleotides at the inner nodes

represent one parsimonious reconstruction.
Nucleotide substitutions are represented by
black dots. Position 8 is the only position that
distinguishes the three trees with respect to
the number of substitutions. Tree 1 requires
only a single substitution compared to trees 2
and 3, which require two substitutions each.
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contrast, to explain the sequence diversity at positions 1 and 3, two substitu-
tions are necessary regardless of the tree structure. Such positions are called
phylogenetically non-informative in a parsimony analysis. The tree that is
supported best by the phylogenetically informative sites is then the maximum
parsimony tree. Note, however, that no unique solution is guaranteed since
more than one most parsimonious tree might exist.

3.1.1 Generalized Parsimony

To date, a vast number of modifications of the initial criterion of maximum
parsimony exist [39, 40, 50, 88]. Instead of referring to each and every modifi-
cation separately, we would like to present the generalized idea of parsimony
[128, 129] from which the individual modifications can be easily derived. In a
mathematical terminology, one aims to identify those trees in the space of all
possible trees which minimize the following equation:

L(τ) =
B

∑
k=1

L

∑
j=1

ωj · diff(xk′ j, xk′′ j) , (4)

where L(τ) is called the length of the tree τ, B is the total number of branches
in the tree, L is the number of nucleotide positions analyzed (alignment
length), and k′ and k′′ are the two nodes connected by branch k displaying the
nucleotides xk′ j and xk′′ j. These can be either the observed nucleotides present
in the alignment or, in the case of internal nodes, the optimal nucleotide
assignments. Finally, diff(x, y) represents the cost-matrix that specifies the
cost of the transformation from nucleotide x to nucleotide y and ωj is a specific
weight for each alignment position. Thus, diff and ω = (ω1, . . . , ωL) allow
for specifying a priori some beliefs about the importance of positions and
substitutions for the tree reconstruction, e.g. cost matrix A in Figure 8 reflects
a Jukes–Cantor type of evolution, whereas cost matrix B down-weights tran-
sitions relative to transversions.

A =

A C G T
A − 1 1 1
C 1 − 1 1
G 1 1 − 1
T 1 1 1 −

B =

A C G T
A − 5 1 5
C 5 − 5 1
G 1 5 − 5
T 5 1 5 −

Figure 8 Cost matrices for generalized parsimony. In matrix A
substitutions between all four nucleotides invoke the same cost. Matrix
B represents a slightly more sophisticated model. More weight is put
on transversions than on transitions.
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3.1.2 Multiple/Parallel Hits

Parsimony principles rely on the assumption that a group of related sequences
share a certain nucleotide by descent. However, this only approximates the
true evolutionary events if the overall amount of sequence changes is low.
Thus, multiple changes at the same site in one taxon or parallel independent
changes at the same site in different taxa are sufficiently infrequent not to
be an issue. However, when considerably diverged sequences are used for
tree reconstruction or marked substitution rate heterogeneity among sites
exists, multiple/parallel hits can cause severe problems in both assessing the
correct number of nucleotide substitutions along the phylogenetic tree and in
inferring the correct tree topology.

3.2 Distance-based Methods

In contrast to parsimony methods with a biologically motivated approach to
tree reconstruction, distance-based methods choose a mathematical route [43].
A phylogenetic tree is reconstructed for a set of taxa from their pairwise
evolutionary distances. To this end, a distance matrix D is calculated from
all possible pairwise sequence comparisons. Entry Dij of this matrix repre-
sents the distance between sequence i and sequence j. In a simple approach
Dij is computed as the edit distance (Hamming distance), i.e. the minimum
number of substitutions required to transform sequence i into j. However,
multiple changes at the same position cannot be accounted for and therefore
the Hamming distance will sometimes underestimate the true number of
substitutions. To rectify this, models of sequence evolution are invoked that
correct for multiple changes (see Section 2). Various methods were suggested
for inferring a tree from a distance matrix. Common, although in fact not es-
pecially designed for phylogenetic tree reconstruction, are clustering methods.
Clustering methods do not have an explicit objective function to be optimized.
UPGMA, the most widespread clustering method, will serve as an example.

3.2.1 UPGMA

The “Unweighted Pair Group Method using Arithmetic means” groups those
two taxa first whose evolutionary distance is minimal. Consider taxa A, B,
C, and D with evolutionary distances as shown in Figure 9a. The taxa A
and B with distance 6 are clustered first. Subsequently, A and B are treated
as one compound taxon AB, and pairwise distances to the remaining taxa
C and D are computed. D(AB)C is calculated as the arithmetic mean of the
individual distances DAC and DBC, thus D(AB)C = (7 + 8)/2 = 7.5. Likewise,
we compute D(AB)D = (13 + 14)/2 = 13.5. Now the cycle is repeated for the
new 3× 3 distance matrix. We obtain ((AB)C) and D as the two remaining
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Figure 9 Reconstruction of a phylogenetic tree with the UPGMA
method. From the matrix of pairwise sequence distances (a) the
phylogenetic tree shown in (b) is reconstructed. Numbers in (b)
represent the branch lengths inferred under the assumption of a
molecular clock. r identifies the root of the tree.

taxa with D((AB)C)D = (13 + 14 + 11)/3 = 12.7. Finally, D and ((AB)C) are
merged to conclude the procedure. The full tree (((AB)C)D) with branch
lengths is displayed in Figure 9b. Thus, UPGMA reconstructs a rooted tree,
where branch lengths are computed such that the distances from root r to the
leaves A, B, C, and D are identical (6.13 in our example). More generally, such
trees fulfill the so-called ultrametric inequality, i.e. for each triple of taxa X, Y
and Z:

DXY ≤ max[DXZ, DYZ]. (5)

Equation 5 is equivalent to the statement that two of the three distances are the
same and at least as large as the third distance. More interestingly, the reverse
is also true. If for a distance matrix the ultrametric inequality is fulfilled, then
the distance matrix is representable by a rooted tree such that the distances
Dij are identical to the sum of the branch lengths connecting the two taxa
X and Y in the tree. In biological parlance, if the distances computed from
a set of aligned sequences obey the ultrametric inequality then the sequences
evolve according to a molecular clock, i.e. they accumulate substitutions at the
same rate (see Section 2). Therefore, UPGMA can give misleading trees if the
distances reflect a substantial departure from the molecular clock. To arrive
at a correct tree topology nevertheless, the distance matrix can be corrected
for unequal rates of evolution among the lineages under study (transformed
distance method [87]). The such modified distance matrix can then be used to
infer the tree topology using UPGMA.

3.2.2 Neighbors-relation Methods

To overcome the restriction of the molecular clock, the characterization of
unrooted trees with branch lengths is helpful. If it is required, alternative
routes can be taken at a later step in the tree reconstruction to located the
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Figure 10 An unrooted quartet tree and its branch lengths
reconstructed from the distance matrix in Figure 9(a).

position of the root (see Section 3.6). The celebrated four-point condition and its
relaxations [5, 20] state conditions when a distance matrix is representable as
a tree. A distance matrix is representable as a tree if and only if for all quartets
W, X, Y and Z in a taxon set the following holds:

DWX + DYZ ≤ max[DWY + DXZ, DWZ + DXY] . (6)

The distance matrix in Figure 9(a) fulfills this criterion and the corresponding
unrooted quartet tree is displayed in Figure 10. However, for real data the
four-point condition is rarely met. Thus, one relaxes this condition by intro-
ducing the concept of neighbors. Two taxa are called neighbors in an unrooted
tree if they are connected through a single internal node. For instance the taxa
A and B in Figure 10 are neighbors, while the taxa A and C or B and D are
not. This concept of neighborhood was generalized to distance matrices [5]
and resulted in a series of tree reconstruction methods [5, 51, 131].

3.2.3 Neighbor-joining Method

A widely used method based on the neighbors-relation concept is the NJ
method by Saitou and Nei [123]. NJ is a clustering algorithm. During each
clustering step, two taxa or clusters of taxa are identified as neighbors in
the tree, if their grouping results in a tree whose overall length is minimal,
i.e. the sum of the lengths of all branches is minimal (minimum-evolution
criterion [21]). To this end, one starts with a star-like tree. Subsequently, two
taxa X and Y are identified that minimize:

SXY =
1

2(N− 2)

N

∑
k=3

(DXk + DYk) +
1
2

DXY +
1

N − 2 ∑
3≤i≤j≤N

Dij . (7)

The cycle of calculating a new distance matrix and identifying the next neigh-
bors is continued until the initially star-like tree is fully resolved (see also
Section 12). For details of the NJ algorithm, see Ref. [147]. Since then, several
weighted and improved versions of the NJ algorithm have been published
[16, 53].
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3.2.4 Least-squares Methods

We have described the application of cluster methods to phylogeny recon-
struction. However, another view of the reconstruction problem based on
a distance matrix is the specification of an objective function we want to
optimize. From a mathematical view, we want to find a tree together with
its branch lengths such that the distance of two taxa X, Y in the tree, i.e. the
sum of the branch lengths connecting the two taxa in the tree, is close to DXY.

The least-squares method provides such a measure for the goodness of fit
of the tree and its branch lengths to the data. The best tree (τLS) under this
criterion minimizes the following equation:

R(τ) = ∑
XY

(TXY − DXY)2 , (8)

where TXY is the sum of the branch lengths along the unique path connecting
sequences X and Y. Cavalli-Sforza and Edwards [21] and Fitch and Mar-
goliash [49] were among the first to apply the least-squares theory to the
tree-reconstruction problem. However, the big challenge is the determination
of the tree topology.

3.3 The Criterion of Likelihood

The third method of tree reconstruction is based on the principle of ML
[48] which was made popular in the field by Felsenstein in 1981 [42]. The
general idea of ML is as simple as it is appealing: for a given model M
and its parameters θM the probability or likelihood of observing data D can
be calculated. Those parameters are chosen that maximize the likelihood of
observing the data. For the particular problem of inferring a phylogenetic tree
from biological sequence data the tree topology τ is introduced such that:

τML = argmax
(τ,θM)

P(D|τ, θM). (9)

Note the subtle, but far-reaching, difference to the principle of maximum
parsimony. The general concept of sequence evolution inherent to maximum
parsimony, i.e. that one sequence is transformed into another via the least
number of changes, is replaced by an explicit model of sequence evolution
to describe the substitution process. From this the most significant advantage
of ML becomes apparent: it allows us to incorporate any model of biological
sequence evolution into the tree reconstruction process. In this way, it opens
access to the full use of statistical approaches to compare alternative phylo-
genetic hypotheses, as well as to test fit and robustness of individual models
of sequence evolution. A further advantage compared to the previous two
approaches is the possibility to make full use of the sequence information.
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In a likelihood framework also constant alignment sites provide information
about the tree topology and its branch lengths.

3.4 Calculating the Likelihood of a Tree

We have described in Section 2 how to calculate the probability of observing
a difference at a given site in two sequences. We now extend this to compute
the probability to find a certain nucleotide pattern (As) in column s of N
aligned DNA sequences, e.g. the pattern CCTC at position 1 of the alignment
shown in Figure 7. This probability depends on the model of DNA sequence
evolution and on the tree relating the N nucleotides in the alignment column:
P(As|τ, θM). We assume that all positions in the alignment of length L evolve
according to the same evolutionary model M and evolve independently from
each other. Then, the probability of the alignment given a tree and a model is
a function of the tree τ and θM. Thus:

P(A|τ, θM) =
L

∏
s=1

P(As|τ, θM). (10)

To avoid numerical problems caused by underflows and rounding errors
during the calculation the likelihood of the data is usually calculated in log-
scale, such that:

log[P(A|τ, θM)] =
L

∑
s=1

log[P(As|τ, θM)]. (11)

Equation (11) facilitates computation of the likelihood of an alignment, if
θM, τ and its branch lengths are specified. In reality, however, we face
the reverse situation. Starting from a given alignment, we aim to infer the
underlying phylogenetic tree together with its branch lengths. In order to do
so we regard these parameters as variables. Once we have decided on an
evolutionary model and have specified its parameter values, we can adjust
the tree topology and the branch lengths such that Eq. (11) is maximized.
While straightforward and efficient ways exist to obtain ML branch lengths
for a specific tree topology (e.g. Ref. [42]), it is a computationally demanding
problem to obtain an optimal tree topology. Section 4 explains the details.

3.5 Bayesian Statistics in Phylogenetic Analysis

The likelihood approach outlined so far determines the quality of a tree by
calculating the probability of observing the alignment A given the tree τ and
the model of sequence evolution specified by θM (see Eq. 11). If we consider
a particular combination of τ and θM as an evolutionary hypothesis, H, we
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have inferred P(A|H), the probability of A given H. However, it might be
interesting to address the reverse question: what is the probability that the
evolutionary hypothesis H is correct given the data, i.e. P(H|A) (see [37, p.
106])? Applying Bayes’ theorem, we can calculate this posterior probability
as:

P(H|A) =
P(A|H)P(H)

P(A)
. (12)

Rewriting the equation for the problem of tree reconstruction we obtain:

P(τ, θM|A) =
P(A|τ, θM)P(τ, θM)

P(A)
, (13)

where P(τ, θM) is the prior probability to choose the tree τ and the model with
its parameters. P(A) is the total probability of the alignment A.

Equation (13) can be used in two ways for making phylogenetic inferences
from a set of DNA sequences. If one is only interested in identifying the tree
that is best supported by the data, one simply determines the tree and the θM
that maximize Eq. 13. Because P(A) is a constant it can be ignored during
optimization. Alternatively, the posterior probability for every possible real-
izations of τ and θM (Hi) can be calculated. This identifies not only the Hi that
is supported best by the data, but allows us also to assess how much better
the support is compared to the alternative hypotheses [139]. However, it is
easy to see that this is feasible for only a very limited number of sequences
(see Section 4.1). Thus, Markov chain Monte Carlo (MCMC) simulations are
used to estimate the posterior probabilities [105].

Imagine that the individual Hi comprise points in a landscape and P(Hi|A)
corresponds to their respective (unknown) altitude. A MCMC simulation is
similar to a walk through this landscape that visits the individual points. This
walk, however, is not totally random, but guided in a way that higher points
are visited more often than lower ones. Thus, when the walk is finished
an altitude profile of the landscape is generated from the number of times
a particular point was visited. In practice, MCMC simulations work the
following way. Starting from any Hi the transition to a new hypothesis Hj, e.g.
a new tree topology, is proposed with a probability q(Hi, Hj). This proposal is
then accepted with probability:

min

(
1,

P(A|Hj)P(Hj)q(Hi, Hj)
P(A|Hi)P(Hi)q(Hj, Hi)

)
, (14)

otherwise remaining at Hi. If Hj is supported better by the data than Hi,
then Hj is always accepted. Otherwise, Hj is accepted with a probability that
depends on how much worse the support of Hj is compared to Hi. The latter
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option ensures to escape from local optima (see Section 4). If the transition
is accepted, Hj will be sampled and the chain moves on. Given that the
chain could run for a sufficiently long time, the number of times Hi has been
sampled reflects its posterior probability. However, in most cases it is not
clear how long a chain should be run. To reduce potential biases of the Monte
Carlo estimates, initial sample points are generally discarded [9]. This burn-in
procedure has the effect that the chain samples only near-optimal hypotheses.
Moreover, one samples only every 1000th hypothesis to generate more or less
independent samples [46]

Today, more sophisticated MCMC simulations are performed that use sev-
eral Markov chains whose “temperatures” differ [57, 77]. So-called “hot”
chains have a high acceptance probability of inferior transition proposals.
To stay in the above picture, they are used for a more global exploration of
the landscape since their affinity to areas of high altitude is low. In contrast,
“cold” chains with their low acceptance probability of inferior hypotheses are
used for a thorough exploration of local areas in the landscape. Hypothesis
sampling is done only from the cold chain. However, from time to time, the
temperatures of the chains are swapped such that a hot chain is turned into a
cold chain and vice versa. However, many more variants of MCMC sampling
of phylogenies exist and the field is quickly evolving [33, 74–76, 95].

3.6 Rooting Trees/Molecular Clock

So far we have introduced various methods of inferring the relationships
between sequences (or taxa). Unfortunately, most of the methods described
above lack an inherent criterion for assigning directionality to the evolu-
tionary process. As a consequence, they are unable to identify the root of
a phylogenetic tree. To obtain a rooted tree, nevertheless, it is required
(and possible) to add supplementary information into the tree reconstruction
procedure.

3.6.1 Outgroup Rooting

Among the various methods for rooting a tree, it is most intuitive to divide
the taxa into two subgroups: a monophyletic ingroup, i.e. taxa that share
a common ancestor to the exclusion of all other taxa in the dataset, and an
outgroup, whose more distant relationship to any member of the ingroup
is either known or at least reasonable to assume (Figure 11a). It is then
straightforward to conclude that the node that joins the outgroup to the
ingroup represents the root of the ingroup subtree (rsubtree in Figure 11) [110,
140]. Though simple, this approach requires some considerations. Despite
their clear position outside the ingroup, outgroup taxa should be as closely
related to the ingroup taxa as possible. This will increase the probability of
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Figure 11 Two alternative principles for
rooting phylogenetic trees. (a) Outgroup
rooting. The set of taxa A–E is divided
into an ingroup (shaded in grey) and the
outgroup, taxon E. The node that joins the
outgroup to the ingroup represents the root
of the ingroup-subtree (rsubtree). The root
of the entire tree, i.e. the common ancestor

of all taxa, must be located somewhere on
the outgroup branch. However, its exact
position remains unknown. (b) Distance-
based rooting. t to z denote the lengths of
the individual branches in the tree. The root
of the entire tree is identified as the midpoint
of the path connecting the two taxa with the
largest evolutionary distance.

reliably identifying homologous sequence positions using standard alignment
procedures. Furthermore, it minimizes the risk of misplacing the outgroup
due to its large evolutionary distance from the ingroup [99, 127, 154]. In
addition to these more general requirements, some additional guidelines exist
for rooting phylogenetic trees by an outgroup. First, more than one taxon
should be included into the outgroup [100]. Furthermore, different outgroup
taxa should be used to check whether the root placement depends on the
choice of the outgroup [150].

3.6.2 Midpoint Rooting and Molecular Clock

As we have seen, the choice of a meaningful outgroup for rooting a phyloge-
netic tree can become a considerable problem. This is especially relevant when
groups are analyzed whose phylogenetic relationships are unclear. In such
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cases additional assumptions about the evolutionary process are imposed that
help rooting the tree.

Given that per unit of time any lineage accumulates the same amount of
sequence changes (molecular clock) the point in the tree that is equally distant
from all terminal taxa can be assigned as the root (see Section 3.2). In reality,
however, the assumption of a molecular clock is frequently violated. If this
is neglected rooting under the clock assumption tends to place the root in a
part of the tree that is evolving at a high evolutionary rate. Midpoint rooting
slightly relaxes the constraints imposed by the molecular clock assumption. It
places the root on the midpoint of the path connecting the two most distantly
related taxa in the phylogenetic tree (Figure 11b). Compared to the molecular
clock scenario this retains only the postulation that the evolutionary rate has
to be the same along the two most divergent lineages in the dataset. Midpoint
rooting identifies the localization of the root correctly when this criterion is
met [148].

4 Finding the Optimal Tree

So far we have outlined the principles to construct a phylogenetic tree from a
set of aligned sequences. However, it still is unclear how to find the tree that
reflects the relationships between the taxa best. We can differentiate between
two general concepts of searching the tree space comprised by all possible
tree topologies for the desired optimal tree: (i) exhaustive searches, which
guarantee the identification of the optimal tree, and (ii) the computationally
less-demanding heuristic searches that, however, do not necessarily obtain the
globally optimal tree.

4.1 Exhaustive Search Methods

In the conceptually simplest approach, the exhaustive search, each and every
possible bifurcating tree in the tree space is evaluated under the selected
optimality criterion. The identification of the optimal tree(s) is then straight-
forward and the computational challenge is limited to exploring all of the
tree space. To accomplish this, one starts with the (unique) unrooted tree
that connects three randomly chosen taxa from the dataset. Subsequently,
the remaining taxa are added in a step-wise fashion, such that the ith taxon
is added separately to each of the 2i − 5 branches of every possible tree for
the i − 1 previous taxa. Obviously, the addition of every taxon increases the
number of possible trees by the number of branches to which the new taxon
can be connected [41]. Thus, the total number of unrooted trees for a set of n
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taxa is:

B(n) =
n

∏
k=3

(2k− 5) =
(2n− 5)!

2n−3(n− 3)!
. (15)

The limitations of the exhaustive search are evident. Already a compilation of
20 taxa, a dataset that is nowadays easily exceeded, requires the evaluation of
over 2× 1020 different trees. This is, and presumably will remain, computa-
tionally infeasible.

Branch-and-bound methods [93] provide an alternative approach to finding
a globally optimal solution without the need of evaluating all tree topologies.
Instead, a guided search in the tree space is performed omitting those sub-
spaces that cannot contain an optimal tree [67]. The rationale is simple and
has the only prerequisite that the criterion of tree evaluation, i.e. the objective
function F, is nondecreasing when new taxa are added to a particular subtree.
If we want to minimize F, then we start with the computation of an upper
bound Fupper, e.g., we evaluate any arbitrary n-taxon tree. Subsequently,
using a three-taxon tree as a primer we recursively reconstruct the possible
n-taxon trees. However, as we move along in our reconstruction procedure,
i.e. with the addition of more and more taxa into the trees, we compare F
of the resulting subtrees with Fupper. As soon as Fsubtree exceeds Fupper we
know that the search path leads to a subspace which contains trees where F
is always larger that Fupper. Thus, no further reconstruction is required and
another search path is evaluated. Alternatively, if we end up with a n-taxon
tree, we store the new tree as candidate and update Fupper to the new value.
The estimation of Fupper is crucial for the computational efficiency. Therefore,
a number of improvements have been added to this basic scheme [67, 148].
These refinements are mainly designed to further reduce the exploration of
tree space. They include methods for obtaining a near-optimal tree for an
assessment of the initial upper bound, as well as schemes for generating a
suitable order in which the taxa are added to the subtrees. For instance,
by adding divergent taxa first, the length of the initial subtrees is increased,
allowing for a quicker identification of subtrees that exceed the upper bound
for the tree length.

Despite these improvements, exact searches eventually run into computa-
tional problems when data sets become large. For these cases, the consider-
ably faster heuristic methods for tree reconstruction are required.

4.2 Heuristic Search Methods

Heuristic methods for tree reconstruction earn a substantial speed-up in com-
putation time by jettisoning a guaranteed globally optimal solution to the tree
search problem. With contemporary software it is possible to reconstruct trees
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from datasets of more than 1000 taxa (e.g. [63, 107, 141]). Thus, nowadays
biological datasets hardly ever reach the computational limits of tree recon-
struction software, provided that one is willing to abandon the guaranteed
optimality.

4.2.1 Hill Climbing and the Problem of Local Optimization

The problem to find an optimal tree for a set of taxa can again be illustrated
by the metaphor of exploring a landscape. A hiker aims to visit the point with
the highest altitude in a hilly area. Due to the poor visibility, the highest peak
cannot be identified a priori. Thus, the hiker remains with the only option to
climb any slope he encounters first until he has reached its top. Up there he
checks his altimeter and is either confident to have reached one of the highest
points in this area and finishes his search or he invests more effort and climbs
another hill. This kind of search strategy is called a local search.

Applying this approach to the tree search problem, we start off with any tree
and modify it in a stepwise fashion, usually accepting only such modifications
that result in an improved tree according to the chosen objective function.
At a certain point no further improvement is possible and thus we have
reached the top of the hill. At this point we have no means of deciding
whether we have found the globally optimal tree or merely a local optimum
and an optimization with a different initial tree would obtain better results.
Consequently, tree searches based on a local search have to cope with three
challenges: (i) the identification of a reasonable tree to start the search with,
(ii) the implementation of a stepwise hill-climbing algorithm for the tree
search and (iii) the avoidance of getting stuck in local optima that are highly
suboptimal in terms of cost.

4.2.1.1 Identification of the Starting Tree
Reasonable starting trees are quickly obtained via so-called “greedy” strate-
gies. The tree reconstruction is divided into several subproblems which are
then sequentially solved by always choosing the solution that looks best
given the current situation. In star decomposition methods (Figure 12), we
begin with an assignment of all taxa to the terminal nodes of a star-like tree.
Subsequently, all trees are evaluated that can be obtained by joining any two
of the terminal taxa into a new group. The tree that scores best under the
chosen optimality criterion forms the basis for the next step. The iteration of
pairwise joining and tree evaluation continues until the tree is fully resolved.

Alternatively, we can directly construct a binary tree from scratch by insert-
ing the taxa into a tree in a stepwise fashion (Figure 13) [38]. First, a set of
three taxa is used to form a unique binary tree. Next, a fourth taxon is chosen
for insertion into the initial tree. Since the taxon can be attached on any of
the three branches of the initial tree, we have three possible topologies for the
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Figure 12 Star decomposition.

Figure 13 Stepwise insertion.

four-species tree. All of these will be evaluated and the best tree will be stored
for insertion of the fifth taxon. The iteration continues until the tree includes
all taxa in the dataset.

It is straightforward to see why both star decomposition methods as well as
the stepwise insertion procedure are prone to obtaining only locally optimal
trees. Any decision concerning the position of a taxon in the tree is fixed for
the remaining part of the reconstruction procedure.
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Figure 14 Three methods that accomplish branch swapping.

4.2.1.2 Optimization Procedure and Avoidance of Local Optima
In order to escape local optima, tree-rearrangement methods were suggested
that override previous decisions concerning the placement of taxa in the tree.
In brief, the initial “optimal” tree is modified such that a part of the tree
is excised and re-inserted elsewhere. The trees resulting from such “branch
swaps” are evaluated and subjected to one or more acceptance criteria. While
a better tree is always accepted, trees inferior to the one already obtained
can be accepted under certain conditions [77]. This deviation from the strict
hill-climbing approach facilitates the transition to better trees that require
more than one rearrangement of the current best tree. Note, the similarity
to the MCMC approach (see Section 3.5). Currently, three branch-swapping
methods are in use (Figure 14). Nearest neighbor interchange, the simplest
approach, takes any internal branch of the tree and swaps two of the four
connected subtrees. In this way, a total of O(n) alternative trees are evaluated.
(Note that only swapping two subtrees located on the opposite sides of the
internal branch leads to the formation of a new tree!) Subtree pruning and
regrafting (O(n2)) excises a subtree and regrafts it with the cut surface at any
branch on the tree. Tree bisection and reconnection is the most exhaustive way
of swapping branches (O(n3)). The tree is bisected along an internal branch
and the resulting subtrees are rejoined at any pair of branches.
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As noted, any of the branch-swapping methods is capable of guiding the
tree-reconstruction procedure out of a local optimum. However, no guar-
antee is given that this does not simply lead into the next local optimum.
Apparently, if the branch swapping is continued for a sufficient amount of
time it becomes likely that sooner or later the global optimum will be found.
However, how shall we recognize the globally optimal tree once we found it
and for how long should we continue the tree search?

4.2.2 Modeling Tree Quality

It is inherent in the heuristic approach that, no matter how long we search,
we can never be sure that we have found the globally optimal tree. Thus,
we need a concept of tree quality, as we are continuing the search. In most
cases it is essentially up to the user how long the search is continued. Either a
predefined number of optimization steps or a lower limit by which new trees
have to improve can be used as stopping criteria. However, both criteria are
arbitrary and a well-founded basis for deciding when to end the search would
be desirable. Recently, a method was suggested that is based on the rate of
finding better trees during the search [152]. Let F1, F2, . . . , Fj denote the values
of the objective function F for the trees found at iteration 1, 2, . . . , j. Then the
sequence r(k) of record times (i.e. number of iteration at which a better tree is
found) is defined by:

r(1) = 1, r(k + 1) = min{j|Fj > Fr(k)}. (16)

This sequence is used to estimate the point in time, rstop, when to stop the
search based on the probability of yet finding a better tree. Using the theory
detailed in Refs. [23,120], one can estimate on the fly an upper 95% confidence
limit r95% of rstop. Once r95% iterations have been carried out and a better
tree has not been detected the program will stop. It can then be concluded
that with a probability of 95% no better tree will be found during this search.
On the other hand, if a better tree is found before r95% is hit, the r95% is re-
estimated on the basis of the new record time added to the sequence r(k) and
the search continues.

4.2.3 Heuristics for Large Datasets

The considerable ease with which DNA sequences are obtained nowadays
results in ever-increasing datasets available for phylogeny reconstruction. As
a consequence there is a demand for increasing the capacity of tree reconstruc-
tion software. One way to satisfy the needs is the development of parallelized
versions of tree reconstruction programs, e.g. fastDNAml-based programs
[111, 141, 142], TREE-PUZZLE [132], GAML [14] and MRBAYES [2].

The objectives for further improvements on the computational basis can
be quickly summarized. (i) Finding in a shorter time a better starting tree
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for subsequent optimization. IQPNNI [152] accomplishes this by limiting the
number of computation steps to place a new taxon during tree reconstruction.
PhyNav [151], on the other hand, reduces the initial tree space by choosing
for each group of closely related taxa one representative. From the result-
ing representative leaf set a scaffold is reconstructed, to which the initially
deferred taxa are subsequently added such that an optimal tree is obtained.
(ii) Improving the algorithms for tree optimization. For instance, PHYML
[63] has implemented a fast algorithm for nearest-neighbor interchange, and
RAxML [141] provides an improved version for subtree pruning and regraft-
ing. (iii) The utilization of alternative approaches for tree reconstruction, such
as a metapopulation genetic algorithm [96]. (iv) The dissection of the tree-
reconstruction problem into a set of subproblems that can be solved on several
CPUs in parallel. Some of these improvements are recent developments and it
is not clear yet which combination will be optimal for tree reconstruction. In a
sense an all-embracing optimal solution might be elusive since it is likely that
different combinations will perform optimally on different data sets. Thus, it
seems impossible to provide guidelines for when to use what program.

5 The Advent of Phylogenomics

A common problem for the accurate reconstruction of evolutionary relation-
ships among taxa is the limited amount of phylogenetic signal in the data
which, in addition, is frequently blanketed by noise. In view of the various
genome sequencing efforts it seems trivial to enhance the signal-to-noise-
ratio by the simple addition of more data [69]. However, even with the
availability of whole-genome sequences, alignments remain limited to the
level of individual genes in many cases. Both the rearrangement of genetic
information in different taxa and the in part substantial sequence divergence
of nonfunctional parts of the genome prevent the generation of meaningful
longer sequence alignments. To extend the amount of information, nonethe-
less, disjoint datasets derived from multiple genomic loci can be combined for
the analysis. This intersection of phylogenetics and genomics is referred to as
phylogenomics.

5.1 Multilocus Datasets

Two approaches have been suggested for combining multilocus datasets from
the same set of taxa for phylogenetics analysis. In supermatrix approaches
[126] (also referred to as “total evidence” [89]) all individual sequence align-
ments are concatenated to form one large superalignment. The tree recon-
struction is then based on this superalignment using standard methods. In
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Figure 15 Two alternative methods to
reconstruct a single phylogenetic tree
from a set of disjoint alignments. In the
early-level combination, the individual
alignments represented by the patterned
boxes are concatenated first to form a
single superalignment. Standard phylogeny

reconstruction programs can then be applied
to reconstruct a tree from the superalignment.
In the late-level combination a phylogenetic
tree is reconstructed first for each alignment
separately. The individual trees are later
combined into a single consensus tree.

this approach, the phylogenetic information present in the individual align-
ments is combined early in the phylogenetic analysis. Hence, we refer to
them as early-level combination methods (Figure 15, “early”). Alternatively,
the information present in the individual alignments can be combined late
in the phylogenetic analysis. Trees are reconstructed first for each alignment
separately. These individual trees are then combined at a later step to form a
so-called consensus tree (Figure 15 “late”). However, in contrast to the concate-
nation of individual alignments, which is simple text-editing, the combination
of trees requires some further considerations.

A frequently used method for computing a consensus from a compilation of
trees is based on the principle of identifying the set of compatible splits among
these trees. To this end, splits comprise bipartitions of the taxon set that are
induced by cutting a tree at any edge. More formally, splits are represented
by the symbol “|” (Figure 16). Note that cutting at an external edge creates
only trivial splits present in all trees. These are usually discarded from the
analysis. Thus, we can induce for any tree with taxon set N a split A|B, such
that A∪B = N and A∩ B = ∅.

From the tree in Figure 16 we deduce the splits {A, B}|{C, D, E} and
{A, B, C}|{D, E} (or shorter AB|CDE and ABC|DE) We note that taxon C has
changed sides. Thus, if we compute all four possible intersections between the
splits only one will be empty. More formally, two splits A|B and C|D are said
to be compatible if one of the four possible intersections A∩ C , A∩D, B ∩ C ,
B ∩ D is empty. If two intersections are empty the splits are identical. It is
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Figure 16 Two nontrivial splits can be derived from this tree. Cutting
at the edge y induces the split AB|CDE. Cutting at edge z moves
taxon C from the right-hand side of the split to the left-hand side and
results in ABC|DE.

easy to see that splits derived from a tree are always pairwise compatible. On
the other hand, a collection of splits that are pairwise compatible fit on a tree.
Hence, collections of pairwise compatible splits are another way of encoding
trees. For multilocus data the resulting trees are not necessarily the same
and, thus, one needs approaches to summarize the results. The easiest form
to summarize the result is simply counting the fraction � at which a certain
split occurs in a set of trees. If we collect only splits with � > 50%, then the
resulting system of splits is pairwise compatible and therefore representable as
a tree [136] which we call M50 or majority rule consensus tree [102] (Figure 17).
The cutoff value � can of course be raised to construct more stringent majority
consensus trees M� [102].

Figure 17 Examples for consensus methods to summarize a set of
trees with identical taxon sets: strict (Mstrict), semi-strict (Msemi-strict)
and 50% majority rule consensus (M50).

More restrictive cases of majority consensus are the strict consensus Mstrict
[122] that incorporates only splits present in all trees, and the semi-strict
consensus Msemi-strict [15] that contains all splits which are not contradicted
by any split from the input trees (Figure 17). Many further methods exist for
generating a consensus tree (e.g. Refs. [1, 19, 81, 133]).
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The application of consensus methods extends beyond the combination of
trees from multilocus datasets. In principle, they can be used to summarize
any set of trees, e.g., derived from Jackknife [106] or Bootstrap analysis [35,
44], sampled from MCMC simulations [77], or obtained by randomized input
orders [144] to assess the reliability (or uncertainty) in the reconstructed trees.

5.2 Combining Incomplete Multilocus Datasets:
Supertrees and their Methods

Consensus methods have one serious limitation – they are restricted to trees
of equal size and taxon sets. The mutual coverage of currently available
gene sequences and taxa is far from being satisfactory [32]. Thus, consensus
methods are only applicable to very special and restricted multilocus data.
This results in a trade-off between the number of taxa and the number of loci
used in an analysis. Thus, one can study either many loci with only few taxa or
vice versa. This situation will improve as more sequence data accumulate, es-
pecially in the wake of completely sequenced genomes. However, incomplete
data will still remain simply because not all genes are present in the genomes
of all taxa. Consequently, the question emerges of how to incorporate multiple
incomplete datasets into phylogenetic analysis.

In principle, similar strategies are applicable as outlined in Section 5.1.
Supermatrix methods use concatenated alignments. However, this requires
that tree reconstruction methods must be able to handle the missing data.
Simply discarding alignment positions with gaps would leave the user with
only completely sampled loci or even no data at all.

When the data is combined at a late level in the analysis, several strategies
are feasible. Methods have been proposed to combine separately recon-
structed overlapping (typically rooted) trees of the different loci into one
so-called supertree [11, 60] (Figure 18). Supertree approaches can be divided
into two classes: agreement supertrees [12] and optimization supertrees [155].

5.2.1 Agreement Supertrees

Agreement supertree methods reconstruct a supertree based on those group-
ings that are shared or at least are uncontested among the set of rooted
source trees [12]. This reflects the assumption that all source trees can in
principle be obtained simply by pruning different sets of branches from one
large tree, the parent tree, i.e. the source trees are compatible. It should,
therefore, be straightforward to reconstruct the topology of the parent tree
from the topologies of the source trees. Unfortunately, different parent trees
may frequently lead to the same set of partial trees. In other words, agree-
ment supertree reconstruction may result in different parent trees. The first
supertree method available [60] was designed to find all possible parent trees
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Figure 18 A number of different methods
to construct a single phylogenetic tree
from a set of alignments with incomplete,
but overlapping taxon sets. In early-
level combination all alignments are
concatenated into one large (super)alignment
(or supermatrix, missing sequences are
filled with gaps) from which the tree is
reconstructed. In late-level combination the
(typically rooted) trees are decomposed into

sub-structures like rooted triplets (to obtain
common nestings) or quartets, or are re-
coded into a binary matrix representation
(see Figure 19). These are then used
to reconstruct a supertree. In medium-
level combination with SQP the data is
combined via quartets computed from each
alignment. The resulting superquartets are
then amalgamated into an overall tree.

for a set of partial trees and compute the strict consensus from the different
parent (see Section 5.1). The resulting supertree, however, displays only those
bipartitions that are supported in all parent trees, but some information about
the structure present only in a fraction of the parent trees might be concealed.
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Thus, subsequent approaches like OneTree [17] returned only a single possible
parent tree as the supertree. Obviously, the strict requirement of the source
trees being compatible severely limits the applicability of these supertree
methods. Any real application leads to source trees that are incompatible for a
variety of reasons, one of which is just by chance. Thus, subsequent agreement
supertree methods, such as the MinCut Supertree algorithm [135] or the
ModMinCut Supertree algorithm [112] aimed to overcome the requirement
of compatibility. In brief, they introduced a weighting of the links between
taxa (i.e. common occurrence in the same subtrees) during the reconstruction
of supertrees, such that the weight of a link increases the more source trees
display this link. Subsequently, if a subtree cannot be resolved further due
to incompatible source trees, the subtree is resolved by pruning those links
with the lowest weight (MinCut) greedily. Furthermore, the ModMinCut
Supertree algorithm [112] aims to keep links that are uncontradicted, even
if they are established only by a single input tree, which would cause the
MinCut Supertree algorithm to discard it. Further agreement supertree meth-
ods have been suggested recently and a comprehensive overview is given in
Refs. [10, 12].

5.2.2 Optimization Supertrees

Here, the set of input trees is decomposed into smaller entities. These entities
serve as input to reconstruct an overall tree based on an objective function.

Matrix representation methods are one example. Prior to constructing the
supertree, the rooted input trees are encoded into a binary matrix. Typically
each internal node in the (rooted) input trees is encoded either by its adjacent
subtree (Ragan/Baum scheme [7, 119], Figure 19a) by assigning “1” to taxa
within the subtree and “0” otherwise, or its adjacent sister groups (Purvis’
scheme [118], Figure 19b) assigning “0” to the taxa in one sister group and “1”
to the other. All other and missing taxa of the tree are assigned “?”. The ob-
tained matrix representation of the input trees is then used as input alignment
to reconstruct a supertree (Figure 18). For this purpose, various optimizing
algorithms can be applied, such as (i) parsimony (MRP [7, 119]), which is
to date the by far most common method, (ii) distance-based methods (MRD
or average consensus method [94]), and (iii) finding the optimal tree which
requires the least changes between ones and zeros (flips) to be congruent with
the matrix (MRF [22]).

As an alternative to the matrix representation method, quartet-based su-
pertree methods make direct use of the topological information in the input
trees. To this end, the source trees are decomposed into quartet trees, which
then serve as building blocks to reconstruct of the supertree [115, 121] (Fig-
ure 18).
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Figure 19 For matrix representation methods
like MRP a set of rooted input trees are
encoded into a binary matrix. Each internal
node (here 1–6) forms a column in a “binary”
matrix. In the coding scheme of (a) Baum
and Ragan a taxon that is located in the
subtree associated to the current internal
node is assigned “1”, and a “0” otherwise.

Missing taxa get the character “?”. (b) In
Purvis’ scheme only adjacent sister groups
are encoded to compensate for different tree
sizes. Taxa connected to one subtree are
assigned “1”, those of the sister subtree “0”.
Missing taxa and those located root-wards
are assigned the character “?”.

5.2.3 The Supertrees/Consensus versus Total Evidence Debate

Alternative approaches to reconstruct trees from incomplete multilocus data
ultimately invoke the debate whether supertree/consensus methods are su-
perior to a supermatrix approach [10, 13, 24, 108], or vice versa [34, 55, 89, 90].
Meanwhile a number of points of critique have been raised against either
approach, as have advantages. The predominant critique on the supermatrix
(total evidence) approach addresses the issue of choosing an evolutionary
model and its parameters such that the various evolutionary constraints im-
posed on the different concatenated datasets are reflected. On the other hand,
supertree methods are criticized for their careless treatment of information
provided by the data. Usually, the underlying sequence data is discarded
prior to combining the input trees. Thus any information not represented by
the tree topology is inevitably lost. Furthermore, supertrees carry the risk of
possible unwanted data duplication and weighting [54, 56], especially if tree
topologies have been collected from the literature.

5.2.4 Medium-level Combination

Based on the above criticisms, a third level of dataset combination has been
proposed recently [133], which takes an intermediate position between the
(late) supertree and the (early) supermatrix approaches. Thus, we call it
medium-level combination. The so-called superquartet puzzling algorithm
(SQP [133]) combines the data on the level of four-taxon (quartet) trees. These
so-called superquartets are then used as building blocks in the reconstruction
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using a voting scheme and a construction algorithm that is aware of missing
data. SQP allows the application of evolutionary models fitted to each locus
separately. Furthermore, it uses the phylogenetic information in the sequences
both for combining the data and in the reconstruction of the final tree. Thus,
SQP tries to combine known advantages of supermatrix and supertree meth-
ods. In addition, SQP can use datasets without defined outgroups or other
information where the root has to be placed, which is generally required by
most other supertree methods.

6 Phylogenetic Network Methods

By the nature of the biological data, the tree-reconstruction methods presented
so far are only approximate methods. For any sufficiently large dataset, the
four-point condition (Eq. 6) introduced in Section 3.2 is frequently not fulfilled.
In such cases either the assumption of the underlying data evolving according
to a (single) tree is not valid or methodological shortcomings disguise the
tree-like evolution of the data. A number of reasons why the evolutionary
relationships of DNA sequences might not resemble a tree (both methodolog-
ical and biological) have been outlined earlier in this chapter (see Sections 1.2.1
and 5.1). Irrespective of the cause for the nontree-likeness of the phylogenetic
signal in the data, it is obvious that coming up with a single tree is a feature of
tree-reconstruction methods that might not be always desirable.

In the case of conflicting evolutionary signals in the data, a tree might not
be the appropriate form to representing the phylogenetic relationships for a
set of sequences. Thus, a series of algorithms have been proposed that are
useful additions a to tree-based analysis. These methods can visualize to some
extent conflicting alternative taxon groupings that cannot be represented by a
single tree [6]. Nowadays, such algorithms are subsumed under the notion of
(phylogenetic) network methods [116].

6.1 From Trees to Split Networks

6.1.1 Split Systems and their Visualization

Recall the idea of representing a tree by a set of splits introduced in Section 5.1.
By definition, splits derived from a single tree are always compatible and, in
turn, a tree can be reconstructed from a set of compatible splits. In order to
combine phylogenetic information present in a set of trees based on sequences
from various genetic loci the collection of splits observed in the individual
trees can be collected and analyzed. Usually, not all splits are compatible and
thus strict or majority-rule consensus trees are applied to filter the set of splits
prior to tree reconstruction.
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Figure 20 Consensus network representing
all four splits collected from the three input
trees in Figure 17. Branch lengths are drawn
relative to the percent occurrence in the input
trees. The compatible splits ABC|DEF and
ABCF|DE form the tree-like branches in the

right part of the graph, while the pairwise
incompatible splits AB|CDEF and AC|BDEF
form the net structure on the left. Note
that the contraction of one set of parallel
branches each obtains the corresponding
tree responsible for the incompatible split.

One way to visualize incompatible splits present in the data goes along the
lines with these consensus methods. Instead of stopping at the 50% cutoff
which guarantees that the outcome is, in fact, a tree, one keeps adding less
frequent splits obtained from a set of input trees to the split system, i.e. the set
of splits. More generally, the application of a cutoff value r (analogous to � in
consensus trees) allows the selection of any split system Sr that is present in at
least a portion r of all input trees. Pushing r below 50% (r ≤ 0.5) may lead to a
splits system that no longer conforms to a tree. Visualizing such incompatible
splits systems provides insights into the extent and pattern of heterogeneity of
the phylogenetic signal in the data. In such a network, one split is represented
either by a single branch or by parallel branches, indicating incompatible
splits as in Figure 20, where AC|BDEF and AB|CDEF are incompatible.

It has been shown (see Ref. [73]), that a split system Sr with cutoff fraction r
does contain any subset larger than �1/r	 splits which are all pairwise incom-
patible. Sr is said to be (�1/r	)-compatible. The split system in Figure 20, for
example, is 2-compatible, containing the subset of two pairwise incompatible
splits AC|BDEF and AB|CDEF. All split systems Sr with r > 0.5 are 1-
compatible, which means that there are no incompatible splits and, hence,
the resulting topology would again be a tree.

The amount of pairwise incompatible splits obviously determines the com-
plexity of the network containing them. Median networks [4, 72] can contain
cubes of dimension up to �1/r	, and might thus be utterly complex. For
example, a split system S0.25 can be 4-compatible and, hence, needs four
dimensions to be visualized.

Median networks are a very general type of network which can be recon-
structed from the binary encoding of a split system. To this end, for each split
taxa on one side of the split are assigned ones, those on the other side zeros.
Then, intermediate states (representing the inner nodes in the median net-
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work) are computed from the binary sequences in a parsimonious fashion (see
Section 3.1). It has been shown [4,72] that by pruning branches from a median
network one can extract all the most parsimonious trees for the split system.
Due to the fact that median networks can grow arbitrarily incomprehensible,
less-complex approximations are often applied. Split graphs [6, 30, 31], for
example, attempt to filter the splits and branches drawn, to derive a planar
graph, i.e. a graph without intersecting edges. Refer to Ref. [72] for a more
detailed overview.

6.1.2 Constructing Split Systems from Trees

Commonly, split systems are collected from a set of input trees with equal
taxon sets as they are obtained, for example, from Bootstrap analysis or
MCMC sampling (see Section 3.5). Similar to consensus trees (see Section 5.1),
such split systems are visualized as so-called consensus networks [70]. Such
consensus networks (see Figure 20) visualize the area and the extent of con-
tradiction of the phylogenetic signal found in the input trees. However, like
supertrees (Section 5.2), network reconstruction is not restricted to trees with
equal taxon set, but can also be done from overlapping trees using the Z-
closure method [78]. In accordance to the amalgamation of trees to supertrees,
such networks are then called “super-networks” (Note, that the “super” prefix
in super-networks does not follow the same notation as in supertrees, super-
alignments, or superquartets, since is not network constructed from networks,
but from trees.)

6.1.3 Constructing Split Systems from Sequence Data

Although applications such as consensus networks and super-networks were
suggested quite recently, one should note that the basic idea of representing
evolutionary processes by networks rather than trees is not new.

In contrast to approaches for network reconstruction based on collections
of splits derived from trees, distance-based methods including split decom-
position [6] or Neighbor-Net [18] have been suggested for constructing split
systems directly from the data.

Applied to viral sequences from Ref. [124], methods like split decomposi-
tion and Neighbor-Net can easily identify the presence of the three recombi-
nant HIV strains SE7812_2, UG266 and VI1310-1.7 (Figure 21b and c). These
would have been wrongly classified based on the result of a tree reconstruc-
tion method like BioNJ (Figure 21a). To avoid such missinterpretation of the
data, phylogenetic networks should be taken into account at early stages of
the analysis.

Programs like SplitsTree [80], T-REX [101] NETWORK [3] and Spectronet
[72] provide easy to use means that can be readily applied to a phylogenetic
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Figure 21 Results for a set of HIV dataset from Ref. [124] containing
reference strains (A, B, C, D, F, G, H and J) together with three
recombinants (SE7812_2, UG266 and VI1310-1.7). (a) BioNJ tree
(eight splits), (b) split decomposition (14 splits) and (c) Neighbor-Net
(19 splits).

analysis. These packages were used to analyze viral data [29, 124], hybridiza-
tion events [98] and intra-specific data [4], respectively.

It should be noted that such split-based networks provide only a visual-
ization of ambiguities in the data and do not qualify as methods to infer the
reasons for the net-like structure [18].

6.2 Reconstructing Reticulate Evolution and Further Analyses

As mentioned above, in the case that different methods, different loci or
even just different parts of the very same gene show conflicting phylogenetic
signals, various causes might account for the observed conflicts.

One would certainly first check whether the conflicting evolutionary hy-
potheses are really significantly different [58, 66, 138]. If so, we can envi-
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Figure 22 A case of reticulate evolution. (a) The recombination
between strain V and W forms the recombinant strain R. The two
parts of the sequence reflect different evolutionary histories (b)
and (c) of the reticulation.

sion several biological mechanisms to produce reticulations, i.e. network-like
evolution. In the particular example of virus evolution, reassortment, i.e.
the mixture of viral chromosomes within a cell co-infected by different viral
lineages [86], and recombination, i.e. the reciprocal exchange of genomic
regions among chromosomes [113, 117] both of which are highly abundant
in viruses [52, 125], are two examples. Horizontal gene transfer [8, 25, 62]
and genome hybridization or fusion [28, 103, 158] constitute other possibili-
ties. Sometimes reticulations may be simply due to parallel substitutions in
different organisms. In such a situation the loops in the network indicate the
occurrence of reverse or parallel mutations.

In general, purely split-based networks are not sufficient to illustrate an
event of reticulate evolution like the recombination shown in Figure 22, be-
cause one cannot represent this evolutionary history as a set of splits, although
one could map the separate gene trees. Hence, recently network methods like
hybridization networks, recombination networks or galled trees [64, 79] have
been suggested to reconstruct reticulate evolution.

The pros and cons of the different algorithms still need to be evaluated.
However, the comparison of different phylogenetic networking strategies is
not easy. From Figure 21 it is apparent that Neighbor-Net is more liberal in
introducing noncompatible splits (19 splits in the Neighbor-Net compared
to 14 splits in the split decomposition network and eight splits in a fully
resolved tree.) Simulation studies, successfully applied in phylogenetic infer-
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ence, might be one way to evaluate accuracy and robustness of phylogenetic
network methods. To this end a carefully designed experimental setup is
required. An alternative approach is the introduction of optimality criteria
(least-squares, likelihood) in the network construction process. Unfortunately,
the development of phylogenetic networks in a likelihood framework is still
in its infancy [143, 146, 153]. Only with such methods is one able to decide
whether the nontree-like signals are biologically plausible or are merely an
artifact of the reconstruction procedure.

In this chapter, we have only touched upon some phylogenetic network
methods. Space limitations do not allow a full account of all existing methods.
The pyramidal clustering technique [26] is, like Neighbor-Net, an agglomera-
tive approach. Statistical geometry in sequence space [36] and its descendants
[109, 145] are alternative approaches to summarize the extent of tree-likeness
in the data without reconstructing phylogenetic networks.

The field of phylogenetic networks will certainly profit from the data pro-
duced in whole-genome projects. As independently evolving DNA segments
of eukaryotic genomes may display different evolutionary histories, the cor-
rect history of the taxa, as carriers of these segments, is probably more ade-
quate. However, before we can reliably do this, we need to distinguish true
loops in a network from artificial loops generated by too simple assumptions
about the evolutionary process.
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5
Finding Protein-coding Genes
David C. Kulp

1 Introduction

Gene finding in genomic DNA sequences is a critical step in the functional
annotation of genomes. Over the past approximately quarter century in-
creasingly sophisticated methods have been developed to better understand
and catalog the mechanisms of transcription, splicing and translation, and to
predict the gene products, be they peptide sequences or RNA genes. With
the advent of large-scale sequencing, software programs were developed to
automate gene prediction.

In this chapter the common techniques for computational gene finding are
introduced. Basic concepts and terminology are given in Section 2. Sections 3–
5 discuss feature prediction for both content and signal features, and Section 6
introduces the standard dynamic programming formalism for incorporating
multiple features into complete gene structure predictions. Some performance
results for ab initio gene finding are given in Section 7. Practical gene finding
must also consider available experimental mRNA, protein and genomic se-
quence data. Some of these homology methods as well as other integrative
approaches are described in Section 8. Finally, the chapter concludes with
some caveats about the practical limitations of automated gene prediction.

2 Basic DNA Terminology

Since one DNA strand is the complement of the other, in DNA analysis only
one strand is stored in the databases. Which strand is represented is generally
arbitrary and unimportant, but in this chapter the represented sequence is
called the forward strand and the implicit complement is the reverse. A
DNA sequence is always represented, by convention, in the direction of DNA
replication. The left end of the sequence is referred to as upstream or 5′ and
the right end is downstream or 3′.
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Figure 1 The central dogma of molecular
biology in eukaryotes. A primary transcript
region starting at the promoter is copied
into pre-mRNA. The transcript is then
spliced in eukaryotes to produce the mature

cytoplasmic message. The message is
translated into peptides. Note that codons
may span splice boundaries. Although not
shown in this diagram, splicing is possible in
the untranslated regions.

For the purposes of this discussion, a gene is defined as the subsequence of
genomic DNA that is transcribed by RNA polymerase – usually Pol II when
referring to eukaryotic transcription. The gene structure further includes
those features on the mRNA involved with splicing and translation, i.e. the
splice and translation start and stop sites. For convenience, all of these features
are usually annotated with respect to the original DNA sequence as shown
in Figure 1. Transcription occurs on single-stranded DNA, on either the
forward or reverse strand. By convention the gene structure is annotated on
the informational or sense strand (not the template or antisense strand).

Although transcription has been observed to occur at the same physical
genomic position on both strands, we usually assume for simplicity that there
are no overlapping transcripts. Automatic gene finders must evaluate both the
explicitly represented sequence and the implicit reverse complement – this is
usually performed simultaneously.

Predicting genes in eukaryotes is considerably more challenging than in
prokaryotes because of splicing. Most transcribed mRNA (pre-mRNA) in eu-
karyotes is spliced into smaller sequences called processed or mature mRNA
through the excision of introns by the spliceosome complex, leaving a set of
concatenated exons to be passed to the ribosome. The introns are located
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between the 5′ and 3′ splice sites, also called donor and acceptor sites. At
least 99% of 5′ splice sites begin with “GT” and 3′ splice sites end with “AG”,
called the consensus dinucleotides.

The spliceosome concatenates exons separated by often long introns. Each
exon can be as short as a few nucleotides. Thus, while gene finding in
prokaryotes involves indentifying a single contiguous coding sequence, gene
finding in eukaryotes requires a combinatorial search of many different possi-
ble exons.

3 Detecting Coding Sequences

Identification of the protein-coding domain sequence (CDS) between the start
and stop codons is of great interest because the translated peptide product can
be directly inferred from the CDS. The ribosome, after binding to the mRNA,
begins translation at an AUG triplet (ATG in DNA). The ribosome matches
these triplets, called codons, consecutively with tRNAs adding determinis-
tically one of the 20 amino acids to a polypeptide sequence for each codon
according to the genetic code (Table 1). The translation process is terminated
when one of three stop codons (UAA, UAG or UGA) is encountered. Thus, the
CDS on the DNA sequence is composed of a sequence of codons that code for

Table 1 The standard genetic code showing codon and amino acid single- and
three-letter abbreviations

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

Prokaryotes also use an additional GTG initiation codon. There are other rare genetic
codes as well. See http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.
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the corresponding protein, beginning with the start codon and ending with a
stop codon.

Note that the notions CDS and exon are not synonymous, although fre-
quently exchanged in gene-finding literature. Exons refer to those DNA
segments that are not excised by splicing, i.e. all of the sequence correspond-
ing to the mature mRNA. Exonic sequences can be either coding (CDS) or
untranslated regions (UTRs). A CDS typically begins and ends in the middle
of an exon. Introns are possible upstream and (rarely) downstream of a CDS.
Splicing need not occur on codon boundaries.

3.1 Reading Frames

There are six possible reading frames along double-stranded DNA – three on
each strand. A CDS beginning translation at position i is in reading frame
f = i modulo 3. Reading frames on the opposite strand are conventionally
labeled as − f . We say that a codon is in frame if its position modulo 3 is the
same as the CDS in question. In particular, an in-frame stop codon terminates
a CDS, but out-of-frame stop codons have no effect. A sequence of consecutive
codons between a start and stop codon is called an open reading frame (ORF).

Genes in prokaryotes are relatively easy to identify by searching for ORFs
of a minimum length, say 300 nucleotides. In random DNA, an in-frame stop
codon is expected about every 21 codons (63 nucleotides) and the chance of an
ORF longer than this becomes increasingly unlikely. Small ORFs can truly be
coding, especially in eukaryotes, due to splicing and asymmetric nucleotide
distributions can easily allow for long ORFs, requiring more sophisticated
pattern recognition methods, as described below.

3.2 Coding Potential

The distribution of codons is subject to evolutionary and biophysical con-
straints. The G + C content (fraction of G and C nucleotides) among genomes
varies, which affects codon frequencies for different organisms. Amino acid
frequencies are not uniform and arrangements of amino acids in polypeptides
are, of course, also not random. These effects, as well as other DNA and
mRNA structural and processing constraints, lead to biases in the frequency
and ordering of codons, called codon bias. Moreover, basal expression levels
have been observed to relate to the levels of available tRNAs, so codons in
higher expressed genes are more significantly biased towards the abundant
tRNAs [27]. Synonymous codon bias, closely related to codon bias, describes
the differing frequencies of codons coding for the same amino acid.
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Codon usage tables that list codon frequencies have been compiled for
many organisms (http://www.kazusa.or.jp/codon). To test for coding po-
tential is to assess whether the frequencies of codons in a candidate ORF are
statistically similar to the codon usage for the organism and these measures
are typically the heart of all gene-finding programs. For example, about 2.1%
of human codons are “ATC” and among its class of synonymous codons that
encode isoleucine (“ATC”, “ATT” and “ATA”), “ATC” is used about 47% of
the time.

A representative method of this class of coding potential measures is the
Gribskov codon preference statistic [26]. The relative frequency of a codon,
C, among its class of synonymous codons, fclass(C)(C), is computed using
a codon-usage table derived from highly expressed genes and compared to
the relative frequency of the codon, gclass(C)(C), in a background model
according to position-independent nucleotide composition:

S(C) = log
[

fclass(C)(C)/gclass(C)(C)
]

.

For example, suppose the codon, C, is “ATC”, and its codon usage is as above
and the frequencies of A, T, C and G in the query sequence are (0.21, 0.21, 0.29,
0.29). Then S(C = ATC) = log(0.47/0.41) = 0.14. The normalized sum of log-
likelihood ratios over a window w (of, say, 25 codons) provides an indication
of relative coding potential and expression. By convention, the normalized
sum is exponentiated to generate the final Gribskov statistic. Such methods
are often used in plots for preliminary visualization of a novel genomic se-
quence and are sometimes sufficient to support manual gene prediction in
prokaryotes (Figure 2).

Measures such as the Gribskov codon preference statistic lack consideration
for the positions of codons relative to each other. Observed dependencies
among adjacent codons led to the proposal of several measures based on
pairs of codons (dicodons). In an important benchmark paper, Fickett and
Tung [22], assessed most of the extant methods and their conclusion was
that dicodon (or hexamer, more generally) measurements were superior to
all other methods.

The three-periodic fifth-order Markov model is a particularly appealing
formulation of hexamer statistics that is widely used in modern gene finders.
Proposed by Borodovsky [7], such Markov models are used to represent the
probability distributions of the four possible nucleotides at each of the three
base positions in a codon. Suppose we are interested in a codon beginning
at position i composed of individual nucleotides bi, bi+1 and bi+2. Three sep-
arate Markov models are defined: P0(bi|bi−5 . . . bi−1), P1(bi+1|bi−4 . . . bi) and
P2(bi+2|bi−3 . . . bi+1). Each probability distribution is generated from simple
frequency counts of each possible nucleotide in the context of the previous five
nucleotides. Training sets of millions of codons are available from annotated
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GenBank sequences. Assuming conditional independence, the probability
of a codon is just the product of the probabilities of the individual bases
bi, bi+1, and bi+2. A separate null model is defined for noncoding bases,
Pnc(bi|bi−5 . . . bi−1). A log-likelihood ratio score for a codon starting at i is
then:

∑
f =0...2

[
log Pf (bi+ f |bi+ f−5 . . . bi+ f−1)− log Pnc(bi+ f |bi+ f−5 . . . bi+ f−1)

]
.

These scores can be accumulated over a window as with the Gribskov mea-
sure.

To obtain accurate estimates, a fifth-order Markov model requires suffi-
ciently large numbers of observations in each context. This is not always
available and, in some cases, even longer contexts may be plentiful. Salzberg
describes a variant that uses different context length depending on the avail-
able data [66].

The fact that statistics related to codon usage aid in the identification of
CDS and also in the estimation of expression levels indicates an inherent
classification weakness in the use of codon statistics, i.e. that genes with low
expression levels are more difficult to find because their statistics are weaker.
Low expressors are more difficult to detect experimentally as well, further
biasing the codon statistics gathered regarding known genes.

4 Gene Contents

In addition to the statistical regularities in CDS, other discriminating prop-
erties of coding exons and introns have been observed. These features of
variable-length DNA sequences are sometimes referred to as content.

For example, noncoding DNA is expected to have a relatively neutral distri-
bution of nucleotides with exceptions such as physical–chemical constraints
and the presence of repeats. Thus, models of noncoding DNA have been
devised similar to coding potential measures. A simple and common im-
plementation is the use of Markov models for intron and intergenic DNA
analagous to the three fifth-order Markov models for coding DNA. The log
probabilities of different models can then be compared. Figure 3 shows the
distribution of probabilities from fifth-order coding and intron models, and
the distribution of the difference in log probabilities.

Guigo and Fickett [29] showed that all content measures are highly corre-
lated with G + C bias. Thus, it is common to compute Markov distributions
by partitioning the training data into discrete isochores (extended regions of
G + C bias in the genome) based on windowed-G + C content [9].
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Figure 3 Score distributions for Markov chain
models of coding and intronic DNA. Three
Markov chains were trained on 53 183 460
coding bases and one Markov chain was
trained on 16 149 264 intronic bases from
the well-annotated protein-coding exons of
Caenorhabdtis elegans. For each of 48 124
exons, a 99-nucleotide in-frame coding region
was scored using the coding model, two out-
of-phase coding models and the intron model.
(a) The distribution of log-likelihoods for fifth-
order Markov chains. (b) The distribution
of differences in log-likelihoods per base
of the fifth-order coding model versus the

intron and out-of-phase fifth-order models for
each coding exon. (Pairwise comparisons
with likelihoods from out-of-phase models
were only made if there were no in-frame
stop codons in the alternative frame.) The
implication here is that although the overall
distributions for the coding and noncoding
models are very similar, a comparison of
scores for individual exons shows good
separation (i.e. most model score differences
are greater than zero). This simply shows
that the fifth-order Markov models are
reasonably good at classifying coding
regions.
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The lengths of exons and introns differ – often significantly [32]. Exons
follow an approximately log-normal distribution with a mean length of about
140 bases in most eukaryotes, but the typical length of introns varies signifi-
cantly by organism. Many of the model organisms such as fly and worm have
intron lengths within a relatively tight range of about 70 bases – the minimal
required intron length for efficient splicing. Mammalian introns are typically
much longer than exons due to prolific insertions of repetitive elements; they
are rarely less than 100 bases and have a long exponential distribution to 106

bases.

5 Gene Signals

Gene structure is defined by the start and stop positions in DNA of exons and
CDS. Through laboratory experimentation, molecular biologists have shown
that for each of these sites there are necessary, conserved motifs that govern
the transcription and translational machinery. With respect to gene finding,
Staden [75] distinguished these control sites as signals as compared to variable
length content. Signal features loosely correspond to binding sites or special
functional patterns recognized by the polymerase, spliceosome or ribosome.

If it were possible to automatically detect all signals independently, then
the gene-finding solution would be complete. For the most part, however, no
one signal can reliably be detected on its own. Later in this chapter we will
learn how to combine these measures along with coding potential to achieve
superior gene finding performance. First, we explore a few of the methods for
independent signal detection.

5.1 Splice Sites

Degenerate matches to a motif can be detected using a position-specific weight
matrix [74]. Weight matrices are commonly used in many biosequence ap-
proximate matching problems. A weight matrix is a (2-D) array W(1 ≤ i ≤
m, 1 ≤ j ≤ 4) such that W(i, j) is the probability of nucleotide j at position i in
a motif of length m. Frequencies can be used to generate these probabilities,
priors can be introduced when data is sparse or more sophisticated contexts
can be represented such as dinucleotide frequencies (e.g. an order-1 Markov
weight matrix at each position resulting in a m × 16 matrix). For example,
almost all introns begin with the consensus dinucleotide “GT” and end with
“AG”, but the regions around the beginning and end of the intron (the splice
sites) have less specific nucleotide patterns. Figure 4 shows examples of
weight matrices for splice sites in C. elegans.
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Figure 4 C. elegans splice site weight matrices. Windows of 20
bases downstream of the 5′ exon junction (“GT”, the beginning of the
intron, is positions 0 and 1) and 20 bases upstream of the 3′ exon
junction (“AG”, the end of the intron, is positions −1 and −2) were
selected from curated gene sequences [16].
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Given any test sequence represented as a 2-D matrix S(1 ≤ i ≤ m, 1 ≤ j ≤
4), where Si,j = 1 for the nucleotide j found at position i and 0 elsewhere, then

the likelihood of the feature can be defined simple as ∏i=1...m ∏j=1...4 W
Si,j
i,j .

Stormo presented thermodynamic, likelihood, and information theoretic jus-
tifications for the use of weight matrices [76].

Moving beyond the simple weight matrix is the maximal dependence de-
composition decision tree (MDD) method that captures local, but nonadjacent
dependencies [9]. The MDD method evaluates a set of rules to determine
which weight matrix to use to score the sequence. The rules are based on
the dependencies between positions in the motif. For example, in eukaryotic
5′ splice sites, it can be shown that the distribution of nucleotides in the
conserved columns −3 · · ·+ 6 around the consensus GT are most correlated
to the nucleotide G in position +5. Thus, the training set is partitioned
according to the “+5” value into two sets such that the score function for each
set is conditionally independent of that nonadjacent position. This leaves only
adjacent dependencies or independent positions, which can be easily modeled
using conventional weight matrices as above. (Other approaches have been
proposed to detect dependencies among nonadjacent bases with similar per-
formance characteristics, e.g. a Bayesian Network structure inference method
was proposed by Cai and coworkers [13].)

The primary limitation of weight matrices is the inability to model inser-
tions and deletions. To handle more complex motifs, profile hidden Markov
models (HMMs) (see also Chapter 3) and related probabilistic state machine
models can be employed in a similar manner as for protein sequences [20,42].

The 3′ splice site is slightly more complicated because the upstream pyrimi-
dine-rich branch site contributes to its recognition. However, the branch site
is variable and so not amenible to fixed-width matrix methods. As a result,
many recognition methods have been proposed for splice site recognition that
allow for the incorporation of multiple distinct sequence features as inputs
(branch site, splice site, intron content, exon content). One of the more
effective techniques for combining different sequence features is discriminant
analysis in which weights for different features are fitted to maximize the
discrimination between true and decoy sites [72, 82].

Probably the current leading method for splice site prediction is GeneSplicer
– an extension of the MDD metric [59]. Other techniques include neural
networks, boolean logic rules, decision trees, support vector machines (SVMs)
and many others (e.g. Refs. [8, 9, 61, 73]).

In addition to the conventional splice site recognition, about 1% of splice
sites have non-canonical dinucleotides. This is largely ignored in gene finding,
but is addressed by Burset and coworkers [11].

In general, recent methods achieve reasonable performance in splice site
detection, but are unavoidably burdened by large numbers of decoy sites,
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resulting in false-positive rates around 5% when recognizing about 90% true
splice sites.

5.2 Translation Initiation

Identifying the beginning of translation is perhaps surprisingly challenging.
Part of the difficulty is that the database is rife with experimentally uncon-
firmed start sites. In addition, the signal for start sites tends to be rather
weak. In prokaryotes, the Shine–Delgarno motif serves as a binding site for
the ribosome preceding the first codon. The consensus motif is AGGAGG,
but it can take on short and degenerate forms. Kozak observed that in
higher eukaryotes translation usually begins at the first start codon after
the transcription start site [41]. However, for the purposes of ab initio gene
finding, this is usually of little help since the beginning of the transcript is also
unknown and cannot be reliably predicted in large DNA sequences without
a high false-positive rate [21] (and even the annotated transcription start sites
are often wrong due to truncated mRNAs). In vertebrates, a consensus of
gccaccATGg (start codon in caps) is observed and weight matrices have been
developed from reliable start sites using first and second order models similar
to approaches for splice sites [2, 40], but these methods are subject to high
false-positive rates.

Like with splice site detection, many of the conventional machine learning
techniques have been successfully applied including neural networks, linear
and quadratic discriminant analysis and SVMs [58, 64, 67, 85]. The most
successful independent predictor of translation initiation is an SVM classifier
that remarkably identifies almost 100% of start sites with well less than 1%
false positives on a standard test set [48].

5.3 Translation and Transcription Termination

Recognizing one of the stop codons (TAA, TAG or TGA) is trivial assuming
that the reading frame is known. Conversely, more probable stops are those
with high coding potential upstream of the site and low coding potential
downstream. The transcript following the stop codon is typically one long
exon. Splicing after the stop codon is rare.

Finally, transcription is terminated by a polyadenylation signal with a con-
sensus of AATAAA although there are many variants. The motif is small, is not
located predictably near other contextual features, is frequently unannotated
in the databases and may not even be present. Moreover, it is estimated
that in human about half of all transcripts have multiple 3′ termination sites
and these are often imprecisely cleaved [80]. Graber [25] describes a pseudo-
probabilistic model for detecting termination in yeast. Again, standard weight
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matrix and discriminant analysis methods have shown moderate success for
detecting the termination site [47, 77]. In practice, transcription termination is
largely ignored in ab initio prediction. Instead, it is often considered sufficient
to detect just the gene structure from the start to stop codons.

6 Integrating Gene Features

So far, we have learned that there are different gene features (signals and con-
tents) each with statistically significant discriminative power. There are nu-
merous scoring methods for different features assessed independently, yet we
intuit that combining these features is likely to yield better results. However,
there is an exponential combination of possible labelings of exons, introns
and intergenic regions (i.e. any segment can begin or end at any position).
Thus, the gene finder is faced with two major problems: how to effectively
combine features and how to efficiently explore the possible gene structures.
The solution for both of these problems is using dynamic programming. In
some implementations, logical adjacent features are combined into a single
score and then a dynamic program is applied.

6.1 Combining Local Features

In the same way that multiple features were used as input to the long list of
machine learning classifiers in splice site recognition (Section 5), so too can
multiple features be combined to recognize larger functional units. Zhang is
a major proponent of this strategy of recognizing exons based on combined
information from the flanking signals and content, noting that the in vivo
recognition of exons in transcription is believed to largely be driven by the
interactions of DNA-binding complexes that straddle the exons, according to
the exon definition model [5, 30]. Zhang has produced a suite of methods for
recognizing the 5′ and 3′ UTR exons, initial coding exon, internal coding exons
and last coding exon using quadratic discriminant analysis, each recognition
module combining multiple, different features, with excellent performance
[77, 83].

The choice of the fundamental functional units of gene recognition differ
among gene finding programs. For example, the nucleotide is the basic unit in
HMMGene, Genie treats splice sites and coding exons separately, and MZEF
combines these local features into a single functional unit. However, in all
cases, the same dynamic programming technique can be used to combine
these functional units into complete gene structure predictions.
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6.2 Dynamic Programming

Snyder and Stormo [71] showed how the optimal combination of features
could be obtained using dynamic programming. Let us define the states of
our gene finder as the different types of functional units in our gene model,
Q = q1 . . . qm. We say that the sequence, X = x1 . . . xn is labeled by a
corresponding sequence of states, Φ = φ1 . . . φn, called the “parse”, where
φi ∈ Q. Quite simply, a parse formally describes the gene structure, e.g.
intergenic DNA from position 0 to 100, 5′ UTR from 101 to 150, initial CDS
exon from 151 to 200, etc.

The key idea behind dynamic programming is the assumption that the
score of a parse can be decomposed into independent segments or, at least,
segments that are only locally dependent. This independence assumption is
clearly violated in some cases. For example, tertiary protein structure obvi-
ously implies specific long-range interactions among codons. Nevertheless,
this is a reasonable approximation for gene finding that offers significant
computational advantage.

If every possible segment can be scored independently, then the parse with
the best score can be computed recursively. Given an input DNA sequence X
and possible states Q, then define a score matrix S(j, k) that holds the score
of the best parse of the subsequence x1 . . . xj ending with a segment at xj in
state qk. Define s(i, j, k) as the independent score of a segment from xi . . . xj
of state k. [These s(i, j, k) terms are based on feature scores from one of the
many methods discussed and alluded to in the previous sections, such as
coding potential, splice site scores, etc.] If we assume for simplicity in this
formulation that any segment of any length can follow any other segment
(we will improve on this momentarily), then S(j, k) is defined as the best
score from all positions i < j in any possible state in Q plus the score of a
segment in state k from i . . . j. For example, the best score for labeling a DNA
sequence such that that an initial exon ends at position 200 is computed by
considering the score for an initial exon starting from every position less than
200 following any of the other possible states (5′ UTR, intron, intergenic, etc.):

S(j, k) = max
i<j,l∈Q

(S(i, l) + s(i, j, k)) . (1)

The general form of this dynamic program is usually called the Viterbi algo-
rithm and the process of predicting a parse is often called decoding [23]. While
S(,̇)̇ holds only the best score, it is straightforward to also simultaneously
compute a trace-back describing the parse that achieved the best score.

The formulation here is different from the conventional presentation of dy-
namic programming for biosequence analysis (Chapter 3) because segments
can take on arbitrary length. As a result, running time is quadratic in the
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length of the sequence and number of states – prohibitively expensive except
for very small sequences, but at least not exponential.

6.3 Gene Grammars

In order to ensure that the evaluation of all reasonable gene structures for
long DNA sequences can be achieved in acceptable running time we add
grammatical constraints that ensure only legal and sensible parses are consid-
ered. Dong and Searls [18, 68] were the first major proponents for describing
gene structure in linguistic terms. (For a thorough treatment in a modern
gene finding system, see also Ref. [46].) The key idea behind grammatical
constraints is that different segment states can only appear within specific
contexts. For example, an intron can only following an exon. The grammatical
constraints for genes can be expressed in a so-called regular grammar and can
be visualized as a finite state machine. Figure 5 shows such a state diagram
for a simplified gene model.

We call neighboring pairs of states transitions (e.g. intron following exon).
In addition to strict contextual constraints on state transitions, we observe that
some state transitions are allowed, but are less likely than others. For example,
it is less likely that an intron will be followed by a terminal exon than an
internal exon. We define t(l, k) as the score for a transition from state l to state
k. These are usually assigned based on frequencies of observed transitions
in training data. In addition, we define a function T(k) that returns a set of
allowable previous states for k.

One specific type of transition constraint in T(·) is especially important,
i.e. the frame constraint. In order to ensure that the total number of bases in
the CDS is a multiple of 3, states must be created to ensure that introns split
codons in a frame consistent manner. For example, if one base precedes an
intron then two bases must follow it before the next full codon (see Figure 5.)

In Section 4 we observed that exons and introns had predictable length
distributions as well as maximum and minimum lengths that are rarely or
never exceeded, e.g. coding exons are rarely larger than a few thousand bases
and introns are almost never smaller than about 50 bases. Therefore, we
restrict the allowable length segments considered in our dynamic program
by introducing min(k) and max(k) values for each state k.

From this, we have an improved method for scoring possible parses that
extends Eq. (1) as:

S(j, k) = max
i < j, l ∈ T(k)
j− i > min(k)
j− i < max(k) .

S(i, l) + s(i, j, k) + t(l, k) (2)
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Figure 5 A finite state automaton (FSA) that
recognizes gene structures. This simplified
FSA recognizes legal protein-coding gene
structures such that the total CDS length
is a multiple of 3. Nucleotides are matched
along the arcs and states are associated with
nodes. N represents any base. “¬” indicates
negation and “+” indicates one or more
repeated times. The score functions s(i, j, k)
provide scores for sequences along the arcs.

l ∈ T(k) if there is a directed edge from k to
l. t(l, k) map to the possible outward arcs for
node k. In this model, a single variable length
codon state is used. In more sophisticated
models there might be elaborate splice site
states, states for initial, internal and final
coding exons, promoter and polyadenylation
sites, and reverse strand genes. The double
circle is the start and end state.

The addition of length and state transition restrictions significantly im-
proves running time, while ensuring that only meaningful parses are consid-
ered. In addition, software engineers for different systems have employed
other tricks to improve the speed of gene prediction to approximately linear
in the length of the input DNA sequence [9, 46, 55].

When the segment scores and transition scores are defined as log proba-
bilities, which is easily derived from feature scoring methods such as weight
matrices and Markov models, then we say that such a model of gene structure
is a stochastic regular grammar or equivalently a HMM. (Note that sometimes
the inclusion of variable length segments in the model is called a generalized
HMM (GHMM) [44] or a state-duration HMM [60].) The dynamic program is
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then a maximum likelihood optimization:

arg max
Φ

(− log P(X, Φ)) .

Such models are called generative models because the score functions are
decomposed into conditional probability terms of the form− log P(xi . . . xj|qk),
corresponding to the s(i, j, k) score function, and − log P(ql |qk), the t(l, k)
transition score. It is sometimes convenient to describe HMMs as generating
the sequence X via a random walk through the finite state machine. The
decoding step is, then, the prediction of the most likely random path, Φ, that
generated the observed data (see also Chapter 3).

Almost all of the successful, modern gene finders are based on this HMM
framework including the most widely used ab initio gene finders GENSCAN
[9] and FGENES [65]. Furthermore, we will shortly see that improvements
to gene finders with respect to the inclusion of homologous protein, aligned
cDNA and orthologous DNA are all extensions of this basic HMM framework.

An additional advantage of the probabilistic framework is that the score
functions can be learned systematically using standard learning procedures,
i.e. a maximum likelihood optimization using the forward–backward algo-
rithm [60]. In practice, the parameters for the different score functions are
trained independently in most gene-finding programs, but HMMGene [43]
is a notable exception that achieves good performance. In addition, using
the same algorithm for a test sequence it is possible to obtain the score of
any single feature (such as an internal coding exon) in the context of all
possible parses that might contain it. Studies have shown that these scores
are meaningful metrics for ranking the confidence of different segments of a
prediction [9, 46, 63].

7 Performance Comparisons

Performance of different gene finders has been assessed by several researchers
including studies by Reese and coworkers [62] on Drosophila and Rogic and
coworkers [63] on mammalian sequences. First, in Reese and coworkers, a
2.9-Mb contiguous DNA sequence was subjected to automated analysis by
a battery of gene-finding programs and compared with the gene structures
from a careful manual curation. Assessing false-positive rate (over-prediction)
in this test was problematic because full-length gene structures were known
with certainty for only a fraction of genes, full-length cDNAs were rejected
if they did not meet certain automatic criteria such as having a good splice
site score and for those uncertain genes there was a serious bias because
automated gene finder predictions had been used by the manual curators to
guide their annotations. Five ab initio gene finders were tested and standard
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evaluation statistics were collected (using the same metrics as in Ref. [12]).
Table 2 presents the performance predicting individual exons and the entire
CDS from start to stop codon. The only strong conclusion that can be made
is that HMM-based gene finders (FGENES, Genie and HMMGene) perform
comparably and superior to the other methods. We also know from these
tests and others that gene finders naturally perform better when trained with
examples from the organism being tested or related species [78].

Table 2 Ab initio performance for the Adh locus in Drosophila

FGENES (v1/v2/v3) GeneID (v1/v2) Genie HMMGene Grail
Exon

Sn 0.65 0.44 0.75 0.27 0.58 0.70 0.68 0.42
Sp 0.49 0.68 0.24 0.29 0.34 0.57 0.53 0.41
Missing 0.11 0.46 0.06 0.54 0.21 0.08 0.05 0.24
Wrong 0.32 0.17 0.53 0.48 0.47 0.17 0.20 0.29

CDS
Sn 0.30 0.09 0.37 0.02 0.26 0.40 0.35 0.14
Sp 0.27 0.18 0.10 0.05 0.10 0.29 0.30 0.12
Missing 0.09 0.35 0.09 0.44 0.14 0.05 0.07 0.16
Wrong 0.24 0.25 0.52 0.22 0.30 0.11 0.15 0.24

Sn refers to the fraction of known genes that were predicted exactly correct. Sp is the fraction
of predicted genes that were exactly correct. Missing is the fraction of known genes with no
overlapping prediction. Wrong is the fraction of predictions that do not overlap annotated genes.
High Sn and Sp and low Missing and Wrong values are better. Sn and Missing were determined
from a different test set than Sp and Wrong. FGENES and GeneID were run under multiple
parameter settings to produce different sensitivity/specificity trade-offs. See Ref. [62] for details.
Importantly, different versions of these programs have typically been developed since these tests,
so conclusions should be qualitative regarding methodology only.

Recognizing that biases could exist in gene prediction programs if testing
data included gene structures used in training, Rogic and coworkers assessed
the performance of seven ab initio gene finders on 195 mammalian gene struc-
tures that were submitted to GenBank after the programs were released. In
the overall results shown in Table 3, the ranges of performance measures is
comparable to that for invertebrates and the gene finder HMMGene shows a

Table 3 Ab initio performance for mammalian genes [63]

FGENES GeneMark Genie GENSCAN HMMGene Morgan MZEF
Exon

Sn 0.67 0.53 0.71 0.70 0.76 0.46 0.58
Sp 0.67 0.54 0.70 0.70 0.77 0.41 0.59
Missing 0.12 0.13 0.19 0.08 0.12 0.20 0.32
Wrong 0.09 0.11 0.11 0.09 0.07 0.28 0.23

Measures are interpreted as in Table 2.
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significant advantage over other methods. However, to complicate matters,
Rogic and coworkers also found that gene finder performance was frequently
highly dependent on gene or genome characteristics such as type of CDS exon
(initial, internal or terminal) and G + C content.

A third study, by Guigo and coworkers, has shown that gene finders per-
form notably worse on long DNA sequences than for the short test sequences
that contain only one gene found in assessment studies [28], so mammalian
performance shown here is probably an upper bound and should be evaluated
only relatively.

8 Using Homology

A second class of gene finders is those that take advantage of homologous
sequences from databases of cDNA, DNA and protein sequences. Align-
ments of cDNA indicate the exon–intron structure. Conserved sequences
between orthologous chromosomes indicates functional DNA, i.e. regulatory
and protein-coding sequences, and protein–DNA similarity identifies putative
CDS.

8.1 cDNA Clustering and Alignments

The gold standard for gene structures are derived from the alignment of
cDNAs (complementary DNA from mRNA) to DNA. A full-length cDNA
requires only the identification of the CDS, which is typically assumed to be
the largest ORF. However, full-length cDNAs are rare. Instead, tens of millions
of cDNA fragments called expressed sequence tags (ESTs) with lengths of
several hundred bases have been deposited in GenBank. These sequences
are typically random sequencing reads from the 3′ or 5′ ends of libraries of
cloned full-length or partial mRNAs. The primary difficulties with ESTs are
the relatively short size, the frequent sequencing errors and the sheer number
of such sequences.

Occasionally ESTs are analyzed individually in the hope of identifying
fragments of coding regions. For this purpose, specialized HMMs similar to
profile HMMs (see Chapter 3) have been developed to identify the reading
frame with the highest coding potential while allowing for frame shifts that
interrupt the CDS [35]. The methods employ similar, but simpler, Markov
model scoring metrics and state machines than those used for gene finders in
DNA (Figure 6).

Most EST analysis is based on assembling multiple EST sequences to form
longer cDNA sequences. If no genome sequence is available, then rapid
clustering methods are often employed to generate groups of homologous
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Figure 6 A finite state automaton for labeling the CDS (codons of “b0
b1 b2”) in EST sequences allowing for frameshifts. A function such as
the fifth-order Markov model is used for the scoring of the b0, b1 and
b2 arcs.

ESTs [10]. These groups are then input to a conventional fragment assembler
(see Chapter 2). This approach typically generates undesirable chimeric or
partial assemblies and alternative isoforms can cause havoc.

In the conventional assembly approach, each EST contributes to just one
assembled cDNA, but if multiple isoforms exist, then an EST should naturally
be a part of multiple cDNA assemblies. A splice graph captures all of the
possible isoforms implied by a set of ESTs [33]. In the splice graph, a virtual
genome sequence is deduced, nodes are positions in the genome, and arcs
connect positions that are adjacent in aligned ESTs. Figure 7 shows an example
visualization of a splice graph. The splice graph makes clear that the number
of possible isoforms can, in the worst case, be exponential to the number of
exons.

With a completed genome sequence, cDNAs can be aligned to the DNA,
which serves as a template, and the gene structure can be delineated by the
connected set of overlapping, aligned ESTs. This is superior to the previous
cluster-based transcript assembly because (i) errors in ESTs can be corrected
by comparison with DNA, (ii) chimeras are less likely and (iii) the genome is
directly annotated providing exon–intron structure.

Figure 7 Splice graph. Nodes are positions
along the horizontal axis, representing a DNA
sequence. (When no genome sequence
is available, the DNA sequence is virtual
and ambiguous, i.e. implied exclusively
by the differences between homologous
ESTs.) Nodes are connected based on EST
evidence. Those nodes adjacent on the DNA
are merged into exons (numbered boxes).

Arcs between boxes are introns. Assembled
ESTs are shown below the splice graph.
Dotted lines show where an EST spans
across a DNA gap. Note that the genomic
DNA is not necessary to build a splice graph.
However, errors in the EST sequences can
easily introduce false variants. To address
this, multiple ESTs are usually required to
confirm alternative splicings.
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Highly accurate programs for cDNA–DNA alignment that include special
handling for small exons, accurate splice site definition and EST errors are
now available, most notably GMAP [79] or BLAT [38]. Imposing strict align-
ment criteria is usually advisable such as requiring that at least 90% of the EST
be aligned with 95% identity in the aligned region. Even stricter alignment
criteria are common, such as requiring that all intron gaps in an alignment
conform to consensus dinucleotide splice sites and span a minimal number of
genomic bases.

EST sequences are obtained from the 3′ and 5′ ends of cDNA clone inserts
(and sometimes random internal positions). Due to the construction of the
vector sequence containing the cDNA insert, sequencing of the two ends
occurs on opposite strands of the insert. By convention these sequences
are deposited in GenBank without reverse complementing and so usually
a 5′ EST sequence is of the sense strand and a 3′ EST is of the anti-sense
strand. Therefore, the orientation of a gene on the DNA can be inferred by
comparing the EST read direction and the orientation of the sequence in the
EST–DNA alignment. However, the labeling of the read direction and the
strand that is submitted to the database is only a convention and there are
frequent errors in the EST database, mostly among older database entries due
to lane shifts from gel-based sequencing machines [1]. Other characteristics
can be used to infer orientation of the EST including comparisons to other
aligned sequences, presence of a poly-A tail (or poly-T prefix), presence of
a polyadenylation signal and, most effectively, the consensus dinucleotides
in the splice sites, if the EST splices. Shendure and Church [69] describe
one laboratory’s orientation procedure although no single software program
currently exists to perform this orientation. (A lingering problem remains that
EST–DNA alignments may indicate anti-sense transcription – a phenomenon
that has been increasingly documented [81]; however, conventional gene
modeling and genome annotation prohibit overlapping transcripts.)

Once individual ESTs are oriented and aligned, longer transcripts can be
derived by merging gene structures implied by overlapping ESTs. As with
EST analysis without a genome sequence, conflicting alignments can imply
a large number of putative alternative splice forms. The PASA program is
one of several programs that can be used to generate a a set of such putative
transcripts from EST–DNA alignments [31,37]. In PASA, a dynamic program,
is employed to assemble a minimal set of unique transcripts from compatible
EST alignments, i.e. those ESTs that agree in all of their inferred splicings.

Not all genes will be present in EST libraries because differentially ex-
pressed genes may be absent or expressed at low levels in the sampled tis-
sues. Furthermore, due to limitations in full-length cDNA cloning and the
long lengths of some transcripts, many genes are not fully covered by EST
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sequences. Thus, assembly of ESTs tends to result in fragmented, partial
transcripts.

One method that has been used to specifically deal with the incomplete EST
information is Genie [46]. The method assumes that assembled transcripts
from EST–DNA alignments define true, but incomplete, gene structures and
so the ab initio gene-finding algorithm described in Section 6.3 is employed
only in the breaks between alignments. This can be achieved in a straight-
forward manner by modifying the t(,̇)̇ transcription score function to prohibit
transitioning into some states at specific positions within the sequence de-
pending on the EST–DNA alignment evidence (e.g. transitioning into an exon
state in the middle of an EST-defined intron is prohibited in the dynamic
program).

Lastly, it is possible to leverage the EST data to infer gene bounds even
when only incomplete EST alignments exist using EST mate pairs. For some
cDNA inserts both the 5′ and 3′ ends have been sequenced. When both ESTs
are aligned to the same chromosome, within a reasonable genomic distance,
and compatibly ordered and oriented, then one can infer that the entire region
between the mate pairs corresponds to a single primary transcript. In a similar
way as above, an ab initio gene finder can be constrained to predict exactly one
primary transcript in the defined region.

8.2 Orthologous DNA

When two organisms are sufficiently similar to identify and align orthologous
genomic sequence, but sufficiently distant so that nonfunctional DNA has
mutated, then the comparative analysis of the two genomes can be directly
applied to gene finding (see also Chapter 37). Organisms such as chicken and
mouse are of a reasonable evolutionary distance from human to support this
sort of comparison. The key assumptions are that the number and approx-
imate content of CDS regions between the two species are well conserved,
while introns, UTRs and intergenic DNA have drifted significantly from the
common ancestor. Thus, if the conserved regions can be identified, then they
are most likely coding regions and so the gene-finding problem is to combine
these conserved CDS segments into a more complete gene structure.

There are two main approaches to the problem: ad hoc weighting schemes
and principled pair HMMs. Twinscan [39] and SGP2 [56] are examples of
the former method. For example, in Twinscan, the dynamic program corre-
sponding to the gene grammar described in Section 6.3 is augmented with
scores from BLAST sequence similarity matches between the two genomes.
In other words, for any candidate region xi . . . xj in a CDS state, qk, the score
function s(i, j, k) is improved according to the quality of the genome–genome
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Figure 8 Pair HMM. Two DNA sequences are generated
simultaneously from left to right. At each step, a subsequence
(possibly of length zero) is emitted for each genome. The score
for the pairs of subsequences is based on the local statistics like a
conventional ab initio gene finder as well as the similarity of the two
subsequences. (From Meyer and Durbin [51].)

alignment in that region. Thus, the method performs gene finding on one
genome sequence using the second genome as evidence.

The second, more elegant, approach is to simultaneously align and label
both genome sequences according to a probabilistic model. DoubleScan [51]
and SLAM [3] embody this class of gene finders. The approach, called a pair
HMM, is a generalization of the ab initio method and is best understood by
considering an HMM-based gene finder as a generative model that produces
labeled sequences of DNA, as previously described in Section 6.3. In a con-
ventional HMM, one or more nucleotides are emitted for each state; in a pair
HMM two sequences of nucleotides are emitted for each state. To address
asymmetries such as inserts in one genome additional states must be added
to allow for null string emissions in one genome. Figure 8 shows a diagram of
the generative process.

Our score function s(i, j, k) is extended to consider the scores of pairs of
segments, i.e. s(i, j, m, n, k) is the score for simultaneously emitting DNA se-
quences xi . . . xj and ym . . . yn in state qk. The dynamic program for a pair
HMM is not much different from the conventional single sequence HMM
although the pair HMM must consider, theoretically, all possible segments
xi . . . xj and ym . . . yn in every possible state, which adds a very significant
computational burden. In practice this computational burden may not be
worth the investment since the ad hoc score enhancement methods are fast
and have been shown to perform well.
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Conserved noncoding sequences (CNS), which are usually regulatory se-
quences, are often a problem for comparative modeling methods because
they are interpreted as coding. In some implementations special CNS states
are introduced and, in theory, if the CNS sequences lack sufficient coding
potential, then they will be labeled CNS instead of CDS. In practice, mis-
predicting CNS remains a challenge, particularly for highly conserved genes.

The comparative method has also been extended to model the proper phylo-
genetic distance among three or more genomes in a phylo-HMM [70] and also
to successfully annotate very closely related species such as among primates
[50].

8.3 Protein Homology

The simplest application of protein homology is the identification of putative
CDS subsequences from sequence alignment. For example, BLASTX [24] per-
forms six-frame translation of a DNA query sequence and rapidly identifies
those regions that are similar to known proteins. The user must assemble the
fragmentary evidence.

The most elegant and specific use of protein homology is employed by the
GeneWise [6] program, which merges the profile HMM used in protein remote
homology searching (see Chapter 11) and the gene finding HMM model
described in Section 6.3 into a unified DNA–protein alignment. The method
is a pair HMM, similar to those used in comparative genomic analysis, but
in this case the model is more complex because the two generated sequences
use different alphabets, and additional constraints must be included to ensure
proper pairing of amino acids and codons according to the genetic code. The
model also includes a basic set of splice site recognition states to allow for
the alignment of the protein sequence across introns (similar to cDNA–DNA
alignment) as well as nucleotide insertion and deletion states to allow for
errors and frame shifts.

GeneWise produces only partial gene structures corresponding to the region
of protein alignment on the DNA. However, importantly, such alignments
provide highly accurate predictions when a sufficiently close homolog is avail-
able. Moreover, the prediction of splice sites is particularly good due to the
constraint of the alignment of the protein across introns.

HMM gene-finding programs such as FGENES++ [65] and Genie [45] em-
ploy a more ad hoc approach in which scores for coding features are artificially
inflated when database similarities are found, in a similar manner as the
comparative genome program Twinscan [39]. As a protein–DNA alignment
improves, the score for labeling the DNA region as coding improves. In this
way, a complete gene structure is predicted with protein homology evidence
contributing, but it is not used exclusively nor is it required. Such an approach
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requires careful tuning of the contribution of protein homology to avoid over-
prediction or over extension of coding exons.

8.4 Integrative Methods

There has been much work on integrative methods of combining multiple
gene finders and homology evidence, both principled and ad hoc, for whole
genome analysis, but we do not review them in detail here. Several programs
have attempted to integrate the predictions of multiple gene finders within
a probabilistic model (e.g. Refs. [4, 53, 57]). Other programs provide an ab-
stract framework of an HMM gene finder that allows a software developer
to incorporate arbitrary feature scoring methods [34]. Most genome centers
and informatics sites maintain “pipelines” for automated annotation. Many
of these are not portable or are tightly bound to other institutional soft-
ware infrastructure. Two noteworthy examples are the annotation pipelines
of the NCBI (http://www.ncbi.nlm.nih.gov/genome/guide/build.html) and
Ensembl [17]. Both include sophisticated and comprehensive methods for
reliable whole genome gene prediction.

9 Pitfalls: Pseudogenes, Splice Variants
and the Cruel Biological Reality

As this chapter concludes its tour of gene-finding methods, it is worth a brief
mention of some of the unfortunate difficulties that make gene prediction a
hard problem that is unlikely to be satisfactorily solved in the near term. The
challenges almost all lie in the complexity of genome organization that is not
(and often cannot be) modeled by the various gene-finding techniques [52].
Here are several issues:

• Exons can be extremely small – only a few nucleotides, which is insufficient
to detect coding potential. Worse, re-splicing has been observed in which
an exon is entirely removed.

• Noncanonical splice sites are expected to occur, on average, about once
every 10 genes in the genome; however, with few exceptions, methods
assume GT/AG splice sites.

• Pseudogenes are numerous in many organisms including the human. There
are specialized programs to detect retrotranscribed and nonfunctional genes
(e.g. Ref. [15]), but young pseudogenes are often quite difficult to distin-
guish by sequence statistics.
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• Alternative splicing is prolific in higher eukaryotes. It is estimated that 60%
of human genes have multiple isoforms. We saw in Section 8.1 that cDNA
methods can be used to enumerate possible splice variants. HMM-based
methods like those we learned here can be used to generate suboptimal
parses that sometimes represent alternative isoforms [14]. Recent predictive
methods have been developed for detecting alternative splice sites [19].
Nevertheless, alternative splicing remains a serious impediment to auto-
mated genome annotation.

• Untranslated exons make up a large fraction of the typical gene, yet there is
very little, if any, signal differentiating UTRs from intergenic DNA.

• The size of most genomes implies that gene-like patterns are likely to occur
frequently in intergenic DNA. In order to control false-positive rates, gene-
finding programs must also sacrifice true positives. Studies of gene finders
in large DNA sequences reveal frequent overprediction [28].

• Anti-sense transcription [81], high rates of transcription outside of known
protein-coding genes [36] and large classes of small noncoding RNAs have
been observed [54]. Besides causing difficulties in the use of cDNA–DNA
alignment evidence for gene finding, these findings emphasize that im-
portant, functional, nonprotein-coding genes are being transcribed at high
rates and that new classes of genes may yet be discovered. Alternatively,
the high rates of transcription observed by Kampa and coworkers [36] also
suggests that the genome is less of a programmed machine and more of a
stochastic process in which nonfunctional transcription may be occurring at
high levels. Such “noise” in the system is insurmountable using sequence
analysis alone.

As a result of these and other complications, manual genome annotation is
expected to remain the definitive source for gene structures for a long time.
An excellent source of manual curations is the VEGA system [49].

10 Further Reading

Chapter 3 of this book introduces HMMs. Further background on HMMs
and probabilistic modeling of gene sequences – the techniques that dominate
gene finding – is best found in the book Biological Sequence Analysis [20] and
Rabiner’s oft-cited tutorial [60]. An excellent gene-finding bibliography is
maintained by Wentian Li (http://www.nslij-genetics.org/gene/). The pri-
mary literature for generalized HMMs (e.g. GENSCAN [9] and Genie [44,46])
and comparative gene finders (e.g. DoubleScan [51], SLAM [3], and Shadower
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[50]) is particularly good for new readers. There are many reviews of gene-
finding techniques and Zhang’s [84] is a relatively recent good one. The
website www.genefinding.org is also a useful resource for developers.
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6
Analyzing Regulatory Regions in Genomes
Thomas Werner

1 General Features of Regulatory Regions in Eukaryotic Genomes

Regulatory regions share several common features despite their obvious di-
vergence in sequence. Most of these common features are not evident directly
from the nucleotide sequence, but result from the restraints imposed by func-
tional requirements. Therefore, understanding of the major components and
events during the formation of regulatory DNA–protein complexes is crucial
for the design and evaluation of algorithms for the analysis of regulatory
regions. Transcription initiation from polymerase II (Pol II) is the best un-
derstood example so far and will be a major focus of this chapter. However,
the mechanisms and principles revealed from promoters are mostly valid for
other regulatory regions as well.

Algorithms for the analysis and recognition of regulatory regions draw
from the underlying biological principles, to some extent, in order to generate
suitable computational models. Therefore, a brief overview over the biolog-
ical requirements and mechanisms is necessary to understand what are the
strengths and weaknesses of the individual algorithms. The choice of param-
eters and implementation of the algorithms largely control the sensitivity and
speed of a program. The specificity of software recognizing regulatory regions
in DNA is determined, to a large extent, by how closely the algorithm follows
what will be called the biological model from hereon. Several overviews of
this topic have been published [27, 96].

1.1 General Functions of Regulatory Regions

The biological functionality of regulatory regions is generally not a property
evenly spread over the regulatory region in total. Functional units usually
are defined by a combination of defined stretches that can be delimited and
possess an intrinsic functional property (e.g. binding of a protein or a curved
DNA structure). Several functionally similar types of these stretches of DNA
are already known and will be referred to as elements. Those elements are
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neither restricted to regulatory regions nor individually sufficient for the
regulatory function of a promoter or enhancer. The function of the complete
regulatory region is composed from the functions of the individual elements
either in an additive manner (independent elements) or by synergistic effects
(modules).

1.2 Most Important Elements in Regulatory Regions

Transcriptional regulation depends on sequence elements that are directly
accessible from the genomic DNA sequence such as transcription factor (TF)-
binding sites (TFBSs), repeats and hairpins (repeats that can form hairpin-like
structures by self-complementarity). In addition, various elements not easily
detectable in the sequence are important. Most of these affect chromatin
structure and accessibility such as histone acetylation and methylation status
as well as DNA methylation status. Such phenomena not directly linked to
the local DNA sequence are usually summarized under epigenetic effects.

1.3 TFBSs

Binding sites for specific proteins are most important among the sequence
elements. They consist of about 10–30 nucleotides, not all of which are equally
important for protein binding. As a consequence, individual protein-binding
sites vary in sequence, even if they bind to the same protein. There are
nucleotides contacted by the protein in a sequence-specific manner, which
are usually the best-conserved parts of a binding site. Different nucleotides
are involved in DNA backbone contacts, i.e. contacting the sugar-phosphate
framework of the DNA helix (not sequence specific as they do not involve
the bases A, G, C or T). There are also internal “spacers” not contacted by
the protein at all. In general, protein-binding sites exhibit enough sequence
conservation to allow for the detection of candidates by a variety of sequence
similarity-based approaches. Potential binding sites can be found almost
all over the genome and are not restricted to regulatory regions. Quite a
number of binding sites outside regulatory regions are also known to bind
their respective binding proteins [57]. Therefore, the abundance of predicted
binding sites is not just a shortcoming of the detection algorithms, but reflects
biological reality. Often it is not possible either to identify individual binding
proteins as they might bind as part of multi-protein complexes [68]. This
illustrates another important point: TF binding in vivo is usually context
dependent. The isolated TF will bind to a cognate site quite differently if
brought together in a reaction tube as naked protein and oligonucleotide
probe than in vivo where adaptive DNA structure and a host of other proteins
are present. As became evident from several chromatin immunoprecipitation
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(ChIP) studies, even in vivo binding of a TF does not automatically imply
a function in transcription control as was found in a genome-wide study
which identified many more cAMP response element-binding protein (CREB)-
binding sites than CREB-regulated genes [45].

1.4 Sequence Features

Regulatory DNA also contains several features not directly resulting in rec-
ognizable sequence conservation. For example, two copies of a direct repeat
(approximate or exact) are conserved in sequence with respect to each other,
but different direct repeats are not similar in sequence at all. Nevertheless,
direct repeats are quite common within regulatory DNA regions. They consist
either of short sequences, which are repeated twice or more frequently within
a short region, or they can be complex repeats, which repeat a pattern of two or
more elements. (More details on sequence repeats and how to detect them can
be found in Chapter 7.) Repeat structures are often associated with enhancers.
Enhancers are DNA structures that enhance transcription over a distance
without being promoters themselves. One example of a highly structured
enhancer is the interleukin-2 enhancer [74]. Other sequence features that are
hard to detect by computer methods include the relatively weak nucleosomal
positioning signals [46], DNA stretches with intrinsic three-dimensional (3-D)
structures (like curved DNA, e.g. Ref. Ref. [81]), methylation signals (if there
are definite signals for methylation at all) and other structural elements.

1.5 Structural Elements

Currently, secondary structures are the most useful structural elements with
respect to computer analysis. Secondary structures are mostly known for
RNAs (see Chapter 14) and proteins (see Chapter 9), but they also play im-
portant roles in DNA. DNA can form double hairpins called cruciform DNA
representing the hairpin structures of RNA and can be important for transcrip-
tional regulation [59]. Potential secondary structures can be easily determined
and even scored via the negative enthalpy that should be associated with the
actual formation of the hairpin (single-strand) or cruciform (double-strand)
structure. Secondary structures are also not necessarily conserved in the
primary nucleotide sequence, but are subject to strong positional correlation
within the 3-D structure, i.e. the orientation of the double helix in space.
Without any doubt 3-D aspects of DNA sequences are very important for the
functionality of such regions. However, existing attempts to calculate such
structures in reasonable time have met with mixed success and cannot be used
for a routine sequence analysis at present. Part of that difficulty is that DNA
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structure can be quite flexible and structural changes are readily induced by
interacting proteins [68].

1.6 Organizational Principles of Regulatory Regions

This section will mainly concentrate on eukaryotic polymerase II promoters,
as they are currently the best-studied regulatory regions.

1.6.1 Overall Structure of Pol II Promoters

Promoters are DNA regions capable of specific initiation of transcription (start
of RNA synthesis) and consist of three basic regions (see Section 1.6.3). The
part determining the exact nucleotide for transcriptional initiation is called the
core promoter, and is the stretch of DNA sequence where the RNA polymerase
and its cofactors assemble on the promoter.

The region immediately upstream of the core promoter is called the proxi-
mal promoter and usually contains a number of TFBSs responsible for the as-
sembly of an activation complex. This complex in turn recruits the polymerase
complex. It is generally accepted that most proximal promoter elements are
located within a stretch of about 250–500 nucleotides upstream of the actual
transcription start site (TSS).

The third part of the promoter is located even further upstream and is called
the distal promoter. This region usually regulates the activity of the core and
the proximal promoter, and also contains TFBSs. However, distal promoter
regions and enhancers exhibit no principal differences. If a distal promoter
region acts position and orientation independent it is called an enhancer.

1.6.2 TFBS in Promoters

The TFBSs within promoters (and likewise most other regulatory sequences)
do not show any general patterns with respect to location and orientation
within the promoter sequences, although particular functionality may be as-
sociated with a specific location or association within the promoter [89].

Even functionally important binding sites for a specific TF may occur almost
anywhere within a promoter. For example, functional activating protein 1
(AP-1, a complex of two TFs: one from the Fos and one from the Jun family)-
binding sites can be located far upstream, as in the rat bone sialoprotein gene
where an AP-1 site located about 900 nucleotides upstream of the TSS inhibits
expression [97]. An AP-1 site located close to the TSS is important for the
expression of Moloney murine leukemia virus [75]. Moreover, functional AP-
1 sites have also been found inside exon 1 (downstream of the TSS) of the
proopiomelanocortin gene [11] as well as within the first intron of the fra-1
gene [6], both locations outside the promoter. Similar examples can be found
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for several other TF sites, illustrating why no general correlation of TF sites
within specific promoter regions can be defined. TFBSs can be found virtually
everywhere in promoters, but in individual promoters possible locations are
much more restricted. A closer look reveals that the function of an AP-1-
binding site often depends on the relative location and, especially, on the
sequence context of the binding site. The AP-1 site in the above-mentioned
rat bone sialoprotein gene overlaps with a set of glucocorticoid-responsive
element (GRE, the DNA sequence that is bound by the glucocorticoid receptor
which is a TF) half-sites (nuclear factor-binding sites are often composed of
two almost identical half-sites separated by a spacer of a few nucleotides),
which are crucial for the suppressive function.

The context of a TF site is one of the major determinants of its role in
transcription control. As a consequence of context requirements, often TF
sites are grouped together and such functional groups have been described
in many cases. A systematic attempt at collecting synergistic or antagonistic
pairs of TFBSs has been made with the COMPEL database [51]. In many
cases, a specific promoter function (e.g. a tissue-specific silencer) will require
more than two sites. Promoter subunits consisting of groups of TFBSs that
carry a specific function independent of the promoter will be referred to
as promoter modules. Arnone and Davidson originally gave a more detailed
definition of promoter modules [1]. In summary, promoter modules contain
several TFBSs which act together to convey a common function like tissue-
specific expression. The organization of binding sites (and probably also of
other elements) of a promoter module appears to be much more restricted
than the apparent variety of TF sites and their distribution in the whole
promoter suggests. Within a promoter module both sequential order and
distance can be crucial for function, indicating that these modules may be
the critical determinants of a promoter rather than individual binding sites.
Promoter modules are always constituted by more than one binding site.
Since promoters can contain several modules that may use overlapping sets
of binding sites, the conserved context of a particular binding site cannot be
determined from the primary sequence. The corresponding modules must be
detectable separately before the functional modular structure of a promoter
or any other regulatory DNA region can be revealed by computer analysis.
One well-known general promoter module is the core promoter, which will
be discussed in more detail below. However, the basic principles of modular
organization are also true for most, if not all, other regulatory regions and are
neither peculiar nor restricted to promoters.

1.6.3 Module Properties of the Core Promoter

The core promoter module can be defined functionally by its capability to
assemble the transcription initiation complex and orient it specifically towards
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the TSS of the promoter [100], defining the exact location of the TSS. Vari-
ous combinations of about four distinguishable core promoter elements that
constitute a general core promoter can achieve this. This module includes
the TATA box, the initiator region (INR), an upstream activating element and
a downstream element (Figure 1). The TATA box is a basic transcription
element, which is located about 20–30 nucleotides upstream of the actual
TSS and is known to bind to the TATA box-binding protein (TBP). However,
this is also where the straightforward definition of a core promoter module
ends because not all four elements are required or some elements can be too
variable to be recognizable by current computer tools.

The first group is made up of TATA box-containing promoters without a
known initiator. Successful positioning of the initiation complex can start at
the TATA box-containing promoters by the TFIID complex, which contains the
TBP as well as several other factors. Together with another complex of general
TFs, termed TFIIB, this leads to the assembly of an initiation complex [22].
If an appropriate upstream TFBS cooperates with the TATA box, no special
initiator or downstream sequences might be required, which allows for the
assembly of a functional core promoter module from just two of the four
elements. This represents one type of a distinct core promoter that contains
a TATA box, common among cellular genes in general.

The second group is TATA-less promoters with a functional initiator. As
is known from a host of TATA-less promoters, however, the TATA box is
by no means an essential element of a functional core promoter. An INR
combined with a single upstream element has also been shown to be capable
of specifically initiating transcription [41], although initiators cannot be clearly
defined at the sequence level so far. Generally, a region of 10–20 nucleotides
around the TSS is thought to represent the initiator. A remarkable array of
four different upstream TF sites (SP1, AP-1, ATF or TEF1) was shown to
confer inducibility by T-antigen to this very simple promoter, i.e. mediated
transcriptional activation upon binding of T-antigen. T-antigen is a potent
activating protein from a (simian) virus called SV40. This is an example of
a TATA-less distinct promoter that can be found in several genes from the
hematopoietic lineage (generating blood cells).

The third group is made up of a composite promoter consisting of both
a TATA box and an initiator. This combination can be found in several
viral promoters and it has been shown that an additional upstream TFBS
can influence whether the TATA box or the initiator element will determine
the promoter properties [21]. The authors showed that upstream elements
can significantly increase the efficiency of the INR in this combination; in
particular, SP-1 sites made the TATA box almost obsolete in their example.
The combination of TATA box with an INR had the general effect of inducing
resistance against the detrimental effects of a TFIIB mutant, which interfered
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Figure 1 General structure of a Pol II core promoter and four different
setups (a–d) of a Pol II core promoter. Simultaneous presence of
all four elements is not always essential. The shapes above the bar
symbolize additional protein-binding sites and the arrow indicates the
TSS.

with expression from TATA-only promoters. This is also an example for of
more indirect effects of specific arrangements in promoters that may not be
apparent unless special conditions occur.
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The last group consists of so-called null-promoters, which have neither a
TATA box nor an initiator, and rely exclusively on upstream and downstream
elements [66].

Basically, at least the four different core promoter types detailed above
have been identified so far, all of which represent valid combinations of core
promoter sites (reviewed in Ref. [66]). If the combinations involving upstream
and downstream elements are also considered, seven core promoter modules
are possible (most of which can be actually found in genes and consist of the
four variants in Figure 1(a–d) adding upstream or downstream elements or
both).

The only apparent common denominator of transcription initiation within
a promoter would be that there must be at least one core promoter element
anywhere within a certain region. This assumption is wrong. Both the spacing
and/or sequential order of elements within the core promoter module are
of utmost importance regardless of the presence or absence of individual
elements (as a rule; however, there appear to be some exceptions). Moreover,
many distinct promoters have requirements for specific upstream or down-
stream elements and will only function with their specific TF. Moving around
the initiator, the TATA box and, to some extent, also upstream elements can
have profound effects on promoter functions. For example, insertion of just a
few nucleotides between the TATA box and an upstream TFBS (TF MyoD) in
the desmin gene promoter cuts the expression levels by more than half [62].
Moreover, the promoter structure can affect later stages of gene expression
like splicing [23]. It was also shown for the rat β-actin promoter that a few
mutations around the TSS (i.e. within the initiator) could render that gene
subject to translational control [7].

As a final note, the mere concept of one general TATA box and one general
INR is an oversimplification. There are several clearly distinguishable TATA
boxes in different promoter classes [35] and the same is true for the INR
region, which also has several functionally distinct implementations as the
glucocorticoid-responsive INR in the murine thymidine kinase gene [73], the
C/EBP-binding INR in the hepatic growth factor gene promoter [48] or the
YY-1-binding INR [90].

Most of the principles of variability and restrictions detailed above for
the core promoter modules are also true for other promoter modules that
modify transcriptional efficiency rather that determining the start point of
transcription as the core promoter does. The bottom line is that the vast
majority of alternative combinatorial arrangements of the elements that can
be derived from a particular promoter might not contribute to the function of
the promoter. Module-induced restrictions are not necessarily obvious from
the primary sequences. Figure 2 shows a schematic Pol II promoter with the
initiation complex assembled that illustrates that it matters where a specific
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Figure 2 Transcription initiation complex bound to a schematic
promoter.

protein is bound to the DNA in order to allow for proper assembly of the
molecular jigsaw puzzle of the initiation complex. This is not immediately
obvious from inspection of promoter sequences because there exist several
(but a strictly limited set of) alternative solutions to the assembly problem. As
complicated as Figure 2 may appear, it still ignores all aspects of chromatin
rearrangements and nucleosomal positions, which also play an important role
in transcription regulation. Stein and coworkers, initially in 1995 and in a
2001 follow-up paper, have detailed an example of the profound influence
of these effects on promoter–protein complex assembly and function for the
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osteocalcin promoter [63, 84]. However, chromatin-related effects are not yet
considered in any of the promoter prediction methods. Therefore, we do not
go into any more details here.

1.7 Bioinformatics Models for the Analysis and Detection
of Regulatory Regions

Algorithms used to analyze and detect regulatory regions are necessarily
based on some kind of usually simplified model of what a regulatory re-
gion should look like. All of these models inevitably compromise between
accuracy with respect to the biological model (the standard of truth) and
computational feasibility of the model. For example, a computational model
based on a priori 3-D structure prediction derived from molecular dynamics
using sophisticated force fields may be the most accurate model for a region,
but cannot be used for the analysis of real data due to excessive demand
on computational resources. On the other hand, a model based on simple
sequence similarities detected by IUPAC consensus (see also Section 2.1) se-
quences can be easily used on a PC, but results will usually not match the
biological truth in an acceptable manner.

1.8 Statistical Models

It was noted several years ago that promoters and most likely also other
regulatory regions like enhancers contain more TFBSs that nonregulatory se-
quences. Therefore, an analysis of the relative frequencies of such sites within
a sliding window can yield some information on the potential regulatory
character of a stretch of DNA, which is the prototype of simple statistical mod-
els. Several programs exist that rely to some extent on this type of statistics.
Another set of statistical models calculates local GC content bias and uses
this feature to discriminate potential promoters from other sequences. Such
nucleotide bias statistics are only used in combination with other features (see
Section 1.8.1) as they do not exhibit sufficient discriminatory power on their
own.

A new breed of statistical models has been successfully introduced into
promoter analysis more recently. These models focus on statistical analysis
based on identification of promoter-associated words (not predefined such as
TFBSs) using methods coming from other fields such as speech recognition.
These methods are currently the best performers in promoter finding.

1.8.1 Mixed Models

It is clear from Section 1.6 that a binding site description-based pure statistical
model is an oversimplification that will adversely affect the accuracy of pre-
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diction despite its attractive ease of implementation. Therefore, mixed models
are also used that take at least some regional information into consideration
and can be seen as statistical models split into compartments. Within the
compartments solely statistical features are considered, but promoter organi-
zation is somewhat reflected by the arrangement of the compartments, which
represent different promoter regions.

1.8.2 Organizational Models

The last category consists of models that try to closely follow the organi-
zational principles of real regulatory regions. In order to accomplish this,
individual promoter elements like TFBSs as well as their relative order and
distances are encoded in a formal model, which reflects the setup of a single
promoter or a small group of functionally similar promoters. Although they
match the biological situation best, their widespread application requires an
enormous amount of automation and background logistics such as high-
quality promoter databases, automatic methods to derive the computational
models as well as means of evaluating the resulting models. In the meantime,
most of the basic requirements have been met, but real-life application is just
picking up as this book is written.

However, such approaches are well suited for elucidating the molecular
basis of coregulation of genes in a particular coexpressed cluster of genes from
microarray experiments. So far this has been shown mainly for a simple eu-
karyote, Saccharomyces cerevisiae (yeast) [69]. Considerable progress has been
made already in applying combinatorial TFBS models to higher eukaryotes
such as mammalian systems, mostly based on experimental evidence [14, 40].

2 Methods for Element Detection

2.1 Detection of TFBSs

TFBSs are the most important elements within regulatory DNA regions like
promoters or enhancers. The majority of the known TFs recognize short DNA
stretches of about 10–15 nucleotides in length that show different degrees
of internal variation. Successful detection of protein-binding sites in DNA
sequences always relies on precompiled descriptions of individual binding
sites. Such descriptions are usually derived from a training set of four or
more authentic binding sites. However, the criteria applied for the decision
whether a site is authentic or not vary considerably among authors of different
publications. One of the first approaches to define protein-binding sites used
IUPAC consensus sequences, which indicate the predominant nucleotide or
nucleotide combination at each position in a set of example sequences (e.g.
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SIGNAL SCAN [70]). The IUPAC string TGASTCA indicates that the first three
positions are most frequently T, G and A, while the fourth position may be
C or G, followed by T, C and A in most cases. IUPAC consensus sequences
became very popular as they are extremely easy to define from even a small
set of sequences, and their definition does not require more than a pencil and
a sheet of paper.

However, IUPAC consensus sequences strongly depend on the sequence
set used for definition because IUPAC consensus findings are based on ma-
jority rules. Adding or removing a single sequence can change the assigned
nucleotide at a position while it would have little effect in a corresponding
weight matrix. Cavener defined some rules that we have used for several
years now and, in our experience, IUPAC consensus sequences defined that
way can be useful [16]. However, IUPAC consensus sequences may reject
biologically functional binding sites due to a single mismatch (or an ill-defined
IUPAC sequence).

The concept of nucleotide weight matrix (NWM) descriptions was devel-
oped in the 1980s as an alternative to IUPAC strings (e.g. Refs. [83, 86]).
Basically, weight matrices use an alignment of sequences to first generate
a nucleotide distribution matrix representing the complete nucleotide dis-
tribution at each position of the alignment. Then some sort of weighting
algorithm is used to adjust the matrix to the biological situation (also detailed
in Section 5.3.1). However, although weight matrices proved to be generally
superior to IUPAC strings, their greatest disadvantage is the absolute require-
ment for predefined matrices, which are more complicated to construct than
IUPAC strings and require specific software. This delayed widespread use of
weight matrices for almost a decade, although the methods were principally
available. They remained mostly unused because only a few special matrices
had been defined (e.g. Ref. [12]). The situation changed when in 1995 two
(overlapping) matrix libraries for TF sites were compiled and became widely
available almost simultaneously [17, 72]. MATRIX SEARCH [17] transformed
the TRANSFAC database as completely as possible (starting at two binding
sites for one factor) into matrices using a log-odds scoring approach. The
MatInspector library [72] was originally largely based on a stringent selection
from the matrix table of the TRANSFAC database, including the matrices
derived from the ConsInspector library [32, 33] and several genuine matrices.
The Information Matrix Database was compiled from the TRANSFAC matrix
table and the TFD. In the meantime, the MatInspector library became inde-
pendent from TRANSFAC and is updated regularly by Genomatix Software
(Munich; currently more than 600 matrices), whereas IMD (another weight
matrix database) has not been updated recently.



2 Methods for Element Detection 171

2.2 Detection of Novel TFBS Motifs

All the above covers the various approaches used to describe and find known
TFBS motifs, i.e. there is always evidence that a known TF binds to such
regions. There is another group of methods that join knowledge about evo-
lutionary relationship of promoters with pattern-finding algorithms to detect
phylogenetically conserved TFBSs. Examples of publications in this field
include comparison of conserved human mouse patterns with [64] or without
[61] direct sequence alignment, as well as approaches no longer restricted to
two sequences such as FootPrinter [8] or PhyME, which includes overrepre-
sentation into the probabilistic score of its findings [80].

A completely different set of methods deals with the detection of potential
TFBS patterns solely based on their occurrence in a set of sequences without
any biological knowledge about the particular TF binding to such regions. I
separate such methods from the TFBS recognition methods as an unknown
proportion of significant motifs detected this way may in fact not be TFBSs
at all, but may be conserved for other reasons. Nevertheless, these methods
do contribute to the generation of hypotheses about hitherto unknown TFBS
patterns. Available matrix detection programs were reviewed some time
ago [34] and a comparison of these methods by application to a test set of
sequences has been published [36] (see Ref. [85] for a more recent review of the
topic). A very recent study focused on matrix generation programs with no
real emphasis on search programs [88]. For convenience, Table 1 summarizes
some methods for the detection of TFBSs that are available in the internet with
emphasis on programs featuring a WWW interface.

Various newer approaches have been published in the meantime, ranging
from excellent purely mathematically motivated pattern detection (e.g. from
Pevzner’s group [50] or using self-organizing maps [65]) to strong connection

Table 1 Internet-accessible methods to detect promoter elements (TFBSs)

Program Availability Comments
MatInspector http://www.genomatix.de Genomatix matrices; free of

charge use for academics
(limited) after registration

SIGNAL SCAN http://bimas.dcrt.nih.gov/molbio/ signal IUPAC consensus library
MATRIX
SEARCH

http://bimas.dcrt.nih.gov/molbio/
matrixs

IMD matrix library
(TRANSFAC + TFD)

TFSearch http://www.cbrc.jp/research/
db/TFSEARCH

TRANSFAC matrices

TESS http://www.cbil.upenn.edu/tess/ TRANSFAC matrices
MATCH http://www.gene-regulation.com/cgi-

bin/ pub/programs/match/bin/match
TRANSFAC matrices; free
of charge use for academics
(restricted public version)
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between biological [71] and experimental data with pattern detection [13].
This list only represents an arbitrary collection of very few papers in the field
and the selection was purely driven by the desire to cite at least one method
for each basic approach. I will not discuss de novo detection methods in any
more detail here, as the major scope of this chapter is not de novo detection
of patterns, but regulatory sequences analysis, which is usually based on
precompiled pattern collections.

2.3 Detection of Structural Elements

Regulatory sequences are associated with a couple of other individual ele-
ments or sequence properties in addition to the factor-binding sites. Among
these are secondary structure elements like the HIV-1 TAR region (trans-
activating region, which constitutes an RNA enhancer, e.g. Ref. [10]), cruci-
form DNA structures (symmetric double hairpins of both strands in DNA,
e.g. Ref. [92]) or simple direct repeats (e.g. Ref. [5]). Three-dimensional struc-
tures like curved DNA [54] also influence promoter function. Most of these
elements can be detected by computer-assisted sequence analysis [20, 43], but
none of them is really promoter specific and all such elements can be found
frequently outside of promoters. The promoter or enhancer function arises
from the combination of several elements that need to cooperate to exert tran-
scription control which none of them can achieve alone. This also illustrates
the main problem of promoter recognition. It is necessary to compile several
individually weak signals into a composite signal, which then indicates a
potential promoter without being overwhelmed by the combinatorial com-
plexity of potential element combinations.

2.4 Assessment of Other Elements

Several methods employ statistical measures of sequence composition to in-
clude features of regulatory sequences, which cannot be described by the three
types discussed above. These includes frequencies of oligonucleotides (dinu-
cleotides, trinucleotides and hexamers are used most frequently), CpG islands
(CG dinucleotides are usually underrepresented in mammalian genomes ex-
cept in part of coding and regulatory sequences; CpG islands are regions
where the dinucleotide is NOT underrepresented [38]) and periodicity of
weak sequence patterns (AA, TT, etc.). Definitions of such elements are usually
too weak to make any significant contribution to current prediction programs.
However, this situation might well change due to the unprecedented amounts
of continuous genomic sequences that become available in the course of the
current genome-sequencing projects.



3 Analysis of Regulatory Regions 173

3 Analysis of Regulatory Regions

Basically, two different tasks can be distinguished in the analysis of regulatory
regions. The first task is analysis aimed at the definition of common features
based on sets of known regulatory sequences. This is a prerequisite for the
definition of descriptions suitable for large-scale application for prediction of
potential regulatory regions within new anonymous sequences, which can be
seen as the second task.

3.1 Comparative Sequence Analysis

Comparative sequence analysis is one of the most powerful methods to de-
duce regulatory features and organization. Two main types of comparative
analysis can be distinguished. The first approach compares regulatory re-
gions, e.g. promoters within one species such as promoters coexpressed un-
der particular conditions, or simply all (known) promoters within a genome
to deduce general features. The second approach compares only ortholo-
gous regulatory sequences (again promoters are the most prominent repre-
sentatives) in order to elucidate which features and elements have remained
conserved in evolution. Such features should be closely associated with
conserved functions of the corresponding regulatory regions. While compar-
ative analysis within species affords no distinction between pure statistical
findings and functional conservation, phylogenetic analysis of orthologous
regulatory sequences should indicate predominantly functionally conserved
features. However, intragenomic comparison may differentiate between indi-
vidual functions, whereas phylogenetic analysis will always yield a summary
over all conserved functions. Thus, very often a combination of both ap-
proaches is the best way to go [25].

3.2 Training Set Selection

One of the most important steps in comparative sequence analysis is the
selection of suitable training sets of sequences. If a training set of promoters
consists only of constitutively expressed sequences (constant level of expres-
sion, no or little regulation), little can be learned about any kind of tissue-
specific expression regardless of the methods applied. Inclusion of too many
wrong sequences (e.g. that are not promoters at all or promoters not involved
in the regulation under investigation, see alternative promoters below) may
also prevent any meaningful analysis. Although this observation appears
trivial at first, it becomes a real issue when data are scarce and less well-
characterized sequences have to be used.
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Control sets known not to be functionally similar to the training sets are
about as important as the training sets. However, true negative regions are
even scarcer than known regulatory regions. Negative often means just “no
positive functions found”, which can also be due to failures or simply means
that the sequences have not been tested at all. Therefore, statistical negative
control sequences are often required. Random sequences can be generated
easily, but often are of limited use, as they do not represent several important
features of natural DNA correctly. This includes underrepresented features
(e.g. CpG islands), asymmetric features (e.g. strand specificity), local changes
in GC content or repetitive DNA elements. Selection of appropriate control
sequences can be a major effort, but is also crucial for the validity of the
evaluation of any method. Common problems with controls are either known
or unknown biases in the control set or circularity problems, i.e. the training
and the test sets of sequences are related or overlap. The availability of large
continuous stretches of genomic DNA from the genome-sequencing projects
constantly improves this situation. Genomic sequences should always be the
first choice for controls as they reflect the natural situation.

3.3 Statistical and Biological Significance

The quality of sequence pattern recognition is often optimized to improve the
correlation of the methods with the data (positive and negative training sets).
However, in most cases it is not possible to collect sufficient data to perform a
rigorous correlation analysis. Therefore, bioinformatics methods often rely on
statistical analysis of their training sequences and optimize for the statistically
most significant features. Unfortunately, this kind of optimization does not
always reflect the evolutionary optimization of regulatory sequences that is
always optimizing several features at once. This problem is different from
overfitting of data as it is more about optimization criteria than parameter
fitting per se.

The dynamics of biological function often necessitates suboptimal solutions.
For example, real sequences usually do not contain binding sites with the
highest affinity for their cognate protein because binding and dissociation of
the protein is required for proper function. The perfect binding site with the
highest binding affinity would interfere with the dissociation and is therefore
strongly selected against.

3.4 Context Dependency

The biological significance of any sequence element is defined by the regula-
tory function it can elicit. This is usually dependent on a functional context
rather than being a property of individual elements. Therefore, statistical
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significance of the features or scores of individual elements is neither nec-
essary nor sufficient to indicate biological significance. Recognition of the
functional context in an essentially linear molecule like DNA can be achieved
by correlation analysis of individual elements, which became an important
part of all semi-statistical or specific modeling approaches discussed below.
The context is also an important parameter in statistical analysis. For example,
an element frequently found all over the genome could become even statisti-
cally significant if only the immediate vicinity of a binding partner’s binding
sites is analyzed such as in case of transcriptional modules. Therefore, lack of
statistical significance may just indicate that the wrong context was chosen for
the analysis.

4 Methods for Detection of Regulatory Regions

There are several methods available for the prediction of regulatory DNA
regions in new sequence data. Table 2 lists methods available with a special
focus on programs that provide a WWW interface. Unfortunately, there is no
“one-does-it-all” method, and all methods have their individual strong and
weak points. There was a fairly recent review on the subject including most
relevant programs, with one exception [4]. The program PromoterInspector

Table 2 Internet-accessible promoter/promoter region prediction tools

Program Availability Comments
Promoter prediction
Ab initio promoter
finding (large-scale
sequences)
PromoterInspector http://genomatix.de free of charge use for

academics (limited) af-
ter registration

Dragon
PromoterFinder

http://research.i2r.a-star.edu.sg/
promoter/promoter1_5/DPF

free for academics

Promoter finding in
preselected sequence
ranges
Eponine http://servlet.sanger.ac.uk:8080/ eponine free for academics
FirstEF http://rulai.cshl.org/tools/FirstEF free for academics
Promoter
module/region
recognition
ModelInspector http://www.genomatix.de free of charge use for

academics (limited) af-
ter registration; mod-
ules of two TF sites
(MatInspector library)
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[77] was not included as it predicts promoter regions and neither strand
orientation nor the TSS.

A program doing an excellent job in one case might be a complete failure
in another case in which other methods are successful. Therefore, we will
describe a number of methods without intending any rank by order of dis-
cussion. We will rather follow the functional hierarchy that appears to apply
to the different regulatory regions. However, the apparent best application
range will be indicated.

4.1 Scaffold/Matrix Attachment Regions (S/MARs)

A chromatin loop is the region of chromosomal DNA located between two
contact points of the DNA with the nuclear matrix marked by so-called
S/MARs. The nuclear matrix is a mesh of proteins filling the interdomain
space inside the nucleus where S/MARs form highly flexible structures that
are necessary, but not sufficient, for anchoring at chromosomal DNA to the
matrix [42].

Transcriptional regulation requires the association of DNA with this nuclear
matrix, which retains a variety of regulatory proteins. S/MARs are composed
of several elements, including TFBSs, AT-rich stretches, potential cruciform
DNA and DNA-unwinding regions, to name a few of the most important
S/MAR elements. There is an excellent recent review on chromatin domains
and S/MAR functions [9]. Singh and coworkers published a method to detect
potential S/MAR elements in sequences and made the method available via
WWW (http://www.ncgr.org/MAR-search/) [79]. Their method is based on
a statistical compilation of the occurrence of a variety of S/MAR features
(called rules). Accumulation of sufficient matches to these rules will be pre-
dicted as potential S/MAR regions. The specificity of the method depends
critically on the sequence context of the potential S/MAR sequences. An-
other approach utilizes a single S/MAR associated sequence element to locate
potential S/MARs [91]. Therefore, results are difficult to evaluate by com-
parisons. We developed another approach to define especially AT-rich MARs
called SMARTest, which is available on the web at http://www.genomatix.de.
SMARTest is based on a library of MAR-associated nucleotide weight ma-
trices and determines S/MARs independent of any larger sequence context
[37]. Therefore, the method is suitable for testing isolated S/MAR fragments.
MARFinder and SMARTest are complementary, and should be seen in combi-
nation rather than as alternatives.
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4.2 Enhancers/Silencers

Enhancers are regulatory regions that can significantly boost the level of
transcription from a responsive promoter regardless of their orientation and
distance with respect to the promoter as long as they are located within the
same chromatin loop. Silencers are basically identical to enhancers and follow
the same requirements, but exert a negative effect on promoter activities. Both
regulatory regions are also relevant in disease processes, as detailed in a recent
review [55]. At present there are no specific programs to detect enhancers and
silencers. However, programs designed to detect the internal organization of
promoters are probably also suitable to detect at least some enhancers and
silencers since these regions often also show a similar internal organization as
promoters.

4.3 Promoters

Promoters were described in detail above – they are just mentioned here again
to place them into context.

4.4 Programs for Recognition of Regulatory Sequences

There are several ways promoter recognition tools can be categorized. We will
focus on the main principles and intended usage of the programs rather than
technical details. Two generally distinct approaches have been used so far in
order to achieve in silico promoter recognition. The majority of programs focus
on general promoter recognition, which represents the first category.

The second category of tools aims at specific promoter recognition relying on
more detailed features of promoter subsets like combinations of individual
elements. The beauty of this approach is its excellent specificity, which is ex-
tremely helpful if only promoters of a certain class are of interest or megabases
of sequences have to be analyzed. The bad news here is limited applicability,
i.e. each promoter group or class requires a specifically predefined model
before sequences can be analyzed for these promoters. This may result in a
huge number of false negatives in large-scale analysis.

We will briefly discuss individual methods in these two categories with
emphasis on the implementation of the biological principles of promoter
features. Recently, a practical comparison of the majority of available tools
based on general promoter models has been carried out [4], which was the
first large-scale update since the original comparison carried out by Fickett
and Hatzigeorgiou in 1997 [29]. There was another review in between those
two studies by Ohler and Niemann [67]. Therefore, we will not go into details
on the performance of the methods.
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4.4.1 Programs Based on Statistical Models (General Promoter Prediction)

These programs aim at the detection of Pol II promoters by a precompiled
general promoter model that is part of the method. Learning methods range
from supervised artificial neuronal networks over statistical analyses to sim-
ple counting of features to a threshold. One group of programs in this category
(see below) concentrates on recognition of core promoter properties and infers
promoter location solely on that basis, whereas the other group consists of
programs that take into account also the proximal promoter region of about
250–300 nucleotides upstream of the TSS. General recognition models were
usually based on training sets derived from the Eukaryotic Promoter Database
(EPD) and various sets of sequences without known promoter activities. The
EPD originally was an excellent collection of DNA sequences that fulfill two
conditions: they have been shown experimentally to function as promoters
and the TSS is known. Recently, EPD also started to incorporate promoters
not fulfilling these stringent conditions [78].

The beauty of the above approaches is their generality, which does not
require any specific knowledge about a particular promoter in order to make
a prediction. This appears ideal for the analysis of anonymous sequences for
which no a priori knowledge is available. The bad news was that the specificity
of all such general approaches implemented was very limited for quite some
time. However, the development of PromoterInspector [77] heralded a new
era of promoter prediction, combining acceptable sensitivity with high speci-
ficity. Other programs that followed performed comparably [3]. These general
promoter prediction approaches were the first to provide acceptable a priori
promoter prediction on a whole chromosome and now genome scale [76].
Specificities were originally reported just below 50%, but in the meantime
many of the orphan predictions (in the middle of unannotated sequence) have
found their genes and transcripts boosting specificity to between 80 and 90%.
Only a really complete annotation of the genomes will tell the true specificity
of those methods. Nevertheless, it is clear that the goal of highly specific
promoter prediction in whole mammalian genomes has been achieved.

Some general promoter model-based programs employ methods already
described for identification of individual promoter elements (usually TBFBS
IUPAC or weight matrix descriptions), but try to derive more general fea-
tures from a collection of such elements rather than emphasizing individual
elements. These methods may be called statistical element analyses and treat
the proximal promoter as a purely statistical problem of TFBS accumulations,
sometimes fine-tuned by some sort of weighting based on occurrence frequen-
cies of TFBSs in promoters as compared to a negative sequence set. Despite the
complicated modular structure of promoters outlined above there is a solid
rational basis for this general model. All promoters must have a functional
core promoter module often containing a TATA box, which is the prime target
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of the majority of the general promoter prediction tools. This is also one of
the reasons that some programs confine their analysis to the core promoter
region, which avoids problems with the much more diverse proximal regions.
Biological knowledge is solely used to select the training sets and a variety of
methods is used to learn the distinctive patterns.

Without exception, TFBS-based statistical element analysis suffers from a
huge number of false-positive predictions (typically about one prediction in
10 000–30 000 nucleotides).

4.4.2 Programs Utilizing Mixed Models

These programs also rely on statistical promoter models, but include directly
or indirectly some organizational features of promoters, placing them in be-
tween the pure statistical models and attempts to approximate the biologically
important structured organization of promoters. Again, the first-generation
methods will only be summarized. FunSiteP [53] as well as the approach taken
by Audic and Claverie [2] fall into this category.

4.4.3 Programs Based on Specific Promoter Recognition

The second, more recent and far more successful concept should be called
functional element analysis, as it relies heavily on biological knowledge about
the relative importance of individual elements and derives discriminative
features on that basis. These methods carry out a sophisticated compositional
analysis of the proximal promoter analysis to detect unique features within
that region that can be used to distinguish promoters from nonpromoters
without understanding the details, but using any pre-existing knowledge for
feature selection.

This category of methods introduces the functional context in the form of
heuristic rules or tries to learn the context from comparative sequence anal-
ysis. These methods emphasize specific modeling of promoters or promoter
substructures rather than general recognition. Therefore, it is not possible to
directly assess the promoter prediction capabilities of these methods. How-
ever, in many cases recognizing a common substructure between promoters
can be very helpful, especially for experimental design. Although these pro-
grams were also published during the time the first-generation general pro-
moter prediction programs appeared, they are still useful in whole-genome
scans due to their very high specificity, warranting a more detailed discussion
here.

The method FastM was derived from the program ModelGenerator [31]
and takes advantage of the existence of NWM libraries. It can be accessed
via a WWW interface (http://genomatix.gsf.de part of GEMS launcher) and
allows for a straightforward definition of any modules of two TFBSs by simple
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selection from the MatInspector Library [72]. This now enables definition
and detection of wide variety of synergistic TFBS pairs. These pairs are often
functional promoter modules conferring a specific transcriptional function to
a promoter as shown in Refs. [52, 56]. FastM models of two binding sites can
successfully identify promoters sharing such composite elements, but are not
promoter specific. Composite elements can also be located in enhancers or
similar structures. The latest version of FastM enables definition of complete,
highly specific promoter class models including up to 10 individual elements,
also including IUPAC strings, repeats and hairpin structures.

The program FrameWorker [15] automates several of the steps taken man-
ually in FastM in order to ground specific promoter modeling on as much
an algorithmic basis as possible. FastM requires crucial parameters such as
strand orientation, distance ranges, order of elements, as well as the indi-
vidual nature of the elements (e.g. which weight matrix to use) to be de-
termined by the user. FrameWorker, in contrast, automatically determines
theses parameters from a comparison of an (still manually selected) set of
input sequences within user-defined ranges. However, determination of the
individual weight matrices to be used, as well as their number, distances and
relative order, does not require previous knowledge.

Another approach aimed at modeling promoter substructures consisting
of two distinct elements is TargetFinder [58]. This method combines TFBSs
with features extracted from the annotation of a database sequence to afford
selective identification of sequences containing both features within a defined
length. The advantage is that TargetFinder basically also follows the module-
based philosophy, but allows inclusion of features that have been annotated
by experimental work for which no search algorithm exists. Naturally, this
excludes analysis of new anonymous sequences. The program is accessible
via a WWW interface (http://gcg.tigem.it/TargetFinder.html).

It should be mentioned here that Fickett also employed the idea of a two-
TFBS module to successfully detect a subclass of muscle-specific regulatory
sequences governed by a combination of MEF2 and MyoD [28]. However, this
was also a very specific approach and no general tool resulted from that work.
The MEF2/MyoD model can be used to define a corresponding module with
FastM. Wasserman and Fickett also published a modeling approach based on
clustering of a preselected set of NWM (defined in the same study) correlated
with muscle-specific gene expression [93]. They were able to detect about 25%
of the muscle-specific regulatory regions in sequences outside their training
set and more than 60% in their training set. They classify their method
as regulatory module detection. However, their results suggest that they
probably detect a collection of different, more specific modules with respect to
the definition given above. Although the method is not promoter specific and
the specificity is moderate, it is a very interesting approach that has potential
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Figure 3 GFAP promoter model conserved in human mouse and rat
promoter. The boxes indicate the individual TFBSs found and the bar
indicates the genomic DNA.

for further development, as also became evident from follow-up publications
of the same authors [30, 94].

Generally, this group of methods achieves much higher specificity than the
first-generation programs following general models. However, the price for
this increase in specificity is usually restriction of the promoter models to a
small subset (class) of promoters.

The model of the glial fibrillary acidic protein (GFAP) promoter shown in
Figure 3 was derived from a comparison of the human, mouse and rat GFAP
promoters. This model contains five different TFBSs and was derived from
the set of three sequences using GEMS Launcher (Genomatix). This model
recognizes a single sequence, the GFAP promoter, when searched against
more than 36 000 human promoter sequences and thus is absolutely gene
specific. Interestingly, if the search is carried out with relaxed stringency
(allowing for less-perfect matches) only a second sequence comes up, the
DGAT2 gene, which is the diacylglycerol O-acetyltransferase homolog 2 (ho-
molog to mouse). From the literature it becomes immediately evident that
both genes are brain-expressed (GFAP is brain/astrocyte specific) and both
are genes associated with insulin signaling. Thus the promoter model-based
search found biologically linked genes.

4.4.4 Early Attempts at Promoter Prediction

There are various programs that might be called first-generation programs for
promoter prediction, some of which were absolutely instrumental in paving
the way towards the newer developments, but are no longer of practical use.
For that reason they will only be summarized here and not discussed in detail.
The first exception to this rule will be Promoter Scan, as this was really the first
program ever published for promoter prediction in mammalian sequences
and served as a role model for a number of other developments.

Several of the general promoter prediction programs followed the basic
design of Prestridge who used the EPD by Bucher’s group [78] to train his
software for promoter recognition. His program Promoter Scan was the first
published method to tackle this problem [70]. He utilized primate nonpro-
moter sequences from GenBank as a negative training set and included the
proximal promoter region in the prediction. The program uses individual
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profiles for the TFBSs indicative of their relative frequency in promoters to
accumulate scores for DNA sequences analyzed. Promoter Scan employs
the SIGNAL SCAN IUPAC library of TFBSs [70], introducing a good deal
of biological knowledge into the method, although modular organization
of the proximal region is necessarily ignored. Results of the first version
were combined with the Bucher NWM for the TATA box, which served as
a representation of the core promoter module [12].

Other methods following a similar design will not be discussed in detail, but
should be mentioned. These include PromFD by Chen and coworkers [18],
and the programs TSSG/TSSW from Solovyev’s group, which are basically
gene prediction methods that include promoter prediction [82]. Other pro-
grams in that category are XLandscape [60] and PromFind [44]. Michael
Zhang published a new method to detect TATA-box containing core promot-
ers by discrimination analysis.

5 Annotation of Large Genomic Sequences

Many of the methods discussed above were developed before the databases
started to be filled with sequence contigs exceeding 100 000 nucleotides in
length. The complete human genome draft now contains more than 3 billion
nucleotides and many more genomic sequences of similar size are entering
the databases. This changes the paradigm for sequence annotation. While
complete annotation remains an important goal, specific annotation becomes
mandatory when even individual sequences exceed the capabilities of re-
searchers for manual inspection. Annotation of genomic sequences has to
be fully automatic in order to keep pace with the rate of generation of new
sequences. Simultaneously, annotations are embedded into a large natural
context rather than residing within relatively short isolated stretches of DNA.
This has several quite important consequences.

5.1 Balance between Sensitivity and Specificity

We will confine the discussion here to regulatory regions, but the problems are
general. A very sensitive approach will minimize the amount of false-negative
predictions and thus is oriented towards a complete annotation. However,
this inevitably requires accepting large numbers of false-positive hits, which
easily outnumber the true-positive predictions by an order of magnitude.

In order to avoid this problem methods can be designed to yield the utmost
specificity (e.g. specific promoter modeling as discussed above). Here, the
catch is inevitably a high number of false-negative results, which also may
obscure 70–90% of the true-positive regions. The newer developments of gen-
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eral, but still specific, promoter finding (especially Refs. [3, 77]) may provide
a way out of the dilemma. Once a rough annotation has been achieved, other
methods can come in to locate promoters reliably in more restricted search
spaces such as the FirstExon Finder [24] and Eponym [26]. There was a recent
survey of promoter finding in genomic sequences emphasizing that suitability
of methods for analysis of large genomic sequences cannot be inferred from
limited tests with short samples, which could be referred to analysis in a
“sheltered environment” [4].

Gene (or gene group)-specific methods were shown to produce more that
50% true-positive matches in their total output (e.g. Ref. [35]), but recognize
just a small fraction of all promoters, which is inevitable for a function-
specific model. A single specific model like the phylogenetically conserved
GFAP promoter model (Figure 3) matched only once in the human genome,
indicating that it is absolutely specific for the GFAP gene.

Definition of the required number of specific models based on current tech-
nologies was not a feasible task until recently. However, new developments
have already been initiated to overcome the current obstacles and Genomatix
is actually working on a genome-wide library of evolutionarily conserved
organizational promoter models.

It is quite evident that functional promoter analysis in laboratories is capa-
ble of dealing specifically with several hundred or even thousand predicted
regions, whereas predicting several hundred thousand or even millions of
regions remains out of reach. However, recent improvements of laboratory
high-throughput technologies such as location of the TSS by the so-called
oligo-capping method [87] have provided an unprecedented amount of ver-
ified TSSs (which by definition are located within the promoters). Never-
theless, enhancements of the specificity of promoter recognition in silico will
also be required as the oligo-capping method has an inherent error rate of
20–30%. Both developments will meet sometime in the future to close the
gap in our knowledge about the location of promoters in the genome. More
elaborative approaches will be required both in the laboratory as well as in
bioinformatics in order to also understand the functionality hidden within
these regulatory sequences. It is clear from the past and present developments
that bioinformatics will probably cover significantly more than half of that
path.

5.2 Genes – Transcripts – Promoters

Originally, the notion was that one gene would represent one function. We
learned in the early days of molecular biology during the 1980s that this
is not quite true and that one gene may very well have several functions.
However, it did not become clear how this is realized until the large-scale
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Figure 4 Genomic organization of genes, promoters and transcripts.
The transparent boxes indicate promoters, the grey boxes indicate
exons and the grey bars indicate the genomic sequence. The brackets
delineate the locus of the gene.

mapping and sequencing effort provided us with a better insight into genomic
organization. This knowledge has changed our perception of a gene. A
gene is no longer an entity, but rather a container with individual transcripts
representing the entities. Figure 4 illustrates this new notion schematically.
The area in brackets indicates the genomic locus of the gene. This region
can be larger than a million base pairs in some cases, providing the space
for the complex inner organization. The line with the brackets indicates the
genomic structure, such that both promoters and all exons are in a linear
arrangement with no clue about the functional links between the individual
elements. The lines below refer to individual transcripts, with two transcripts
exhibiting alternative splicing originating from promoter 1, while another
transcript originates from promoter 2. The important consequence is that this
gene may behave like two independent genes with respect to regulation, and
the transcript originating from promoter 2 can be completely independent in
terms of regulation and function from the other transcripts. They may even
encode quite different proteins.

From this it is immediately evident why the paradox of humans having only
a moderate amount of genes in excess to Drosophila or Caenorhabditis elegans is
not a real paradox. The inner complexity of transcript and regulatory combi-
nations more than compensates for the apparent lack in total gene numbers.
If we count transcripts rather than genes, mammalians do have close to or
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even above 100 000 – a number earlier pondered for genes as required for
the observed complexity. It just turns out that within regulatory sequences as
well as within the whole genome, complex hierarchical organization prevails
over simple numbers of elements. This is not surprising as the hierarchical
principle allows a much more economic utilization of genomic sequences.

5.3 Sources for Finding Alternative Transcripts and Promoters

Of course, once we realized that alternative transcripts as well as alternative
promoters are important in general, the question arises how to cope with this
extra level of complexity. There are several consequences that need to be taken
into account. First, many expressed sequence tags (ESTs) sequences so far
simply dismissed as “genomic contamination” may in fact indicate alternative
transcripts, as what is an exon in one transcript can be an intron in another.
The same is true for a predicted or experimentally verified promoter. If such
a promoter was located inside a well-known gene, it was readily dismissed as
a false positive, because we already “knew” that the promoter was further
upstream. We have seen many cases in which the “false” promoter has
found its own transcript in the meantime and was promoted from false to
alternative. However, this has blurred the line between “true” and “false”
considerably. What is apparently true for one condition (e.g. in one tissue)
may be “false” for another condition (e.g. in another tissue). This dilemma is
far from being finally solved, but as a practical approach we have adopted
a policy of “multiple-evidence” support. The idea is very simple – both
theoretical as well as laboratory-based approaches may yield false results.
However, if two or more independent methods suggest the same conclusion,
it is much more likely to be true than that both methods made exactly the
same mistake. For example, if oligo-capping indicates a TSS, which happens
to be located right inside a predicted promoter, we take this as evidence for
a real promoter. Both methods are totally independent of each other and the
chance of a result converging by chance is absolutely minimal. Based on this
concept, ElDorado (Genomatix) has accumulated more than 150 000 primary
transcripts as well as promoters for five mammalian species so far and we are
quite confident that we have not yet seen the end of the story.

5.4 Comparative Genomics of Promoters

We have alluded to the “multiple-evidence” approach already in the previous
section. However, there is very powerful line of evidence that has not yet
been mentioned – the evolutionary conservation of gene regulation. This is
one of the most direct lines of evidence towards the functional conservation
of promoters as functional regions or elements are far better conserved that
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the sequence in general. We took advantage of this fact and developed a
complete strategy affording the identification and subsequent mapping and
analysis of orthologous promoters (Genomatix, patent pending). On top of
identification of promoters of orthologous genes, this also includes finding the
individual promoters within each species that correspond to each other, which
we termed orthologous promoter sets. This is very important for subsequent
analysis as functional elements, because functional element conservation is
only detectable within orthologous promoter sets. Of course, this approach
becomes stronger and stronger as the number of available genomes rises. As
of 2004, this enabled us to detect or confirm more than 10 000 promoters in the
human genome, making comparative genomics of promoters a major source
of promoter annotation (as taken from the ElDorado statistics; Genomatix).

6 Genome-wide Analysis of Transcription Control

If the focus is broadened from individual genes or small gene groups towards
looking at the whole genome it is no longer sufficient to just take promoters
into consideration. On a genome-wide scale the hierarchy of gene regulation
comes into the picture in full force. First, expression of genes on the mRNA
level by transcription requires the locus of the gene to be accessible. Regu-
lation of gene expression at the DNA level effected not by TFs, but by other
factors elsewhere in the genome, is generally termed epigenetic regulation.
This includes regulation by alternation of the chromatin structure, where
DNA and histone modifications (e.g. DNA methylation or histone acetylation)
play a role and the S/MAR elements discussed above become important.
Whether the chromatin structure is open or closed determines whether a
promoter becomes available for transcription or not. Thus, a gene with the
perfect setup within its promoter(s) can be silent even if all the required TFs
are present, provided the chromatin is closed, thus blocking access of these
factors to the promoter. Let us assume that the chromatin is in an open,
i.e. accessible, state. Even this does no guarantee active transcription of the
embedded genes. Local DNA methylation can interfere, an active silencer
can specifically block individual genes or one crucial factor may be missing
or sequestered (e.g. the nuclear factor NFκB can be blocked by its inhibitor
IκB, rendering it nonfunctional the despite presence of the protein). Active
transcription is only observed when all conditions are right: the chromatin is
open, no repressor is active, and all crucial factors can actually access their re-
spective binding sites on the promoter and enhancer, if one is required. There
is also a very old mechanism that seems to gain importance in the regulation of
gene expression again – antisense transcription [98]. This means that the same
region is transcribed in both directions, resulting in complementary RNAs
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that can form dimers and thus cancel each other out, as RNA dimers are prone
to be destructed immediately. This very complex situation is a formidable
safeguard against spurious expression of genes, which could be disastrous for
a cell.

6.1 Context-specific Transcripts and Pathways

The many conditions that have to be met to enable the expression of a gene are
also behind the differential expression of individual transcripts often coupled
to particular pathways. Transcripts can be cell/tissue specific, pathway spe-
cific (or better associated as complete specificity is rare) or tied to a particular
developmental stage of an organism. This emphasizes the important fact
that biological function is tied to the transcript/protein, not to the gene,
which may well encode various functions in various transcripts. There is
also an important consequence for the analysis of regulatory networks behind
signaling or metabolic pathways. It is not sufficient to identify which genes are
involved in that pathway, but of utmost importance to identify the promoters
associated with that particular transcript/pathway. This is also the reason
that the very same pathway containing the same genes can still be differently
regulated in different tissues, if different transcripts/promoters are involved
in the different tissues. The upside of this complicated situation is that regu-
latory analysis based on the correct promoters is as close to the real biological
situation as we currently can get with in silico methods. As it does not make
any sense to simplify biology to fit our generic models it is well worth the
effort to identify the conditionally important transcripts and promoters as this
assures biological importance of the results.

6.2 Consequences for Microarray Analysis

Another field to which the bioinformatics of regulatory DNA regions can
be expected to contribute significantly is the analysis of results from high-
throughput experiments in expression analysis (e.g. all forms of expression
arrays). Due to the discontinuous nature of regulatory regions there is no way
of deducing common regulatory features from the expression data directly
which are usually based on coding regions. However, the general availability
of the corresponding genomic regulatory regions for many (and very soon
all) of the genes analyzed in an expression array experiment enables attempts
to elucidate the genomic structures underlying common expression patterns
of genes. Expression arrays (described in detail in Chapters 24–28) directly
deliver information, which genes are expressed where under the conditions
tested. However, they cannot provide any clue to why this happens or how
the same genes would behave under yet untested conditions. Identification of
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functional features by comparative sequence analysis (e.g. promoter modules)
can reveal different functional subgroups of promoters despite common regu-
lation under specific conditions. Consequently, the detection of known func-
tional modules can suggest expression patterns under yet untested conditions
[95]. Moreover, the organizational structures of promoters can also be used to
identify additional potential target genes either within the same organism in
other genomes or via comparative genomics. Given the exponential number
of possibilities for combinations of conditions, bioinformatics of regulatory
sequences will also become instrumental for the rational design of expression
arrays as well as for selection of experimental conditions.

While this basic conduct of analysis of microarray data remains unchanged,
our growing knowledge of alternative transcripts and alternative promoters
has far-reaching consequences on strategies employed to analyze transcript
levels on a large scale – the microarrays of DNA chips. The most obvious
consequences of course are for the analysis of microarray data based on
current chip designs that can be purchased from several vendors. As this is
the most clear-cut consequence, let us focus on this point first. If there is a
single transcript from a single promoter for a given gene, there is no problem,
as none of the above complications applies. However, according to current
knowledge probably more than 80% of all genes have alternative transcripts
and maybe more than half also alternative promoters [99]. Both numbers are
rough estimates from what we already know and can be expected to rise even
further. This illustrates nicely that the carefree situation of single transcripts
and promoters is most likely the exception, not the rule, for genes represented
on micorarrays. It has already been recognized that this may cause problems
with the traditional way of probe selection, rendering part of the probes on
a microarray uninformative [39]. The problem with alternative splicing has
been recognized already and studies in that direction have been carried out
[49]. There are also efforts under way by microarray manufacturers to take
alternative splicing into account. Fortunately, it became possible to check
which probes can be reliably used and which probes might cause problems
thanks to the high-quality genomic sequences available and our increasing
knowledge about alternative transcripts. It should be noted that the set of
useful probes depends to some extent on the experimental conditions, not the
array used. Some probes might be very informative, whereas the alternative
transcripts also recognized by the same probes are not expressed. Use of
such probes might cause problems under conditions in which such alternative
transcripts are coexpressed.

However, the case of alternative promoters is much less well recognized,
but is of equal importance as in many cases transcripts appear to be the
same, but originate from different promoters. For example, the CYP19A
(also known as aromatase) gene that has at least seven promoters (probably
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even 10), all of which appear to encode the same transcript. The reason for
that paradox is that all promoters are linked to alternative noncoding first
exons of almost identical length all of which splice invariably to the identical
coding region comprised of nine additional exons. Thus, basically all probes
recognize any of the transcripts indifferently. However, events important in
breast cancer include a switch of promoter usage not detectable that way [19].
Only transcript-specific probes will help here and they can only be designed
based on knowledge about the alternative promoters.

As already mentioned, it is possible to reduce the amount of potentially
ambiguous probes by utilizing the existing knowledge of alternative tran-
script structures [49]. Based on the huge promoter collection in ElDorado,
Genomatix is currently evaluating genome-wide probe sets that are specific
for alternative promoter usage in order to afford the design of microarrays
that will directly indicate promoter selection. This will be of great use for
subsequent promoter analyzes as it will take the guesswork out of the selec-
tion of promoters. This will also be the only way to tackle the problems of
closely related transcripts such as in the case of the CYP19A gene discussed
above. It is safe to assume that transcript- and promoter-specific microarrays
will become the standard in the near future, bringing the results obtained with
such arrays a lot closer to the underlying molecular mechanisms that present-
day arrays allow.

7 Conclusions

The experimental dissection of functional mechanisms of transcription control
has gained an enormous momentum over recent years. The ever-increasing
number of publications on this topic bears witness to this development, which
found one early hallmark manifestation in the introduction of a new section
in the Journal of Molecular and Cellular Biology entirely devoted to analysis of
transcription control, which just spearheaded widespread publication of sim-
ilar articles in most other leading journals. The complex interleaved networks
of transcription control certainly represent one of the cornerstones on which to
build our understanding of how life functions, in terms of embryonic develop-
ment, tissue differentiation, and maintenance of the shape and fitness of adult
organisms throughout life (see also Chapter 21). This is also the reason why
both the experimental analysis and the bioinformatics of transcription control
will move more and more into the focus of medical/pharmaceutical research.
A considerable number of diseases are directly or indirectly connected to
alterations in cellular transcription programs (e.g. most forms of cancer). We
recently demonstrated how promoter analysis can be used to elucidate some
underlying molecular networks in insulin signaling with relevance to the ma-
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turity onset of diabetes of the young (MODY [25]). Furthermore, many drugs
influence transcription control via signaling pathways (triggering TFs) [47],
which could also be connected to certain side-effects of drugs [73]. The various
genome-sequencing projects will provide us with a complete catalog of the
components of a number of mammalian species probably within a few years.
This will complement the blueprint of the material basis of a human already
derived from the human genome sequence. However, only the analysis of
the regulatory part of the genome and the corresponding expression patterns
and the complex metabolic networks will provide deeper insight into how
the complex machinery called life actually works. Definition and detection of
regulatory regions by bioinformatics will contribute to this part of the task,
and will become instrumental in guiding experimental approaches as well.

As a final note it should be emphasized that transcriptional regulation
necessarily involves thousands of proteins, which is why proteomics analyses
will also make important contributions to our understanding of regulatory
events (see Chapter 28). However, despite its much longer history, protein
research has not yet reached the level where it can be readily merged with
the DNA-based analysis of transcription control. Nevertheless, we are quite
confident that in the very near future protein research will be as integrated into
the analysis of genome regulation as are nucleotide sequence- based methods
today. Biology simply cannot be divided into DNA, RNA and protein “fields”
as all of this is required to define and support the wonderful concerted action
called life.
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7
Finding Repeats in Genome Sequences
Brian J. Haas and Steven L. Salzberg

1 Introduction

An essential component of genome sequence analysis is the identification of
repetitive sequences (repeats). A repeat is a substring that occurs multiple
times within a sequence or collection of sequences. Repeats are commonly
found in the genomes of both prokaryotes and eukaryotes, although generally
to a lesser extent in the compact genomes of prokaryotes. In some cases, the
number of repeats and their contribution to overall genome size and content is
staggering, e.g. ;ore than half of the human genome is composed of repetitive
sequences [34]. In addition, the large genomes of higher plants including
maize and wheat are composed mostly of repetitive sequences [3, 7, 19]. In
some bacteria, repetitive plasmid sequences are so similar to one another that
it is extremely difficult even to determine how many plasmids are present, as
in the case of the Lyme disease spirochete [20].

Although repeated sequences represent a diverse group of features, they
tend to fall into one of two broad categories: tandem repeats or dispersed
repeats. Tandem repeats are those that are found directly adjacent to one
another, contiguously arrayed. These are often termed “satellite” DNA. Sim-
ple sequence repeats (SSRs or microsatellites) are tandem repeats where the
repeat unit is very short, typically 1–6 nucleotides. SSRs tend to have a uni-
form distribution within genomes, and are sometimes found within protein
coding and untranslated regions of genes. Trinucleotide repeats within genes
are of special interest since they have been linked to several human genetic
disorders, including Fragile-X mental retardation, Huntington’s disease and
myotonic dystrophy [37, 50, 51]. The term “satellite repeat” typically refers
to repeat units greater than 100 bp, which are found as contiguous stretches
that can span up to tens of thousands or even millions of base pairs of chro-
mosomal DNA. Such satellite repeats include the 170- to 180-bp repeat units
found at centromeres of higher eukaryotes [12, 23] and the long contiguous
rDNA cassettes that comprise nucleolus organizer regions [47]. The term
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minisatellites is used to refer to tandem repeats with unit lengths intermediate
to SSRs and satellites.

Dispersed repeats predominantly consist of transposable elements – mobile
sequences that can cut and paste or copy themselves to other locations in a
genome (for details, see Refs. [11, 13]). Complete autonomous transposons
encode one or more proteins that are required for their mobility, and can
exceed 10 kb in length. Nonautonomous transposable elements also para-
sitize genomes; these numerous elements lack the machinery for their own
transposition and rely on the proteins encoded by other complete elements to
mediate their transposition. Transposons tend to be most abundant in regions
of heterochromatin, typically in pericentromeric regions mostly devoid of
expressed genes. These elements are sometimes found within introns of genes
or interrupting an exon, in which case the gene is likely rendered nonfunc-
tional. Dispersed repeats account for a majority of the repeat content in large
eukaryotic genomes. Little is known about the purpose of transposons; they
are often regarded as “selfish” elements that provide no benefit to the host
organism.

Molecular events resulting in gene duplication, including unequal crossing
over during meiotic recombination, recombinational repair or, at the extreme,
whole genome duplications, also generate repeated sequences. On the small-
est level, slippage of the DNA replication machinery can result in short repeats
gaining additional copies. Depending on the event responsible for the ge-
nomic rearrangement and the resulting configuration of the genetic material,
the duplicated segments may appear in tandem or at remote locations typical
of dispersed repeat families. Repeat regions are involved in multiple human
diseases, the most well-known being Down’s syndrome, which involves an
extra copy of chromosome 21. Both Huntington’s disease and Fragile X
syndrome result from an expansion of trinucleotide repeats. At another level,
repeats are used for the new science of microbial forensics; as these regions are
among the most highly variable in many species, they provide unique DNA-
based signatures that distinguish bacteria from one another, including very
closely related strains of organisms such as the anthrax bacterium, Bacillus
anthracis [49].

Rigorous studies of genome sequence repeats involve identifying similar
sequence pairs, grouping the related elements to examine their number and
distribution within the genome, differentiating repeats of known function
from those of unknown function (and genes from nongenes), and unraveling
the details of the length, number of copies and orientation of repeat elements.
Each step of the analysis is complicated by the nature of the underlying repet-
itive sequences, including the degree of divergence between related elements,
the background of genomic architectural rearrangements which disrupt or
conceal the original repeats and the resulting mosaic nature of repeat ele-
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ments such that related repeats may share only a subsequence in common.
In particular, the boundaries of repeats are notoriously difficult to resolve,
complicated by issues described above coupled with the difficulty in obtaining
pairwise alignments which terminate precisely at repeat boundaries. An
often-cited statement made by Bao and Eddy [4] nicely summarizes the state
of automated repeat finding: “the problem of automated repeat sequence
family classification is inherently messy and ill-defined and does not appear to
be amenable to clean algorithmic attack”. This remains true today, although
new algorithms, tools and ideas regarding repeat analysis continue to shed
light on the problem.

Repetitive sequences impose formidable challenges to sequence analysis in
the postgenomic era. They create havoc for genome assembly; regions rich in
repeats are difficult if not impossible to assemble correctly using currently
available tools and algorithms, and often lead to misassembly of regions
flanked by repeats or excessive fragmentation of what would otherwise be a
more cohesive genome sequence (see also Chapter 2). Subsequent to sequence
assembly, genome annotation is also confounded by repeats. In particular,
the transposon sequences found between genes and within introns can be
easily mistaken for exons of protein-coding genes by gene-finding programs.
This “junk” DNA requires prior recognition and exclusion to facilitate more
accurate identification of the coveted host genes localized to the remaining
sequence (see also Chapter 5).

This chapter focuses on the algorithms and tools commonly used for iden-
tifying repeats in genome sequences. The impact of repeats on genome as-
sembly and methods used by assemblers to circumvent associated problems
are described. Additional topics include methods for clustering elements to
organize repeat families, resolving repeat boundaries, efforts to untangle the
mosaic nature of related repeats and the annotation of repeat sequences.

2 Algorithms and Tools for Mining Repeats

Sequence alignment is at the very core of repeat identification. In contrast to
aligning sequences from different genomes to identify regions of homology,
sequence alignment is applied to a single genome, as a single sequence or
collection of sequences, to identify significant intra- and inter-sequence simi-
larities. The more general application of repeat analysis is summarized as first
finding all pairwise alignments, then clustering related elements. Finding all
pairwise alignments is relegated to standard sequence alignment tools and
algorithms, a topic described in Chapter 3 and so minimally covered here.
Clustering of repeat elements into repeat families is a major challenge, and re-
cent efforts to deconvolute pairwise alignments into more meaningful repeat



200 7 Finding Repeats in Genome Sequences

sets are described. Finding tandem repeats is a related, but distinct challenge;
a vast amount of literature exists on this topic, describing algorithms and tools
which are specially designed for this aspect of repeat structure. Because of
this, tandem repeats are the focus of a separate section in this chapter.

2.1 Finding Intra- and Inter-sequence Repeats as Pairwise Alignments

Pairwise sequence alignment algorithms are well suited to the problem of
repeat identification; due to the enormous complexity of the problem in large
genomes, heuristics are required to improve efficiency. The Smith–Waterman
alignment algorithm [54] finds the single best-scoring local alignment between
two sequences. If the sequences being compared are two distinct entries from
the collection of sequences corresponding to the single genome under study,
this best local alignment would suffice as a repeat. This approach cannot
be used, however, when the genome is a single contiguous sequence, as is
often the case for complete bacterial, archaeal and viral genomes. Comparing
a sequence to itself to find the best local alignment would yield only the
obvious perfect alignment along the diagonal corresponding to the align-
ment of the sequence matching itself from beginning to end. A modification
to the Smith–Waterman algorithm, as described by Waterman and Eggert
[58], affords the identification of all nonintersecting high scoring alignments,
rather than just the single best local alignment between two sequences (see
also Chapter 3). This modification unravels the internal repetitive struc-
ture of a sequence when aligned to itself. Huang and Miller [24] describe
the sim algorithm, which yields all high scoring nonintersecting alignments
using linear space, and the lalign utility of Bill Pearson’s fasta2 toolsuite
(http://ftp.virginia.edu/pub/fasta/) is a popular tool that implements this
algorithm. The accompanying plalign utility generates an illustration of the
repetitive structure as a postscript file.

Although these algorithms are well suited to repeat finding, they are simply
not fast enough to tackle large genomes and so we turn to heuristics. The
“seed and extend” heuristic is perhaps the most common strategy to quickly
ascertain significant pairwise alignments between sequences. Early uses of
this strategy include the FASTA algorithm [43], followed by the hugely popu-
lar BLAST algorithm [1, 2], among other database search and alignment tools
including MUMmer [14, 15, 32], PatternHunter [35, 36] and BLAT [29], and a
less well known but similarly useful tool for studying repeats called ICAass
[41], the repeat mining utility of the Miropeats software [42]. Here, matches
to exact words of predefined length provide the seeds for alignments, which
are extended in both directions to extract the maximal scoring alignment
containing the seed (see also Chapter 3). A major limitation of these methods
is the requirement of a predefined seed length. A seed length that is too short
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requires numerous extensions, few of which lead to significant alignments. A
seed length that is too long involves fewer extensions, but many significant
alignments may lack such a seed and are missed. The programs MUMmer
and Reputer [31, 33] take a more sophisticated approach, employing a suffix
tree data structure to find exact word matches. The suffix tree is not limited
to finding seeds of a constant length; all exact matches are found regardless of
length and this is done very fast, in linear time and space.

The focus of repeat-finding software can vary; the focus may be to find all
matching substrings within a sequence or among a collection of sequences,
or the focus may be the postprocessing of pairwise alignments to cluster
related elements into families, resolve repeat boundaries or to illustrate the
mosaic nature of repeated sequences. Progress in repeat analysis, as in other
areas, builds upon previous contributions to the field. As such, we present an
overview of each contribution in roughly chronological order.

2.2 Miropeats (alias Printrepeats)

Miropeats [42] is perhaps one of the earliest and most popular repeat-finding
analysis tools to find widespread use in genome sequence analysis (see, e.g.
Refs [52]). The repeat-finding engine of Miropeats is the program ICAass
of the ICAtools suite [41]. ICAass finds maximal gap-less aligned segment
pairs (MSPs) within a single sequence and/or among a collection of sequences
using a “seed and extend” strategy similar to that used in BLASTN [1b].
All overlapping 8-mers are loaded into a hash table, using two-bits per base
encoding and so allowing 4 bases per byte. All sequences to be examined
are indexed and the 8-mers are then used to seed potentially longer align-
ments. Those ungapped alignments meeting the minimum score threshold are
reported. While the ICAass program includes additional components, only
the MSP identification steps are utilized by Miropeats. Miropeats is a Unix
C-shell script that calls ICAass to identify MSPs as repeats, and then writes
a postscript file which illustrates the positions and associations among the
repeats. Arcs are drawn between the matching end-points of each repeat pair
and arcs are drawn in such a way to help ascertain their relative orientation
and overlap. Although ICAass is used, in theory, any program capable of gen-
erating meaningful pairwise alignments could be employed, including BLAST
(i.e. WU-BLAST with the -span option selected), BLAT or PatternHunter,
although Miropeats would require some minor customization to accept this.
The strength of Miropeats as a repeat analysis tool lies in its illustration
capabilities, particularly with respect to those repeats found in close proximity
along the nucleotide sequence, e.g. the structures of transposable elements
typically include some form of terminal repeat, either direct or inverted, at
the elements’ boundaries. The illustration of repeats within transposon-rich
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regions helps to elucidate their terminal repeat structures as well as their rela-
tive abundance along the genomic contig; an example is provided in Figure 1,
where the long terminal repeats (LTRs) of a gypsy-family retrotransposon are
nicely illustrated by the Miropeats software). (A “contig” is a contiguous
stretch of DNA without gaps. Whole-genome shotgun (WGS) sequencing
projects generally produce nearly complete genomes that consist of a set of
contigs separated by gaps.) As with other repeat-finding applications, the use
of Miropeats extends beyond repeat analysis and includes additional areas
of sequence comparison, such as to position a small set of bacterial artificial
chromosomes (BACs) in a section of a genome BAC tiling path by defining
the overlaps among their ends (see also Chapter 2). Due to the relatively
slow ICAass repeat-finding step and because of the static illustration of the
repeat structures provided by Miropeats, the software is limited in practice to
analyzing sequences whose length is no more than a few hundred thousand
base pairs, although application to longer sequences is not restricted.

2.3 REPuter

Of the methods available for finding repeated strings in genomic sequences,
those based on suffix trees are most efficient and practical for large-scale
genome analyses. A suffix tree is a data structure specifically designed to
capture a text string and all of its substrings, which makes it well suited
for capturing DNA and protein sequences. The tree itself is set of nodes
and edges, where each edge is labeled with a string. A suffix of a string S
(which might be an entire genome, for example) is simply a substring that
starts within S and extends to the end of S. A suffix tree represents all suffixes
of S implicitly; each suffix is a path from the root node to a leaf node of S.
Internal nodes of S represent other (nonsuffix) substrings; in fact, a suffix
tree contains all substrings of S. Suffix trees represented a major advance
over previous sequence analysis techniques because of two key properties:
(i) the size of the tree is a linear function of the size of the sequence, and (ii)
the tree can be constructed and searched in linear time. This contrasts with
alternative sequence alignment methods, which are quadratic in time, space
or both. Details regarding construction and search algorithms for suffix trees
are described in Ref. [22].

Stefan Kurtz’s REPuter software [31,33], the first production quality repeat-
finding software to employ suffix trees, can mine complete eukaryotic genomes
(megabase pairs) for all maximal repeats in a matter of seconds on a personal
computer. REPuter has existed in two versions. The earlier version, first
described in 1999, was limited to finding identical maximal repeats. An
enhanced tool suite was released under the package name REPuter in 2001
with the search engine named REPfind, capable of extending the problem of
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repeat finding from identical repeats only, to approximate repeats, allowing
for mismatches and indels. Each version introduced key concepts and
contributions to repeat analysis, so each is described here in order of their
availability. To distinguish between the two versions, the earlier version is
referred to as REPuter and the later version as REPfind.

As stated earlier, REPuter is limited to finding exactly identical maximal
repeats; the repeats are maximal in that extending the alignment between
two paired sequence regions would introduce a mismatch and violate the
requirement of identical sequence pairs. REPuter can find the following four
classifications of repeats, each exemplified using the 4-mer “gcta” and the
forward sequence orientation (top strand only):

Forward: 5′-gcta-3′ with 5′-gcta-3′
Palindromic (reverse complemented or inverted): 5′-gcta-3′ with 5′-tagc-3′
Complemented: 5′-gcta-3′ with 5′-cgat-3′
Reversed: 5′-gcta-3′ with 5′-atcg-3′

Although cataloguing all identical sequence substrings is a useful component
of repeat analysis, few repeats, unless very recently duplicated, will be free of
mismatches or indels. As a result, these repeated identical substrings are often
parts of larger repeat units that are nonidentical, although detectibly similar
in sequence. REPfind takes this into account and is able to find degenerate
repeats, allowing for mismatches and insertions/deletions (indels) as part of
the larger repeats.

REPfind exhaustively finds all degenerate repeats in a genome sequence
given a user specified minimum length and maximum number of errors. Er-
rors are measured by one of two methods: hamming distance or edit distance.
Hamming distance corresponds to the number of mismatches in a gap-free
sequence alignment. Edit distance includes the number of differences in
an alignment possibly containing indels. The identification of approximate
repeats relies on the basis that every degenerate repeat contains a substring of
identical sequence.

To find approximate repeats, REPfind locates all exact word matches fol-
lowed by an extension process to determine if the word match is part of
a longer degenerate repeat. Approximate repeats of two types are found:
maximal mismatch repeats using the MMR algorithm and maximal difference
repeats using the MDR algorithm, as described below. Both types of repeats
rely on the existence of an exact word match; the exact word matches are
found as described earlier by the original REPuter software.

The MMR algorithm finds a gap-less maximal mismatch repeat by looking
for the longest alignment that contains the seed and has no more than k mis-
matches (the degenerate repeat in this context called a maximal k-mismatch
repeat; here k is a specified parameter. This is done by identifying the first k + 1
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mismatched nucleotides to the left of the seed [ordered from left to right (l1,
l2, . . . , l(k + 1))], followed by identifying the first k + 1 mismatches to the right
of the seed (ordered r1, r2, . . . , r(k + 1)), with the mismatches l1 and r(k + 1)
bounding a sequence region of k mismatches from the left or right of the seed
boundary, respectively. For all values of i, from 1 to k + 1, the substring with
coordinates li + 1 to ri – 1 contains exactly k mismatches. The k-mismatch
substring with the greatest length is reported.

The MDR algorithm extends seeds taking into account insertions and dele-
tions. The idea is similar to the MMR algorithm in that k-differences are
explored to each side of the seed, and the combination of coordinates within
this range which maximize repeat length and satisfy the k-mismatch criteria
are chosen. The primary difference is that, instead of searching for nucleotide
differences along a single dimension as with MMR, a search is performed in
two dimensions allowing for insertions and deletions. A dynamic program-
ming matrix banded at ±± (k + 1), extending from both ends of the seed, is
used to find all alignment termini yielding each of 1 to k maximum number
of mismatches. Each pair of alignment termini are examined and the pair of
left and right termini providing the longest repeat length and a maximum of
k-differences is reported.

It is often the case that a single maximal k-difference repeat will contain mul-
tiple seeds. To avoid outputting distinct maximal k-difference repeats which
contain seeds of neighboring k-difference repeats, the alignment extensions to
the left of a target seed are restricted to the right of any previously occurring
seed. This guarantees that each maximal k-difference repeat will derive from
the extension of its left-most containing seed.

By default, REPfind reports only exact matches, as done by the earlier
REPuter program. Options are available to pursue either k-mismatch repeats
using the MMR algorithm or k-difference repeats using the MDR algorithm.
Unless there is a keen interest in obtaining gap-less repeats only, it is sensible
to mine maximum difference repeats exclusively using the MDR algorithm,
given that it will report maximum matches with or without gaps, whichever
provides the maximal k-difference repeat. Rather than setting the k-value
directly, the user can specify the parameter values of minimum repeat length
and a maximum error rate, from which the value of k is computed internally.

An improvement over the earlier REPuter software is the inclusion of sta-
tistical significance for each of the repeats found in the form of an E-value (see
Chapter 3 for an explanation of the concept of an E-value). In the case that
multiple solutions exist for the maximal k-mismatch or k-difference repeat,
the single repeat yielding the sequence with the smallest E-value is reported.
By selecting the option “-allmax”, each solution is reported in the case of ties
among candidates meeting the maximum length k-difference criteria.
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REPuter is available to researchers in several forms: a set of command-line
driven utilities for local installations, a comfortable web interface for more
interactive and targeted analyses and most recently as a web service enabling
distributed computing environments with repeat analysis capabilities.

We should note that the REPuter package, although still widely used and
available to researchers, has more recently been subsumed by the Vmatch
large-scale sequence analysis software (Kurtz, unpublished; http://www.
vmatch.de). Improvements include the use of suffix arrays in place of suf-
fix trees, which reduces memory requirements and processing time. Also,
the alphabet of sequences to be aligned is no longer restricted to nucleotide
characters, allowing one to examine protein sequences as well.

2.4 RepeatFinder

Given fast and efficient methods to detect pairwise similarities within or
among sequences, some repeat analysis software is devoted to the postpro-
cessing of pairwise alignment data to collect and organize the repetitive se-
quences identified. An early example of this is the Repeat Pattern Toolkit
(Agarwal and States [1a]) applied to the clustering of WU-BLAST ungapped
alignments derived from 3.6 Mbp of the Caenorhabditis elegans genome, placing
the alignments into a graph, and finding the minimum spanning tree for
connected components to represent the relationships between repeats. A more
modern approach involves the postprocessing of repeats found using suffix
trees.

Natalia Volfovsky’s RepeatFinder [56] uses a catalog of exactly repeated
strings to further refine the definitions of individual repeated elements fol-
lowed by the construction of repeat classes. In contrast to our canonical
definition of a repeat as a pair of sequences which share similarity from
beginning to end, RepeatFinder describes merged repeats where a merged
repeat is found elsewhere in the genome at least once, and may be found
in partial copies. The exactly repeated strings are found using the original
REPuter software; a newer version of RepeatFinder uses REPfind. These exact
matches compose the initial repeat set and these are redefined as repeat ele-
ments using a merging procedure. Since repeated sequences are expected to
contain mismatches and indels, few complete repeats will be reported as exact
matches. The merging procedure serves to consolidate regions defined as
repeats that are found in close proximity or overlapping along each genomic
sequence. By doing so, indels and mismatches fragmenting single repeats
into disparate word matches are merged into larger degenerate repeats, and
the dispersive and the fragmented nature of repeat regions is accounted for
(i.e. portions of a larger repeat may be found as separate fragments elsewhere
in the genome). The merging procedure to redefine repeat regions is restricted
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to either merging overlapping repeats, or merging neighboring repeats, with
minimum overlap or gap size as user-specified parameters, respectively.

Each merged repeat retains a list of all the originally identified repeats
(considered subrepeats) contained by it. Clustering of related merged repeats
is done by grouping those merged repeats containing subrepeats in common
into the same class. In order to further collapse clusters of similar elements,
an “all-vs-all” BLASTN search is performed and separate clusters containing
elements with sequence similarity (below a specified E-value threshold) are
grouped into a single cluster.

Although the software is useful for rapidly extracting repetitive sequences
from the genome and grouping related elements, the boundaries of the repeats
remain ill-defined and all members of each cluster are not guaranteed to
be similar to each other given the transitive relationships established via
the clustering algorithm employed. More sophisticated clustering methods
employed by RECON [4] address these issues more satisfactorily.

2.5 RECON

Bao and Eddy’s development of RECON [4] for repeat analysis was viewed
as a pioneering effort, as it represented the first tool to attempt to delineate
boundaries of repeat elements in a biologically meaningful way. The algo-
rithm of RECON is broken down into the following major tasks: obtaining
pairwise alignments among the input sequences, defining elements based
on the pairwise alignments and, finally, grouping elements into families. In
contrast to RepeatFinder which obtains the pairwise alignment data using
REPuter, RECON uses BLASTN of the WU-BLAST package [21]. The process
of defining repeat elements based on pairwise alignment data is illustrated in
Figure 2.

Repeat elements are initially defined by collapsing the overlapping pairwise
alignments along the genomic sequence (Step II in Figure 2). Multiple align-
ment information is used to infer the boundaries of the element, and also to
recognize and partition those elements found to be composed of multiple dis-
tinct repeat units. Given the set of overlapping alignments that initially define
a repeat element in the genomic sequence, a preponderance of alignment ends
found clustered to a short region of genomic sequence signifies a boundary
of an element. Some candidate boundaries may be misleading because they
derive from related but distinct repeat elements, those which share subrepeats
in common, but are otherwise different. Misleading alignments between pairs
of elements are identified by their proportionally large amount of unaligned
sequence when compared to the entire element lengths (not shown). These
are then discarded from subsequent element boundary refinement methods.
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Figure 2 RECON’s algorithm for defining
repeat elements. In the first stage, WU-
BLAST is used to generate pairwise
alignments. These pairwise alignments are
collapsed along the genomic sequence
to define regions of alignment coverage.
Clusters of alignment boundaries within

short windows are used to redefine
element boundaries and initial elements
are repartitioned at these boundaries into
separate elements. Short elements likely
resulting from falsely extended alignments
(from the first step) are removed to yield the
refined final element set.

After eliminating the misleading alignments, the remainders are examined
for the purpose of boundary refinement. Aggregations of alignment end-
points are identified by sliding a short window of predefined length (default
30 nucleotides) along the repeat element, clustering all neighboring align-
ment ends found separated by no more than the window size. The ratio of
alignments with clustered ends to the total number of alignments spanning
the corresponding region is used as an indicator of the significance of an
aggregation point. A ratio above a specified threshold (default of 2.0) infers
a boundary condition and the boundary is defined as the mean coordinate
value for the clustered ends. Upon finding a significant aggregation point,
the original element is considered composite. The composite element and
its underlying supporting alignments are split at the boundary, and the split
alignments are reassigned to their corresponding split element (Step III of
Figure 2). Elements without significant aggregation points remain as origi-
nally defined. Split elements or the split supporting alignments found shorter
than a minimum length cutoff are presumed artifacts due to the short random
extensions that occur in pairwise alignments and these are discarded (Step IV
of Figure 2). The remaining elements provide the set of repeats with defined
boundaries.

Following the identification of the individual repeat elements as described
above, the elements are classified into families. Special effort is taken to
group related but distinct families separately. First, candidates for family
membership are chosen by examining alignments between element pairs.
For the purpose of clustering the elements, a graph is constructed in which
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elements are represented by nodes and relationships between nodes repre-
sented by edges. Edges are classified into two types: primary edges are
used to link elements of the same family, those elements found to align to
more than a specified threshold of length coverage of either element (default
90%); secondary edges link elements of different but related families that
contain significant alignments but below the threshold of alignment coverage
required for family membership. Before clustering family members based on
the primary edges, all edges require reevaluation because some edges may
have been falsely classified as primary edges. Partial elements are easily
misclassified with primary edges during edge assignment since they pass the
alignment coverage test with complete elements to which they are compared.
It is by virtue of the secondary edges that false primary edges are identified
and remedied. False primary edges are found via triangles of inequality: for
example, elements A and B are deemed from the same family (primary edges),
and elements A and C are deemed from the same family (primary edges), but
elements B and C are deemed from separate families (secondary edge). In this
case, element A is presumed partial given that it aligns with high coverage
separately to the two elements B and C, which themselves lack significant
coverage of alignments between them. To prevent element A from grouping
the two related but distinct families together, all but the single primary edge
extending from A, corresponding to its most similar element, are removed.
Following the conversion of false primary edges to secondary edges, all the
secondary edges are removed and families are generated by transitive closure
of the remaining primary edges.

The algorithm of RECON addresses the problem of delineating the bound-
aries of individual repeat elements as they are found in the genomic sequence,
but it does not describe the mosaic nature of the related repeat elements
nor the consensus boundaries and length of a prototypical element among
a family of elements. A rough consensus sequence for large RECON-defined
repeat families can be derived from alignments of the longest repeat elements
within each large family. This is a useful approximation and works well for
some repeat families, but is not rigorous enough to yield a consensus for each
repeat family in a biologically meaningful way.

2.6 PILER

As discussed in the Introduction, repeats are diverse features, with wide vari-
ety in size, location and biological function. Major classes of repeats, including
dispersed or tandem repeats, yield specific patterns in the context of whole-
genome self-alignments. Bob Edgar’s PILER [16] includes a suite of tools each
of which focuses on specific patterns evident in sets of alignments to reliably
identify elements of the corresponding repeat class. Examples of patterns



210 7 Finding Repeats in Genome Sequences

Figure 3 Patterns of sequence alignments
targeted by PILER. Dot plots are shown for a
comparison of a genome sequence against
itself, with the dotted line as an indicator of
the main diagonal of the plot. (a) Patterns
of alignments generated by alignments of
members of a family of dispersed repeats

A1, A2 and A3. (b) The “pyramid” pattern
generated by alignments from a stretch of
tandem repeats B1 through B4, indicating
a repeat length of a. Figures were derived
from Ref. [16], and reproduced here with
permission from author Bob Edgar and
Oxford University Press.

sought by PILER are illustrated in Figure 3. The individual tools of PILER and
corresponding repeat classes are: PILER-DF for detecting individual intact
elements of a dispersed repeat family, PILER-PS to find pseudo-satellites,
PILER-TA to find tandem arrays, and PILER-TR to find repeat elements that
have terminal repeats (a common characteristic of intact transposable ele-
ments).

Similarly to RepeatFinder, RECON, and other repeat finding and cluster-
ing tools, a set of intra-genome alignments is required. Rather than rely
on REPUTER or BLAST to generate alignments, PILER includes an efficient
alignment program called PALS (Pairwise Alignment of Long Sequences),
which is specially designed with optimizations for detecting repetitive se-
quences; optimizations targeted towards searching a sequence against itself,
limiting searches to banded regions and unrestricted reporting of numerous
colocalized alignments, among others. After generating all alignments, over-
lapping hits along the genome sequence are linked together into a “pile” of
contiguously overlapping alignments. These piles of hits are further subjected
to specific analyses provided by the PILER-* utilites.

PILER-DF is designed to detect “Dispersed Families” of repeats with char-
acteristics of transposable elements. The specific signature of a dispersed
family as revealed by pairwise alignments is illustrated in Figure 3(a). The
isolated elements are found as globally alignable regions, all with alignments
of similar lengths. The goal of PILER-DF is to find aligned pairs that have
similar characteristics. This is done by analyzing aligned sequence pairs such
that each aligned region is found in a different pile (dispersed). Given a
pairwise alignment between X and Y, such that X and Y are in different piles,
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an edge is drawn between X and Y if each aligned region spans most of its
corresponding pile [(length of X)/(length of pile containing X), (length of
Y)/(length of pile containing Y)]. After examining all pairwise alignments
in this matter, all connected components are found in the resulting graph.
The connected components are interpreted as dispersed families of complete
repetitive elements.

PILER-PS searches for “Pseudo-Satellites; – repeats with features of satel-
lite sequences in that they are found clustered locally in the genome. The
algorithm here is identical to PILER-DF with the exception that the pairwise
alignments result from a banded search, requiring that the alignments be in
close proximity to one another.

PILER-TA finds “Tandem Arrays”. The repeat-finding tools described so far
are mostly limited or specially tuned to find dispersed repeats. PILER-TA is
an exception in that it purposely mines these features from the genome. Please
note that the general topic of finding tandem repeats is the major focus of the
next section of this chapter and so it will be mentioned only briefly here as it
relates to PILER. Sequences arrayed in tandem leave a specific signature in the
pairwise alignments termed “pyramids” (see Figure 3b). The first observation
is that pairwise alignments in a given pyramid are restricted to the same pile
since all of them overlap. A banded search is used to find pairs of alignments
within a pile that have the following characteristics: the shorter alignment
pair is at least half the length of the longer alignment pair, and the distances
between the alignments’ respective start and end coordinates are each within a
predefined percentage of the shorter alignment length. All pairs of alignments
meeting such criteria are connected by an edge and, at completion, all con-
nected components are gathered. Each connected component is interpreted as
a tandem array. Simple heuristics are employed to define boundaries between
the individual repeat elements. Diagonal distances that are in good agreement
define the element length and sequences of this length from hit end-points
provide representative elements of the array.

PILER-TR finds families of elements with “Terminal Repeats”. This search
is geared towards finding transposable elements with terminal repeats, such
as the long LTR retrotransposons. The signature of these features is a set
of repeats, about 50–2000 bp, separated by anywhere from 50 to 15 000 bp
(all default parameters). A banded search is used to find candidate terminal
repeats. To avoid reporting tandem repeats and pseudo-satellites that would
also be found via a banded search, these are found and masked as a prereq-
uisite to this search. After finding candidate terminal repeats, a second search
is carried out to find different elements with matching terminal repeats, in
which case a nonbanded regular search is performed. All candidates with
matching terminal repeats are clustered and reported as families of terminal
repeat elements.
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2.7 RepeatScout

Alkes Price and Pavel Pevzner’s RepeatScout [46] takes a distinct approach
to repeat family identification, which circumvents some of the difficulties
associated with the more traditional approach involving the postprocessing
of pairwise alignments. Generating pairwise alignments as the first step
of repeat sequence identification can take a long time, utilize many CPU
cycles and generate copious output that can consume an enormous amount
of disk space. With large genomes, this can be intractable and further effort
is required to partition data sets into more manageable inputs, all of which
can adversely affect the results obtained. In contrast, RepeatScout employs a
repeat family search stage heuristic similar to that used in database-searching
algorithms like BLASTN [1b]. Where BLASTN requires that two potentially
homologous sequences share at least one exact word match in common, Re-
peatScout requires that all initially targeted members of a repeat family share
at least one exact word in common. In basic terms, RepeatScout uses an exact
word match (seed) to identify potential members of a repeat family, and then
maximally extends alignments of all targeted regions to the left and right
of the seed to compute a consensus sequence representation of the repeat
family with repeat boundaries optimized. The specifics of this approach are
described below.

The first phase of the RepeatScout algorithm involves scanning the genome
for frequently occurring words. A collection of genomic sequences are
scanned and the positions of all words of user specified length (i.e. 13-
mers) are catalogued. Closely spaced repeat word occurrences are ignored to
avoid tandem repeats [tandem repeat finding is relegated to Tandem Repeat
Finder (TRF) [9] and is not an objective of RepeatScout]. After the scanning
is complete, frequently occurring word matches are fed to the final phase
of RepeatScout – the repeat family identification and consensus sequence
construction stage.

Starting with the most frequently occurring word, RepeatScout attempts to
extend all such word occurrences to the left and to the right, terminating the
extension at what are considered to be the most appropriate boundaries of the
repeated element, and simultaneously generating a consensus sequence for
this repeat family. The extension phase is perhaps the most distinctive and
critical feature of the RepeatScout algorithm, and it is the extension algorithm
that rigorously defines the repeat boundaries. The consensus sequence gen-
erated by the word extension phase is optimally aligned to all members of
that repeat family and cannot be further extended without reducing the total
alignment score. This is accomplished by the following objective function,
which computes the score of the consensus sequence as the sum of the scores
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of each individual repeat element aligned to the consensus:

A(Q; S1, . . . , Sn) =

⌊
∑
k

max{a(Q, Sk), 0}
⌋
− c ∗ length(Q)

where a(Q, Sk) corresponds to the score of an alignment between the consen-
sus sequence Q and a genome sequence substring (Sk) of equal length that
extends from both ends of the seed. The constant c imposes a minimum
threshold on the number of individual repeat elements (Sn) that must align
with the consensus sequence to provide a suitable representation of a repeat
family.

The choice of alignment function a(Q, Sk) determines how the consensus
sequence boundaries are positioned. With a Smith–Waterman local alignment
function [54], short partial repeats would not be penalized and spurious align-
ment extensions to the more complete elements could drive the consensus
boundary position beyond more appropriate repeat boundaries. Towards the
other extreme, a fit-alignment algorithm, which fits one sequence into another
[57] could be used to force all underlying complete and partial elements
to match the consensus, but this can have the affect of yielding consensus
boundaries that underrepresent the true boundaries. As a more suitable
compromise between these two scenarios, the authors introduce a fit-preferred
alignment function that yields a consensus sequence shared by some but not
all of the underlying complete and partial copies. The fit-preferred alignment
function is described below:

f (i, 0) = max(−γi,−p) ,

f (0, j) = 0 ,

f (i, j) = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (i− 1, j− 1) + μij

f (i, j− 1)− γ

f (i− 1, j)− γ

−p

,

a(Q, S) = max
i,j

{
f (i, j) if i = |Q|

f (i, j)− p if i < |Q|
where the match/mismatch score is provided by μij, the gap penalty score
by γγ and the fixed incomplete-fit penalty provided by p. Here, f (i, j) is the
score of a best alignment between the 1, . . . , i characters in the consensus
sequence Q and 1, . . . , j characters in the repeat element S. The fit-preferred
alignment score a(Q, S) is simply f (i, j) if the best alignment includes the
entire consensus sequence. If not, the incomplete-fit penalty is subtracted
from the best alignment score, penalizing the alignment for not including the
entire consensus sequence.
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The fit-preferred alignment algorithm is used by RepeatScout to generate
alignments separately to the left and to the right of the word match. The
fixed incomplete-fit penalty (p) is subtracted from the score of any optimal
alignment to the consensus sequence that fails to extend all the way to the
left boundary of the consensus sequence; an analagous penalty applies to
the right boundary. If the alignment is incomplete on both boundaries, the
penalty is subtracted twice. The result is that partial copies of the element
are penalized in the presence of longer, more complete elements, and the
consensus sequences that are generated are more suitable representations of
the underlying repeat copies targeted by the exact word match. False-positive
candidate elements targeted by the initial word matching strategy do not
pose problems for RepeatScout; these will acquire negative alignment scores
and are eliminated from contributing to the consensus by virtue of the main
objective function.

The most rigorous approach to generating the consensus sequence would
involve n-dimensional dynamic programming (where n is the number of
sequences), but this would not be practical or even possible for more than a
few sequences given that this task would be NP-hard. Instead, a heuristic
approach is taken to generate the consensus whereby the word match is
extended to the left and right one nucleotide at a time. A single nucleotide ex-
tension is attempted using each of the four nucleotides (G, A, T and C) and the
single nucleotide extension providing the optimal alignment score is chosen.
The consensus sequence is constructed greedily in this way until a maximal
score is obtained and a predetermined number of subsequent iterations fails
to improve upon this maximal score. The consensus sequence providing the
maximal score is chosen to represent the underlying set of repeats and the
termini of the consensus sequence delimit the repeat boundaries.

The RepeatScout algorithm, as described, is applied to each frequently
occurring word match, beginning with those most frequent. As a single
repeat family is likely to contain many exact word matches, effort must be
taken to prevent re-identifying the same repeat family based on other yet-
to-be processed frequently occurring words. In an attempt to prevent this
effect, the counts of words found within approximate occurrences of the
consensus sequence are readjusted within the set of frequently occurring
words, decreasing the chance but not absolutely preventing the possibility
of finding the same (or a portion of a) repeat family identified previously.
A future release of RepeatScout may improve upon this functionality for
identifying approximate occurrences of the consensus sequence, in order to
more completely preclude repeat family rediscovery based on subsequent
word matches.

The task of finding occurrences of repeat family members in the genome is
relegated to searching the genome with the database of consensus sequences
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using RepeatMasker, BLAST or another sequence search and alignment util-
ity. These homology searches may find repeat elements that have diverged
considerably from those used by RepeatScout to generate the consensus (i.e.
they lacked an exact word match required to be included in the consensus
sequence construction stage of RepeatScout). This procedure provides a pow-
erful mechanism to rigorously identify and annotate the individual elements
of a larger repeat family.

3 Tandem Repeats

Tandem repeats form a special class of repetitive sequences, composed of a
contiguous stretch of two or more copies of a repeat pattern. The length of
the repeat pattern is called the period. This class of repeats, termed satellites,
is of great biological relevance, found to correspond to specialized structures
within eukaryotic genomes such as the short pentamer to heptamer repeats
that form telomeres, and the longer repeats that form centromeres (e.g. 180-
bp period repeats in Arabidopsis). Microsatellites (SSRs), found both within
and between genes, are of great interest to those studying biodiversity and
population genetics, and for DNA fingerprinting studies. Expansions in trin-
ucleotide repeats have been correlated with various disease states, including
Huntington’s disease and Friedreich’s ataxia, among others.

The problem of finding tandem repeats has received much attention from
computer scientists and biologists alike, due to both the tractability of the
problem from an algorithmic perspective and because of the importance of
tandem repeats in their diverse biological roles. The challenge of finding
tandem repeats involves identification of the repeated pattern and the number
of times the pattern is repeated. Over the past decade, many algorithms
have been proposed for the identification of tandem repeats, some of which
seem to be academic exercises in algorithm development and few are found
implemented in publicly available software for the general application of
tandem repeat finding in the postgenomic era. One exception is Gary Benson’s
TRF [9], which has seen widespread use in genome sequence analysis and
remains the most popular tandem repeat analysis software today. Alternative
tools for finding tandem repeats have recently become available and extend
the repertoire of essential software available to genome researchers. Here, we
survey a few of these tools and describe the algorithms employed for finding
tandem repeats.
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3.1 TRF

Gary Benson’s TRF is a powerful software tool capable of finding exact and
approximate (containing mismatches or indels) tandem repeats in genomic
sequences [9]. The algorithm employed in TRF is broken into two stages; first,
the detection component which identifies candidate tandem repeats using a
set of statistical criteria, followed by the analysis component calculates the
consensus repeat pattern and period size using sequence alignment methods.

TRF initially detects tandem repeats based on the premise that similar
sequences found contiguously arrayed are likely to share exact substrings,
and the distance between paired substrings will be approximately the same
and correspond to the period of the tandem repeat. In a search for these exact
substrings that may target a tandem repeat, the genomic sequence is scanned
from left to right for exact word matches, with some fixed word length w.

All further analyses of the candidate tandem repeat during this detection
phase rely on statistical analyses whereby the alignment between candidate
tandem repeats are modeled as a sequence of independent and identically
distributed (iid) Bernoulli trials, equivalent to a sequence of coin tosses such
that heads correspond to matching pairs of nucleotides, and tails correspond
to mismatches or indels. The probability pM of a match and the probability
pI of an indel are user-defined parameters that provide an upper limit to the
allowed divergence between candidate tandem repeats.

The probabilistic model of the iid Bernoulli sequence is used with several
statistical criteria to evaluate candidate tandem repeats: the sum of heads
distribution to dictate the number of matches required among candidate re-
peats; the random walk distribution to model the indels between tandem repeats
that might cause variability in the apparent period length; the apparent size
distribution to distinguish between tandem repeats and dispersed repeats by
analyzing the distribution of matches along the proposed period length; and
the waiting time distribution to choose match search criteria that are most
suitable for different period lengths. Each of the above distributions depend
on the period length, word length used for scanning matches, and the user-
defined cutoffs of pM and pI.

During the scan of the genomic sequence from left to right, word matches
are accumulated. The position of each word is kept in a history list and
the distance between word matches is kept in a distance list. Once a word
match is found, the distance separating the words is presumed a candidate
period length for a tandem repeat. The candidate tandem repeat would
require additional matches along the remainder of its period length. These
additional matches are found by querying the distance list, searching for word
matches separated by the same period length, with the leading word match
positioned between the triggering word matches. The statistical test using
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the sum of heads distribution determines the minimum number of matches
required for a candidate tandem repeat. Here, the normal distribution is used
to determine the minimum number x of matches, such that 95% of the time,
at least x nucleotides (heads) are counted as part of exact word matches (head
runs of length w) along the period length. To account for indels between
word pairs of approximate tandem repeats, the period length is not fixed at
a constant during this phase, but allowed to vary slightly, consistent with
the random walk distribution. The allowed variation is restricted to that
expected within 95% of random occurrences based on the indel probability pI,
under the hypothesis of a random walk along one dimension with maximal
displacement equal to d*pI.

Candidate tandem repeats which pass the sum of heads test are further
analyzed to differentiate tandem repeats from local repeats that are not ar-
rayed in tandem. Tandem repeats are distinguished from nontandem direct
repeats, i.e. repeats found in close proximity but not directly adjacent, by
the distribution of matches along the period length of the candidate tandem
repeat. Nontandem direct repeats will tend to have matches concentrated
on the right side of the period length (because the algorithm processes them
from left to right), whereas the tandem repeats should have leading word
matches distributed throughout. The apparent repeat length is calculated
as the maximal distance between the first and last run of matches found
using the exact word match scan. This apparent repeat length is likely to be
smaller than the actual repeat length, but provides a useful approximation
for this analysis. A minimum apparent repeat length threshold for a tandem
repeat is determined by simulation. An apparent size distribution is generated
from random Bernoulli sequences using the pM value to model an alignment
between two genuine tandem repeats with period length d, and the distances
between the first and last runs of exact word matches are collected. A mini-
mum apparent repeat length is chosen such that 95% of the time, the apparent
repeat length determined for random Bernoulli sequences with pM exceeds
this cutoff length. Candidate tandem repeats passing the minimum apparent
repeat length threshold are further subjected to the analysis component.

The waiting time distribution is used to pick word lengths used during
the initial genome scan. Random Bernoulli sequences are used to determine
the minimum number of aligned residues (coin tosses) to find an exact word
match (run of heads) of length w, 95% of the time, given a probability of
a match (pM or probability of heads). As with other sequence alignment
software, such as BLAST, the choice of word length is very important and
affects the sensitivity and running time of the analysis. Short word lengths
accumulate large history lists and many false-positive matches, unlikely to be
indicative of tandem repeats. Alternatively, large word lengths accumulate
few false positives, but are unlikely to detect short approximate tandem re-
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peats. Therefore, the word length needs to be chosen in accordance with the
repeat length under consideration. The waiting time distribution is used to
pick a set of word lengths to apply to different ranges of pattern sizes, given
pM. Word lengths of 3–7 bp are chosen to detect tandem repeats with periods
of up to 500 bp and at least 75–80% identity.

Those candidate tandem repeats passing the above statistical criteria are
further examined under the analysis component of TRF. The analysis com-
ponent involves aligning the interval of the candidate tandem repeat to the
surrounding genomic sequence using the technique of wrap-around dynamic
programming (WDP) [18], nicely described in Ref. [10] and Appendix A of
Ref. [8]. The technique of WDP provides a method whereby a single copy
of the tandem repeat can be aligned with all copies in a larger stretch of
genomic sequence, such that the alignment is allowed to wrap around the
tandem repeat from end to beginning again, to continue alignments to the
subsequent copies of the repeat. The candidate tandem repeat used in WDP
may not be the optimal sequence, as the consensus among the repeat copies
may contain nucleotide differences or indels when compared to the initial
candidate used to generate the alignments. A consensus pattern is generated
from the alignment, and this consensus is realigned to calculate the period
length and number of copies of the tandem repeat. TRF is limited to finding
tandem repeats with unit lengths up to 500 bp.

3.2 STRING (Search for Tandem Repeats IN Genomes)

The algorithm underlying STRING relies almost exclusively on sequence
alignment methods to identify tandem repeats [40]. As with TRF, the al-
gorithm consists of two stages; first, the identification of candidate tandem
repeats, followed by a more detailed analysis stage to resolve the tandem re-
peat structures. The identification of candidate tandem repeats involves what
are referred to as autoalignments, which involves aligning a sequence to itself.
A variation of the Waterman–Eggert algorithm [58] is implemented to identify
all nonintersecting local alignments, with a modification to avoid reporting
the trivial alignment of the complete sequence to itself along its entirety.
Features of some autoalignments are found characteristic of tandem repeats:
aligned sequence pairs with overlapping or neighboring coordinates indicate
a tandem repeat with a period equal to the distance between coordinates of
aligned residues. Such autoalignments do not rigorously define the tandem
repeat, but rather highlight the regions of genomic sequences which are strong
candidates for containing tandem repeats, to be analyzed in a subsequent
tandem repeat finding search stage. Candidate regions are selected by
grouping all autoalignments with overlapping coordinates and including
those nonoverlapping autoalignments that are found in close proximity that
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could be extensions of tandem repeats not captured during the autoalignment
stage.

Each candidate region is further subjected to the tandem repeat search stage,
as follows. A set of words are chosen such that each distinct word is a potential
isolated element of larger tandem repeat. A variation of WDP is used to
align each word against the larger candidate region. This involves perform-
ing the Waterman–Eggert-style alignment using a cyclically addressed word,
capturing all high scoring non-intersecting local alignments. Each word and
alignment, as a unit, is referred to as a Single-Expansion Interpretative Pattern
(SIP). All SIPs found within a candidate region are compared to each other
in a pairwise fashion in order to eliminate redundancy and resolve conflicts
between overlapping SIPs (some SIPs may be found as insignificant versions
of larger SIPs). Remaining SIPs are reported as tandem repeat tracts with the
triggering word as the consensus for the tandemly repeated element. STRING
is limited to finding tandem repeats of unit length smaller than 100 bp.

3.3 MREPS

A distinguishing feature of the newer MREPS program is its ability to find
tandem repeats of any length, from microsatellites to large tandem segmental
genome duplications [30]. At the heart of MREPS is a very efficient combina-
torial algorithm based on advanced string processing techniques, which finds
approximate tandem repeats, also called k-mismatch repeats, running in linear
time O(nklog(k) + S) for a sequence of length n containing S repeats with
at most k mismatches per tandem repeat copy. MREPS finds all k-mismatch
repeats for values of k up to a user-specified maximal resolution parameter,
enabling the program it to find highly divergent repeats. Additional pro-
cessing time is spent refining the results of this search to report biologically
meaningful repeats, coping with artifacts resulting from the algorithmic def-
inition of k-mismatch repeats and consolidating redundant repeats found at
different k-mismatch runs, as described below.

The mathematical definition of the k-mismatch repeat requires that the
repeat be maximal. For this purpose, mismatches are sometimes added to
the repeat boundaries, extending the repeat length to enforce the maximal
k-mismatch repeat definition. MREPS attempts to identify these unwanted
extensions and trim them from the repeat termini, retaining the more mean-
ingful and longer core of the repeat.

Another postprocessing step consolidates redundancy among repeats and
computes their optimal period value. The same region of genomic sequence
can be reported as having tandem repeat sequences with different periods. For
example, a tandem repeat with period of 2 may also be reported with periods
that are multiples of 2. Each period may be associated with a different degree
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of degeneracy, based on the k-mismatch limit for reporting the repeat. The
optimal period for the repeat is chosen as that which minimizes the number
of mismatches between tandem copies with period p.

This is done for every period from 1 to p and the period with minimum
error rate is reported. After computing the optimal period, repeats with the
same period and overlapping by at least two periods are merged together to
form a single repeat. By doing this, repeats originally found as k-mismatch
repeats are redefined in a more satisfying way.

The tandem repeats found as a result of this process are filtered to retain
only those that are considered to be statistically significant. In this case, the
statistically significant repeats are those that are unlikely to be found within
random sequences. Empirical thresholds for minimum length and maximum
error rates were determined for various resolution parameters using shuffled
genomic sequences, and these thresholds are applied to the collection of
repeats to remove insignificant entries.

4 Repeats and Genome Assembly Algorithms

Genome assembly is perhaps the computationally most demanding task in ge-
nomics, requiring days or weeks of computation time for the largest genomes,
even on the latest vintage computers. The assembly problem itself is simple
enough to state: given a collection of input sequences, compute how these
sequences overlap one another and use these overlaps to reconstruct the
original chromosomes. A large mammalian genome assembly generated from
a WGS sequencing project might include over 20 million input sequences
of approximately 800 bp in length. Most of the sequences are generated in
pairs, by sequencing both ends of a larger DNA fragment; these fragments
are grouped into “libraries” with a characteristic fragment size. The assembly
algorithm must keep track of those sizes in order to place the sequence pairs
(or “mates”) approximately the right distance apart in the final assembly.
A thorough account of the computational assembly of genomes is given in
Chapter 2.

Repetitive sequences make genome sequence assembly hard; without re-
peats, almost any algorithm can correctly assembly a genome. This follows
from the fact that without repeats, any overlapping sequence shared by two
or more individual sequence “reads” clearly implies that the reads came from
the same chromosomal location and can be assembled together. As repeats
are so central to the assembly problem, much effort has been dedicated within
large-scale assembly systems to the repeat identification problem.

Assembly systems are only looking for repeats that will confuse them,
which are a subclass of all repeats. First of all, assembly algorithms must
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compare large numbers of reads (as many as 30 million) looking for over-
laps. The fundamental goal of assembly from a WGS sequencing project is to
unify overlapping reads if they originated from the same place on the same
chromosome. Consequently, the reads should be identical up to the limits of
sequencing error. Thus, assemblers look for shared sequences that are nearly
identical – a typical threshold is to require that two reads must overlap by at
least 40 bp and the overlapping region must be at least 98% identical. This
leads naturally to the observation that any pair of repetitive sequences that is
less than 98% identical will not cause any serious problems for assembly. Such
divergent repeats can be sorted out and placed into the correct locations in the
genome. Of course, this is a somewhat simplistic view; e.g. it is often the case
that short regions in the middle of long repeats are identical – and therefore
confusing – even if the entire repeat is not.

Second, any repeat that is contained entirely within a sequencing read
does not cause a problem, because the unique sequence flanking the repeat
will allow the read to be placed correctly in the genome assembly. Current
sequencing technology generates reads of 800 bp or longer; therefore a repeat
region that spans less than 800 bp rarely presents a problem. Note that the
phrase “repeat region” here refers both to single-copy repeats and to tandem
repeats. If a repeat occurs in 20-bp units, but those units occur in tandem
arrays spanning 100 copies, then the repeat region spans 2000 bp and is
definitely a problem for assembly, even though the repeat unit itself is quite
short.

Thus, it should be clear that assembly algorithms must identify sequence
reads that are comprised entirely of repetitive sequence, and they must handle
these repeat reads differently. For the sake of discussion, we will describe
how they are handled in the Celera Assembler [38], although many of these
strategies are similar to those employed by Arachne [5, 25] and other current
assemblers. (Note that the Celera Assembler is now open source and includes
many enhancements not described in the original paper; the code is available
at http://sourceforge.net/projects/wgs-assembler.)

4.1 Repeat Management in the Celera Assembler and other Assemblers

There are two main tasks in repeat processing for assembly: (i) one must
identify repeats and (ii) one must attempt to place them in the assembled
genome. We will discuss these two issues in order.

4.2 Repeat Identification by k-mer Counts

The first major computation in most assembly algorithms is the overlap step,
in which all reads must be compared to all other reads. In order to com-
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pute this essentially quadratic operation efficiently, most assemblers employ
a hashing strategy: they create a hash table and record in it all k-mers of a
certain length. Each k-mer entry stores the read identifier and the position
within that read where the k-mer occurred. Typical values of k are 22 (used in
the TIGR Assembler [55] and Celera Assembler) and 24 (used in the Arachne
assembler); this is long enough that in a random DNA sequence, the vast
majority of k-mers will not occur at all.

The k-mer hash array provides a simple and natural vehicle for identifying
repeats. Recall that we want to identify sequence reads that are entirely
repetitive; i.e. satisfying the condition that no unique sequence can be found
within the read. After scanning all reads for all k-mers, it is a trivial matter to
note the average depth of coverage by computing the mean number of entries
for each k-mer in the table. Based on this value, one can determine a threshold
above which a k-mer can safely be assumed to be repetitive, e.g. 3 times the
mean. The Celera Assembler then scans the reads a second time and for each
read looks at the counts of each k-mer in the read. If all k-mers in a read have
a count above the threshold for repeats, then the read itself is labeled as a
repeat. Arachne takes a slightly different approach, eliminating all k-mers that
are overrepresented so that they will not be used in the overlap calculation.

4.3 Repeat Identification by Depth of Coverage (Arrival Rates)

A second method for identifying repeats occurs later during the assembly
process, after at least one round of contig creation. Once the assembler has
a set of contigs built, it can ask whether entire contigs are repetitive. The
simplest method here is based on coverage: for a genome covered at, for
example, 8 times coverage, any contig with significantly deeper coverage is
highly likely to be repetitive. As the average coverage is easy to compute,
it is also easy to detect any contigs whose coverage is 2 or 3 times normal.
However, such a simple approach fails to account for the fact that, statistically,
a longer contig is likely to have coverage closer to the mean than a short contig.
For example, in an 8 times assembly, a long contig with 15 times coverage is far
more likely to represent a repeat than is a short contig with the same coverage.

The Celera Assembler models the expected coverage of a contig using an
“arrival rate” statistic. The idea is the following: assuming that the WGS reads
are generated by a uniform random process that samples every location in the
genome equally, then the reads should “arrive” at a contig (i.e. they should
align to it) at a rate that can be modeled as a Poisson process. This arrival
rate statistic is computed as follows [38]. Suppose that the genome size is
G, the sequencing project generated F reads and we are examining a contig
containing k of those reads. Consider the positions where all k reads begin in
the contig; these are the arrival locations. If the contig occurs just once in the
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genome, then we should have sampled it at the same rate as any other interval
on the genome; in this case, if we look at the region of length r between the first
and last arrival locations, then the probability of seeing k – 1 arrivals in that
interval is [(rF/G)k/k!]e(−rF/G). If the contig occurs twice in the genome (and
therefore we expect twice the arrival rate) then the probability of seeing k – 1
arrivals is [(2rF/G)k/k!]e(−2rF/G). The “A statistic” in the Celera Assembler is
computed as the log ratio of these two probabilities; i.e. A = (log e)rF/G – (log
2)k. In simple terms, this statistic computes whether a contig is more likely to
occur once than twice in the genome. By adjusting this single parameter, the
assembler can be more or less cautious about what it considers a repeat.

4.4 Repeat Identification by Conflicting Links

A third way of identifying repeats is to notice that a contig has two or more
adjacent contigs according to mate-pair information. If a repeat occurs at
multiple distinct locations (i.e. not in tandem), then the paired sequences that
align to the repeat will have mates (links) that point to different loci. This can
be recognized relatively easily during the scaffolding stage of assembly.

4.5 Repeat Placement: Rocks and Stones

Once a repeat has been identified, the assembler must decide what to do with
it. A number of assemblers, including Celera Assembler, first assemble the
obviously nonrepetitive sequences and then try to place the repeats. One
strategy for doing this in Celera Assembler is called the “rocks and stones”
approach. The idea is to first build scaffolds from the unique sequences,
linking contigs together only if at least two mate-pairs (i.e. the pair of se-
quences that comes from opposite ends of a single DNA fragment) agree on
the linkage. Rocks and stones are repetitive contigs (based on the A statistic)
that are “thrown” into these gaps if mate-pair links indicate they belong there;
rocks must have at least two links and stones only need one. The assembler
then attempts to join the flanking contigs together by finding a tiling of reads
across the contigs and the newly placed stones. Note that one weakness of this
approach is that it is sometimes difficult to determine whether one or multiple
copies of a stone belong in a gap and it is possible that the wrong number of
copies of a tandem repeat will end up in the assembly.

4.6 Repeat Placement: Surrogates

One final issue surrounding repeats in an assembly is the precise mapping of
the reads to the final consensus sequence. Even if the consensus sequence,
i.e. the genome sequence that ends up being deposited in public archives, is



224 7 Finding Repeats in Genome Sequences

correct, it may be impossible to determine exactly which sequences belong
to particular regions of the genome. For regions that are 100% identical and
that are longer than a single read, multiple reads can be mapped to multiple
distinct genomic locations and it may simply be impossible to tell where each
read goes, since all the repetitive reads can go in each copy of the repeat.
The Celera Assembler algorithm handles this problem through the use of
“surrogate” contigs: the reads are assembled into a contig which is labeled as
a surrogate, meaning that it apparently occurs more than once in the genome.
This surrogate can then be placed in multiple locations in the genome based
on mate pairs and on reads that span the repeat boundary. However, internal
reads cannot be mapped to the genome, so the final consensus assembly points
only to the surrogate, but not to the multi-alignment of all the reads. An
alternative strategy, used in Arachne, is to place the reads multiply, allowing
them to occur at two or more locations in the genome. Neither solution is
entirely satisfactory, but in both cases the genome assembly can be constructed
correctly.

4.7 Repeat Resolution in Euler

A different approach to repeat identification is taken by the Euler assembler
[45]. In this unusual assembly algorithm, the normal overlap computation is
handled quite differently from the hash table approach of Celera Assembler
and Arachne. Instead, an overlap graph is created in which nodes represent
overlap and edges represent k-mers. Contigs can be created by finding an
Eulerian path through such a graph, called a de Bruijn graph, a problem that
can be solved in linear time. (A Eulerian path through a graph is a path that
uses each edge in the graph exactly once, here meaning that each overlap
is realized exactly once – from left to right – as it should be in assembling
genomes.) To reconstruct the sequence of the contig, the algorithm follows
the Euler path and “reads off” the k-mers found on each edge in the path.

A fuller description of the Euler assembler is beyond the scope of this
review, but it is worth mentioning how it handles repeats. In the de Bruijn
graph created for the purpose of assembly, repeats appear as edges that
share the same label. These edges can be superposed, yielding a new data
structure (the A-Bruijn graph, see below) in which some nodes have many
edges entering or exiting them. Then repetitive sequences correspond to edges
whose boundaries are at such nodes. A critical aspect of the Euler algorithm is
its error correction: in any large genome project, the small number of sequenc-
ing errors in individual reads can easily be confused with slight variations
between repeat copies. By reducing the error rate, the algorithm can more
easily tell if two near-identical sequences represent two different repeat copies.
Euler takes advantage of the fact that errors tend to be random and, therefore,
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that short k-mers with a very low count probably represent such errors. This
enables the algorithm to identify and correct a large majority of sequencing
errors, and this in turn enables it to separate repeats that are very close to
identical.

Despite all the efforts in Celera Assembler, Arachne, Euler and other as-
semblers, some classes of repeats continue to confound large-scale genome
assembly algorithms. Although this is not widely known or discussed, the
genomes available today in public archives likely contain numerous assembly
errors. The most common errors are collapses of tandem repeats into too
few copies; in addition, gross rearrangements around repeats have also been
discovered (and in some cases corrected). The continuing problems highlight
the fact that more work needs to be done to continue to improve the quality
of “finished” genomes.

5 Untangling the Mosaic Nature of Repeats (The A-Bruijn Graph)

Pavel Pevzner and coworkers introduce a graph data structure, the A-Bruijn
graph, to describe repeated sequences ascertained from pairwise alignments
and to reveal the complex mosaic structure commonly encountered among
related sequences [44]. This A-Bruijn graph has found use in several appli-
cations, including genome fragment assembly, multiple sequence alignment
and de novo repeat finding [44, 48]. The graph glues similar sequence regions
together into edges of the graph. When applied to a single genome, the
glued-together edges correspond to repeated sequences, and when applied to
related sequence sets from different genomes, homologous sequence regions
are found glued together. The graph itself provides a compact view of the
related regions among a collection of sequences, in addition to the sequence
regions found to be unique to a single sequence or subset of sequences. Soft-
ware packages implementing the A-Bruijn graph include the ABA multiple
sequence aligner [48], and the de novo repeat-finding program RepeatGluer
[44], which is the focus here.

The A-Bruijn graph is constructed from a set of pairwise alignments. All
genome alignments generated by an alignment program (those tested include
BLAST, PatternHunter and BLAT, among others) are decomposed into the A-
Bruijn graph by “gluing” paired genome regions together as edges in a graph
bounded by nodes, with similar sequences forming a single edge and forking
at a node into separate edges where sequences diverge. After constructing
the graph, edges with a multiplicity greater than one correspond to repeated
regions of sequences. By removing all nonrepetitive sequences from the graph
by discarding all edges with multiplicity of one, the A-Bruijn graph is broken
into sets of connected components termed tangles. The tangles represent
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the repeat elements, specifically the structure of subrepeats that form larger
mosaic repeats. Each complete repeat element found in the genome can be
reconstructed by traversing edges of valid paths in the corresponding tangle,
and the relationships among different mosaic repeats are elucidated by virtue
of their subrepeats found in common.

The identity and structure of each representative repeat element, termed
by Pevzner and coworkers as the “elementary repeat”, is provided by the A-
Bruijn graph as a maximal simple path with multiplicity greater than one.
RepeatGluer generates the repeat graph in a text file format compatible with
graph viewing software (i.e. dotty program of the Graphviz package [17]).
Additionally, the genomic sequences corresponding to each subrepeat are
extracted and a consensus for each is provided in FASTA format. An example
of a repeat graph is shown in Figure 4, highlighting the largest repeat tangle
found in the repeat-rich genome of Deinococcus radiodurans.

6 Repeat Annotation in Genomes

Given the great diversity and functional significance of repetitive sequences,
their annotation in completed genomes is an important task. Annotating
repeats is similar to annotating other features in the genome in that a set
of coordinates is required to delimit the feature location, along with a de-
scription of the biological significance of that feature, if known. The location
of repetitive sequences can be obtained in two different ways or in their
combination. Repeats are mined directly from the genome sequence based on
algorithms that locate repeated sequences based exclusively on the genome
sequence composition; these tools and algorithms were the focus of previous

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4 Largest tangle in the repeat
graph for Deinococcus radiodurans as
constructed by RepeatGluer. Repeat
consensus sequences yielded for edges
in this tangle mostly correspond to parts
of transposons (often called “insertion
sequences” in bacterial genomics). The
coding sequence for the transposase of
one transposon (annotated gene identifier
DRB0020, gi10957398) is shown threaded
through the graph with wide edges. This
graph was illustrated using graphviz. Unique
identifiers are assigned to each node and
edge. Edges correspond to subrepeats and

nodes bound the subrepeats that are found
in common between larger repeats. The
length of the subrepeat and its multiplicity are
specified to the right of the edge identifier.
Only edges with multiplicity above 1 are
shown. As repeats on the forward strand
can be merged into single edges with
repeats on the reverse strand, the graph
is constructed using both strands as if
they were independent sequences, which
yields symmetry in the resulting graph; the
transposase coding sequence described
above is highlighted on only one side of the
symmetric graph.
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discussions. Alternatively, repeats can be identified based on homology to
entries in a preexisting library of known repeat sequences.

The advantage of the former method is that no prior knowledge is required.
Any newly sequence genome can be applied to the earlier described de novo
repeat finding methods to rapidly identify the repeats. These are considered
de novo methods simply because repeats are found based on an analysis of the
genome sequence alone, without prior knowledge of the location or sequence
composition of the repeats. The disadvantage is that other than knowing that
a sequence is a repeat, we do not know what the repeat sequence represents
biologically (i.e. gene, transposon, satellite, segmental duplication).

The latter method, based on repeat libraries, is currently the most widely
used and most trusted method for annotating repeat sequences. Entries of
repeat libraries are typically well annotated with some indication of function
when functional information is known, and homology found to a known
repeat reveals both its location and identity. Both software and repeat libraries
are available as resources for genome annotation. Repbase began as a col-
lection of human representative repeat sequences and fragments, and grew
into a large collection of repeats from a variety of (mostly) model organisms,
now known as Repbase Update [27]. Repbase Update includes separate repeat
libraries for primates, rodents, zebrafish, C. elegans, Drosophila and Arabidopsis,
with prototype sequences that correspond to consensus of large families and
subfamilies of repeats. A “Simple” library, which can be applied to any
genome, provides entries that help identify low complexity microsatellite
sequences.

The program originally used to search genome sequences against Repbase
libraries is CENSOR [28]. Due to the growing data volume in the libraries and
the need for faster searching programs, CENSOR was eventually replaced by
the more efficient alignment program RepeatMasker [53]. RepeatMasker iden-
tifies regions of homology to Repbase entries using Phil Green’s cross_match
algorithm (http://www.genome.washington.edu/UWGC/analysistools/
Swat.cfm) and then replaces these homologous regions in the genomic se-
quence with “N” characters, effectively masking them in the genome se-
quence. A further 30-fold speed increase is obtained by using WU-BLAST
in place of cross_match, as implemented by MaskerAid [6] as an enhance-
ment to RepeatMasker. By masking the sequence, these repeat regions are
precluded from subsequent sequence analyses in a larger annotation pipeline;
hidden from gene finding programs, and transcript and protein homology
searches, focusing subsequent analyses on the remaining unique sequence.
For perspective, almost half of the human genome is masked due to the repeat
content and this step is incredibly important when trying to find components
of genes that remain hidden in the unmasked nonrepetitive regions.
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The disadvantage with the repeat library-based scanning method is that
comprehensive repeat libraries are available only for those organisms that
have been well studied, and have attained the status of model organisms.
Repbase is a tremendous resource for repeat annotation when corresponding
repeat libraries are available, but it is of limited utility for many organisms
whose genomes are currently being sequenced because of the limits of homol-
ogy detection at the level of the nucleotide sequence coupled with the rate
of divergence within repeats across evolutionary boundaries. Independent
efforts are sometimes necessary to generate comprehensive repeat libraries to
supplement that offered by Repbase [39].

A use of de novo repeat-finding programs is to automate the generation of
repeat libraries that can be used with RepeatMasker. RepeatScout, in particu-
lar, yields consensus sequences for repeat families that are to be subsequently
searched against the genome using RepeatMasker to identify locations of
individual members of the family. Care must be taken with this approach
if the repeats are to be masked from the genomic sequence and hidden from
subsequent analyses. The Repbase libraries include many transposable ele-
ments and other repeat features which are excluded from the host gene set,
and so masking homologous features from the genome should not interfere
with subsequent efforts to find genes. The output from de novo repeat finding
tools contains transposable elements but may also include repetitive features
such as members of large gene families, and by blindly masking these “repeat”
features from the genome, important features will be inadvertently disguised.
None of the de novo repeat-finding programs directly address the problem
of deducing the biological significance of the repeats that are found com-
putationally. This is a difficult problem, currently left to the biologists and
bioinformaticians, and examined on a case-by-case basis.

Searching for occurrences of repeats using representative repeat sequences
or consensus sequences is limited by the information provided by that single
sequence. By searching with profile representations of repeat families, the
sensitivity of a search can be improved; a study by Juretic and coworkers
demonstrates improved sensitivity in the detection of transposable elements
in Rice by using hidden Markov model (HMM) profiles created for known
transposable element families [26]. Although this methodology or similar
profile methods are popular for finding members of protein families or occur-
rences of protein domains, HMM profiles for repeats are not currently widely
employed, but do show great promise for repeat detection and analysis, and
should be considered along with the existing alternatives.
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Repeat Finding Tools and Resources

Miropeats and
ICAtools

http://www.littlest.co.uk/software/bioinf/index

mreps http://mreps.loria.fr
PILER http://www.drive5.com/piler
RECON http://www.genetics.wustl.edu/eddy/recon
Repbase Update http://www.girinst.org/Repbase_Update
RepeatFinder http://www.tigr.org/software
RepeatGluer http://nbcr.sdsc.edu/euler/intro_tmp
RepeatMasker http://www.repeatmasker.org
RepeatScout http://www-cse.ucsd.edu/groups/bioinformatics/

software
REPuter http://bibiserv.techfak.uni-

bielefeld.de/reputer
STRING http://www.caspur.it/∼castri/STRING/

index.htm.old
Tandem Repeat
Finder

http://tandem.bu.edu/trf/trf
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8
Analyzing Genome Rearrangements
Guillaume Bourque

1 Introduction

The study of comparative maps and the rearrangements they evidence was
pioneered in the late 1910s at the Morgan Drosophila lab [45, 74]. In the
context of phylogenetics, the analysis of genome rearrangements was first in-
troduced by Dobzhansky and Sturtevant in a study of inversions in Drosophila
pseudoobscura [22]. What followed was a succession of developments in the
fields of comparative mapping and comparative genomics. In particular,
breakthroughs in mapping and sequencing afforded genome-wide analyses of
gene order in various sets of genomes [3, 12, 20, 27, 51, 53, 54, 63]. Recently, the
considerable investments in large sequencing projects have made accessible
detailed sequences and maps for many eukaryotic genomes [26, 32, 37, 79, 84].
One of the stated purpose of these endeavors is to further our understanding
of these species through comparative analyses [50]. The availability of these
large genomes leads to great opportunities, but also challenges, in the study
of genome rearrangements.

The exploration of large-scale events shaping whole-genome architecture
provides a complementary perspective on the evolution of these organisms
as compared to more traditional molecular studies focused on the analysis of
individual genes. In fact, rearrangement studies allow detailed reconstruc-
tions of evolutionary scenarios, including ancestral reconstructions of entire
eukaryotic genomes [13, 14]. Furthermore, such analyses can lead to the
identification of regions of genomic instability (high rates of rearrangements,
breakpoint reuse, etc.) that challenge and help refine our understanding of
the dynamics of chromosome evolution [46, 57]. A related problem, also as-
sociated with genomic instability, is the study of cancer. Rearrangements in a
tumor genome can be analyzed very much as if the tumor was a new organism
that had recently diverged from the normal human genome. The interest is
that although cancer progression is frequently associated with genome rear-
rangements, the forces behind these alterations are still poorly understood.
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This chapter is organized as follows. Section 2 presents some of the basic
concepts required for the analysis of genome rearrangements such as how
the genomes are modeled and what types of rearrangements are considered.
Section 3 presents three criteria that can be used to compute the distance be-
tween a pair of genomes: the breakpoint distance, the rearrangement distance
and the conservation distance. Section 4 shows how the same criteria can be
use to infer phylogenies when multiple genomes are considered using three
different approaches: distance-based, maximum parsimony and maximum
likelihood. Section 5 presents a few recent applications of analysis of genome
rearrangements in large genomes and also recent work studying genome
rearrangements in cancer. Finally, Section 6 concludes with some remarks on
important challenges and promising new developments for the comparative
analyses of gene order.

2 Basic Concepts

2.1 Genome Representation

Initially, the focus of genome rearrangement studies was on the comparative
analyses of small genomes such as mitochondria [12, 53, 54, 63], chloroplasts
[20,51,54], viruses [27] and small region of larger genomes [3]. In this context,
the relative order of homologous genes in different organisms was used to
infer phylogenetic relationships and even rearrangement scenarios. An ex-
ample showing differences between the order of homologous genes in two
mitochondria is given in Figure 1.

Figure 1 Coding genes on the human and on the earthworm
mitochondrial DNA (mtDNA). The list of genes is the same, but their
order differs. For instance, ND1 and ND2 are adjacent in Human
but they are seperated by ND3 in the earthworm. tRNA genes have
been left out of this figure to simplify the example. GenBank accession
numbers: NC_001807 and NC_001673.
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For this purpose, the relative gene order of different genomes can be en-
capsulated into a set of signed permutations. One of the genomes is identified
as the reference genome and is associated to the identity permutation where
each integer corresponds to one of its genes. The permutation associated to
each other genome can directly be obtained from the order of appearance
of the homologous genes. Furthermore, a sign corresponding to the relative
orientation (strand) of the gene, as compared to the reference genome, is given
to each integer of the new permutation. To continue with the example shown
in Figure 1, if the mtDNA is selected as the reference genome, and we label
the genes starting with COX1 in Human as “1” and going clockwise until
ND2 is assigned “13”, we obtain the permutations shown in Table 1. Of all
the genes in the two mtDNAs, only ND6 in Human was on the reverse DNA
strand, which is why it is represented by “−10” in Earthworm as its relative
orientation is reversed.

Table 1 Signed permutations associated with the two mitochondria genomes shown in
Figure 1

Human 1 2 3 4 5 6 7 8 9 10 11 12 13
Earthworm 1 2 3 5 −10 11 4 9 7 8 12 6 13

This genome representation can be adapted and generalized for data sets
with other distinctive features such as multiple chromosomes, unsigned gene
orders, unequal gene content and different source of homology markers. We
briefly present these variants.

2.1.1 Circular, Linear and Multichromosomal Genomes

A genome can consist of a single chromosome or a collection of chromo-
somes and is called unichromosomal or multichromosomal accordingly. There
are two types of chromosomes: circular and linear. The mitochondria shown
in Figure 1 are circular genomes. Linear chromosomes have two separated
endpoints. Unless otherwise stated, multichromosomal genomes will be as-
sumed to have linear chromosomes. The different types of genomes can
also be represented by permutations, but additional markers are required for
multichromosomal genomes to mark the boundaries of the chromosomes.

It is important to specify the type of chromosomes we are considering
because they will lead to different equivalent representations. For instance,
consider the three genomes:

G1 = 1 2 3
G2 = 2 3 1
G3 = −3 −2 −1
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As circular chromosomes, all three representation are equivalent; however, as
linear chromosomes, only G1 and G3 correspond to the same representation
(there is usually no distinction between the two end-points of a linear chro-
mosome and so a complete flip leads to an equivalent representation).

2.1.2 Unsigned Genomes

If the orientation of genes in a set of genomes is unknown, the relative gene
order can still be encapsulated into a set of unsigned permutations. Un-
fortunately, many genome-rearrangement problems, such as calculating the
reversal distance, are significantly harder for unsigned permutations [17]
compared to signed permutations (see Section 3.2). For this reason, but also
because the relative orientation is usually obtainable, we will assume that we
are dealing with signed genomes in the rest of this chapter.

2.1.3 Unequal Gene Content

In representing genomes with permutations, we have assumed that a set of
n genes was found with a unique homologous counterpart in all genomes.
In fact, in many cases this assumption will be violated: a genome may have
gained additional genes through rearrangements events such as insertions or
duplications and it may have lost genes following deletions. To encapsulate
the relative gene orders of genomes with unequal gene content we need to
generalize the representation to account for this variable alphabet. Although
models that are not restricted to equal gene content are more complete and
realistic (see Ref. [24] for a review), they are also more challenging algo-
rithmically and have been limited to few applications [23, 66, 69]. We will
focus on genomes with equal gene content in the rest of this chapter except
for the presentation of some rearrangement events affecting gene content in
Section 2.2.

2.1.4 Homology Markers

So far, it was implicit that the signed permutations representing the genomes
were constructed based on the relative position of homologous genes. Ac-
tually, however, any type of marker with an homologous counterpart in all
genomes can be used to construct similar permutations. This is important
because, especially in large eukaryotic genomes (e.g. human, mouse) where
genes only cover a small fraction of the genome, the ability to use markers
extracted from raw DNA sequence allows to study rearrangement events
that occur anywhere in the genome. This will be covered in more detail in
Section 5.1.
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2.2 Types of Genome Rearrangements

During evolution, an assortment of events can modify the genome. These
events are known as mutations and they can occur especially during DNA
replication. Mutations are divided into two major categories: point mutations
and chromosomal mutations. Point mutations are at the single-base level.
Although point mutations can have a significant impact on the genome (e.g.
a base change could be responsible to the insertion of an early stop codon
that completely annihilates a gene), they will not be considered further here
as they mostly affect individual genes. In contrast, chromosomal mutations
affect directly the architecture of genomes by modifying the gene order or
the gene content. There are various types of chromosomal mutations, but the
most common are reversals (or inversions), translocations, fusions, fissions,
transpositions, inverted transpositions, insertions, deletions and duplications.
See Figure 2 for a cartoon example of how reversals and deletions could occur
during DNA replication. Only translocations, fusions and fissions are specific
to multichromosomal genomes. The first six types of chromosomal mutations
rearrange the genes, but they do not modify the set of genes present in a given
genome. Insertions, deletions and duplications, on the other hand, modify
the gene content of a genome by adding, or removing, some genes or by
generating multiple copies of the same gene. The effect of these different
chromosomal mutations are exemplified in Table 2.

Table 2 Examples of chromosomal mutations that impact either gene order
or gene content

Mutation type Before After Impact

Reversal 1 2 3 4 5 6 ⇒ 1 2 −5 −4 −3 6 gene order

Translocation 1 2 3 4 5 ⇒ 1 2 8 gene order

6 7 8 6 7 3 4 5

Fusion 1 2 3 4 ⇒ 1 2 3 4 5 6 gene order

5 6

Fission 1 2 3 4 5 6 ⇒ 1 2 3 4 gene order

5 6

Transposition 1 2 3 4 5 6 ⇒ 1 4 5 2 3 6 gene order

Inverted transposition 1 2 3 4 5 6 ⇒ 1 4 5 −3 −2 6 gene order

Insertion 1 2 3 4 5 6 ⇒ 1 2 3 4 7 5 6 gene content

Deletion 1 2 3 4 5 6 ⇒ 1 4 5 6 gene content

Duplication 1 2 3 4 5 6 ⇒ 1 2 3 4 3′ 4′ 5 6 gene content
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Figure 2 (a) DNA fragment with each integer corresponding to a
gene. (b) The same DNA fragment but twisted. During replication,
if the twisted loop is copied, it leads to a reversal and the fragment
becomes 1 2 −5 −4 −3 6. Note that the sign or the strand of the
genes is modified at the same time as the order. If the twisted loop
is ignored, it results in a deletion and the fragment is transformed into
1 2 6.

3 Distance between Two Genomes

In this section, we review different criteria that can be use to measure the
distance between two genomes based on comparative gene order. The first
criterion, the breakpoint distance, counts the number of disruptions of the
relative gene order between a pair of genomes. The second criterion, the
rearrangement distance, relies on the a priori definition of a set of permissible
operations (e.g. only reversals) and then minimizes the number of such
operations required to convert one gene order into the next. The final cri-
terion described is the conservation distance, which, similar to the breakpoint
distance, circumvents the requirement of a rearrangement model. Under this
criterion, the disruption of the relative gene order is measured by the number
of conserved or common intervals.

3.1 Breakpoint Distance

The breakpoint distance [48,85] compares two permutations by directly count-
ing the number of gene order disruptions between two genomes. Formally,
given two signed permutations of size n, π and γ, the first step to compute the
breakpoint distance is to extend both permutations so that they start with 0
and end with n + 1: π = 0, π1, π2 . . . πn, n + 1 and γ = 0, γ1, γ2 . . . γn, n + 1. Then,
the breakpoint distance, dbreak(π, γ), is defined as the number of pairs (γi, γi+1),
0 ≤ i ≤ n, such that neither the pair (γi, γi+1) nor (−γi+1,−γi) appears in π.
For instance, using the example from Table 1 and setting π = human and γ =
earthworm, we get dbreak(π, γ) = 9. The nine breakpoints are displayed in γ
using arrows:

0 1 2 3 5 −10 11 4 9 7 8 12 6 13 14
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
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Two important strengths of this criterion measuring the degree of similarity
are that (i) it is easily computable in linear time and (ii) it does not require any
assumptions about the underlying rearrangement mechanisms.

3.2 Rearrangement Distance

Given two permutations π and γ and a set of permissible rearrangements,
the rearrangement distance, drear(π, γ), is defined as the minimum number of
operations required to convert one permutation into the other. For example,
given that reversals are the only allowed operations, what is the minimum
number of events required to convert the permutation associated with the
earthworm mtDNA into the one associated with the human mtDNA shown in
Table 1? The problem is quite challenging. In this particular case, the answer
is seven and Table 3 shows one such scenario. We will use drev for the special
case of drear when reversals are the only permissible operations.

The interest in looking for the minimum number of steps is that, under
the assumption that such events are rare (and that our rearrangement model
is correct), we hope to recover the sequence of rearrangements that really
occurred. The caveat is that it is well known that the most parsimonious
scenario underestimates the actual number of operations when this number
is above a threshold of θn, where n is the size of the permutation and θ is in
the range from 1/3 to 2/3 [15, 35, 83].

Table 3 Example of a most parsimonious rearrangement scenario with seven reversals
between earthworm and human mtDNA

Earthworm 1 2 3 5 −10 11 4 9 7 8 12 6 13
ρ(6, 11) 1 2 3 5 −10 11 4 9 7 8 12 6 13
ρ(9, 12) 1 2 3 5 −10 −12 −8 −7 −9 −4 −11 6 13
ρ(7, 10) 1 2 3 5 −10 −12 −8 −7 −6 11 4 9 13
ρ(6, 12) 1 2 3 5 −10 −12 −11 6 7 8 4 9 13
ρ(4, 6) 1 2 3 5 −10 −9 −4 −8 −7 −6 11 12 13
ρ(4, 7) 1 2 3 9 10 −5 −4 −8 −7 −6 11 12 13
ρ(6, 10) 1 2 3 4 5 −10 −9 −8 −7 −6 11 12 13

Human 1 2 3 4 5 6 7 8 9 10 11 12 13

Based on different sets of permissible rearrangements, various methods
have been proposed to efficiently compute the rearrangement distance and
sort a pair of genomes. Of all the choices of permissible operations, the
reversal-only model is probably the most extensively studied. The work
was pioneered by Sankoff and Kececioglu [68], but was followed by the
development of increasingly efficient polynomial-time algorithms [1, 8, 9, 28,
34]. Other studied sets of permissible operations include transpositions [2,81],
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inversions, translocations, fusions and fissions [29, 52, 75], and more recently
block interchange (a more general type of transposition) [19, 41, 86].

In the remainder of this section, we review a methodology that was devel-
oped to compute the distance between a pair of genomes using reversals only
(for unichromosomal genomes) or reversals, translocations, fusions and fis-
sions (for multichromosomal genomes). We will refer to it as the Hannenhalli–
Pevzner (HP) theory. This methodology was developed in Bafna and Pevzner
[4] and in Hannenhalli and Pevzner [30], it was summarized in Pevzner [58],
it was improved in Tesler [75], and, finally, it was implemented in a program
called GRIMM [76].

3.2.1 HP Theory

We first describe the methodology for unichromosomal genomes where re-
versals are the only permissible operations. Assume we have a permutation
γ that we wish to sort with respect to the identity permutation π. The first
step is to convert γ, a signed permutation, into γ′, an unsigned permutation,
by mimicking every directed element i by two undirected elements it and ih

representing the tail and the head of i. Since γ is a permutation of size n, γ′
will be a permutation of size 2n. We now extend the permutation γ′ by adding
γ′0 = 0 and γ′2n+1 = n + 1. The next step is to construct the breakpoint graph
associated with γ. The breakpoint graph of γ, G(γ), is an edge-colored graph
with 2n + 2 vertices. Black edges are added between vertices γ′2i and γ′2i+1 for
0 ≤ i ≤ n. Grey edges are added between ih and (i + 1)t for 0 < i < n,
between 0 and 1t, and between nh and n + 1. Black edges correspond to
the actual state of the permutation while grey edges correspond to the sorted
permutation we seek. See Figure 3 for an example.

Bafna and Pevzner [4], and later Hannenhalli and Pevzner [30], showed
that G(γ) contains all the necessary information for efficiently sorting the
permutation γ. The first step is to look at the maximal cycle decomposition
of the breakpoint graph. Finding the maximal cycle decomposition of a graph
in general can be a very difficult problem; however, fortunately, because of

Figure 3 Breakpoint graph associated with the two permutations from
Table 1. Black edges are shown using think lines. All other lines (both
solid and dashed) correspond to grey edges. Dashed lines are used to
show the only nontrivial oriented cycle.



3 Distance between Two Genomes 243

the way the breakpoint graph was constructed for a signed permutation, each
vertex has degree two and so the problem is trivial. Suppose c(γ) is the
maximum number of edge-disjoint alternating cycles in G(γ). The cycles are
alternating because, in the breakpoint graph of a signed permutation, each
pair of consecutive edges always has different colors.The important lower
bound:

drev(π, γ) = d(γ) ≥ n + 1− c(γ).

was first presented by Kececioglu and Sankoff [35].
A few additional concepts on the breakpoint graph are required to present

the result of Hannenhalli and Pevzner [28]. A grey edge in G(γ) is said to be
oriented if it spans an odd number of vertices (when the vertices of G(γ) are
arranged in the canonical order γ′0, . . . , γ′2n+1). A cycle is said to be oriented
if it contains at least one oriented grey edge. Cycles which are not oriented
are said to be unoriented unless they are of size 2, in which case they are said
to be trivial. The term “oriented" comes from the fact that if we traverse an
oriented cycle we will traverse at least one black edge from left to right and
one black edge from right to left. In the breakpoint graph shown in Figure 3,
there are only two nontrivial cycles: one where the grey edges are displayed
using solid lines and one where the grey edges are displayed using dashed
lines. The cycle with solid lines is unoriented since it does not contain an
oriented edge but the cycle with dashed lines is oriented because it contains
an oriented edge [e.g. (10h, 11t)].

For each grey edge in G(γ) we will now create a vertex ve in the overlap
graph, O(G(γ)). Whenever two grey edges e and e′ overlap or cross in the
canonical representation of G(γ), we will connect the corresponding vertices
ve and ve′ . A component will mean a connected component in O(G(γ)). A
component will be oriented if it contains a vertex ve for which the correspond-
ing grey edge e is oriented. As for cycles, a component which consists of a
single vertex (grey edge) will be said to be trivial. In Figure 3, there are five
trivial components and one larger oriented component since at least one of
its grey edge is oriented. The difficulty in sorting permutations comes from
unoriented components.

Unoriented components can be classified into two categories: hurdles and
protected nonhurdles. A protected nonhurdle is an unoriented component that
separates other unoriented components in G(γ) when vertices in G(γ) are
placed in canonical order. A hurdle is any unoriented component that is not a
protected nonhurdle. A hurdle is a superhurdle if deleting it would transform
a protected nonhurdle into a hurdle, otherwise it is said to be a simple hurdle.
Finally, γ is said to be a fortress if there exists an odd number of hurdles and all
are superhurdles in O(G(γ)) [71].
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The main result fromHannenhalli and Pevzner [28] is that:

drev(π, γ) = d(γ) = n + 1− c(γ) + h(γ) + f (γ),

where h(γ) is the number of hurdles in γ, and f (γ) is 1 if γ is a fortress and 0
otherwise. However, the machinery to recover an optimal sequence of sorting
reversals was also presented. The fact that the distance between the human
and earthworm is 7 can directly be extracted from this formula and from the
breakpoint graph shown in Figure 3 since there are 13 genes, seven cycles and
no hurdles or fortress.

Finally, Hannenhalli and Pevzner [29] derived a related equation to com-
pute the rearrangement distance between two multichromosomal genomes
when permissible operations are: reversals, translocations, fusions and fis-
sions. We refer the reader to Pevzner [58] and Tesler [75] for the details of the
calculation, but we will briefly present how the formula can be obtained.

The main idea to compute the rearrangement distance between two mul-
tichromosomal genomes Π and Γ is to concatenate their chromosomes into
two permutations π and γ. The purpose of these concatenated genomes is
that every rearrangement in a multichromosomal genome Γ can be mimicked
by a reversal in a permutation γ. In an optimal concatenate, sorting γ with
respect to π actually corresponds to sorting Γ with respect to Π. Tesler [75] also
showed that when such an optimal concatenate does not exist, a near-optimal
concatenate exists such that sorting this concatenate mimics sorting the multi-
chromosomal genomes and uses a single extra reversal which corresponds to
a reordering of the chromosomes.

3.3 Conservation Distance

Recently, two criteria were proposed to measure the level of similarity be-
tween sets of genomes: common intervals [31,78] and conserved intervals [7].
In a way, both of these criteria represent a generalization of the breakpoint
distance but consider intervals instead of only adjacencies. There are two
important properties that common/conserved distances share with the break-
point distance:

(i) It can be directly defined on a set of more than two genomes and allows
the identification of shared features in a family of organisms.

(ii) It does not rely on an a priori model of rearrangements.

3.3.1 Common Intervals

Given two signed permutations, π and γ, a common interval is a set of two
or more integers that is an interval in both permutations [31, 78]. Using the
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example from Table 1, we get that there are 14 common intervals, eight of
which are shown in the earthworm using boxes:

1 2 3 5 −10 11 4 9 7 8 12 6 13

The additional common intervals not displayed are: [2, 3], [2, 3, 5, . . . 6],
[2, 3, 5, . . . 13], [3, 5, . . . 6], [3, 5, . . . 13] and [5, 10, . . . 13].

Suppose C(π, γ) and Ci(π, γ) are the number of common intervals and the
number of common intervals of size i in π and γ, respectively. We note that
the maximum number of common intervals for two permutations of size n is
achieved for identical permutations and is simply:

n

∑
i=2

Ci(π, π) = (n− 1) + (n− 2) + . . . + 1 =
n(n− 1)

2
.

Of course, the more common intervals between two permutations, the
higher the conservation. In the example above, there is only 14 common
intervals while the maximum achievable is 78.

3.3.2 Conserved Intervals

Given two permutations, π and γ, a conserved interval is an interval [a, b] such
that a precedes b or −b precedes −a, in both π and γ, and the set of elements,
without signs, between a and b is the same in both π and γ [7]. Continuing with
the example from Table 1, there are only five conserved intervals between the
human and earthworm mtDNA:

1 2 3 5 −10 11 4 9 7 8 12 6 13

Although, initially the definition of conserved intervals may seem unnatu-
ral, it is tightly connected to the HP theory (it corresponds to subpermutations
in Ref. [29]) and it was shown that it can be used to efficiently sort permuta-
tions by reversals [5].

4 Genome Rearrangement Phylogenies

An important challenge in the comparative analysis of gene order is the
construction of phylogenies based on genome rearrangements that describe
the genetic relationships between the organisms. Phylogenies are represented
by unrooted binary trees such that the leaf nodes of the trees correspond to
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contemporary genomes and the internal nodes correspond to their extinct
ancestors (see Figure 5 for an example). Phylogenetic tree reconstruction is
difficult largely because the number of unrooted trees grows at a rate that is
more than exponential with the number of leaf nodes.

We review three main classes of approaches that can be used for phy-
logenetic tree reconstruction based on relative gene order: distance-based
methods, maximum parsimony methods and maximum likelihood methods.
These main classes of approaches are very similar in spirit to the ones devel-
oped for phylogenetic tree reconstruction based on sequence evolution with
point mutations instead of chromosomal mutations (see Chapter 4). Links for
some of the programs available to analyze genome rearrangements described
in this section are provided in Table 4.

Table 4 Links for some of the software tools available to analyze genome rearrangements

BPAnalysis http://www.cs.washington.edu/homes/blanchem/software
GRAPPA http://www.cs.unm.edu/∼moret/GRAPPA
GOTREE http://www.mcb.mcgill.ca/∼bryant/GoTree
GRIMM http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM
MGR http://www-cse.ucsd.edu/groups/bioinformatics/MGR
BADGER http://badger.duq.edu

4.1 Distance-based Methods

These approaches construct trees strictly based on the pairwise distances
between the leaf nodes of the tree. The first step computes the pairwise
distance matrix for the genomes of interest using one of the criterion described
in Section 3 or from other criterion such as EDE, the “empirically derived
estimator", that attempts to correct the bias in the parsimony assumption
for large distances [83]. Distance-based methods differ in the second step in
how they make use of the distance matrix to reconstruct the trees. Currently,
the most common family of distance-based methods is probably “neighbor-
joining” which was first proposed by Saitou and Nei [62].

Methods in this class are typically very efficient; in many cases phylogenies
can be inferred in polynomial time. When applied to gene order data, one
of the limitations of distance-based approaches is that they do not label the
internal nodes and they do not associate a rearrangement scenario to the phy-
logeny. For challenging data sets, this may lead to infeasible or less accurate
solutions [82]. This limitation is addressed both by maximum parsimony and
by maximum-likelihood methods.
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4.2 Maximum Parsimony Methods

Methods seeking the most parsimonious scenario attempt to recover the tree,
and its internal nodes, that minimizes the number of events on its branches.
It corresponds to the Steiner Tree Problem [33] on various metrics. The first
methods of this type were developed for sequence data [25] but they were
later adapted for gene order data [27,64]. Formally, given a set of m genomes,
the problem is to find an unrooted tree T, where the m genomes are leaf nodes,
and assign internal ancestral nodes such that D(T) is minimized:

D(T) = ∑
(π,γ)∈T

d(π, γ),

where d(π, γ) can be any of the distances described in Section 3. The special
case of three genomes (m = 3) is called the median problem. Although the
tree topology for this problem is trivial, the assignment of the optimal internal
node can still be challenging.

If a rearrangement distance is used, a detailed rearrangement scenario could
also be associated to the tree that will describe every intermediate step of the
evolution of these genomes. Again, under the assumption that rearrange-
ments events are rare [15, 61], its reasonable to seek the most parsimonious
scenario to recover the actual tree.

Although many of the pairwise distances can be computed in polynomial
time (e.g. the breakpoint distance dbreak and the reversal distance drev, see
Section 3.2), it was shown that both the median problem for dbreak and the
median problem for drev are NP-hard [16, 18, 55]. Nevertheless, there are a
few efficient heuristics to tackle both the median problem [67, 72] and the full
phylogeny problem [10,15,44] under different sets of assumptions. We briefly
present some of these methods.

Sankoff and Blanchette [67] studied the median problem for the breakpoint
distance; they described a clever reduction of this problem to the Traveling
Salesman Problem for which reasonably efficient algorithms are available.
Using this result, Blanchette and coworkers [10] developed BPAnalysis, a
method to recover the most parsimonious scenario for m genomes also under
the breakpoint distance. That method first looked for the optimal assignment
of internal nodes for a given topology by solving a series of median problem
(this is also known as the small parsimony problem). The next step was
to scan the space of all possible tree topologies to find the best tree (large
parsimony problem). One of the drawbacks of this approach is that, as
we have seen, the tree space quickly becomes prohibitive. This limitation
was partially addressed by Moret and coworkers [44] who develop GRAPPA
which improves on BPAnalysis by computing tight bounds and efficiently
pruning the tree space. Another program to reconstruct phylogenies based
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on the breakpoint distance is GOTREE (see Table 4). A special feature of this
last tool is that it is not restricted to genomes with equal gene content.

Siepel and Moret [72] studied a different problem: the median problem for
the reversal distance. They derived a branch-and-bound algorithm to prune
the search space using simple geometric properties of the problem and the
linear-time machinery to compute the reversal distance [1]. Concurrently,
Bourque and Pevzner [15] developed a method called MGR for both the
median and the full phylogeny problem that made use of properties of ad-
ditive or nearly additive trees. This algorithm, combined with GRIMM [76], is
applicable to unichromosomal genomes for the reversal distance and to mul-
tichromosomal genomes for a rearrangement distance that allows reversals,
translocations, fusions and fissions. The main idea of the algorithm is to look
for rearrangements in the starting genomes that reduce the total distance to
the other genomes and iteratively “reverse history". The key is to use good
criterion to chose the order in which the rearrangements are selected.

The first method that used the conservation distance as the criterion to
be minimized in the phylogenetic reconstruction problem was presented by
Bergeron and coworkers [6]. Even though the problem was restricted to find-
ing an assignment of internal nodes on a fixed phylogeny (small parsimony
problem), this is a promising and active area of research.

4.3 Maximum Likelihood Methods

If we make assumptions about the mechanisms of evolution and the rates
at which these changes occur, we can seek the tree which is the most likely
to have generated the data observed. Such methods are called maximum
likelihood methods. They tend to be computationally intensive but they have
the advantage of providing a global picture of the solution space in contrast
to maximum parsimony which provides a unique solution for instance.

In the context of the comparative analysis of gene order, a maximum like-
lihood approach turns out to be quite challenging because of our incomplete
understanding of the frequency of rearrangement events but mostly because
of the significantly large number of potential states at internal nodes and of
phylogenetic trees [70]. Nevertheless, Dicks [21] developed one such method
for gene order data, but the method presented was restricted to small instances
of the problem. Other promising approaches involve the construction of a
Bayesian framework and the use of Markov chain Monte Carlo to sample
parameter space for two unichromosomal genomes [42, 87] or m unichromo-
somal genomes [38, 39]. Specifically, Larget and coworkers [39] developed
the program BADGER and used it to quantify the uncertainty among the
relationships of metazoan phyla on the basis of mitochondrial gene orders.
So far, although these frameworks are propitious, their range of applications
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has been limited. It will be interesting to see if these approaches can be further
applied and adapted to larger and also multichromosomal genomes.

5 Recent Applications

We have already seen some applications in which genome rearrangements
acted as complementary phylogenetic characters to study evolutionary rela-
tionships in a group of organisms such as mitochondria, chloroplasts, viruses
or small regions of larger genomes [3, 12, 20, 27, 51, 53, 54, 63]. We will now
show how the same concepts and methodologies can be applied to com-
pare entire eukaryotic genomes. Apart from the topology of the phylogeny,
interesting questions arise from studying rates of rearrangements, types of
rearrangements and predictions at ancestral nodes. We will also present some
preliminary work studying genome rearrangements in cancer.

5.1 Rearrangements in Large Genomes

Genome rearrangements studies have traditionally been based on the relative
order of homologous genes; however, as hinted at in Section 2.1, they can
also be based on the relative order of a common set of homology synteny
blocks (HSBs). These blocks can be defined either directly from sequence
similarity [36, 56] or from the clustering of homologous genes [88]. In this
context, rearrangement studies for large genomes will be reconfigured into a
two-step process:

(i) Identification of HSBs shared by the set of genomes under study.

(ii) Genome rearrangement analysis of the HSBs.

In Step (i), both for sequence-based and gene-based HSBs, thresholds need
to be set to allow the HSBs to extend over minor local inconsistencies that
could stem from different sources: sequencing and assembly errors, small
rearrangement events not enclosed in the rearrangement model of Step (ii)
(e.g. transposons), inaccurate prediction of orthologous genes (e.g. in the
presence of many paralogous copies), etc. For the identification of HSBs, there
are advantages to using both sequence and gene data.

The most important benefit of using raw sequence data is probably to cir-
cumvent the limitation of analyzing strictly coding regions (these regions only
cover a small portion of the eukaryotic genomes). Other benefits include that
it avoids annotation problems, it is less sensitive to gene families and, finally,
it preserves additional information on micro-rearrangements (rearrangements
within HSBs) that can then be used as additional independent phylogenetic
characters [13]. Advantages of using gene-based HSBs are that it focuses
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the investigations on critical regions of the genome, the thresholds are length
independent and it avoids some of the noise created by repeat regions.

After Step (i), the comparison of the respective arrangements of the HSBs in
the different genomes can be performed using the models, algorithms and
programs described in Sections 3 and 4. This two-step analysis was used
to compare the human with the mouse genome [56] and suggested a larger
number inversions than previously expected [48]. It also helped motivate
a model for chromosome evolution in which some breakpoints are reused
nonrandomly [40, 57].

When many genomes are compared, rearrangement analysis provides in-
formation not only on phylogenetic relationships, but also on rates of re-
arrangements and on putative genomic architecture of ancestral genomes
[13, 14, 46, 47]. For instance, the availability of the rat genome [26] allowed
a comparative study with the human and the mouse [14] that confirmed an
observation made using lower-resolution studies that rodent genomes have
had an accelerated rate of inter-chromosomal rearrangements (e.g. transloca-
tions, fusions and fissions). The same study also conjectured on the genomic
architecture of the putative murid rodent ancestor. The addition of the chicken
genome [32] acting as an outgroup allowed us to look further back in time
and predict the potential architecture of the mammalian ancestor [13]. This
analysis also suggested:

• Variable rates of inter-chromosomal rearrangements across lineages.

• High ratio of intra-chromosomal versus inter-chromosomal rearrangements
in the chicken lineage.

• Low rate of rearrangements in chicken, in the early mammalian ancestor or
in both.

More recently, a comprehensive analysis of eight mammalian genomes,
three sequenced genomes (human–mouse–rat) and five with high-resolution

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4 Inferred genomic architecture of
the mammalian ancestor (adapted from
Ref. [46]). Each human chromosome is
assigned a unique color and is divided into
HSBs. These HSBs correspond to stretches
of DNA for which sufficient similarity has
been retain to unambiguously allow the
identification of the homologous regions in
all other species. The size of each block
is approximately proportional to the actual
size of the block in human. In human, blocks
are arranged on each chromosome from

left (p-arm) to right (q-arm) and physical
gaps between blocks are shown to give
an indication of coverage. Numbers above
the rec onstructed ancestral chromosomes
indicate the human chromosome homolog.
Diagonal lines within each block indicate their
relative order and orientation. Black arrows
under the ancestral chromosome indicate
that the two adjacent HSBs separated by the
arrow were not found in every one of the most
parsimonious solutions explored; these are
considered weak adjacencies.
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radiation-hybrid maps (cat–dog–cow–pig–horse), afforded a detailed analysis
of the dynamics of mammalian chromosome evolution [46]. This study also
produced a refined model of the genomic architecture of the mammalian
ancestor, see Figure 4.

Applications focusing on specific areas of the genomes allow for the identi-
fication of very detailed scenarios. For instance, in the results of the study by
Murphy and coworkers [46], it is possible to focus exclusively on the HSBs
found on human chromosome 17; there are 14 such blocks. Chromosome
17 is interesting because, similarly to the X chromosome, it has seldom ex-
changed genetic material with other chromosomes during mammalian evolu-
tion. Specifically, the 14 blocks are found in one contiguous segment on a sin-
gle chromosome in mouse, rat, cat and pig. They are found in two contiguous
pieces on two chromosomes in cow and in three contiguous pieces on three
chromosomes in dog (horse is left out of this analysis because of insufficient
data). See Figure 5 for a parsimonious rearrangement scenario describing
the mammalian history of this chromosome. This example once again seems
to point towards uneven rates of rearrangements with no rearrangement
between the cetartiodactyl ancestor and pig, but five rearrangements in cow
during the same period of evolution. According to this reconstruction, the
pig chromosome 12 (the homolog of human chromosome 17) is ancestral
in the sense that no large-scale rearrangement has occurred on it since the
divergence of these species.

5.2 Genomes Rearrrangements and Cancer

The previous section described examples of the use of genome rearrange-
ments to study the evolution of a group of organisms. Now, because a rapid
increase of chromosomal mutations is frequently observed in cancer cells, it is
possible to study the cancer genome very much like as it was a new organism
that had recently diverged from the normal human genome. The interest
is that although cancer progression is frequently associated with genome
rearrangements, the mechanisms behind these rearrangements are still poorly
understood. There are many challenges in studying rearrangements in cancer
cells: the heterogeneity of the cells, the complexity of the rearrangements
(which include translocations, but also frequent duplications), but mostly
the fact that detailed sequence is only sparsely available. So far, the cost
of sequencing has been a prohibitive factor preventing large cancer genome
sequencing projects, but new emerging sequencing techniques such as End
Sequence Profiling [80] and Ditags [49] might help alleviate this problem.
Such techniques justify the development of algorithms and tools, related to
the analysis of genome rearrangement, to extract detailed tumor architecture
from such data sets [59, 60].
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Figure 5 Mammalian history of human
chromosome 17. The arrangements of
14 blocks (stretches of DNA) from human
chromosome 17 with syntenic counterparts
in seven other mammalian genomes (mouse,
rat, cat, dog, pig and cattle) are shown at
the bottom of the tree. Blocks are drawn
proportionally to their size in human. A
diagonal line traverses the blocks to show
their order and relative orientation. In human,
blocks are arranged from left (p-arm) to right

(q-arm) and physical gaps between blocks
are shown to give an indication of coverage.
In other species, the same blocks are drawn
also from left to right but in some cases these
blocks are found on multiple chromosomes
[cattle (2), dog (3) and carnivore ancestor
(2)]. Crosses on the edges of the tree are
labeled and indicate putative rearrangement
events even though their exact timing is
unknown. Data adapted from Ref. [46].

A complementary approach for the study of rearrangements in cancer in-
volves looking at breakpoint regions. Many such regions have already been
characterized in a large population of cancer patients [43]. Studying their
distribution with respect to either chromosomal location [65] or evolutionary
breakpoints [46] (identified from multispecies comparisons) is likely to pro-
vide invaluable information on the forces acting on these aberrant genomes.

6 Conclusion

6.1 Challenges

Comparative analyses of gene order would greatly benefit from established
benchmarking data sets. These instances could be use to compare and refine
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current approaches for the study of genome rearrangements. Of course,
the challenge is that for data sets generated from real genomes, the actual
rearrangement history for these organisms is unknown. Thus, recovered
scenarios can only be evaluated with respect to some limited aspects of their
solution such as topology of the recovered tree [12, 20]. This is a suitable
criterion to evaluate the merits of an approach because the topology can also
be inferred from alternative, more traditional, approaches such as the compar-
ison of individual genes. Even then, ambiguities will remain since for many
interesting sets of species, some aspects of the topology are debatable (e.g.
especially when deep branches are involved) and the information extracted
from genome rearrangements might be different from that provided from
sequence analysis but not necessarily erroneous.

Other criteria that can be used for the evaluation of solutions are some of
the coarse features of the recovered ancestors such as the ancestral chromo-
somal associations. These are associations between modern chromosomes
(e.g. human chromsomome) that are inferred to have been present in the
ancestors [73]. Unfortunately, once again, definitive evaluation is difficult for
two reasons: (i) the expected associations rely on low-density comparative
maps and are likely to be incomplete, and (ii) multiple alternative ances-
tors are typically recovered in rearrangement studies making more than a
single prediction [13, 14]. Now that high-quality sequences are increasingly
becoming available for many genomes, one would actually expect to see the
knowledge on such associations to be expanded and refined, especially after
carrying out combinatorial analyses that take into account more than just co-
occurrences.

A logical alternative to real benchmarking data sets with unknown rear-
rangement history is provided by simulated data sets. Unfortunately, there are
drawbacks inherent to this approach as well. In particular, simulated data sets
will always bias the evaluation towards approaches that have an underlying
rearrangement model that is most compatible with the model that was used to
generate the data. Such data sets can be a great asset in evaluating alternative
methods that have the same assumptions, but they are of limited value in
identifying whether a particular method will be successful on real data.

Another desired development would be a more systematic study and com-
parison of different distance criterion. Specifically, with the development of
new measures [7,31,78], a detailed analysis of the strengths and weaknesses of
the different approaches is needed to assess the context in which they are most
applicable. For instance, model-free measures such as the breakpoint distance
and the conservation distance are probably the most appropriate when the
underlying rearrangements follow uncharacterized rules.

Finally, a key challenge associated with this type of analysis involves study-
ing the causes and consequences of genome rearrangements. Although these
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events are well characterize in both evolution and cancer, the extent of the
biological repercussions is still unclear. For instance, large rearrangement
events can have a significant impact at the population level by creating sub-
populations for which recombination in the affected region will be impossible
but the question of whether such events also play a role in speciation for
instance is still debated. On a different topic, is there a faster phenotypic
evolution associated with a faster rearrangement rate? Given the amount of
comparative data recently made available [26, 32, 37, 79, 84], the hope is that
some answers might be within reach.

In order to start exploring these questions, looking at sets of highly diverse
genomes spanning long evolutionary distances is not the most appropriate.
Inherent to such data sets will always be ambiguities such as the accuracy of
the rearrangement model, the quality of the solution obtained, the order of
rearrangements found on edges of the phylogeny, the presence of alternative
ancestors and the presence of alternative rearrangement scenarios. A more
practical framework in which to ask questions about the impact of genome re-
arrangements would probably involve looking at more closely related species
where the inferred rearrangement scenario is less disputable.

6.2 Promising New Approaches

The rearrangement model will always have a critical impact on the recon-
structed scenario. In many of the applications presented [13, 14, 46], the
rearrangement model includes reversals, translocations, fusions and fissions,
but these events are considered equally likely (i.e. the weight of each of the
events is the same when the distance is computed). In reality, short reversals
are probably more common than fusions for instance. Consider the carnivore
ancestor shown Figure 5; in the displayed solution, there is a fission between
the ferungulate ancestor and the carnivore ancestor followed by a fusion in
the cat lineage. An alternative solution exists with the same total number
of rearrangements, but in which this fission plus fusion is replaced by a
single fission on the dog lineage and a reversal in the cat lineage. Such a
scenario is probably more realistic than the one displayed but it is masked by
our assumption of equally likely events. Perhaps approaches with weighted
events, such as in Blanchette and coworkers [11], or approaches that make
use of a maximum likelihood framework, such as Larget and coworkers [39],
could help alleviate some of these ambiguities.

Although strictly incorporating transpositions into the rearrangement model
remains computationally challenging, there is renewed interest in allowing
block interchanges, an operation which includes all types of transposition [19,
41, 86]. The inclusion of this process actually allows a dramatic simplification
of the HP theory (see Section 3.2) [86] and is likely to enable new applications.
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Nevertheless, because rearrangement models are always debatable, model-
free approaches that make use of breakpoint or conservation distance, such
as Bergeron and coworkers [6], are also attractive and interesting. Hopefully
these approaches will be extended and applied to a larger variety of problems.

Finally, another promising area of research is the analysis of breakpoint
regions. These regions typically contain an unusual mosaic of content [36, 77]
and they are also likely to harbor information on the mechanisms behind the
rearrangements that created them. In the context of cancer, these are also the
regions that have the potential to host the destructive fusion genes. Com-
paring cancer breakpoints with evolutionary breakpoints [46] might provide
some information on the forces shaping the genomic architecture of modern
organisms.
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Part 4 Molecular Structure Prediction

9
Predicting Simplified Features of Protein Structure
Dariusz Przybylski and Burkhard Rost

1 Introduction

1.1 Protein Structures are Determined Much Slower than Sequences

At the end of 2005 there were about 30 000 experimentally determined pro-
tein three-dimensional (3-D) structures in public databases [17]. At the same
time there were almost 40 million genes known [16] and approximately 1.5
million verified [11] protein sequences. This gap between structure and se-
quence continues to grow – despite successful efforts at large-scale structure
determination (“structural genomics” [118, 150]), the rate of new structures
(thousands per year) continues to increase much slower than the rate of
new sequences (many millions per year). Moreover, experimental structure
determination has been largely or entirely unsuccessful for important classes
such as cell membrane proteins.

1.2 Reliable and Comprehensive Computations of 3-D Structures
are not yet Possible

In principle, we could compute 3-D structures from sequences using basic
physical principles [9]. However, the complexity of the problem exceeds
by far today’s computational resources. Speeding up molecular dynamics
by a factor of 1000 appears an objective within reach to Schroedinger Inc.
While this would undoubtedly yield important insights into the problem,
it may still not bring reliable predictions of 3-D structures from sequence.
Even given infinite CPU resources, another serious obstacle is raised by the
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minute energy differences between native and unfolded structures (around
1 kcal mol−1). This minute difference along with the uncertainty in estimat-
ing constants needed for calculations based on first principles makes it very
difficult to find an approximate approach that is both simple and sufficiently
accurate. Although we cannot model from sequence, comparative modeling
yields rather accurate predictions based on sequence homology to proteins
of known structure [101]. Such modeling is based on the fact that proteins
with similar sequences usually have similar structures. Assume we know the
structure for K and that we want to predict the structure for U that is sequence-
similar to K. Comparative modeling simply predicts U to have the same
structure as K and models the structure of U based on the known backbone
of K. However, for the majority of protein sequences no sufficiently detailed
structural information is available or computable.

1.3 Predictions of Simplified Aspects of 3-D Structure are often very Successful

In the absence of experimental or predicted 3-D structures, many researchers
concentrate on trying to simplify the problem and predict particular struc-
tural features. One of the first well-defined problems was the prediction of
protein secondary structure. Progress in this field has been steady and current
secondary structure predictions are useful for many biological applications.
Techniques that were developed in the context of secondary structure pre-
dictions were successfully applied to the prediction of many other aspects
of protein structure such as solvent accessibility, inter-residue contact maps,
disordered regions, domain organization and specialized for distinctive cases
such as transmembrane regions of proteins.

2 Secondary Structure Prediction

2.1 Assignment of Secondary from 3-D Structure

2.1.1 Regular Secondary Structure Formation is Mostly a Local Process

Three-dimensional structures exhibit extensive local conformational regular-
ities known as regular secondary structure. These local structures (most
importantly helices and sheets) can be described as ordered arrangements
of a polypeptide chain without reference to amino acid type or actual 3-D
conformations. They are stabilized primarily by hydrogen bonds formed
between the atoms present in the polypeptide backbone, but interactions with
solvent and other protein atoms also play an important role. It is believed
that the formation of secondary structure is an important step toward folding.
Identifying the rules for packing the elements of secondary structure against
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each other would afford the derivation of a very limited number of possible
stable conformations. Unfortunately, the formation of secondary structure is
not entirely a local process. Thus, a perfect prediction of secondary structure
without knowledge of nonlocal information is unlikely. Note that secondary
structure can be written in a string of assignments for each residue, i.e. it
is essentially a 1-D feature of protein 3-D structure. (Unfortunately, some
authors are lured into misusing the term 2-D structure, possibly in response
to a misunderstanding of the word “secondary”.)

2.1.2 Secondary Structures can be Somehow Flexible

Regular secondary structure is a striking, macroscopically visible aspect of
3-D structure. However, secondary structures are not rigid. Calculations
and experiments indicate that structural shifting occurs, especially in sur-
face regions. The adoption of a particular structure may depend on many
environmental factors. This is illustrated by the fact that sometimes the
secondary structure states differ among various crystals of the same protein
as well as various nuclear magnetic resonance (NMR) models by as much as
5–15%. This variability constrains the upper limit of what we can expect from
prediction methods – arguably levels of about 90% (percentage of residues
predicted correctly in either of the three states helix, strand, other). While
many residues can be confidently classified into one of the secondary structure
types, there are also those for which classification is ambiguous. This problem
is especially evident at terminal locations of secondary structure elements; it
is just another aspect of the observation that protein structures are dynamic
objects. Historically, assignments were carried out through visual inspection
by experimentalists. That approach introduced a human-based inconsistency.
In 1983, this inconsistency was first addressed by an objective, automatic
assignment method [Dictionary of Secondary Structure of Proteins (DSSP),
see below]. Many such methods followed; they all apply criteria consistent
for all proteins but they often differ between each other.

2.1.3 Automatic Assignments of Secondary Structure

The first assignments of protein secondary structure were carried out by
Pauling and others [126] even before experimental 3-D structures of proteins
became available. They were based on intra-backbone hydrogen bonds. One
of the first and most popular automatic methods, DSSP [76], used a similar
approach. The DSSP method calculates the interaction energy between back-
bone atoms based on an electrostatic model [76]. It assigns a hydrogen bond
if the interaction energy is below a chosen threshold (–0.5 kcal mol−1). The
structure assignments are defined such that visually appealing and unbroken
structures are formed from groups of hydrogen bonds. Another popular au-
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tomatic assignment method, the STRuctural IDEntification method (STRIDE
[51]) uses φ–ψ torsion angles and empirically derived hydrogen bond en-
ergy. The parameters used by this method are optimized to reproduce visual
assignments provided by experimentalists determining 3-D structures and
so in effect the method averages out human bias. The method DEFINE
[143] assigns secondary structure using Cα coordinates. The assignment is
carried out through comparison of observed Cα distances with those derived
from ideal secondary structures. If the distances are within set discrepancy
limits, then the secondary structure is assigned. The method P-Curve [173]
makes assignments based on geometrical analysis of protein curvature. It uses
differential geometry-based representations of standard structural motifs and
through a set of geometrical transformations tries to match these motifs with
those found in known 3-D structures. P-Curve assignments differ significantly
from those based on hydrogen bonds and/or φ–ψ torsion angles. DSSP,
P-Curve and Define assignment methods agree for only about two-thirds
of all residues [30]. There are various reasons for disagreements; the most
important one may simply be that secondary structure is dynamic, i.e. that
there simply is no such thing as a secondary structure “state”. This problem is
reflected in the DSSPcont method that introduces continuous secondary struc-
ture assignments [8]. The continuum results from calculations of weighted
averages of DSSP assignments that are based on various hydrogen bond en-
ergy thresholds. As a result, each protein residue is assigned with likelihoods
of all secondary structure states. Residues that have a higher probability for a
single “state” appear to also be more rigid according to NMR measurements
of motions on timescales important for protein function [8]. Other, more
application-oriented approaches to defining local structures are possible. For
example, one may try to define a new secondary structure alphabet with a
goal of improving fold recognition algorithms [78]. The numerical values of
prediction accuracy presented in this chapter are based on the most widely
used DSSP assignment. Evaluations based on STRIDE tend to yield higher
values and no state-of-the-art prediction method has been evaluated on P-
Curve.

2.1.4 Reduction to Three Secondary Structure States

DSSP distinguishes eight different “states”: three types of helical structures
[α-helix (“H”, four-residue period), π-helix (“I”, five-residue period) and 310-
helix (“G”, 3-residue period)], extended β-sheet (“E”), β-bridge (“B”), turn
(“T”), bend (“S”) and other nonregular states (blank). Of those, α-helix and
β-strand (Figure 1) comprise more than 50% of all protein residues. Some
prediction methods attempt to predict all eight states. However, a widely
used strategy is to map the eight “states” into three major “classes”: helical,
extended and other (often imprecisely referred to as “nonregular”, “coil”
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Figure 1 Ribbon diagram of protein
secondary structure. Secondary structures
are local arrangements of the protein
backbone without reference to the amino
acid type or the 3-D conformation. They are
stabilized by hydrogen bonds between atoms
of the main chain (backbone). Very roughly,

secondary structures can be classified into
three classes: helical (H), extended (E)
(strand) and loopy (other) L. The figure
contains a schematic representation of the
E2 DNA-binding domain [21] (Protein Data
Bank [17] code 1a7g).

or “turn”). Different maps are possible, but the most popular one (which
incidentally is most difficult to predict [35]) is the following: [GHI ] = helical
(“h”), [EB] = extended (“e”) and [TS] = nonregular (coil) (“I”). The alternative
translation that results in seemingly higher prediction accuracies, i.e. [H] = he-
lical, [E] = extended and [GITS ] = nonregular, is sometimes used.

2.2 Measuring Performance

2.2.1 Performance has Many Aspects Relating to Many Different Measures

Depending on the application there are various views as to what constitutes a
high-quality prediction. On the one hand, it is important to correctly predict
the secondary structure “state” for each residue (per-residue accuracy); on the
other hand, it may be more relevant to predict the coarse-grained presence of,
for example, a helix than all residues in the helix (segment-based accuracy).
Accordingly, many measures have been used to assess prediction quality:
simple percentages of per-residue accuracy (Eq. 1), Matthew’s correlation
coefficients, percentage of confusion between strand and helix states [38]
(Eq. 2); simple segment-based measures such as the number of correctly pre-
dicted segments, the average ratio of predicted to observed segment lengths,
the difference between the distribution of predicted and observed segment
lengths [156]; or the more elaborated and widely used segment overlap score
SOV [160, 187] (Eq. 3). These are only some of the measures that have been
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applied. In this chapter, we focus on two measures for per-residue accuracy,
i.e. percentages QK (Eq. 1) and the BAD score (Eq. 2), and one measure for
per-segment accuracy, i.e. SOV.

2.2.2 Per-residue Percentage Accuracy: QK

Perhaps the most intuitive and simplest measure for performance is the av-
erage percentage of correctly predicted states. For a protein composed of L
residues and for K possible secondary structure states the per-residue predic-
tion accuracy QK is defined as:

QK = 100×
K

∑
i=1

Ci/L (1)

where Ci is the number of residues correctly predicted in secondary structure
state i. For a three-state alphabet this translates into a Q3 measure. The
average accuracy can be computed as an average per protein or an average
per residue in which case the number of all residues is used for L.

2.2.3 Per-residue Confusion between Regular Elements: BAD

Not all secondary structure prediction mistakes are equal. For instance, when
using secondary structure predictions to model 3-D structure, confusing helix
and extended (strand) is more detrimental than confusing regular with non-
regular states. The percentage of such “bad” predictions constitutes the BAD
score. If L is a total number of amino acid residues in a protein and Bh (Be) is
the number of helical (strand) residues predicted in strand (helix) state, then
the BAD score is expressed as:

BAD = 100 ∗ Bh + Be
L

. (2)

Two predictions with equal Q3 and/or SOV scores can have very different
BAD scores.

2.2.4 Per-segment Prediction Accuracy: SOV

Regular secondary structure elements are built of continuous stretches of
residues belonging to the same state, e.g. most helices are about 10 residues
long. It can be argued that mis-predicting two residues at either end of a helix
is not an important mistake (note: 2 + 2 out of 10 means 60% accuracy). In
contrast, only predicting 60% of the helices in a protein is a severe problem.
Such realities are reflected in segment-based measures. The most widely used
is the segment overlap (SOV) measure [160,187]:

SOV = 100× 1
N

K

∑
i

∑
S(i)

minov(sobs, spred) + δ(sobs, spred)
maxov(sobsspred)

× len(sobs) (3)
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where K is the number of different secondary structure types; the second
summation is over all overlapping secondary structure segments of observed
sobs and predicted spred secondary structure of the same type; minov is the
number of positions at which segments overlap; maxov is the number of over-
lapping positions plus the number of remaining residues from each segment
of the given pair; len(sobs) is the length of a reference secondary structure
segment (observed experimentally); N is the total number of overlapping
segments pairs of the same type; and δ(sobs, spred) is the accepted variation
between segments that assures ratio of 1.0 when the variations between sobs
and spred are minor. One can easily envision two different secondary structure
predictions that have the same Q3 and different SOV scores. For example, if
instead of a observed long helix of length n one prediction consists of a shorter
helix of length m and the second prediction comprises two short helices of
combined length equal to m (other residues predicted as coil), then the Q3
scores of both predictions are going to be the same while the SOV scores are
going to be different.

2.3 Comparing Different Methods

2.3.1 Generic Problems

In this section we describe problems with the evaluation of prediction meth-
ods that are entirely generic, i.e. valid for all prediction methods. Although
many ideas and concepts have been introduced to predict secondary structure
and have then been used for other purposes, many of the mistakes in compar-
ing methods have also been unraveled first and most clearly for the example
of secondary structure predictions. Secondary structure prediction methods
may be the only example of publications with claims to performance accuracy
that survived more than a decade. (To put this into perspective: our section
focuses on methods for which performance has, on average, been unusually
well estimated; nevertheless, the only other field that we review for which any
estimate survived 5 years was the prediction of solvent accessibility and the
vast majority of publications in that field heavily overestimated performance!)

2.3.2 Numbers can often not be Compared between Two Different Publications

Prediction methods are often published with estimates of performance that
are supported by cross-validation experiments. However, the terms “cross-
validation” or the related term “jackknife” are by no means sufficiently well-
defined to translate into “estimate ok”. In fact, most publications make some
serious mistakes as is demonstrated by the simple fact that very few estimates
of performance have survived. One problem is the overlap between “training”
and “testing” sets. It is trivial to reach very high performance by training on
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proteins that are very similar to those in the testing set. There are various
strategies that deal with the similarity problem [67,188]. Another issue is
that of using the performance of the test set to choose some parameters by,
for example, reporting full cross-validation results for N different parameters
and then concluding that the best of those N is the performance of the final
method. Instead, performance estimates should always be based on a data
set that was not used in ANY step of the development. However, even if
we had two publications that both used cross-validation “correctly”, we still
cannot necessarily compare the numbers published by both directly. First,
both have to have used the same standard of truth (here, the same assignment
method, e.g. DSSP, and the same conversion of the eight DSSP states into three
prediction classes). Second, they both have to have been based on identical
test sets. Often, the test sets used by developers are not representative and
differ from each other. Proteins vary in their structural complexity and such
variation is correlated with prediction difficulty. We could argue that test sets
should be frozen (and this has indeed been done in many cases). Such a set
should be sufficiently large to allow proper evaluation of statistical differences
among methods. Although a sine qua non, this freezing strategy does not
suffice – data sets in biology change constantly, almost always more recent
sets are more reliable and representative. Therefore, we also need evaluations
based on sets that are as recent as possible. One way of merging these two
demands is by carrying out two tests: one on a frozen set used by others and
the other on a more recent set. As an aside, it is not necessary to use n-fold
cross-validation experiments with the largest possible n. The exact value of n
is not important as long as the test set is not misused for adjusting a method’s
parameters and it is representative of the entire structure space.

2.3.3 Appropriate Comparisons of Methods Require Large, “Blind” Data Sets

One of the solutions to the problem of comparing methods is to use a suf-
ficiently large test set composed of proteins that were neither used nor are
similar to any protein that was used for development of any method. This
idea was first realized in the field of structure prediction through the Critical
Assessment of Structure Prediction (CASP) experiments in which various
prediction methods are tested over the course of a few months on sequences
of proteins the 3-D structure of which is unknown at the time of the prediction
(“blind” prediction). Those experiments evaluate fully automatic methods as
well as human experts (see also Chapter 11 for a more detailed description
of CASP and CAFASP). Due to a variety of reasons, CASP cannot be based
on sufficiently large, representative data sets. Servers that automatically
evaluate methods whenever new data is available address this shortcoming.
Such servers base their comparisons on thousands instead of tens of test
cases (as does CASP). Two such servers exist: EVA and LiveBench. EVA
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[44] continuously evaluates automatic prediction methods (servers) provid-
ing results based on a large, statistically significant and, subsequently, more
representative data sets. One of its principles is to facilitate comparisons
on identical sets and to render comparisons on different sets very difficult.
Another principle is to never distinguish in the rank between two methods
if the difference in their performance is not statistically significant. Both
principles are in stark contrast to what most CASP assessors did.

2.4 History

2.4.1 First Generation: Single-residue Statistics

First attempts to correlate amino acid residue frequency with secondary struc-
ture type can be traced to correlating the content of certain amino acids (e.g.
proline) with the content of α-helix [176]. This was done even before the first
crystallographic structures were available [81, 127]. Attempts to correlate the
content of all amino acids with the content of α-helix and β-strand opened
the field of secondary structure prediction [19, 20]. The early methods were
usually based on single-residue statistics obtained from very limited data sets
of known protein structures. As such they were not very accurate (Figure 2)
and in addition their accuracy was overestimated at the time.

2.4.2 Second Generation: Segment Statistics

As the number of experimentally determined protein structures grew it be-
came possible to estimate propensities for secondary structure based on con-
secutive segments of residues. Various numbers of adjacent residues (typically
11–21) were considered in assigning secondary structure to a central residue of
a segment. Many different algorithms were applied, but they did not achieve
per-residue prediction accuracies higher than slightly above 60% (Figure 2).
Reports of higher accuracies were due to small data sets and did not hold for
long. The main approaches used were (i) statistical information, (ii) physic-
ochemical properties, (iii) sequence patterns, (iv) artificial neural networks,
(v) graph theory, (vi) expert rules, (vii) nearest-neighbor algorithms and (viii)
hybrid approaches of various algorithms.

2.4.3 Third Generation: Evolutionary Information

Proteins with similar sequences adopt similar structures [27, 166]. In fact,
proteins can change more than 70% of their residues without altering the
basic fold [1, 15, 125, 189]. However, the vast majority of possible sequences
supposedly do not adopt globular structures at all. Rather, the exact sub-
stitution pattern of which residues can be changed and how is indicative
of particular structural details. Consequently, the evolutionary information
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Figure 2 Three-state per-residue accuracy
of various prediction methods. Included are
only those methods for which we could run
independent tests. Unfortunately, for most old
methods this was not possible. However,
for each method we had independent
results from PHD (third generation, 1993)
[151,154,159] available. We normalized
the differences between data set by simply
compiling levels of accuracy with respect
to PHD. For comparison, we added the
expected accuracy of a random prediction
(RAN), and the best currently possible

prediction accuracy achieved through
comparative modeling of close homolog
(PDB98). The methods were: C+F (Chou
and Fasman; first generation, 1974) [28,29];
Lim (first, 1974) [93]; GORI (first, 1978)
[53]; Schneider (second, 1989) [169]; ALB
(second, 1983) [140]; GORIII (second, 1987)
[57]; COMBINE (second, 1996) [52]; S83
(second, 1983) [77]; LPAG (third, 1993) [92];
NSSP (third, 1994) [175]; PHDpsi (third,
2001) [137]; JPred2 (third, 2000) [34]; SSpro
(third, 1999) [12]; PROF (third, 2001) [149];
PSIPRED (third, 1999) [73].

contained in sequence alignments can aid structure prediction. In particular
this approach improves prediction of β-strands. For the first and second
generation of prediction methods β-strand prediction was particularly bad
(often only slightly better than random). The pioneering method that used
alignment information was proposed in the 1970s [41]. The first approaches
were based on visual gathering of information from sequence alignments. In
one of the first automatic algorithms making use of alignment information
[107,189] the final secondary structure prediction was an average over all
predictions compiled for each sequence in the alignment. The first method
that succeeded in significantly improving performance by automatically using
alignment information was PHD [151, 154, 157] (Figure 3). This method used a
residue profile extracted from a multiple sequence alignment as an input to the
artificial neural network. Many other methods used artificial neural networks
[73, 123, 133], but various other algorithms were also applied successfully [38,
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Figure 3 Using evolutionary information
to predict secondary structure. Starting
from a sequence of unknown structure
(SEQUENCE) the following steps are
required to feed evolutionary information into
the PROFsec neural networks (upper right):
(1 and 2) a database search for homologs
through iterated PSI-BLAST [6,7] (protocol
from Ref. [137]), (3) a decision for which

proteins will be considered as homologs,
(4) a reduction of redundancy (purge too
many too similar proteins), and (5) a final
refinement and extraction of the resulting
multiple alignment. Numbers 1–5 illustrate
where users of the PredictProtein server
[151,161] can interact to improve prediction
accuracy without changes made to the actual
prediction method PROFsec.

39, 51, 91, 109, 146, 163] including support vector machines (SVMs) [68, 181],
hidden Markov models (HMMs) [79], nearest-neighbor algorithms [163].

2.4.4 Recent Improvements of Third-generation Methods

PHD tore down what once was a magical wall of 70% accuracy. The mark
has been put much higher since. The first significant improvement was
achieved by training neural networks on more diverse sequence alignments
[73]. The alignments were generated by a new alignment method – PSI-
BLAST [7]. It has been shown that a major improvement can be achieved
by using previous types of neural networks with PSI-BLAST alignments [34].
Interestingly, it was also shown that a significant part of the improvement was
simply due to the growth of sequence databases that resulted in more diverse
profiles [137]. In general, the more divergent the alignment the better the
prediction can be obtained. The input quality is also dependent on alignment
quality. This is especially important for divergent homologous proteins where
alignment methods tend to make many mistakes. Yet another simple source of
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improvement is related to the growth of the database of protein structures [17].
Apart from improvements in alignments, there is a lot of research pursuing
development of more sophisticated and accurate algorithms. Those include
new network architectures or learning techniques [3, 12, 78, 132, 133], SVMs
[181] and many others.

2.4.5 Meta-predictors Improve Somehow

Different methods often make different mistakes. As long as those errors
are not purely systematic, combining any number of methods can lead to
improvements in prediction accuracy [62]. For example, the PHD method
utilized this observation by combining differently trained neural networks.
Various implementations of the similar concept were used in many other
methods [24, 34, 128]. Alternatively, or in addition, different methods can be
combined [5, 35, 36, 60, 83, 158, 170]. Overall, combinations of independent
methods tend to top the single best method. However, it probably is not ben-
eficial to use all of the available prediction methods in the meta-methods. For
example, averaging over all methods evaluated by EVA evaluation server [44,
46] decreased accuracy over the best individual methods (Rost, unpublished).
It is not fully straightforward how to decide whether to include a given
method or not [5]. Concepts weighing the individual method based on its
accuracy and “entropy” [128] appear to be successful only for large numbers
of methods. More rigorous studies for the optimal combination may provide
a better picture. An interesting approach resulted from attempts to improve
meta-methods by developing new methods that are algorithmically different
from the methods already used [85, 171]. Recently, an observation has been
made indicating that optimizing meta-servers to achieve highest per-residue
prediction accuracy is not always beneficial when using the final predictions
in various applications [108]. Another issue that has first been introduced
for secondary structure prediction is the measurement for the reliability of a
prediction. To make an extreme point: a method that has 50% accuracy, but
that always correctly identifies in which of the cases it is right and it which
it errs (before knowing the answer), is more useful than a method with 75%
accuracy and no notion about which 25% of the residues are wrong. State-of-
the-art methods reliably estimate the reliability of a prediction. This is not the
case for any of the existing meta-methods.

2.5 State-of-the-art Performance

2.5.1 Average Predictions Have Good Quality

Today’s best methods reach average levels of almost 78% in Q3 (Eq. 1) [44, 86].
They are able to accurately predict most segments (SOV scores around 76%).
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Figure 4 Expected variation of prediction accuracy for PROFsec. (A)
Three-state per-residue (Q3) and segment overlap (SOV ) accuracies.
(B) Percentage of BAD predictions, i.e. residues either predicted in
helix and observed in strand or predicted in strand and observed in
helix.

In addition the confusion between helices and strands is low (BAD score of
less than 3%).

2.5.2 Prediction Accuracy Varies among Proteins

The standard deviation of three-state-per-residue accuracy computed on the
per-protein basis is about 13% [44, 86] (Figure 4). Thus, some of the proteins
are predicted very well (above 90%), while others are predicted very badly
(even below 40% accuracy levels). The relatively large deviations are also
found in prediction quality measured by other measures. The standard de-
viation of the SOV score is about 15% and that of the BAD score is about 5%.
In particular, proteins having no sequence homologs (no alignment input) are
poorly predicted. This is an important issue for the applicability of secondary
structure predictions since badly predicted secondary structure is not very
valuable.

2.5.3 Reliability of Prediction Correlates with Accuracy

For the user interested in a particular protein U, the fact that the prediction
accuracy varies from protein to protein implies a rather unfortunate message:
the accuracy for U could be lower than 40% or it could be higher than 90%
(Figure 4). Is there any way to provide an estimate at which end of the
distribution the accuracy for U is likely to be? Indeed, many methods provide
numerical estimates of the expected quality of their predictions through so
called reliability indices. Those indices correlate with accuracy. In other
words, residues with higher reliability index are predicted with higher ac-
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Figure 5 Prediction quality correlates with reliability indices. (A)
Average three-state per-residue accuracy and BAD score at different
reliability index thresholds (averaged over entire protein) as predicted
by PROFsec [149]. (B) Corresponding values of standard deviation.

curacy [151, 154, 157]. Thus, the reliability index offers an excellent tool to
focus on some key regions predicted at high levels of expected accuracy.
Furthermore, the reliability index averaged over an entire protein correlates
with the overall prediction accuracy for this protein (Figure 5).

2.5.4 Understandable Why Certain Proteins Predicted Poorly?

It is not easy to anticipate performance of a secondary structure prediction
method based on overall structural features of proteins. However, prediction
accuracy is correlated with alignment quality. Poor alignments (i.e. nonin-
formative and/or falsely aligned residues) result in inaccurate predictions.
Another interesting observation is that frequently the BAD predictions, i.e.
the confusion between helix and strand are observed in regions that are
stabilized by long-range interactions. Furthermore, helices and strands that
are confused despite a high reliability index often have functional properties
or are correlated to disease states (Rost, unpublished data). Regions predicted
with equal propensity in two different states often correlate with “structural
switches”.

2.6 Applications

2.6.1 Better Database Searches

Initially, three groups independently applied secondary structure predictions
for fold recognition, i.e. the detection of structural similarities between pro-
teins of unrelated sequences [50, 152, 162]. A few years later, almost every
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other fold recognition/threading method has adopted this concept [10, 37,
40, 63, 72, 74, 80, 87, 122, 124]. Two recent methods extended the concept
by not only refining the database search, but by actually refining the quality
of the alignment through an iterative procedure [65,71]. A related strategy
has been employed to improve predictions and alignments for membrane
proteins [117]. It has also been indicated that prediction mistakes tend to
correlate among structurally related proteins [138], and that alignments based
on purely predicted secondary structure have comparable quality with those
based on matching predicted and observed states. Thus predicted secondary
structure may prove useful in searching sequence databases.

2.6.2 One-dimensional Predictions Assist in the Prediction
of Higher-dimensional Structure

Secondary structure predictions are now accurate enough to be used as input
for methods that target the prediction of higher order aspects of protein
structure automatically. A few successful applications include the follow-
ing. Contact map predictions [13] have recently improved the level of accu-
racy significantly; an important contribution was the inclusion of secondary
structure predictions [141]. They also help in the prediction of folding rates
[69,142]. Secondary structure predictions have also become a popular first
step toward predicting 3-D structure. Ortiz and coworkers [121] successfully
use secondary structure predictions as one component of their 3-D structure
prediction method. Eyrich and coworkers [47, 48] minimized the energy of
arranging predicted rigid secondary structure segments. Lomize and cowork-
ers [103] also started from secondary structure segments. Chen and coworkers
[25] suggested using secondary structure predictions to reduce the complexity
of molecular dynamics simulations. Levitt and coworkers [164, 165] combined
secondary structure-based simplified presentations with a particular lattice
simulation attempting to enumerate all possible folds.

2.6.3 Predicted Secondary Structure Helps Annotating Function

Secondary structure predictions are also useful to annotate/predict protein
function. For example, secondary structure predictions have been used suc-
cessfully in completely automatic predictions of subcellular localization [116].
A more typical use of secondary structure prediction is in aiding experts in
finding similarities among proteins with insignificant sequence similarity. In
this way functional annotation is sometimes transferred from one protein to
another [184].
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2.6.4 Secondary Structure-based Classifications in the Context
of Genome Analysis

Proteins can be classified into families based on predicted and observed sec-
ondary structure [56, 139]. However, such procedures have been limited to a
very coarse-grained grouping only sometimes useful for inferring function.
Nevertheless, predictions of membrane helices and coiled-coil regions are
crucial for genome analysis. More than one fifth of all eukaryotic proteins
appear to have regions longer than 60 residues apparently lacking any regular
secondary structure [102]. Most of these regions were not of low complexity,
i.e. not composition biased. Surprisingly, these regions appeared evolu-
tionarily as conserved as all other regions in the respective proteins. This
application of secondary structure prediction may aid in classifying proteins,
and in separating domains, possibly even in identifying particular functional
motifs.

2.6.5 Regions Likely to Undergo Structural Change Predicted Successfully

Prions and prion-like proteins appear to aggregate through the transition of a
regular secondary structure: what is “usually” a helical region switches to a
strand that becomes the root of aggregation in the case of disease mutants.
The reliability of the PHD secondary structure predictions combined with
experimental evidence gave the first hint where this expected transition might
occur [136]. Interestingly, it is still difficult to actually observe the strand in
structures of even the mutant prion, while state-of-the-art prediction methods
always predict the region with an observed helix to be in a strand. This
example casts some light on the importance of transitions and the useful-
ness of predictions to capture such transitions. Young and coworkers [84]
have pushed this observation further by unraveling an impressive correlation
between local secondary structure predictions and global conditions. The
authors monitor regions for which secondary structure prediction methods
give equally strong preferences for two different states. Such regions are pro-
cessed combining simple statistics and expert rules. The final method has been
tested on 16 proteins known to undergo structural rearrangements and on a
number of other proteins (one of those was a prion). The authors report no
false positives and identify most known structural switches. Subsequently, the
group applied the method to the myosin family identifying putative switching
regions that were not known before, but appeared reasonable candidates [84].
This method is remarkable in two ways: (i) it is a very general method using
predictions of protein structure to predict some aspects of function and (ii)
it illustrates that predictions may be useful even when structures are known
(as in the case of the myosin family). While the method is tailored to catch
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more subtle changes than occur in prions, there is some evidence that amyloid
aggregation is also captured to some extent.

2.7 Things to Remember when using Predictions

2.7.1 Special Classes of Proteins

Prediction methods are usually derived from knowledge contained in pro-
teins from subsets of current databases. Consequently, they should not be
applied to classes of proteins not included in these subsets, e.g. methods for
predicting helices in globular proteins are likely to fail when applied to predict
transmembrane helices. In general, results should be taken with caution for
proteins with unusual features, such as proline-rich regions, unusually many
cysteine bonds or for domain interfaces.

2.7.2 Better Alignments Yield Better Predictions

Multiple alignment-based predictions are substantially more accurate than
single sequence-based predictions [14, 39, 151]. How many sequences are
needed in the alignment for an improvement; and how sensitive are prediction
methods to errors in the alignment? The more sequences contained in the
alignment diverge, the better (two distantly related sequences often improve
secondary structure predictions by several percentage points). Regions with
few aligned sequences yield less reliable predictions. The sensitivity to align-
ment errors depends on the methods, e.g. secondary structure prediction is
less sensitive to alignment errors than solvent accessibility prediction.

2.8 Resources

2.8.1 Internet Services are Widely Available

Programs for the prediction of secondary structure available as Internet ser-
vices have mushroomed since the first prediction service PredictProtein went
on line in 1992 [159, 161]. The META-PredictProtein server [45] enables users
to access a number of the best prediction methods through one single inter-
face. Unfortunately, not all methods available have been sufficiently tested
and some are not very accurate. This problem is addressed by the EVA server
that evaluates prediction servers continuously and automatically [44, 86].

2.8.2 Interactive Services

The PHD/PROF prediction methods are automatically available via the In-
ternet service PredictProtein [45]. Users have the choice between the fully
automatic procedure taking the query sequence through the entire cycle or
expert intervention into the generation of the alignment. Indeed, without
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spending much time users typically can improve prediction accuracy easily
by choosing “good” alignments. A few of the state-of-the-art methods are also
available to run locally. Note, however, that one crucial step is the generation
of appropriate alignments; usually this is not “done for you” when you run
the prediction method locally!

2.8.3 Servers

The following servers are publicly available (most links given by the EVA
server): PROFsec [149], PHDsec [159], PHDpsi [137], PSIPRED [73], SSPRO
[133], PORTER [132], SABLE [3], SAM-T02 [79], Jpred [34], APSSP, JUFO [110],
PROF [123], YASPIN [94].

3 Transmembrane Regions

3.1 Transmembrane Proteins are an Extremely Important Class of Proteins

Approximately 15–30% of all proteins are estimated to contain transmem-
brane regions [97, 111]. Those proteins are responsible for the communica-
tion between the cell and its surroundings, and are of great importance to
biomedicine. The cell membrane environment, composed of a lipid bilayer,
is very different from one found in most cellular compartments. The trans-
membrane segments of proteins tend to be hydrophobic which enables them
to remain within a membrane by avoiding the solvent present at both bound-
aries. The special features of transmembrane protein sequences serve as the
basis for identifying them by computational methods. As in case of globular
proteins, the transmembrane segments form regular secondary structures and
can be assigned to two broad classes: those composed entirely of helices and
those composed of strands (despite ardent searches and putative evidence,
we still do not have any proof for the existence of a mixture of the two).
By far the majority of all membrane proteins appear to be of the helical type
[18]. An important characteristic of transmembrane proteins is the orientation
of membrane segments with respect to the N-terminus of a protein, often
referred to as the topology. Usually, the successful prediction of transmem-
brane segments requires proper identification of transmembrane regions in
sequence, actual prediction of the secondary structure and deciphering the
topology. It is very difficult to experimentally determine 3-D structures for
transmembrane proteins. Despite considerable advances over the last decade,
we still have experimental structures or theoretical models for supposedly
less than 10% of, for example, all human membrane proteins (Punta, Liu and
Rost, unpublished). Useful predictions of structural and functional aspects are
therefore highly needed.
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3.2 Prediction Methods

Although all known transmembrane regions constitute of regular secondary
structures, most secondary structure prediction methods developed for non-
membrane proteins mostly fail to correctly predict membrane regions. Fur-
thermore, very few methods have been developed for proteins with β-strands
in the membrane. The first and most basic methods for helical membrane
regions focused on identification of transmembrane segments based simply
on residue hydrophobicity [90]. It was observed that positively charged
residues are more abundant on the inside of the membrane (the “positive-
in” rule). A simple Kyte–Doolittle hydrophobicity plot [90] can thus provide
much information on the presence of such transmembrane segments. This
led to the development of the method that predicted positions of helices and
the topology of helical membrane proteins [179]. Next, neural networks were
applied to better identify transmembrane helices, and differentiate between
membrane and nonmembrane proteins [153]. Among other approaches were
HMM methods attempting to match the sequence to the predefined “gram-
mar” of transmembrane proteins [88] (see Chapter 3 for basics on HMMs)
and many others [33,66]. Recently, groups have begun to venture into the
development of methods that predict membrane regions with β-strands [18,
42, 59, 70].

3.3 Performance

Estimates for the accuracy in predicting membrane regions are extremely
problematic because there are so few high-resolution structures available.
Consequently, all methods in the past were evaluated by also using low-
resolution information from biochemical experiments that provide some evi-
dence for the location of transmembrane regions. Unfortunately, such exper-
iments can be more inaccurate than prediction methods [26]. This was one of
the reasons why the performance of prediction methods had been significantly
overestimated by the end of the last millennium [26, 113]. It now appears that
the best prediction methods correctly predict all membrane helices for about
50–70% of all proteins, very few methods avoid the confusion between very
hydrophobic signal peptides and membrane proteins, and the best methods
falsely identify membrane helices in about 10% of all nonmembrane proteins
[26, 113]. However, results can be far worse, e.g. most hydrophobicity-based
methods misclassify over 50% (!) of all globular proteins as “containing
membrane helices” [26]. Overestimates in publications are also a very serious
problem – even over the last few years, methods have been published in
prominent journals with estimated levels of above 95% accuracy that failed
to reach significantly above 50% and misclassified over 30% of the globular
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proteins [26]. Note also that there are a few top methods available at the
moment; all of these have their own strengths and weaknesses, i.e. there is no
single one “best method”. Predictions of β-barrel membrane regions currently
appear to be more accurate than those for helical membrane regions; however,
this may likely turn out to be an overestimate caused by the fact that we have
too limited experimental information.

3.4 Servers

There are many more methods than the following available; however, the
methods listed here have sustained many evaluations. Helical membrane
proteins: PHDhtm [153], SOSUI [66], TopPred [179], TMHMM [88], DAS [33];
β-barrel membrane regions: ProfTMB [18].

4 Solvent Accessibility

4.1 Solvent Accessibility Somehow Distinguishes Structurally Important
from Functionally Important

In 3-D structures of globular proteins some of residues are buried deep inside,
whereas others are located on the surface and thus are more exposed to the
surrounding solvent. Residues that are more exposed to solvent are also more
accessible to other biological agents and, consequently, are much more likely
to be involved in functional interactions which require spatial accessibility
such as enzymatic activity, DNA binding, signal transduction, etc. However,
buried residues are much more likely to play important roles in stabilizing
structures of proteins. Thus, a good distinction between exposed and buried
residues can be very useful to distinguish residues that are important for
function (conserved and exposed) from those that are important for structure
(conserved and buried).

4.2 Measuring Solvent Accessibility

Solvent accessibility is usually measured in terms of the surface area accessible
to water molecules. The values can range from 0 Å for entirely buried residues
to around 300 Å for the largest residues on the surfaces of proteins. A measure
that is not dependent on the size of the amino acid residue is the relative
solvent accessibility expressed as a percentage of the residue surface that is
exposed to solvent. It appears that among homologous proteins the relative
solvent accessibility is less conserved than secondary structures [155]. In
addition, the solvent accessibility of protein residues is strongly influenced
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by nonlocal interactions, where residues located far away along a protein
sequence can be in spatial proximity resulting in mutual screening from sol-
vent. Thus, predicting solvent accessibility appears to be more difficult than
prediction of secondary structure. It addition, it was shown that among
the evolutionarily related proteins of similar structure buried residues (less
than 10% accessible surface area) tend to be much more highly conserved
than highly exposed residues (more than 60%) [155]. Thus, for methods that
use evolutionary information derived from alignments of related proteins it
should be easier to closely predict accessibility for buried residues than for the
exposed ones. A simplified approach is to try to distinguish between residues
below a certain solvent accessibility threshold (“buried”) and those above it
(“exposed”). There is no biophysical reason to choose one threshold over
another, and different researchers often choose different thresholds (7, 9, 16
and 25% are used). On average, about half of all protein residues have more
than 25% of their surfaces exposed.

4.3 Best Methods Combine Evolutionary Information with Machine Learning

Some of the methods that predict secondary structure also have the capability
of predicting solvent accessibility, since essentially the same basic concepts
apply to building a solvent accessibility predictor. For example, PHDacc [155]
and PROFacc [149] methods, which are part of the PredictProtein [159, 161]
server, use the same sequence profile input as do their respective secondary
structure prediction counterparts (PHDsec and PROFsec). They use a neural
network that assigns relative solvent accessibility into one of the 10 states
corresponding to squares of relative solvent accessibility (state 10 corresponds
to a range 81–100% of solvent accessibility). This 10-state scheme can be
converted to a two-state scheme or to a prediction in terms of actual value
of the exposed surface. Another well known method is Jpred [36]. It is
also a server that predicts both secondary structure and solvent accessibil-
ity. The method uses alignments generated by HMMs and PSI-BLAST as
input to a neural network. The output of predictions from two different
networks is combined to give a final relative solvent accessibility. Many
other variations and similar approaches have been attempted which include
various types of neural networks [2, 4, 34, 131], SVMs [82], Bayesian networks
[177], information-theoretic approaches [115] and simple baseline approaches
[144]. Most recently the relation between secondary structure and accessibility
was explored to develop methods that combine both predictions explicitly to
improve each one [2, 149].
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4.4 Performance

Unlike the prediction of secondary structure that is continuously assessed
and monitored on identical data sets, methods for the prediction of solvent
accessibility are not. Given that different groups use widely different data sets
and different conventions to convert actual values of solvent accessibility into
prediction states, it is impossible to compare and reasonably summarize levels
of performance. However, two-state predictions (either buried or exposed) are
predicted at levels above 75% accuracy. Whatever values you read, note that
advanced methods are significantly more accurate than simple methods based
on simple features such as hydrophobicity, polarity or simple statistics.

4.5 Servers

PROFacc [149], PHDacc [155], SABLE [2], Jpred [34], ACCpro [131].

5 Inter-residue Contacts

5.1 Two-dimensional Predictions may be a Step Toward 3-D Structures

Directly predicting 3-D structure still fails. Predictions of 1-D aspects of pro-
tein structure, such as secondary structure and solvent accessibility, provide
very valuable information. However, 1-D predictions are far too simplified.
There is a path seemingly in between these two extremes (1-D/3-D), i.e. the
prediction of inter-residue distances. In fact, 3-D structures can be recon-
structed more or less completely from 2-D distance maps. The catch is that
distance maps are as hard to guess as 3-D coordinates. As a consequence,
existing methods try to solve the simplified problem of predicting contact
maps, where two residues are considered to be in contact if they are located
within a certain spatial cut-off distance (this results in a binary classification
of residue pairs, i.e. contact/noncontact pairs).

5.2 Measuring Performance

There is no widely accepted threshold for the maximal distance between two
residues that are considered as “in contact”. While the smallest physically
possible distance could be agreed upon, the limit beyond which the interac-
tion between two residues can be considered negligible is more difficult to
define. However, the distance of 8 Å between Cβ atoms is the most widely
used threshold for the evaluation of the performance of these prediction
methods. The output of contact prediction programs is generally a list of
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residue pairs, ranked according to some internal confidence score. Usually,
only contacts between pairs that exceed a minimal sequence separation are
evaluated. Although many different thresholds have been used, minimal
separations of six and 24 sequence positions are most common for prediction
of medium- and long-range contacts, respectively. These parameters are
important as the task becomes more difficult with increasing separation (this
tendency levels off for separations over 20).

5.3 Prediction Methods

One line of methods was based upon the observation that evolutionary pres-
sure on maintaining protein structure would sometimes require correlation
in the mutations of amino acid residues that are in spatial proximity to each
other. In principle, such patterns of correlation could be discerned in the
multiple alignments of protein sequences. Some of the early contact prediction
methods have indeed used only correlated mutations computed from multi-
ple sequence alignments [58, 119]. The currently best methods make also use
of other protein features, such as evolutionary profiles of the nearest neighbors
of the residue pair being predicted, sequence separation, secondary structure
and solvent accessibility predictions. Further improvement of predictions was
achieved through machine learning techniques such as: neural networks that
use [49, 61, 120] or do not use [130, 141] correlated mutations, HMMs [22, 129,
172], SVMs [188] and genetic programming [104].

5.4 Performance and Applications

As the prediction of nonlocal contacts is difficult, progress in the field had been
slow until recently when two promising new methods entered the CASP6
competition in 2004. When L/2 predictions are considered, the accuracy of
state-of-the-art methods is around 30% for sequence separation of at least six
and around 20% for sequence separation of at least 24. Although predicted
contact maps are not very accurate, they are nevertheless better on average
than the contact maps obtained from the best de novo predictions of 3-D
structures [46]. As a result, the automatically predicted contact maps were
successfully used in prediction of 3-D protein structures [119, 121, 174].

5.5 Servers

PROFcon [141], CORNET [120], CMAPpro [129], GPCPRED [104], Hamilton’s
server [61].
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6 Flexible and Intrinsically Disordered Regions

6.1 Local Mobility, Rigidity and Disorder all are Features that Relate to Function

In crystal structures of proteins, the uncertainty of atomic positions can be
represented by B-factors (Debye–Waller factors) [32]. B-factors represent the
combined effects of thermal variation and static disorder. In general, the
higher the B-factor of a residue, the higher is its flexibility. Further, it has
been demonstrated that many proteins and protein regions lack a unique
3-D structure [180]. Those regions are often characterized as an ensemble
of rapidly changing alternative structures with differing backbone torsion
angles. Estimates indicate that a substantial fraction of all proteins (as much as
25%) may contain disordered regions or be entirely disordered [43, 102, 148,
182]. Many important functional interactions, such as cell-cycle regulation,
signal transduction, gene expression and chaperon action, are associated with
proteins containing very flexible and disordered regions. Determination of
these regions also plays an important role in structural genomics, since such
regions can be a source of problems in protein expression, purification and
crystallization.

6.2 Measuring Flexibility and Disorder

Protein flexibility can be derived from normalized B-factors [23]. Character-
ization of disordered regions can be provided by many experimental tech-
niques, but in particular by NMR spectroscopy. Regions of protein X-ray
structures without atomic coordinates are often considered as intrinsically
disordered regions. Successful predictions should be able to simply indicate
intrinsically disordered regions, or in case of protein flexibility to assign accu-
rate normalized B-factors to protein residues.

6.3 Prediction Methods

Methods predicting regions of low compositional complexity in protein se-
quences (SEG [185] and CAST [135]) can be considered as the first methods
predicting disordered regions in proteins. However, the correlation between
low-complexity regions and disorder is far from perfect. The low-complexity
regions are highly repetitive in their amino acid composition but many of
them have well defined 3-D structures [167]. There are methods that attempt
to predict if entire proteins are in “natively unfolded” configurations based
on hydrophobicity and charge information derived from sequences [178]. The
disordered regions can be predicted based on disorder propensity assigned
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to each amino acid [95]. Other methods use machine learning algorithms
such as neural networks [75, 95, 147] or SVMs [182]. The NORSp method
[99] predicts extended nonregular secondary structure segments that often
correlate with disorder. Predictions of B-factors were also carried out by
methods using artificial neural networks [168] or support vector regression
[186]. The prediction accuracy of those methods was not experimentally
verified on the large scale yet.

6.4 Servers

PROFbval [168], PONDR [147], DISOPRED [75], DISOPRED2 [182], GlobPlot
[95], NORSp [99], FoldIndex [134], DisEMBL [95].

7 Protein Domains

7.1 Independent Folding Units

The visual inspection of 3-D structures of large proteins often reveals com-
pact structural subunits referred to as protein domains. Such domains are
assumed to often constitute units that fold independently. Studies indicate
that some of those proteins can be viewed as combinatorial arrangements of
protein domains that are genetically mobile. Often, the structural domains are
associated with particular biological functions. It is postulated that domains
are independent folding units of large proteins. Knowledge of the domain
organization of proteins of unknown 3-D structures can help experimental
and computational attempts to elucidate their structure and function. Recent
analyses of sequence-structure families suggest that over two-thirds of all
proteins have more than one domain and that most domains span over about
100 residues [96].

7.2 Prediction Methods

The prediction of the domain organization is a challenging problem if we
do not know the 3-D structure (and automatic assignment methods disagree
much more than secondary structure assignment methods even if we know
the structure). Many sequence-based methods predict domains that are sig-
nificantly shorter than actual structural domains [98]. The first automatic
prediction methods, such as ProDom [31], attempted to determine domains
based on “boundaries” in multiple alignments of protein sequences. This
approach often results in fragmentation of actual structural domains since
sequence similarity conservation often does not extend over entire domains.
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In a similar approach, domain constraints can also be obtained from sequence
alignment databases such as BLOCKS [64]. Attempts to explicitly elongate
sequence alignments were also made [54]. Other automatic prediction meth-
ods apply concepts from protein structure prediction [55] or try do derive
domains from predicted contact maps [145]. There are methods that use
statistics of domain size distributions [183] or a statistical approach toward
combining various sources of information [89]. Some of the methods use
artificial neural networks [112,114]. Others explore alternative ways of using
sequence alignment information [105] or alignments of predicted secondary
structure elements [106]. The most accurate methods (e.g. CHOP [96]) simply
use sequence homology to proteins with known domain assignments. The
downside of such methods is the low coverage, i.e. that they often do not find
domains. None of these more recent methods has yet been experimentally
verified on large scale.

7.3 Servers

CHOP (homology based) [96], CHOPnet [100], ProDom (homology based)
[31], DOMAINATION [54], SnapDRAGON [55], DomSSEA [106].
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10
Homology Modeling in Biology and Medicine
Roland L. Dunbrack, Jr.

1 Introduction

1.1 The Concept of Homology Modeling

To understand basic biological processes such as cell division, cellular commu-
nication, metabolism and development, knowledge of the three-dimensional
(3-D) structure of the active components is crucial. Proteins form the key
players in all of these processes, and the study of their diverse and elegant
designs is a mainstay of modern biology. The Protein Databank (PDB) of
experimentally determined protein structures [14] now contains nearly 40 000
entries, which can be grouped into about 1500 superfamilies [5]. The fact that
proteins that share very little or no sequence similarity can have quite similar
structures has led to the hypothesis that there are in fact only a few thousand
different superfamilies [46, 84, 233] which have been adapted by a process
of duplication, mutation and natural selection to perform all the biological
functions that proteins accomplish.

Since it was first recognized that proteins can share similar structures [156],
computational methods have been developed to build models of proteins of
unknown structure based on related proteins of known structure [24]. Most
such modeling efforts, referred to as homology modeling or comparative
modeling, follow a basic protocol laid out by Greer [72, 73]: (i) identify a
template structure related to the target sequence of unknown structure, and
align the target sequence to the template sequence and structure; (ii) for core
secondary structures and all well-conserved parts of the alignment, borrow
the backbone coordinates of the template according to the sequence alignment
of the target and template; (iii) for segments of the target sequence for which
coordinates cannot be borrowed from the template because of insertions and
deletions in the alignment (usually in loop regions of the protein) or because
of missing coordinates in the template, build these segments using some
construction method based on our knowledge of the determinants of protein
structure; (iv) build side chains determined by the target sequence on to the
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backbone model built from the template structure and loop construction; (v)
refinement of the model from the template backbone and toward the target
structure.

The alignment step may involve a number of different strategies, including
manual adjustment, even after the template structure or structures have been
identified. Steps (iii) and (iv), backbone and side chain modeling, may be cou-
pled, since certain backbone conformations may be unable to accommodate
the required side-chains in any low-energy conformation. The refinement step
involves moving beyond the aligned part of the backbone fixed in the template
position and instead allowing it to adjust to the new sequence. For instance,
two helices packed against each other may move apart to accommodate larger
side-chains.

An alternative strategy has been developed by Blundell and colleagues,
based on averaging a number of template structures, if these exist, rather
than using a single structure [18,207,208]. More complex procedures based on
reconstructing structures (rather than perturbing a starting structure) by sat-
isfying spatial restraints using distance geometry [78] or molecular dynamics
and energy minimization [118, 173, 174, 180] have also been developed.

Many methods have been proposed to perform each of the steps in the
homology modeling process. There are also a number of research groups that
have developed complete packages that take as input a sequence alignment
or even just a sequence and develop a complete model. In this chapter, we
describe some of the basic ideas that drive loop and side-chain modeling
individually as well as the complete modeling process. This chapter is a
revised version of one that was published in 2001 [48]. In this revision, we
emphasize those methods for which usable programs are currently publicly
available. We also discuss more extensively the concept of modeling from the
biological unit, including complexes of proteins with other proteins, DNA and
ligands. The identification and alignment steps are covered in Chapters 3 and
11.

1.2 How do Homologous Protein Arise?

By definition, homologous proteins arise by evolution from a common ances-
tor. However, there are several different mechanisms for this and these are
illustrated in Figure 1. The first is random mutation of individual nucleotides
that change protein sequence, including missense mutations (changing the
identity of a single amino acid) as well as insertions and deletions of a number
of nucleotides that result in insertion and deletion of amino acids. As a single
species diverges into two species, a gene in the parent species will continue to
exist in the divergent species and over time will gather mutations that change
the protein sequence. In this case, the genes in the different organisms will
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Figure 1 Orthologs versus paralogs.
Schematic of the evolutionary process that
gives rise to homologous proteins. (a) A
single gene X in one species is retained
as the species diverges into two separate
species. The genes in these two species
are orthologous. (b) A single gene X in one
species is duplicated. As each gene gathers
mutations, it may begin to perform new

functions, or the two genes may specialize
in carrying out two or more functions of the
ancestral gene, thus improving the fitness of
the organism. These genes in one species
are paralogous. If the species diverges,
each daughter species may maintain the
duplicated genes, and therefore each species
contains an ortholog and a paralog to each
gene in the other species.

usually maintain the same function. These genes are referred to as orthologs
of one another. A second mechanism is duplication of a gene or of a gene
segment within a single organism or germ line cell. As time goes by, the
two copies of the gene may begin to gather mutations. If the template gene
performed more than one function, e.g. similar catalytic activity on two
different substrates, one of the duplicated genes may gain specificity for one
of the reactions, while the other gene gains specific activity for the other. If this
divergence of specificity in the two proteins is advantageous, the duplication
will become fixed in the population. These two genes are paralogs of one
another. If the species with the pair of paralogs diverges into two species,
each species will contain the two paralogs. Each gene in each species will now
have an ortholog and a paralog in the other species.

1.3 The Purposes of Homology Modeling

Homology modeling of proteins has been of great value in interpreting the
relationships of sequence, structure and function. In particular, orthologous
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proteins usually show a pattern of conserved residues that can be interpreted
in terms of 3-D models of the proteins. Conserved residues often form a
contiguous active site or interaction surface of the protein, even if they are
distant from each other in the sequence. With a structural model, a multiple
alignment of orthologous proteins can be interpreted in terms of the con-
straints of natural selection and the requirements for protein folding, stability,
dynamics and function.

For paralogous proteins, 3-D models can be used to interpret the similarities
and differences in the sequences in terms of the related structure, but different
functions of the proteins concerned [121]. In many cases, there are significant
insertions and deletions and amino acid changes in the active or binding
site between paralogs. However, by grouping a set of related proteins into
individual families, orthologous within each group, the evolutionary process
that changed the function of the ancestral sequences can be observed. Indeed,
homology models can serve to help us identify which protein belongs to
which functional group by the conservation of important residues in the active
or binding site [62]. A number of recent papers have been published that use
comparative modeling to predict or establish protein function [95,106,142,222,
225]; see also Chapter 33.

Another important use of homology modeling is to interpret point muta-
tions in protein sequences that arise either by natural processes or by exper-
imental manipulation. The human genome project has produced significant
amounts of data concerning polymorphisms and other mutations potentially
related to differences in susceptibility, prognosis and treatment of human
disease. There are now many such examples, including the Factor V/Leiden
R506Q mutation [247] that causes increased occurrence of thrombosis, muta-
tions in cystathionine β-synthase that cause increased levels of homocysteine
in the blood, a risk factor for heart disease [101], and BRCA1 for which many
sequence differences are known, some of which may lead to breast cancer
[34]. At the same time, there are many polymorphisms in important genes
that have no discernible effect on those who carry them. At least for some
of these, there may be some effect that has yet to be measured in a large
enough population of patients and therefore the risk of cancer, heart disease
or other illness to these patients is unknown. This is yet another important
application of homology modeling, since a good model may indicate readily
which mutations pose a likely risk and which do not [92].

Homology models may also be used in computer-aided drug design, es-
pecially when a good template structure is available for the target sequence.
For enzymes that maintain the same catalytic activity, the active site may be
sufficiently conserved such that a model of the protein provides a reasonable
target for computer programs which can suggest the most likely compounds
that will bind to the active site (see also Chapter 16). This has been used
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successfully in the early development of HIV protease inhibitors [223, 224]
and in the development of anti-malarial compounds that target the cysteine
protease of Plasmodium falciparum [166].

1.4 The Effect of the Genome Projects

The many genome projects now completed or underway have greatly affected
the practice of homology modeling of protein structures. First, the many new
sequences have provided a large number of targets for modeling. Second, the
large amount of sequence data makes it easier to establish remote sequence
relationships between proteins of unknown structure and those of known
structure on which a model can be built. The most commonly used methods
for establishing sequence relationships such as PSI-BLAST [3] are dependent
on aligning many related sequences to compile a pattern or profile of sequence
variation and conservation for a sequence family. This profile can be used to
search among the sequences in the PDB for a relative of the target sequence
(see Chapter 11). The more numerous and more varied sequences there
are in the family, the more remote are the homologous relationships that
can be determined and the more likely it is that a homologous template
for a target sequence can be found. Third, it is likely that the accuracy of
sequence alignments between the sequence of unknown structure that we are
interested in and the protein sequence of a template are also greatly improved
with profiles established from many family members of the target sequence
[184]. Fourth, the completion of a number of microbial genomes has prodded
a similar effort among structural biologists to determine the structures of
representatives of all common protein sequence families, or all proteins in a
prototypical genome, such as Mycobacterium tuberculosis [15,126,163,210,241].
Protein structures determined by X-ray crystallography or NMR spectroscopy
are being solved at a much faster pace than was possible even 10 years ago.
The great increase in the number of solved protein structures has a great
impact on the field of homology modeling, since it becomes ever more likely
that there will be a template structure in the PDB for any target sequence of
interest [221] (see also Chapter 13).

Given the current sequence and structure databases, it is of interest to deter-
mine what fraction of sequences might be modeled and the range of sequence
identities between target sequences and sequences of known structure. In Fig-
ure 2, we show histograms of sequence identities of the sequences in several
genomes and their nearest relatives of known structure in the PDB. These
relationships were determined with PSI-BLAST as described in the legend.
PSI-BLAST is fairly sensitive in determining distant homology relationships
[85, 184, 232], although more sensitive techniques exist (see Chapter 11). The
results indicate that on average 30–40% of genomic protein sequences are
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easily identified as related to proteins of known structure, which presents
a large number of potential targets for homology modeling. However, it
should also be pointed out that the average sequence identity between target
sequences and template structures in the PDB is less than 25%.

The low sequence identity between target and template sequences in Fig-
ure 2 presents a major challenge for homology modeling practitioners, since
a major determinant in the accuracy of homology modeling is the sequence
identity between the target sequence and the sequence of the template struc-
ture. At levels below 30% sequence identity, related protein structures diverge
significantly and there may be many insertions and deletions in the sequence
[31]. At 20% sequence identity, the average RMSD of core backbone atoms
is 2.4 Å [31, 169]. However, as demonstrated in Figure 2, it is likely that
we will most often face a situation where the target and template sequences
are remotely related. Most widely used homology modeling methods have
been predicated on much higher sequence identities between template and
target, usually well above 30% [43,155,181]. What methods should be used at
sequence identities in the 10–30% range is of crucial importance in this post-
genomic era.

2 Input Data

To produce a protein model that will be useful and informative requires more
than placing a new sequence onto an existing structure. A large amount of
sequence data and other kinds of experimental data can often be gathered
on the target sequence and on its homolog of known structure to be used for
model building. This information can be used to build a better model and
as the data to be interpreted in light of the model. The goal is to forge an

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Distribution of
sequence identities between
protein in four genomes and their
closest homologs in the PDB for
those sequences in genomes
with homologs in the PDB. PSI-
BLAST was used to search the
nonredundant protein sequence
database with a representative
set of PDB sequences as queries.
The program was run for four
iterations, with a maximum
E-value of 0.0001 used to
determine sequences which

are included in the position-
specific similarity matrix. After
four iterations, each matrix was
used to search each of the four
genomes. Coiled-coil and low-
sequence complexity sequences
were removed from each genome
and the nonredundant sequence
database. All hits in the genomes
with E-values less than 0.001
were saved and the histograms
were built from the PSI-BLAST-
derived sequence identities.
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integrated model of the protein sequence, structure, and function, not merely
to build a structure. In Table 1, we list the kinds of information that might be
available for a target protein and how these data might be processed.

Table 1 Input information for homology model building

Target sequence

• Target orthologous relatives (from PSI-BLAST)

• Target paralogous relatives (from PSI-BLAST)

• Multiple sequence alignment of orthologs and paralogs (either BLAST multiple alignment or
(preferably) other multiple alignment program)

• Sequence profile of ortho/paralogs

Template sequences and structures

• Homolog(s) of known structure [template(s)] determined by database search methods (BLAST,
PSI-BLAST, intermediate sequence search methods, HMMs, fold recognition methods)

• Template orthologous sequences

• Template paralogous sequences

• Multiple sequence alignment of template orthologs and paralogs

• Biological units of available templates from RCSB and EBI/PQS

Alignment of target sequence to template sequence and structure

• Pairwise alignment

• Profile alignment

• Multiple sequence alignment of target and template sequence relatives

• Profile–profile alignment

• Fold recognition alignment

• Visual examination of proposed alignments and manual adjustment

• Assessment of confidence in alignment by residue (some regions will be more conserved than
others)

Structure alignment of multiple templates, if available

• Align by structure (fssp, VAST, CE, etc.)

• Compare sequence alignments from structure to sequence alignments from multiple sequence
alignments (see above)

Experimental information

• Mutation data (site directed, random, naturally occurring)

• Functional data, e.g. DNA binding, ligands, metals, catalysis, etc.

• Oligomer data, e.g. analytical ultracentrifugation, native gel electrophoresis
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Since proteins act through their interactions with other molecules, it is
important to gather information on known or putative ligands or binding
partners of the target. Indeed, the target of the modeling may not be a
single protein but a protein complex. As the number of structures of multi-
protein complexes increases, there are more and more templates for this kind
of modeling. Many proteins act as homo-multimers and so it is important to
know whether the goal of modeling is a dimer or tetramer or other multimer
of the target. While this may not be known for the modeling target itself, it
may be known experimentally for homologs of the target through various ex-
periments, including analytical ultracentrifugation, native gel electrophoresis
and of course X-ray crystallography (see below in this section). Information
on protein–protein interactions of the target, DNA binding, and other ligands
such as ions and organic substrates or cofactors is also important and may be
included in the modeling.

With the large amount of sequence information available, it is almost always
possible to produce a multiple alignment of sequences related to the target
protein. The first step in modeling therefore is to use a database search
program such as PSI-BLAST [3] against a nonredundant protein sequence
database such as NCBI’s nr database [13] or the curated UniProt database [7].
With some care, a list of relatives to the target sequence can be gathered and
aligned. PSI-BLAST provides reasonable multiple alignments, but it may be
desirable to take the sequences identified by the database search and realign
them with a multiple sequence alignment program such as ClustalW [211] and
Muscle [55]. PSI-BLAST tends to create multiple sequence alignments with
many gaps, because insertions relative to the query may be placed at slightly
different positions (see also Chapter 3).

It may be that a database search consisting of several rounds of PSI-BLAST
will provide one or more sequences of known 3-D structure. If this is not the
case then more sensitive methods based on fold recognition or hidden Markov
models (HMMs) [6, 8, 23, 53, 54, 93] of protein superfamilies may identify a
suitable template structure (see Chapter 11). Once a template structure is
identified, a sequence database search will provide a list of relatives of the
template, analogous to searches for relatives of the target. At this stage it is
useful to divide the sequences related to the target into orthologs of either
the target or the template (or both). The sequence variation within the set of
proteins that are orthologous to the target provides information as to what
parts of the sequence are most conserved and therefore likely to be most
important in the model. Similarly variation in the set of proteins that are
orthologous to the template provide a view of the template protein family
that can be used to identify features in common or distinct in the template
and target families. These features can be used to evaluate and adjust a joint
multiple alignment of both families.
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If there are multiple structures in the PDB that are homologous to the target
sequence, then it is necessary to evaluate them to determine which PDB entry
will provide the best template structure and whether it will be useful to use
more than one structure in the modeling process. In the case of a single
sequence that occurs in multiple PDB entries, it is usually a matter of selecting
the entry with the highest resolution or the most appropriate ligands (DNA,
enzyme inhibitors, metal ions). In other cases, there may be more than one
homolog related to the target sequence, and the task is to select the one more
closely related to the target or to combine information from more than one
template structure to build the model. To do this, a structure alignment of
the potential templates can be performed with one of a number of available
computer programs (Dali [82], CE [194], etc.). From alignments of the target
to the available templates, the location of insertions and deletions can be
observed, and often it will be clear that one template is better than others.
This may not be uniform, however, such that some regions of the target may
have no insertions or deletions with respect to one template, but other regions
are more easily aligned with the other template. In this case, a hybrid structure
may be constructed [207].

As noted above, it may be desirable to build a particular multimer of
the target sequence. It is therefore important to gather information on the
biological units for the available template structures. The biological unit is
defined as the likely oligomeric state of a protein in its relevant biological
context. By contrast, the asymmetric unit is the object for which there is
independent experimental information in the crystallographic experiment.
The asymmetric unit may be a monomer or dimer or higher multimer of the
protein or proteins in the crystal. Quite often the biological unit is present
within the crystal and may or may not coincide with the asymmetric unit. In
some cases it may be made of parts or all of more than one asymmetric unit.
In other cases, the asymmetric unit is composed of more than one biological
unit.

The possibilities are illustrated in Figure 3, where the asymmetric units from
three different crystal structures of hemoglobin are shown. Hemoglobin is
a tetramer consisting of two α- and two β-chains. In the first structure, the
asymmetric unit consists of an entire tetramer and therefore coincides with the
biological unit. The second structure contains only an α–β dimer and therefore
the biological unit is constructed with the space group symmetry operators to
form a tetramer. In the third case, the biological unit consists of two tetramers
and therefore contains two copies of the biological unit.

The probable biological units are obtainable from both the PDB and the
European Bioinformatics Institute (EBI) from their Protein Quaternary Server
(PQS) [80]. Often these two sources do not agree on the biological unit
for a particular PDB entry and they should be interpreted as hypothetical
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Figure 3 Asymmetric units for hemoglobin
from three different structures. The biological
unit consists of four chains (two α- and two
β-chains). Three scenarios are shown: (a)
the asymmetric unit consists of exactly one

biological unit, (b) the asymmetric unit is
smaller than a biological unit (in this case,
it is one half of a biological unit) and (c) the
asymmetric unit is larger than the biological
unit (in this case, it is two biological units).

oligomers. By comparing the asymmetric units with those from the PDB
and the EBI, we found that for over 50% of structures, the asymmetric unit
does not correspond to the biological unit for PDB or PQS or both. The PDB
and PQS agree 80% of the time on the biological unit (see Section 4.3). It is
therefore important to choose a template that has the correct multimer status
in its biological unit and to use this biological unit in the modeling process,
rather than the asymmetric unit.

Finally, any other experimental data available on the target or template pro-
teins may be very helpful in producing and interpreting a structural model.
These can include inhibitor studies, DNA binding and sequence motifs, pro-
teolysis sites, metal binding, mutagenesis data, etc. A number of databases
are available on the web that summarize information on particular genes or
that collect information on mutations and polymorphisms linked to disease,
including: the Cancer Genome Anatomy Project [201], the Online Mendelian
Inheritance in Man (OMIM) [76] and the Human Gene Mutation Database
[102, 200].

3 Methods

3.1 Modeling at Different Levels of Complexity

Once an alignment is obtained between the target and a protein of known
structure (as described in Section 2, and in Chapters 3 and 10), it is possible to
build a series of models of increasing sophistication.
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(i) Simple model: keep backbone and conserved side chains by renaming and
renumbering coordinates in the template structure with the new sequence
using the alignment of target and template; rebuild other side chains
using a side chain modeling program (e.g. SCWRL [22, 30, 47]); do not
model insertions or deletions (i.e. do not build new loops and do not close
up gaps).

(ii) Stepwise model: borrow core backbone from template structure, minus
coil regions with insertions or deletions in the sequence alignment; re-
build core side chains; rebuild coil regions with loop prediction method
in conjunction with side-chain prediction method. Core backbone and
side chains may or may not be held fixed during loop prediction. The
entire model may be refined using energy minimization, Monte Carlo or
molecular dynamics techniques.

(iii) Jigsaw model: borrow backbone from a common core of several struc-
turally aligned templates, using loop regions from different templates
according to the alignments, usually keeping those loops for which there
is no gap in the alignment with the target sequence. Some loops may
need to be modeled.

(iv) Global model: build entire protein from spatial restraints drawn from
known structure(s) and sequence alignment (e.g. MODELLER [174,180]).

It is not always the case that more sophisticated models are better than sim-
pler, less-complete ones. If elements of secondary structures are allowed to
move away from their positions in the template and large changes are made
to accommodate insertions and deletions, it may be the case that the model
is further away from the target structure (if it were known) than the template
structure was to begin with. This is the “added value” problem discussed by
John Moult at the Critical Assessment of Protein Structure Prediction (CASP)
meetings [138,140,141]. We would like methods that move the template struc-
ture closer to the target structure, such that they “add value” to a simple model
or unrefined stepwise model based on an unaltered template structure, with
side-chains replaced. Extensive energy minimization or molecular dynamics
simulations often bring a model further away from the correct structure than
toward it [59, 98].

The simple model is sometimes justified when there are no insertions and
deletions between the template and target or when these sequence length
changes are far from the active site or binding site of the protein to be modeled.
This often occurs in orthologous enzymes that are under strong selective
pressure to maintain the geometry of the active site. Even in nonorthologous
enzymes, sometimes we are most interested in an accurate prediction of the
active-site geometry and not in regions of the protein distant from the active
site.
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A stepwise model is probably the most common method used in homology
modeling, since it is conceptually simpler than the more complex models and
since each piece can be constructed and examined in turn. Some programs
therefore proceed by taking the sequence–structure alignment, removing all
regions where there are insertions and deletions, and reconstructing loops and
side-chains against the fixed template of the remaining atoms. Some methods
may also allow all parts of the template structure to adjust to the changes in
sequence and insertions and deletions. This usually takes the form of a Monte
Carlo or molecular dynamics simulation [118]. A global model, as described
above, rebuilds a structure according to constraints derived from the known
template structure or structures. This is in contrast to stepwise models that
proceed essentially by replacing parts of the template structure and perhaps
perturbing the structure.

Many computer programs for homology modeling are developed to solve
a single problem, such as loop or side-chain building, and may not be set
up to allow all atoms of the protein to adjust or to model many components
simultaneously. In many cases these methods have been tested by using
simplified modeling situations. Such examples include experiments with
removing and rebuilding loops onto single protein structures, and stripping
and rebuilding all side chains. In the next sections we review some of the
work in these two areas.

3.2 Side-chain Modeling

3.2.1 Input Information

Side-chain modeling is a crucial step in predicting protein structure by homol-
ogy, since side-chain identities and conformations determine the specificity
differences in enzyme active sites and protein binding sites. The problem has
been described as “solved” [117], although new methods [120, 133, 157, 193,
234] or improvements on older ones [30] continue to be published. Some side-
chain prediction methods stand on their own and are meant to be used with
a fixed backbone conformation and sequence to be modeled given as input.
Other methods have been developed in the context of general homology
modeling methods, including the prediction of insertion-deletion regions.
Even when using general modeling procedures, such as MODELLER, it may
be worthwhile subsequently to apply a side-chain modeling step with other
programs optimized for this purpose [220]. This is especially the case when
side-chain conformations may be of great importance to interpretation of
the model. It is also often the case that insertion-deletion regions are far
away from the site of interest and loop modeling may be dispensed with.
Indeed, significant alterations of the backbone of the template, if they are
not closer to the target to be modeled (if it were known) than the template,
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may in fact result in poorer side-chain modeling than if no loop modeling
were performed. As described above, the choice of template may depend not
only on sequence identity but also on the absence of insertions and deletions
near the site of interest. If this is successful, side-chain modeling rises in
importance in relation to loop prediction.

Side-chain prediction methods described in detail in the literature have a
long history although only a small number of programs are currently publicly
available (see Table 2). Nearly all assume a fixed backbone, which may
be from a homologous protein of the structure to be modeled, or may be
the actual X-ray backbone coordinates of the protein to be modeled. Many
methods have in fact only been tested by replacing side-chains onto back-
bones taken from the actual 3-D coordinates of the proteins being modeled
(“self-backbone predictions”). Nevertheless, these methods can be used for
homology modeling by first substituting the target sequence onto the template
backbone and then modeling the side chains. When a protein is modeled
from a known structure, information on the conformation of some side chains
may be taken from the template [22, 30, 204]. This is most frequently the case
when the template and target residue are identical, in which case the template
residue’s Cartesian coordinates may be used. These may be kept fixed as the
other side chains are placed and optimized or they may be used only as a
starting conformation and optimized with all other side chains. Only a small
number of methods use information about nonidentical side chains borrowed
from the template. For instance, Phe ↔ Tyr substitutions only require the
building or removal of a hydroxyl group while Asn ↔ Asp substitutions
require changing one of δ-atoms from NH2 to O or vice versa. Summers
and Karplus [203, 204] used a more detailed substitution scheme, by which
for instance the χ1 angle of very different side-chain types (e.g. Lys ↔ Phe)
might be used in building side chains. In the long run, this is probably not
advantageous, since the conformational preferences of nonsimilar side-chain
types may be quite different from each other [50].

Table 2 Publicly available side-chain prediction programs

Program Availability Website
SMD download http://condor.urbb.jussieu.fr/Smd.php
Confmat, Decorate web http://lorentz.immstr.pasteur.fr/website/projects
CARA/GeneMine download http://www.bioinformatics.ucla.edu/genemine
RAMP download http://www.ram.org/computing/ramp
SCAP download http://honiglab.cpmc.columbia.edu/programs/sidechain
SCWRL download http://dunbrack.fccc.edu/scwrl
Maxsprout/Torso web http://www.ebi.ac.uk/maxsprout
SCATD download http://www.bioinformatics.uwaterloo.ca/%7Ej3xu
PLOP download http://francisco.compbio.ucsf.edu/∼jacobson/plop_manual/

plop_overview
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3.2.2 Rotamers and Rotamer Libraries

Nearly all side-chain prediction methods depend on the concept of side-chain
rotamers (reviewed in Ref. [49]). From conformational analysis of organic
molecules, it was predicted long ago [182,183] that protein side chains should
attain a limited number of conformations because of steric and dihedral strain
within each side chain, and between the side chain and the backbone. Di-
hedral strain occurs because of Pauli exclusion between bonding molecular
orbitals in eclipsed positions [94]. For sp3–sp3 hybridized bonds, the energy
minima for the dihedral are at the staggered positions that minimize dihedral
strain at approximately 60˚, 180˚, and –60˚. For sp3–sp2 bonds, the minima are
usually narrowly distributed around +90˚ or –90˚ for aromatics and widely
distributed around 0˚ or 180˚ for carboxylates and amides (e.g. Asn/Asp χ2
and Glu/Gln χ3).

As crystal structures of proteins have been solved in increasing numbers,
a variety of rotamer libraries have been compiled with increasing amounts
of detail and greater statistical soundness, i.e. with more structures at higher
resolution [12,17,50–52,88,125,132,161,187,212]. The earliest rotamer libraries
were based on a small number of structures [12, 17, 88, 161]. Even the widely
used Ponder and Richards library was based on only 19 structures, including
only 16 methionines [161]. The most recent libraries are based on over 850
structures with resolution of 1.7 Å or better and mutual sequence identity less
than 50% between any two chains used.

Most rotamer libraries are backbone-conformation-independent. In these li-
braries, the dihedral angles for side chains are averaged over all side chains of
a given type and rotamer class, regardless of the local backbone conformation
or secondary structure. The most recent of these is by Lovell and coworkers
[125], who derived a more accurate backbone-independent rotamer library
by eliminating side chains of low stereochemical quality, including those
with high B-factors, steric conflicts in the presence of predicted hydrogen
atom locations, and other factors. The statistical analysis does not rely on
a parametric distribution function such as the normal model, and hence can
model factors like skew in an unbiased way.

Several libraries have been proposed that are dependent on the conforma-
tion of the local backbone [50–52,132,187]. McGregor and coworkers [132] and
Schrauber and coworkers [187] compiled rotamer probabilities and dihedral
angle averages in different secondary structures We have used Bayesian statis-
tical methods to compile a backbone-dependent rotamer library with rotamer
probabilities and average angles and standard deviations at all values of the
backbone dihedral angles φ and ψ in 10˚ increments [49–52]. The current
version of this library is based on 850 chains with resolution better than 1.7 Å
and less than 50% mutual sequence identity.
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Finally, there is an alternative form of a rotamer library that includes large
numbers of conformations of each side-chain type in the form of Cartesian
coordinates. These libraries therefore include variation in bond lengths and
bond angles, as well as dihedral angles. They are generally used for fine
sampling of side-chain positions in the context of side-chain prediction. For
instance, Xiang and Honig [234] produced a library consisting of 7560 con-
formations for use in their side-chain prediction method from a set of 297
high-resolution structures. The variation in bond angles and dihedrals away
from average values is particularly useful for larger side chains for which
a small change in an angle near the base of the side chain may cause large
motions of atoms at the far end of the side chain. Other groups have also used
large rotamer libraries to introduce flexibility about mean dihedral angles of
rotamers as well as variation in bond lengths and bond angles [157, 193].

3.2.3 Side-chain Prediction Methods

Side-chain prediction methods can be classified in terms of how they treat
side-chain dihedral angles (rotamer library, grid or continuous dihedral angle
distribution), bond lengths and bond angles (fixed, variable, sampled from
Cartesian conformers), potential energy function used to evaluate proposed
conformations, and search strategy.

The potential energy functions in side-chain prediction methods have var-
ied tremendously from simple steric exclusion terms to full molecular me-
chanics potentials. In most cases, the potential energy function is a standard
Lennard–Jones potential:

E(r) = 4ε

⌊(σ
r

)12 −
(σ

r

)6
⌋

. (1)

In this equation, r is the distance between two nonbonded atoms, and ε and σ
are parameters that determine the shape of the potential. This potential has a
minimum at the distance r = 21/6σ and a well depth of ε. Different values of σ
and ε may be chosen for different pairs of atom types. Some potential energy
functions for side chains may also include a hydrogen bond term. Depending
on the potential parameters, these potentials may not accurately model the
relative energies of rotamers for each side-chain type that are determined from
local interactions within each side chain and between the side chain and the
local backbone. For instance, in molecular mechanics potentials, interactions
between atoms connected by three covalent bonds (atoms i and i + 3 in a chain)
are not usually treated by van der Waals terms, but rather in torsion terms of
the form [127]:

E(τ) = ∑
m

Km cos(mτ + am) (2)
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where the sum over m may include 1-, 2-, 3-, 4- and 6-fold cosine terms. The
Km and am are constants specific for each dihedral angle and each term in the
sum. These torsion terms are included in some side-chain prediction methods,
but ignored in others [96].

Electrostatic interactions in the form of a Coulomb potential have been
included in methods that rely on full molecular mechanics potentials, usually
with a distance-dependent dielectric, ε(r) = r:

E =
qiqj

ε(r)r
(3)

Solvent interactions are also usually ignored, since these can be difficult or
expensive to model properly (for exceptions, see [120, 185, 228]).

A number of side-chain methods use an energy term based on the proba-
bility of rotamers as a function of backbone conformation. These probabilities
are given in the backbone-dependent rotamer library, and the energy function
is usually of the form:

Ei = −K ln
(

pi(φ, ψ, R)
pmax(φ, ψ, R)

)
(4)

where the energy of rotamer i is expressed as a function of the probability of
this rotamer given the backbone dihedrals φ and ψ and the residue type R, and
the probability of the most common rotamer for the same backbone dihedrals
and residue type. The constant K is empirical and can be optimized given the
other terms in the energy function.

Side-chain conformation prediction incurs the risk of combinatorial explo-
sion, since there are on the order of nN

rot possible conformations, where nrot is
the average number of rotamers per side chain and N is the number of side
chains. However, in fact, the space of conformations is much smaller than that,
since side chains can only interact with a small number of neighbors, and in
most cases clusters of interacting side chains can be isolated and each cluster
can be solved separately [22, 212]. Also, many rotamers have prohibitively
large interactions with the backbone and are at the outset unlikely to be part
of the final predicted conformation. These can be eliminated from the search
early on.

Many standard search methods have been used in side-chain conformation
prediction, including Monte Carlo simulation [83, 109, 116, 120, 137, 167], sim-
ulated annealing [86], self-consistent mean field calculations [96, 133, 134], the
dead-end elimination (DEE) method [40–42,70,107,123,159], neural networks
[99] and graph theory [30, 111, 236].

Self-consistent mean field calculations represent each side chain as a set of
conformations, each with its own probability. Each rotamer of each side chain
has a certain probability, p(ri). The total energy is a weighted sum of the
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interactions with the backbone and interactions of side chains with each other:

Etot =
N

∑
i=1

nrot(i)

∑
ri=1

p(ri)Ebb(ri) +
N−1

∑
i=1

nrot(i)

∑
ri=1

N

∑
j=i+1

nrot(j)

∑
rj=1

p(ri)p(rj)Esc(ri, rj) (5)

In this equation, p(ri) is the density or probability of rotamer ri of residue
i, Ebb(ri) is the energy of interaction of this rotamer with the backbone, and
Esc(ri,rj) is the interaction energy (van der Waals, electrostatic) of rotamer ri
of residue i with rotamer rj of residue j. Some initial probabilities are chosen
for the ps in Eq. (5) and the energies calculated. New probabilities p′(ri) can
then be calculated with a Boltzmann distribution based on the energies of each
side chain and the probabilities of the previous step:

E(ri) = Ebb(ri) +
N

∑
j=1,j �=i

nrot(j)

∑
rj=1

p(rj)Esc(ri, rj)

p′(ri) =
exp(−E(ri)/kT)

∑nrot(i)
ri=1 exp(−E(ri)/kT)

(6)

Alternating steps of new energies and new probabilities can be calculated
from the expressions in Eq. (6) until the changes in probabilities and energies
in each step become smaller than some tolerance.

The DEE algorithm is a method for pruning the number of rotamers used in
a combinatorial search by removing rotamers that cannot be part of the global
minimum energy conformation [41, 42, 70, 107, 108, 123]. This method can be
used for any search problem that can be expressed as a sum of single-residue
terms and pairwise interactions. Goldstein’s improvement on the original
DEE can be expressed as follows [70]. If the total energy for all side chains
is expressed as the sum of singlet and pairwise energies:

E =
N

∑
i=1

Ebb(ri) +
N−1

∑
i=1

N

∑
j>i

Esc(ri, rj) (7)

then a rotamer ri can be eliminated from the search if there is another rotamer
si for the same side chain that satisfied the following equation:

Ebb(ri)− Ebb(si) +
N

∑
j=1,j �=i

min
rj

{
Esc(ri, rj)− Esc(si, rj)

}
> 0 (8)

In words, rotamer ri of residue i can be eliminated from the search if another
rotamer of residue i, si, always has a lower interaction energy with all other
side chains regardless of which rotamer is chosen for the other side chains.
More powerful versions have been developed that eliminate certain pairs of
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rotamers from the search [42, 70, 123]. DEE-based methods have also proved
very useful in protein design, where there is variation of residue type as well
as conformation at each position of the protein [37, 71, 218].

The current SCWRL algorithm [30] uses graph theory to solve the combi-
natorial problem. In this method, each side chain in the protein is considered
a node in an undirected graph. An edge exists between two nodes i and j if
at least one rotamer of residue i and one rotamer of residue j interact with
each other, i.e. have a nonzero interaction energy. This produces a number of
separate graphs that are not connected to each other. Each of these graphs
can then be solved for the minimum energy conformation of the residues
in the graph. To accomplish this, each separate graph is broken up into its
biconnected components, as shown in Figure 4(a). Biconnected components
are cycles or nested cycles or bridges consisting of two nodes connected by
an edge. Two biconnected components share a node called an articulation
point, which when removed from the graph breaks the graph into two (or
more) connected subgraphs. The global minimum of the energy can be found
by beginning on the outside of the graph with biconnected components that
have only one articulation point. For each rotamer of the articulation point,
the minimum energy of the other rotamers is found and stored with the
rotamer of the articulation point. Then the biconnected graph is “collapsed”
onto the articulation point residue. This residue now contains information on
all the residues in the biconnected component. The procedure continues to
collapse biconnected components, until a single component is left, as shown
in Figure 4.

Recently, two papers [111, 236] have appeared that extend the graph theory
algorithm further so that the smallest groups that need to be searched are
much smaller than biconnected components. In this method, some nodes can
be removed from the graph by collapsing a node or nodes onto an edge. This
is shown in Figure 4(b), in which a single node that has two neighbors in the
graph is collapsed onto an edge between the two neighbors. The new energy
of each rotamer pair for residues i and j is now:

Enew
pair (ri, rj) = Eold

pair(ri, rj) + min
rk

{
Eself(rk) + Epair(ri, rk) + Epair(rj, rk)

}
(9)

The size of the smallest group that must be solved combinatorially is called
the tree width and is related to the size of the largest group of side chains that
are all mutually connected to each other.

In most methods, the search is over a well-defined set of rotamers for
each residue. As described above, these represent local minima on the side-
chain conformational potential energy map. In several methods, however,
nonrotamer positions are sampled. Summers and Karplus used CHARMM to
calculate potential energy maps for side chains based on 10˚ grids [203, 204].
Dunbrack and Karplus used CHARMM to minimize the energy of rotamers
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Figure 4 (a) Graph algorithm used
in SCWRL3.0, solving a cluster using
biconnected components. The minimum
energy configuration of the cluster shown in
Figure 1 is identified by stepwise solution of

biconnected components. Each biconnected
component is solved as shown in the right
margin and the collapsed component is
shown as superresidues in curly brackets.
(b) Collapsing a node onto an edge.

from canonical starting conformations (–60˚, 180˚ and +60˚) [51]. Vasquez also
used energy minimization [213], while Lee and Subbiah used a search over
10˚ increments in dihedral angles with a simple van der Waals term and a 3-
fold alkane potential on side-chain dihedrals [112]. Mendes and coworkers
[133, 134] used a mean-field method to sample from Gaussian distributions
about the conformations in the rotamer library of Tuffery and coworkers [212].
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3.2.4 Available Programs for Side-chain Prediction

While many methods for side-chain prediction have been presented over the
years, only a small number of programs are publicly available at this time.
Information on obtaining these programs is given in Table 2. We define
“available” as either being downloadable (in source or executable form or
both) from the Internet or able to be run from a webserver. Some authors will
also provide their programs on request, but these programs do not generally
have documentation nor are they designed for general use. They are not listed
in Table 2.

3.3 Loop Modeling

3.3.1 Input Information

In stepwise construction methods, backbone segments that differ in length
between the template and target (according to the sequence alignment) need
to be rebuilt. In some situations, even when the sequence length of a coil
segment is maintained, it may be necessary to consider alternative conforma-
tions to accommodate larger side chains or residues with differing backbone
conformational requirements, Gly ↔ non-Gly or Pro ↔ non-Pro mutations.
Most such loop construction methods have been tested only on native struc-
tures from which the loop to be built has been removed. However, the reality
in homology modeling is more complicated, requiring several choices to be
made in building the complete structure. These include how much of the
template structure to remove before loop building, whether to model all side
chains of the core before rebuilding the loops, and whether to rebuild multiple
loops simultaneously or serially.

Deciding how much of the template structure to remove before loop build-
ing depends on examination of the sequence alignment and the template
structure [114, 230]. Sequence alignments with insertions and deletions are
usually not unambiguous. Most sequence alignment methods ignorant of
structure will not juxtapose a gap in one sequence immediately adjacent to
a gap in another sequence, i.e. they will produce an alignment that looks like
this alignment:
AGVEPMENYKLS
SG---LDDFKLT

rather than like this one:
AGVEPMEN---YKLS
SGL-----LDDFKLT

However, the latter alignment is probably more realistic [1], indicating that a
five-amino-acid loop in the first sequence and structure is to be replaced with
a three-amino-acid loop in the second sequence. The customary practice is
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to remove the whole segment between two conserved secondary structures
units. Even with this practice, ambiguity remains, since the ends of secondary
structures, especially α-helices, are not well determined. If loop-building
methods were accurate, then removing more of the segment would be a
good idea. However, long loops (longer than seven amino acids) are difficult
to rebuild accurately and hence there is cause to preserve as much of the
starting structure as possible. Once the backbone has been borrowed from
the template in stepwise modeling, one has to decide the order of building the
core side chains, the backbone of loops to be built and their side chains. They
may be built sequentially or allowed to vary simultaneously. Side chains from
the core may guide the building of the loop, but at the same time may hinder
correct placement. It is certainly the case that in the final structure there must
be a reasonably low-energy conformation that can accommodate all loops and
side chains simultaneously. Different authors have made different choices,
and there has been little attempt to vary the procedure while keeping the
search algorithm and potential energy function used fixed.

3.3.2 Loop Conformational Analysis

Loop structure prediction is always based in one way or another on an un-
derstanding of loop conformations in experimentally determined structures.
Loop conformational analysis has been performed on a number of levels,
ranging from classification of loops into a number of distinct types to statis-
tical analysis of backbone dihedral angles. Loop classification schemes have
usually been restricted to loops of a particular size range: short loops of one
to four residues, medium loops of five to eight residues and long loops of nine
residues or longer.

Thornton and coworkers have classified β-turns, which are short loops
of two to five residues that connect two antiparallel β-sheet strands [195,
196, 226, 227]. These loops occur in a limited number of conformations that
depend on the sequence of the loop, especially on the presence of glycine
and proline residues at specific positions. The backbone conformation can
be characterized by the conformations of each amino acid in terms of regions
of the Ramachandran map occupied (usually defined as αR, βP, βE, γR, αL
and γL) [227]. Usually one or more positions in the loops require an αL
conformation and therefore a glycine, asparagine or aspartic acid residue. One
useful aspect of this analysis is that if a residue varies at certain positions or
there are short insertions at certain positions, the effect on the loop can be
predicted [196] since the number of possibilities for each length class is small.
The programs BTPRED [192] and BHAIRPRED [103] are available (see Table 3)
to predict the locations of specific types of β-turns from protein sequences and
secondary structure predictions. Single-amino-acid changes tend to maintain
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the loop conformations, except when Pro residues substitute for residues with
φ > 0˚, while insertions change the class of the loop.

Table 3 Publicly available loop conformation prediction programs

Program Availability Website
Rapper web, download http://raven.bioc.cam.ac.uk
ModLoop web http://alto.compbio.ucsf.edu/modloop//modloop
Loopy download http://honiglab.cpmc.columbia.edu/programs/loop
PLOP download http://francisco.compbio.ucsf.edu/∼jacobson/plop_manual/

plop_overview
MODELLER download http://salilab.org/modeller

In recent years with a larger number of structures available, medium-length
loops have also been classified [38, 44, 56, 69, 104, 115, 135,147, 149, 150, 229] by
their patterns of backbone conformation residue by residue (αR, βP, etc.). A
number of regularly occurring classes have been found, depending on length,
type of secondary structure being connected and sequence. These classes
cover many but by no means all of the loops seen in non-β turn contexts.

Longer loops (with more than eight amino acids) have been investigated
by Martin and coworkers [131] and Ring and coworkers [165]. Martin and
coworkers found that long loops fall into two classes: those that connect spa-
tially adjacent secondary structures and those that connect secondary struc-
tures separated by some distance. Ring and coworkers provided a useful
classification of longer loops as either strap (long extended loops), Ω loops
(similar to those described by Leszczynski [115] and Pal and coworkers [150]),
which resemble the Greek letter, and ζ loops, which are nonplanar and have
a zigzag appearance. The different loop types were found to have different
distributions of virtual Cα–Cα–Cα–Cα dihedrals to accommodate their shapes.

A number of groups have updated the Ramachandran propensities of the
20 amino acids. Swindells and coworkers [209] have calculated the intrinsic
φ,ψ propensities of the 20 amino acids from the coil regions of 85 protein struc-
tures. The distribution for coil regions is quite different than for the regular
secondary structure regions, with a large increase in βP and αL conformations,
and much more diverse conformations in the βE and αR regions. Their results
also indicate that the 18 non-Gly,Pro amino acid type are in fact quite different
from each other in terms of their Ramachandran distributions, despite the
fact that they are often treated as identically distributed in prediction meth-
ods [25, 57]. Their analysis was divided into the main broad regions of the
Ramachandran map, ignoring the αL region. The results are intriguing, in that
the probability distributions are distinct enough even when calculated from a
relatively small protein dataset. More recently Lovell and coworkers [124] and
Anderson and coworkers [4] have produced new Ramachandran maps based
on stricter criteria for inclusion of amino acids based on resolution, R-factors



320 10 Homology Modeling in Biology and Medicine

and B-factors, as well as data smoothing techniques that remove outliers and
unpopulated parts of the Ramachandran map. Their results indicate that a
stricter adherence to “allowed” regions is called for, since nearly all residues
in disallowed regions are based on poor electron density.

3.3.3 Loop Prediction Methods

Loop prediction methods can be analyzed for a number of important factors in
determining their usefulness: (i) method of backbone construction, (ii) what
range of lengths are possible, (iii) how widely is the conformational space
searched, (iv) how are side chains added, (v) how are the conformations
scored (i.e., the potential energy function) and (vi) how much has the method
been tested (length, number, self/nonself).

The most common approach to loop modeling involves using “spare parts”
from other (unrelated) protein structures [10, 32, 60, 61, 63, 72, 81, 91, 96, 114,
135, 165, 168, 172, 205, 207, 217, 230, 231]. These database methods begin by
measuring the orientation and separation of the backbone segments flanking
the region to be modeled, and then search the PDB for segments of the same
length that span a region of similar size and orientation. This work was
pioneered by Jones and Thirup [91]. They defined a procedure in which Cα–
Cα distances were measured among six residues, three on either side of a
backbone segment to be constructed. These 15 Cα–Cα distances were used
to search structures in the PDB for segments with similar Cα–Cα distances
and the appropriate number of intervening residues. Other authors have
used the same method for locating potential database candidates for the loop
to be constructed [60, 96, 205, 217]. The fragment selection method used in
Rosetta ab initio modeling [197] is based at least in part on the database
approach to loop modeling, and is used in Rosetta for loop construction
in homology modeling [167]. In recent years, as the size of the PDB has
increased, database methods have continued to attract attention. With a larger
database, recurring structural motifs have been classified for loop structures
[44, 56, 104, 113, 135, 147, 172], including their sequence dependence.

Although many methods have been published, they have usually only
been tested on a small number of loops, and then usually in the context
of rebuilding loops onto their own backbones, rather than in the process of
homology modeling. A recent exception is that of Fernandez-Fuentes and
coworkers [61] who tested the ArchDB database [56] of loops as a predictive
tool. They used a “jackknife” test that removed all loops from the same
superfamily for each loop in a set of over 10 000 used to construct ArchDB.

The main alternative to database methods is ab initio construction of loops
by random or exhaustive search mechanisms. These methods are quite var-
ied in their generation and subsequent modification of loop structures to
fit the environment of the fitted segment. The initial conformation may be
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random, starting from the N- or C-terminal anchor, so that the other end of
the loop does not connect to the other anchor (the C- or N-terminal anchor,
respectively). Such loops can then be closed using energy minimization that
places some energetic constraints on a closed loop, or using loop closure
methods, such as those based on inverse kinematics in robotics [19, 28, 35].
Other methods have built chains by sampling Ramachandran conformations
randomly, keeping partial segments as long as they can complete the loop
with the remaining residues to be built [64, 191, 198].

An alternative approach to the loop generation problem is to use a geomet-
rically distorted loop that bridges the two anchors exactly and then to relax
the structure into an undistorted protein-like structure. MODELLER starts
loop modeling with a linear arrangement of the atoms in the loop, which is
then relaxed into a protein-like conformation using energy minimization [65].
Zheng and coworkers used a scaling-relaxation method in which an initially
generated or database loop is scaled in size until it fits the anchors [244–246].
This results in very short bond distances and unphysical connections to the
anchors. From there, energy minimization is performed on the loop, slowly
relaxing the scaling constant, until the loop is scaled back to full size.

One important aspect in the development of a prediction method based
on random (or exhaustive) construction of backbone conformations is the
free energy function used to discriminate among those conformations that
successfully bridge the anchors. Fogolari and Tosatto have found that a
free energy function including a molecular mechanics potential energy and a
Poisson–Boltzmann solvent-accessible surface area solvation term was able to
identify decoys from a large set that were close to the native structure [66]. Ja-
cobson and coworkers recently used the OPLS (optimized potential for liquid
simulations) molecular mechanics force field, with improved torsional energy
parameters optimized to reproduce quantum-mechanical data and side-chain
prediction [87], in combination with a surface-generalized Born/nonpolar
(SGB/NP) hydration free energy model [68]. Their search method generated
one residue at a time from a 5˚ resolution backbone model with steric and side-
chain checks, from both ends of the loop, followed by clustering and energy
minimizations of cluster representatives. Their method was tested on a large
set of 833 loops with excellent results for loops up to 12 residues in length.

3.3.4 Available Programs

Very few loop modeling programs per se are publicly available, although loop
modeling is integral to more complete modeling programs. A list of available
loop modeling programs is given in Table 3. Some programs that do complete
modeling but can be used for loop modeling without further refinement are
listed (e.g. MODELLER).
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3.4 Methods for Complete Modeling

Homology modeling is a complex process. Automated protocols that begin
with a sequence and produce a complete model are few, and the resulting
models should be examined with great care (as of course should all models).
However, these methods usually allow for (and indeed recommend) some
manual intervention in the choice of template structure or structures and
in the sequence alignment. In these steps, manual intervention is likely to
have important consequences. Later stages of modeling (actual building of
the structure) are more easily automated and there are not usually obvious
manual adjustments to make.

There are several publicly available programs available for homology mod-
eling that are intended to make complete models from input sequences. These
include MODELLER [174, 175, 180, 181], RAMP [176–178] and MolIDE [29].
There are also several webservers that provide homology modeling services,
including SWISS-MODEL [74, 153, 154], Esypred [105] and 3D-JIGSAW [11].
Program availability is given in Table 4. Some of these programs provide only
BLAST/PSI-BLAST searching followed by model-building with MODELLER
(e.g. EsyPRED). We describe some of these programs.

Table 4 Publicly available comparative modeling programs

Program Availability Website
3d-JIGSAW web http://www.bmm.icnet.uk/servers/3djigsaw
CPHmodels web http://www.cbs.dtu.dk/services/CPHmodels
EsyPred web http://www.fundp.ac.be/urbm/bioinfo/esypred
FAMS E-mail server http://www.pharm.kitasato-u.ac.jp/fams
Geno3D web http://geno3d-pbil.ibcp.fr
MODELLER download http://salilab.org/modeller
ModWeb web http://salilab.org/modweb
Modzinger web http://peyo.ulb.ac.be/mz/index
nest download http://honiglab.cpmc.columbia.edu/programs/nest
parmodel web http://laboheme.df.ibilce.unesp.br/cluster/parmodel_mpi
Robetta web http://robetta.bakerlab.org
SDSC web http://cl.sdsc.edu/hm
SWISS-MODEL web http://swissmodel.expasy.org//SWISS-MODEL

3.4.1 MODELLER

MODELLER takes as input a protein sequence and a sequence alignment to
the sequence(s) of known structure(s), and produces a comparative model.
The program uses the input structure(s) to construct constraints on atomic dis-
tances, dihedral angles, etc., that when combined with statistical distributions
derived from many homologous structure pairs in the PDB form a conditional
probability distribution function for the degrees of freedom of the protein.
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For instance, a probability function for the backbone dihedrals of a particular
residue to be built in the model can be derived by combining information in
the known structure (given the alignment) and information about the amino
acid type’s Ramachandran distribution in the PDB. The number of constraints
is very large; for a protein of 100 residues there may be as many as 20 000
constraints. The constraints are combined with the CHARMM force field to
form a function to be optimized. This function is optimized using conjugate
gradient minimization and molecular dynamics with simulated annealing.

3.4.2 MolIDE: A Graphical User Interface for Modeling

MolIDE (Molecular Interactive Design Environment) is an open-source, exten-
sible graphical user interface for homology modeling [29]. MolIDE provides a
graphical interface for running sequence database searches with PSI-BLAST,
searches of the PDB, secondary structure prediction, manual alignment edit-
ing, and running loop and side-chain prediction programs. One of MolIDE’s
main benefits is allowing a user to edit a sequence–structure alignment and
to view the positions of insertions and deletions within the template structure
in real time. MolIDE also allows manual choice of anchor residues for loop
modeling with the assistance of a graphical view of the template protein
structure. MolIDE runs on the Windows and Linux operating systems. The
use of MolIDE will be illustrated in the next section with an example of
comparative modeling of a protein of biological interest.

3.4.3 RAMP and PROTINFO

Samudrala and Moult described a method for “handling context sensitiv-
ity” of protein structure prediction, i.e. simultaneous loop and side-chain
modeling, using a graph theory method [178, 179] and an all-atom distance-
dependent statistical potential energy function [176]. These methods are also
implemented in the PROTINFO webserver listed in Table 4.

3.4.4 SWISS-MODEL

SWISS-MODEL is intended to be a complete modeling procedure accessible
via a web server that accepts the sequence to be modeled and then delivers the
model by electronic mail [74,154]. In contrast to MODELLER, SWISS-MODEL
follows the standard protocol of homolog identification, sequence alignment,
determining the core backbone, and modeling loops and side chains. SWISS-
MODEL will search a sequence database of proteins in the PDB with BLAST,
and will attempt to build a model for any PDB hits with p-values less than
10−5 and at least 30% sequence identity to the target. SWISS-MODEL allows
for user intervention by specifying the template(s) and alignments to be used.
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If more than one structure is found, the structures will be superimposed on
the template structure closest in sequence identity to the target.

SWISS-MODEL determines the core backbone from the alignment of the
target sequence to the template sequence(s) by averaging the structures ac-
cording to their local degree of sequence identity with the target sequence. The
program builds new segments of backbone for loop regions by a database scan
of the PDB using anchors of four Cα atoms on each end. This method is used
to build only the Cα atoms and the backbone is completed with a search of
pentapeptide segments in the PDB that fit the Cα trace of the loop. Side chains
are now built for those residues without information in the template structure
by using the most common (backbone-independent) rotamer for that residue
type. If a side chain can not be placed without steric overlaps, another rotamer
is used. Some additional refinement is performed with energy minimization
with the GROMOS [75] program.

4 Results

4.1 Range of Targets

A very large number of homology models have been built over the years by
many authors. Recent targets have included proteins of significant interest in
biology and medicine 10- [2, 9, 16, 20, 26, 27, 33, 36, 58, 67, 77, 128, 129, 145, 162,
171, 206, 216, 242]. Several databases of homology models are available on the
Internet, including ModBase [158], FAMSBASE [237] and the SWISS-MODEL
repository [100]. Their websites are given in Table 4.

4.2 Example: Protein Kinase STK11/LKB1

The protein kinase STK11 is frequently mutated in human cancers and mu-
tations in this gene are strongly associated with Peutz–Jeghers syndrome [79,
89]. Patients with Peutz–Jeghers syndrome often develop dark spots on the
lips and inside the mouth as well as near the eyes and nostrils. These patients
also develop polyps in the stomach and intestine, and are very susceptible to
cancers of the breast, colon, pancreas, stomach and ovary [188]. This disease
is inherited in an autosomal dominant manner, so that a mutation in a single
copy of the gene is enough to confer risk [110].

One important use of homology modeling is to understand how missense
mutations may lead to disease. In general, missense mutations that have
deleterious effects lead to amino changes that either affect stability or dy-
namics of a folded protein, or affect interactions of the protein product with
other molecules, including other proteins, DNA or ligands. While most of
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the mutations associated with the disease lead to a truncated protein, many
missense mutations have also been linked to Peutz–Jeghers syndrome [110].
It is therefore of interest to build a model of the STK11 kinase domain and
examine the location and likely effects of disease-associated mutations.

As described above, MolIDE [29] assists a user in modeling a protein by pro-
viding a graphical interface to the steps involved in basic homology modeling,
including sequence database searching, alignment editing, and loop and side-
chain modeling. We obtained the sequence of STK11 from the NCBI website in
FASTA format, as shown in the middle panel of Figure 5. Once this sequence is
input into MolIDE, the user runs PSI-BLAST from the Tools menu. PSI-BLAST
is set up to run several rounds of search against the nonredundant protein
database from NCBI. The version of PSI-BLAST distributed with MolIDE
has been modified to output a profile matrix with a unique name after each
iteration of the search so that each matrix can then be used to search the
PDB sequence database included with MolIDE (G. Wang and R.L. Dunbrack,
Jr., unpublished). These profiles are also used by the secondary structure
prediction program PSIPRED [90], included with MolIDE. The secondary
structure predictions are shown in the lower panel of Figure 5, where the
red and green colors indicate α-helices and β-sheet strands, respectively, and
the intensity of the color represents the confidence level of the prediction.
As the profile includes more and more sequences remotely related to the
query, the secondary structure prediction also changes. For some proteins,
the prediction gets better as the signal from the multiple alignment becomes
stronger, while for others the prediction may worsen if many sequences with
variations in secondary structure (longer loops, shorter or longer secondary
structure elements) get aligned or even misaligned to the profile.

As STK11 is a kinase, we have a large variety of structures in the PDB
that can be used as a template. It is important to make a good choice, since
the quality of the model will depend on the template or templates used.
Currently, MolIDE does not model from multiple templates, so we need to
select one structure. However, we could make a number of models based on
different templates and compare them. A list of hits from the PDB for STK11
is shown in the upper panel of Figure 5. This list was generated from a PSI-
BLAST search using the profile generated from the first round of PSI-BLAST
on the nonredundant database. Information about each template, including
PDB code, experiment type, resolution, E-value, sequence identity, length of
template, starting positions of alignment and length of alignment, is given.
Template choice is facilitated in this table by sorting based on any of the
categories by clicking on the column header. Three different sorts of the table
are shown in Figure 6, sorted by end query residue of the alignment (top),
resolution (middle) and percent gaps in the alignment (bottom).
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Figure 5 Screenshot of MolIDE for modeling
STK11. Top: hits from a search of the
PDB for protein target sequence STK11.
Middle: sequence of STK11. Bottom:
secondary structure prediction for STK11

using PSIPRED after each of three rounds of
PSI-BLAST. Helix predictions are in red and
sheet strand predictions are in green, and
the intensity of the color is proportional to the
confidence levels produced by PSIPRED.

The usefulness of a template depends on many factors. It is not necessarily
the case that one should use the highest-sequence-identity hit or the best E-
value. The number and location of gaps in the alignment should also be
considered, as should the presence of desirable ligands and structure quality.
For STK11, the majority of template alignments end around residue 310,
which is the end of the kinase domain, but obviously it would be useful to
model the region C-terminal to the kinase domain (residues 310–433).

By double-clicking on the PDB code, MolIDE opens up a window with the
alignment as shown for that PDB entry. This window contains the alignment
at the bottom and a rotatable view of the backbone of the template in the
top part of the window (Figure 7). Conserved amino acids are indicated
between the query (top) and hit (bottom) sequences. Gaps in the alignment are
indicated by blue squares as are residues in the template that are missing in the
coordinates due to poor electron density. Positions in the template structure
where insertions need to be modeled, because the query sequence is longer in
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Figure 6 Choosing templates for modeling STK11. Screenshot of
MolIDE showing PDB hits sorted by end residue (top), resolution
(middle) and percent gaps in alignment (bottom).

that region, are marked with yellow spheres on the structure view. Deletions
from the structure are shown on the protein structure as red spheres.

Figure 7 shows the C-terminal end of the alignment for template 1RDQ
(chain E) [238]. It is fairly clear from this view that the extension of the
alignment beyond residue 316 of the query shows very little similarity in
sequence with the template and includes a very large insertion that would
need to be modeled. It is likely that this region is incorrectly aligned. This
often happens with PSI-BLAST type alignments, such that alignments extend
beyond conserved domains due to chance similarities, especially in regions
without significant regular secondary structure.

After examining a number of the other templates that extend well beyond
residue 310, it was clear that none of them gave a very good alignment for the
C-terminal portion of STK11. While a large number of the templates share
similar sequence identity to STK11 on the order of 21–27%, some of them
contain substantially fewer gaps in the alignment than others. Sorting by
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Figure 7 Template 1RDQ (chain E) as
template for STK11. The end portion of
the alignment is shown, indicating that the
residues after STK11 residue 310 are poorly
aligned with little sequence similarity and
a large gap. Gaps in the alignment are
marked with blue squares, and conserved
residues are marked between the query
(top) and hit (bottom) sequences. The
predicted secondary structure is above the

query (red = helix; green = sheet) and the
experimental secondary structure of the hit is
below the template sequence. In the structure
view, residues deleted from the structure
are indicated with red balls and points of
insertion are marked by pairs of yellow balls.
The aligned portion of the template is in
green and the unaligned portions are in gray.
The last residue of the aligned portion is in
spacefill representation (Tyr336).

percent gaps, we find a group of templates that have 2–3% of the alignment as
gaps for residues 40–310, as shown in the bottom panel of Figure 6. We chose
as template PDB entry 1MQ4, a 1.9-Å structure of aurora-A kinase [143], since
this structure was the highest resolution of these and contained ADP in the
active site of the kinase.

One of the benefits of MolIDE in user-assisted homology modeling is the
ability to edit the sequence with the assistance of a graphical view of the
protein with the locations of insertions and deletions. For instance, in Figure 8
the alignments before (left screenshot) and after (right screenshot) editing are
shown. In the left figure, the two-residue insertion (residues 123–124 with
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Figure 8 Manual editing of sequence
alignments based on the structure view of
template 1MQ4 for STK11. The alignment
before editing is shown at left and after
editing at right. The spacefilled residues mark
the loop being edited (Ala84 left and His82

right). Note that the positions of the yellow
balls marking the position of the insertion
move as the alignment is edited. The anchor
positions for loop modeling set manually are
indicated on the right (Tyr118 and Lys124 of
STK11).

sequence QK) occurs inside a β-sheet strand. Ala84 in the middle of the
neighboring loop is shown in spacefill representation to mark the location
on the structure. After editing the alignment by “ctrl”-clicking and “shift”-
clicking to delete the gap and to create it in another location, the alignment
appears as it does in the right side of the figure (with the last residue of the
sheet strand, His82, in spacefill this time).

Once the sequence alignment is edited, e.g. by moving insertions and dele-
tions into the middle of loop regions as described above, loop and side-
chain modeling commands can be called from the menus. Our side-chain
modeling program SCWRL is integrated into MolIDE and Loopy is used for
loop modeling [235]. To model loops, the positions of left and right anchor
residues are set by pointing and “right”-clicking on the query sequence and
then calling Loopy from the Tools menu. The anchors for the loop consisting
of residues 118–123 are shown in the right screenshot in Figure 8.

After modeling each of the five insertions and adding the coordinates of
the ADP and magnesium ions, we can view the structure superposed on its
template as shown in Figure 9. MolIDE is not set up to model in the presence
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Figure 9 Model of STK11. The template
backbone is in blue and the modeled loops
for STK11 are in red. The ADP bound in the
active site is in stick figure and CPK coloring
(carbon = gray; oxygen = red; nitrogen = blue;
phosphorus = orange). Several mutations

associated with development of cancer are
shown in spacefill representation, including
Tyr49 (magenta), Val66 (cyan), Leu160
(orange), Asp194 (yellow), Glu199 (violet),
Asp208 (red) and Phe231 (white). Gly135 is
marked on the backbone in green.

of the ligand, although this can be accomplished for side chains with SCWRL
outside of MolIDE. Most of the insertions are some distance away from the
active site and four of these are relatively close in space to each other, all on
the bottom face of the protein as oriented in Figure 9.

The positions of some missense mutations associated with cancer are
marked with spacefill on the structure and three of these mutations are located
in the modeled loops at the bottom of the protein. Another one is in the
modeled loop at the top. Three mutations are buried in the hydrophobic
core, of which two are in the N-terminal domain and one is in the C-terminal
domain (colored in cyan, magenta and orange, respectively). These mutations
are likely to disturb the hydrophobic cores of these regions, leading to
instability of the folded structure. One additional mutation, in yellow spheres,
is an Asp residue that binds the magnesium ions which stabilize the binding
of ATP to the kinase. Loss of this Asp is likely to result in loss of magnesium
and inability to bind ATP. STK11 binds a number of other proteins, and it is
possible that one of these proteins binds to the modified loops at the bottom
of the structure and that mutations in these loops leads to lack of binding of
important interactors of STK11. Mutations which affect binding of the STRAD
protein have been analyzed using a homology model of STK11 by Boudeau
and coworkers [21]. While STRAD is homologous to kinase domains, none
of the available dimeric kinase templates appears to have a binding interface
consistent with these mutations, indicating that perhaps STRAD does not bind
to STK11 in a manner similar to existing dimer interfaces of kinases.
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Figure 10 Venn diagram of similarities
among asymmetric units, RCSB biological
units and EBI (PQS) biological units. Each
circle represents 24 000 entries available
from both RCSN and PQS sites. Areas are

only approximations to percentages marked
in each overlapping or nonoverlapping region.
For instance, 36% of the 24 000 entries have
an asymmetric unit that is different from both
RCSB and PQS.

4.3 The Importance of Protein Interactions

The STK11 example points out the importance of incorporating information
on protein interactions in homology modeling. As described above, the Re-
search Collaboratory for Structural Bioinformatics (RCSB) provides structures
of the asymmetric unit, rather than the biological unit for crystal structures.
RCSB also provides separate files that contain the proposed biological unit(s)
for each structure, which may be larger or smaller than the asymmetric unit.
To quantify this issue, we compared the asymmetric units and the biological
units as provided by both the RCSB and the EBI/macromolecular structure
database (MSD) [80]. For 23 418 structures available in PQS, Figure 10 shows
the similarity of these three sets of units. Figure 10 shows that 53% of asym-
metric units are different from either the RCSB or the PQS biological unit
or both. This indicates that the standard entry from the PDB is not the
biological unit at least half of the time and that the other two sources should
be consulted. In addition, RCSB and PQS do not agree on biological units
21% of the time. Unfortunately, there are no automated ways to model
homo-multimers, other than to model the sequence on each chain of a known
multimer structure. SWISS-MODEL does provide a way to combine models
made from different chains of a template biological unit file from PQS.

To illustrate the importance of these interactions, we investigated the large
set of mutations in Lac Repressor investigated by Miller and colleagues [130,
148, 202], These authors presented functional data on 4042 mutations of the
Escherichia coil Lac repressor. The Lac repressor function was evaluated in
vivo by observing expression levels of β-galactosidase with and without al-
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losteric induction by isopropyl-β-D-galactoside (IPTG). Thus mutations that
reduce stability of the Lac repressor monomer, the affinity of monomers in the
tetramer, as well as those that affect binding to DNA will produce a visible
blue phenotype by the expression of β-galactosidase. Mutations that affect
binding of IPTG will not be inducible and thus remain as white colonies, even
in the presence of IPTG. This is an ideal system for identifying parameters
that can be used to distinguish missense mutations that may cause functional
changes in proteins from those that probably would not.

We used two pieces of information to analyze these mutations: (i) the
location of residues in the structure of Lac tetramer bound to DNA and (ii) the
log-odds scores in a position-specific scoring matrix (PSSM) generated from a
multiple sequence alignment of repressor sequences. The PSSM includes two
pieces of information: whether a particular site is well conserved in proteins
related to Lac repressor and whether a proposed mutation is very different
in physical character to residues at that position in proteins related to Lac
repressor.

We defined four categories for location of an amino acid: face, buried, edge
or surface depending on the value of the relative surface accessibility of a
side-chain in the Lac repressor tetramer/DNA structure. Face residues were
those that had reduced accessibility of their side-chains in the full complex
compared to the Lac repressor monomer alone. Buried residues had less than
5% surface accessibility of their side-chains in the monomers. Edge residues
were those with 5–30% accessibility and surface were all others. Surface
residues are therefore those that are both on the surface and not in any binding
site. The results are shown in Figure 11.

The data indicate that dissimilarity to amino acids in the repressor family
as well as a location either buried in the hydrophobic core or in interfaces
is sufficient to distinguish levels of “risk”, i.e. a mutation with functional
consequences. For each category of PSSM log-odds except PSSM = –4, face
mutations are more likely to be deleterious than buried mutations and these
are much more likely to be deleterious than edge or surface mutations. In-
terface residues do not tolerate even conservative mutations, so that even for
PSSM values of 1 and 2, the proportion of deleterious mutations is 30% or
higher. Mutations on the surface but not in an interface are very tolerant to
mutations, with less than 1% of 743 mutations on the surface with PSSM of –2
or above having a negative phenotype.

The data in Figure 11 indicate the importance of modeling the biological
unit, since all of the mutations in the “face” region would be considered
surface or edge residues if the monomer was not present in a dimer complex
with DNA.
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Figure 11 (a) Rates of deleterious mutations
based on PSSM score and physical location
for 4042 Lac repressor mutants. Face
residues are those with lower surface
accessibility in the Lac repressor dimer/DNA
complex than in the Lac repressor monomer
structure. Buried residues have less than
5% surface accessibility in the Lac repressor
monomer. Surface residues have greater

than 30% accessibility in the Lac repressor
monomer or dimer/DNA complex, and
“edge” residues have between 5 and 30%
accessibility. PSSM is the log-odds score of
finding the mutation at each location of the
Lac repressor sequence based on a multiple
alignment of homologous sequences. (b)
Crystal structure of the Lac repressor dimer
bound to DNA.
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5 Strengths and Limitations

The strengths of homology modeling are based on the insights provided for
protein function, structure and evolution that would not be available in the
absence of an experimental structure. In many situations, a model built by
homology is sufficient for interpreting a great deal of experimental informa-
tion and will provide enough information for designing new experiments.
Homology modeling may also provide functional information beyond the
identification of homologous sequences to the target, i.e. a model may serve
to distinguish orthologous and paralogous relationships.

The limitations are due to decreasing accuracy as the evolutionary distance
between target and template increases. Alignment becomes more uncertain,
insertions and deletions more frequent, and even secondary structural units
may be of different lengths, numbers, and positions in very remote homologs.
Predicting the locations of secondary structure units that are not present in
the template structure is a difficult problem and there has been little attention
paid to this problem.

The limitations of homology modeling also arise when we have insufficient
information to build a model for an entire protein. For instance, we may be
able to model one or more domains of a multi-domain protein or a multisub-
unit complex, but it may not be possible to predict the relative organization
of the domains or subunits within the full protein. This remains a challenge
for further research. And we are of course limited by structures present in
the PDB, which are almost exclusively soluble proteins. Up to 30% of some
genomes are membrane proteins, which are at present difficult to model be-
cause of the small number of membrane proteins of known structure. Recent
structures [119, 146] of the G-protein-coupled receptor (GPCR) rhodopsin at
higher resolution than previous structures [151] create new opportunities to
model many of these membrane proteins more accurately. A number of
GPCRs have been modeled on the bovine rhodopsin structures [33, 58, 136,
144, 152, 243]. In addition, recent structures of bacterial ATP-binding cassette
(ABC) transporters at various stages of the transport process [45,122,164,186]
also provide opportunities for modeling of a large number of human ABC
transporters implicated in drug resistance, such as P-glycoprotein and the
multidrug resistance protein (MRP) proteins [160, 190].

Another problem is the quality of data in sequencing and structure deter-
mination. There are substantial errors in determining protein sequences from
genome sequences, either because of errors in the DNA sequence or in locat-
ing exons in eukaryotic genomic DNA [199]. Over 50% of X-ray structures
are solved at relatively low resolution, levels of greater than 2.0 Å. Despite
progress in determining protein structures by NMR, these structures are of
lower resolution than high-quality X-ray structures. While high-throughput
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structure determination will be of great value to modeling by homology, one
concern is the quality of structure determination when the function of the
proteins being determined is unknown.

6 Validation

Validation for homology modeling is available in two distinct ways: (i) the
prediction rates for each method based on the prediction of known structures
given information from other structures and (ii) criteria used to judge each
model individually. Most structure prediction method papers have included
predictions of known structure, serving as test sets of their accuracy. However,
in many cases the number of test cases is inadequate (see Ref. [48]). It is also
very easy to select test structures that behave particularly well for a given
method and many methods do not stand up to scrutiny of large test sets
performed by other researchers. Test sets vary in number of test cases as
well as whether predictions of loops or side-chains are performed by building
replacements on the template structure scaffold, or in real homology modeling
situations where the loops/side-chains are built on nonself scaffolds. The
realistic case is more difficult to perform in a comprehensive way, since it
requires many sequence–structure alignments to provide the input informa-
tion on which models are to be built. Another problem is that each method is
judged using widely varying criteria, and so no head-to-head comparison is
possible from the published papers. The problem of biased test sets and subse-
quent development of larger benchmarks has a long history in the secondary
structure prediction field [170, 239].

While sequence alignment methods have been extensively benchmarked
[184], programs that build coordinates from alignments, including the back-
bone, loops and side chains, have not been extensively compared to one
another in large-scale tests. Recently, however, Wallner and Elofsson [220]
compared several programs that build coordinates from templates given
template-target alignments, including MODELLER [174], SegMod/ENCAD
[116], SWISS-MODEL [189], 3D-JIGSAW [11], nest [234, 235], Builder [96, 97]
and SCWRL (for side chains without modification of the template back-
bone) [30]. They found that three of the programs, MODELLER, nest and
SegMod/ENCAD, perform better than the others. In particular, SegMod is a
very old program and still performs as well as much more recent programs.
They also observed that none of the homology modeling programs builds side
chains as well as SCWRL.
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6.1 The CASP Meeting

Another forum for testing homology modeling methods has been the ongoing
series of CASP meetings organized by John Moult and colleagues [138–141,
214,215,240]. In the spring and summer before each meeting held in December
1994, 1996, 1998, 2000, 2002 and 2004, sequences of proteins whose structure
was under active experimental determination by NMR or X-ray crystallog-
raphy were distributed via the Internet. Anyone can submit structure pre-
dictions at various levels of detail (secondary structure predictions, sequence
alignments to structures and full 3-D coordinates) before specific expiration
dates for each target sequence. The models are evaluated via a number of
computer programs written for the purpose, and then assessed by experts
in each field, including comparative modeling, fold recognition and ab initio
structure prediction. The organizers then invite predictors whose predictions
are outstanding to present their methods and results at the meeting, and to
describe their work in a special issue of the journal Proteins, published in the
following year.

Ordinarily when protein structure prediction methods are developed, they
are tested on sets of protein structures where the answer is known. Unfortu-
nately, it is easy to select targets, even subconsciously, for which a particular
method under development may work well. Also, it is easy to optimize
parameters for a small test set that do not work as well for larger test sets.
While the number of prediction targets in CASP is limited to numbers on the
order of 10–20 per category, these numbers are still higher than many of the
test sets used in testing new methods under development.

6.2 Protein Health

A number of programs have been developed to ascertain the quality of experi-
mentally determined structures and these can be used to determine whether a
protein model obeys appropriate stereochemical rules. The two most popular
programs are ProCheck and WhatCheck [219]. Recently, the Richardson group
has developed MolProbity, which seeks to identify a number of features in
protein structures that are statistically unlikely, when compared to a manually
curated set of very high-resolution structures [39]. This is a webserver that
reports bad rotamer conformations, close contacts, flipped amide side-chains
and other potential errors in structures. Although this site is more geared
to analysis of new experimental structures, it can also be used on homology
models to identify steric clashes or poorly modeled regions of proteins.

These programs check bond lengths and angles, dihedral angles, planarity
of sp2 groups, nonbonded atomic distances, disulfide bonds and other char-
acteristics of protein structures. One of the more useful checks is to see
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whether backbone geometries are in acceptable regions of the Ramachandran
map. Backbone conformations in the forbidden regions are very likely to be
incorrect. It should be noted once again that correct geometry is no guarantee
of correct structure prediction. In some cases, it may be better to tolerate a few
steric conflicts or bad dihedral angles, rather than to minimize the structure’s
energy. While the geometry may look better, the final structure may be
further away from the true structure (if it were known) than the unminimized
structure. Chapter 11 discusses the problem of health of protein models and
describes the respective Model Quality Assessment Programs (MQAPs).
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11
Protein Fold Recognition Based on Distant Homologs
Ingolf Sommer

1 Introduction

In the 1960s Anfinsen showed with a rather simple experiment that for
many proteins the sequence is the sole determinant for the three-dimensional
(3-D) structure [7, 8]. A denaturating substance was added to the solution
of a protein, resulting in the loss of native protein structure and function.
After removal of the denaturing substance, proteins recovered the functional
activity (an enzymatic reaction in Anfinsen’s experiment). Thereby, it was
concluded that the protein managed to refold itself in the absence of any other
agents.

Later, it became evident that some proteins need other proteins to fold and
some proteins or parts of proteins remain unfolded (see Chapter 9). Still,
the Anfinsen principle has been a guiding force for much research that aims
at understanding mechanisms for determining the 3-D structure of proteins
given their sequence. Although great improvements of these methods have
been achieved, the protein structure prediction problem is still unsolved, in
general. The folding process that determines the structure is not known to
enough detail to serve as a basis for modeling. Instead, prediction methods
have to rely on heuristic inductive inferences.

One very successful approach to the prediction of protein structures today
models the protein structure based on another structurally resolved protein
as a structural template. We call this approach template-based modeling. The
protein whose structure is to be predicted is called the target. In addition to
the target sequence, the method requires the input of a database of resolved
protein structures, the so-called template structures. Rather than modeling
the protein structure de novo, we repeatedly ask the question whether the
protein structure of the target sequence is similar to a template structure. This
leaves us with a set of candidates for templates after which we can model the
structure of the target sequence.

This chapter deals with the question how likely it is that a target protein
sequence attains a structure similar to a given template structure. In principle
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one can compare the sequence itself to the sequences of the template structures
(sequence–sequence comparison, Section 3.1), additionally take evolutionary
information into account (profile methods, Sections 3.2 and 3.3) or thread
the sequence onto the given 3-D template structure taking physico-chemical
properties of the template structure into account (Section 4). The problem
of identifying suitable templates typically becomes harder the more distant
the target sequence is related to its most similar sequences in the template
database. More similar sequences are easier to identify when looking at
sequence information only; typically, they also have a more similar structure
within a chemically more similar environment.

Traditionally, protein structure prediction has been divided into homology
modeling (also called comparative modeling; see Chapter 10), fold recognition
(this chapter) and prediction of novel folds (Chapter 12) [97]. In homology
modeling, closely homologous templates are available affording very precise
models for the protein structure. In fold recognition, identifying a suitable
template becomes a challenge. Once a template is obtained, a prediction of the
3-D arrangement can be made, whereas a constructed full-atom model is not
reliable, in general. In contrast, in the new fold category no suitable template
is available and fragment assembly or de novo methods need to be applied.

The basic pipeline exercised is identical in the first two categories, in prin-
ciple. Thus, today homology modeling and fold recognition are merging.
The focus in homology modeling is more on obtaining detailed models with
high resolution. The focus of fold recognition is more on the identification of
suitable templates.

2 Overview of Template-based Modeling

2.1 Key Steps in Template-based Modeling

The input to template-based modeling is a target sequence and a database of
previously resolved template structures. The output is a 3-D model for the
target sequence, constructed according to the template.

2.1.1 Identifying Templates

How do we decide how likely the sequence of a target protein attains a given
template structure? We perform a pairwise alignment of the target sequence
with the sequences of the template structures. Here, different techniques can
be used: the target sequence can be aligned with the amino acid sequences of
the templates. If evolutionary information on the target sequence is available
(see Chapters 3 and 4), a multiple alignment of related sequences can be used
to construct a position-specific scoring matrix (PSSM or, similarly, a frequency



2 Overview of Template-based Modeling 353

profile, see Section 3.2.1). A PSSM represents the preferences of a residue in
the target sequence to be matched with a residue in the template structure
(Section 3.2.1). This kind of evolutionary information can also be used on
the template side or on both target and template sides. One can enhance
this approach by introducing additional information, e.g. stemming from
secondary structure predictions (Section 5.1.1). Sequence–structure alignment
methods using the 3-D structure information on the template sides during the
template identification process are presented in Section 4.

2.1.2 Assessing Significance

The score of the alignment tells us the propensity of the target sequence
to attain the template structure. Ideally, the template that can be aligned
to the target sequence with the highest alignment score should provide the
structural model for the target protein. However, since alignment scores
reflect structural preference only inadequately, this model selection procedure
is fallible. Thus, the score has to be accompanied with a confidence value that
rates how much we can trust the prediction. Often, a confidence score is based
on theoretical statistical significance which rates how unlikely it is to obtain
the alignment by chance. In addition, empirical choices of confidence values
have also proven effective (Section 6.1).

2.1.3 Model Building

Aligning the target sequence to a template protein is only the first step of
producing a full-atom protein structure model for the target protein. While
it is the critical step for the similarity range of below about 40% sequence
identity between target and template sequence, it is less difficult in high
similarity ranges (see Chapter 10). An incorrect alignment invariably leads
to a wrong protein model.

The alignment maps residues of the target onto the template. An initial
model is constructed by copying coordinates of the template structure and
changing the template residue types according to the target sequence. This
model only provides a part of the structure of the target protein’s backbone.
Gaps in the alignment represent parts of the target sequence that we cannot
map onto the template structure (if gaps occur in the template sequence) or
tears and rips in the backbone model of the target sequence (if gaps occur in
the target sequence). The former gaps mostly coincide with loops in the target
protein that have no counterpart in the template structure. These loops have to
be modeled in a separate loop modeling step by inserting loop fragments from
a database of protein structures, or by using energy optimization methods.
Rips in the backbone of the target protein have to be mended and, finally, the
sidechains of the target protein have to be attached to the backbone. Here,
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the variants are to use a database of side chain rotamers or to do energy
optimization. Similarity-based protein modeling tools combine these steps
in different ways and using different algorithmic procedures (see Chapter
10) [32, 129, 133].

2.1.4 Evaluation

The performance of fold recognition methods is typically assessed by bench-
marks [20, 37, 71, 171]. Here, the objective is to retrieve the template structure
that is most similar to the structure of the target protein. The performance can
be quantified in terms of the number of correctly assigned folds or, in a more
detailed fashion, by rating the quality of the alignment, on which the fold
assignment is based. The accuracy of protein sequence–structure alignment
methods depends highly on the sequence similarity between the target and
the template protein. It is low in the case of low sequence similarity and
high in the case of high sequence similarity. Over the whole protein structure
database we can today achieve an accuracy of above 70% correctly assigned
folds [165]. Starting 1994, the Critical Assessment of Protein Structure Predic-
tion (CASP) experiment, a biannual blind test for protein structure prediction
methods was established to measure progress in the field [98].

While similarity-based modeling is quite successful, this approach cannot
discover yet unseen protein structures. Rather, it can only rediscover struc-
tures that have been seen before as attained by different protein sequences.
As we can only assume to have uncovered about one half of all protein folds
used by nature [72, 178], this approach has strong limitations.

2.2 Template Databases

Typically the structures serving as templates are experimentally determined
by X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy.

X-ray crystallography determines structures of macromolecules by analyz-
ing their diffraction patterns when irradiated by X-rays. In order to obtain
a diffraction pattern a protein has to be crystallized. During crystallization
many instances of the same protein are symmetrically arranged along a lattice.
Even when crystallized, proteins frequently display biological activity indi-
cating that the crystallization process captured them in the biologically active
form. Some proteins are very hard to crystallize (e.g. membrane proteins).
When the protein crystal is properly irradiated with X-rays, diffraction pat-
terns result that are captured on film or digital media. From these patterns the
electron density of the protein is computed and from the density information
the atomic structure of the protein is derived [13, 14, 120].

NMR spectroscopy is the second prominent method for structure determi-
nation. It can be applied to smaller proteins (up to around 40 kDa) in highly
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concentrated solution. Some atomic nuclei, e.g. protons in hydrogen, display
an intrinsic magnetic property called spin. By applying an external varying
magnetic field the state of the spin may change, provided resonance takes
place. A resonance spectrum can be obtained. The surrounding local envi-
ronment of nuclei may cause a shift of the peaks in the resonance spectrum.
Peaks in the spectrum are associated with residues in the protein sequence in
a sequential assignment step and a list of distance constraints can be deduced.
Applying distance geometry techniques to these data, atom coordinates can
be estimated [13, 14, 162].

The most frequently used public resource for coordinates of protein struc-
tures determined with NMR spectroscopy or X-ray crystallography is the
Protein Data Bank (PDB). Quality of structures deposited in the PDB can be
judged with a number of programs (Procheck [94], Whatcheck [55]). The
ASTRAL compendium for structure and sequence analysis conveniently com-
bines the output of several of these programs with additional manual annota-
tion into a joint AEROSPACI score [16, 24].

Most proteins are globular. Larger proteins often fold into several indepen-
dent folding units or domains. Domains are compact regions of structure often
capable of folding on their own in aqueous solution. Domains can be defined
as folding units, as units of structural similarity, or as evolutionary units
[115]. Several resources describe the domain composition within proteins
and classify the identified domains hierarchically: most prominent are SCOP,
CATH and FSSP. SCOP, (structural classification of proteins [99]) is a human-
curated database organized hierarchically into classes, folds, superfamilies
and families. CATH (class, architecture, topology and homologous superfam-
ily [106]) is a semi-automated procedure. The FSSP (families of structurally
similar proteins [54]) relies on a fully automatic procedure.

Since domains are recurring folding units, often domains are chosen as
templates for structure prediction. For the construction of template databases,
reasonably different templates with high quality structures are favored. Rep-
resentative sets of templates can be constructed limiting the maximal percent-
age of sequence identity while choosing structures with a high SPACI score for
example. Choosing SCOP domains with at most 40% (95%) sequence identity
results in a set of 7290 (12 065) structures for SCOP version 1.69 of July 2005.



356 11 Protein Fold Recognition Based on Distant Homologs

3 Sequence-based Methods for Identifying Templates

3.1 Sequence–Sequence Comparison Methods

The simplest method for assigning a fold to a target sequence is to compare
the target sequence to sequences of proteins with known structures. In order
to compare the sequences they are aligned (see Chapter 3, [34]).

Scoring the similarity of an individual pair of amino acids amounts to com-
paring the likelihoods of generating this pair from two alternative stochastic
models. One model, the model of related amino acids, describes the dis-
tribution of amino acid pairs originating from related positions in pairwise
alignments of homologous sequences. The second model is a null model
which describes the distribution of unrelated amino acid pairs. The amino
acid pair is denoted by a pair of random variables (X, Y) both with values
in {1, . . . , 20}. The distribution of (X, Y) under the related model is defined
as prel(i, j). Note that the background distribution of amino acids can be
computed as pi = ∑20

j=1 prel(i, j). The log-likelihood ratios of all pairs of amino

acids are stored in an amino acid similarity matrix: Mi,j = λ log
(

prel(i,j)
pi pj

)
,

with constant scaling factors λ. Different factors were introduced by different
authors: Dayhoff and coworkers [29] use λ = 10/ log 10, the BLOSUM series
[51] uses λ = 2/ log 2.

Introducing an additional penalty for inserting and extending gaps, two
sequences of unequal length can be aligned. For arbitrary sequences, the
Needleman–Wunsch algorithm [100], aligns two sequences using dynamic
programming. It is appropriate, when sequences are expected to be similar
from beginning to end, computing a so-called global alignment. In cases
where only limited patches of the sequences share similarity, local alignment is
used, which is computed using the Smith–Waterman algorithm [145]. When
searching for similarity of a complete subsequence within a sequence, as is
the case for example when identifying domains within longer sequences, free-
shift alignments are appropriate (domain identification is also discussed in the
context of Chapter 12).

The runtime of alignment algorithms is measured in terms of (sum of the)
length of the aligned sequences. Using the Needleman–Wunsch algorithm,
alignments can be computed in cubic time for general gap cost functions. For
affine gap-cost functions, alignments can be computed in quadratic time using
the Gotoh algorithm [48]. Since these dynamic programming programming
algorithm can be slow for high-throughput applications fast heuristics like
BLAST [5] and FASTA [113] were developed which approximate the optimal
alignment algorithms.
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The parameters of sequence alignment methods have to be calibrated for
the intended application, e.g. Pearson details a protocol for searching genomes
with these methods [111]. The major disadvantage of these pairwise sequence
comparison methods is that conserved and variable positions are treated
indifferently and contribute equally to the final alignment score. This limits
the ability to identify distant homologs.

Sequence–sequence comparison methods like the Smith–Waterman algo-
rithm [145] and the BLAST [5] or FASTA [113] tools can assign a fold to
approximately 20–30% of the proteins coded by genes in a microbial genome
[45, 173].

3.2 Frequency Profile Methods

Exploiting evolutionary information in addition to the plain sequence infor-
mation, frequency profile methods are powerful tools for detecting distant
relationships between amino acid sequences, often picking up signals even
when other methods fail [170]. In this section we define frequency profiles,
and describe why one would use them, how they are generated and different
ways of comparing profiles to sequences and profiles to other profiles.

3.2.1 Definition of a Frequency Profile and PSSM

A frequency profile (or profile for short) is a sequence of position-specific fre-
quencies of amino acids, which can be used for sequence alignments instead
of a sequence containing individual amino acids at each position [49, 150].

Starting with an alignment of several related sequences (a multiple se-
quence alignment), for each position in that multiple alignment the occur-
rences of the types of amino acids are counted (for an example, see Figures
1 and 2). This yields an estimate of the likelihood of different types of amino
acids occurring at different positions along the sequence. By counting gap
characters in an alignment column, information on the likelihood of insertions
at individual positions along the sequence can be gathered. Before counting,
each sequence can be given a weight, which is a useful debiasing procedure if
several of the sequences are very similar [49, 52, 91, 134].

Formally, a frequency profile matrix (Fp,a) is composed of at least 20
columns and N rows. The row p corresponds to the sequence position in
the multiple alignment of length N and the column a to the type of amino
acid. The first 20 columns of each row specify the relative frequencies of the
types of amino acids at that position [123, 167, 185]. Some scoring schemes
require additional columns containing penalties for insertions or deletions at
that position [49], or unexpected characters in the sequences [18].
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Figure 1 Sequence logo corresponding to the first 40 sequence
positions of Pfam [11] multiple alignment of the Ataxin-2 N-terminal
region. The figure is produced with WebLogo [28]. The overall height
of the stack at each sequence position indicates the sequence
conservation at that position, while the height of symbols within the
stack indicates the relative frequency of each amino acid at that
position.

Figure 2 First 20 sequence positions of the frequency profile
matrix corresponding to the sequence logo depicted in Figure 1. All
sequences are weighted identically.

Originally, Gribskov [49] combined the frequency profile matrix directly
with amino acid substitution matrices [29, 51], yielding

(Sp,a) =

(
20

∑
b=1

Fp,b · Ma,b

)
,

where (Ma,b) is Dayhoff’s substitution matrix. This construct is referred to
as a PSSM. In contrast to a frequency profile, a PSSM is a frequency profile
multiplied with substitution preferences.

Other authors also use the word profile in the context of structure-based
template identification methods to describe the sequence-based information
extracted from protein structures, as discussed in Sections 4 and 4.3, in partic-
ular.
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Figure 3 Illustration of the generation and application of profile
alignments (from Wang and Dunbrack [171], reprinted with permission
of Cold Spring Harbor Laboratory Press and the authors).

3.2.2 Generating Frequency Profiles

For constructing a profile one needs a multiple alignment of related sequences.
Such alignment can be readily available, e.g. as in Pfam [11]. If not, one
can start generating a profile from a single sequence by searching related
sequences and multiply aligning them. Once a few sequences are found, a
profile can be constructed from them and employed to search more sequences.
This iterative approach for searching homologs is implemented in the pop-
ular PSI-BLAST program [6, 131], for example. In practice, the number of
sequences identified by this search matters. This number is controlled by the
BLAST parameters “number of iterations” and “E-value” for inclusion into the
PSSM. The multiple alignment can be taken directly from the BLAST output,
iteratively optimized [136], or improved with tools for multiple sequence
alignment like ClustalW [156] or T-Coffee [101, 107]. The process of profile
generation is illustrated in Figure 3.

If one particular sequence is the seed for searching further sequences, the
multiple sequence alignment can be cropped by deleting the columns which
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contain gaps in the master sequence (master–slave alignment in BLAST ter-
minology). Such an alignment can be used to construct a profile specifically
reflecting that sequence. In the matrix notation above, this results in a fre-
quency profile matrix F with rows eliminated until the N remaining rows
correspond to the N residues of the master sequence.

Profiles calculated from multiple alignments that originate from similarity
searches are subject to a bias introduced by the composition of the sequence
databases that are searched [3]. An example is a case such that a search yields
a large number of hits of mammalian origin and only few distantly related
plant sequences. If a frequency profile from such a multiple alignment were
calculated by simply taking the relative frequencies of the amino acids, this
would reflect a strong emphasis on the mammalian sequences. This effect
is not desirable, since the goal is to present all sequences of the family in
an unbiased manner in the profile. To tackle this problem, it is generally
assumed that only a fraction of the sequences of the family to be modeled is
available in the databases and many sequences have not been observed, so far.
A number of methods has been developed to estimate the size of the sequence
families from the available sample. The most important are Dirichlet mixture
models [17], pseudocounts [153], minimal-risk estimation [180] and sequence
weighting models [52, 74, 89, 123, 125, 134, 150]. For a discussion of sequence
weighting models, see Ref. [171].

3.2.3 Scoring Frequency Profiles

Frequency profiles can be aligned using the same algorithms as in sequence
alignment. Whereas in plain sequence alignments two individual amino acids
are matched, here profile vectors are compared. Profile vectors can be matched
to individual amino acids or to other profile vectors. Different schoring
schemes exist for both approaches .

3.2.4 Scoring Profiles Against Sequences

Let α be a row-vector at a certain sequence position p in a profile F and let
ai = F(p, i) be the frequency observed for amino acid number i at position p.
In the following, we will investigate ways of scoring α against an individual
amino acid of type j (profile–sequence), or against another row-vector β from
another profile F′ (profile–profile).

The average score was the first profile–sequence score used in bioinformat-
ics [22, 49]. It is defined as

scoreavg(α, j) =
20

∑
i=1

αi Mi,j.

Its basic idea is to compute the expected value of the sequence–sequence score
under the profile distribution. Later, we will see an extension of this idea to
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profile–profile scoring. This scoring system has several drawbacks which led
to further development.

The previously mentioned iterative PSI-BLAST program [6] starts with a
round of BLAST using sequence–sequence alignment techniques to identify
related sequences. From the sequences found, a profile is constructed which
is used to identify further sequences using essentially the average scoring
scheme. No position-specific gap costs are used, instead for each iteration the
same gap costs that are used in the initial BLAST run are applied. In contrast to
PSI-BLAST, the related tool IMPALA [131] implements the opposite sequence–
profile direction and compares a single target sequence to a database of PSSMs
previously generated with PSI-BLAST. This method can be used to quickly
compare a sequence to a database of template structures with precomputed
PSSMs.

Log-likelihood profile–sequence scoring (e.g. Ref. [27]):

scorelq(α, j) = log
αj

pj
,

is an optimal (in the sense that the likelihood ratio guarantees the lowest error
of type II of all tests at the same level of significance) test statistic accord-
ing to the Neyman–Pearson lemma from statistical test theory for deciding
whether the amino acid j is a sample from the distribution α or rather from the
background distribution p. The values summed up over all aligned positions
provide a direct measure of the likelihood of the amino acid sequence being a
sample from the profile.

Evolutionary profile–sequence scoring [27, 50] is defined as

scoreev(α, j) = log
20

∑
i=1

αi
prel(i, j)

pi pj
.

This score summed up over all aligned positions in an alignment is an optimal
means of deciding whether the sequence occurs by chance or is more likely
to be the result of sampling from the profile having undergone evolutionary
transition.

3.2.5 Scoring Profiles against Profiles

Since profiles have been invented, several ways of comparing profiles to
profiles have been developed and tested. These scoring schemes perform
differently in their abilities for searching templates and in the quality of the
alignments produced.

A simple, fast and heuristic way of comparing two profile vectors inde-
pendently of any substitution matrix is the dot product scoring, which is
the summation of the products of the frequencies per type of amino acid
[117, 123, 124]:
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scoredotprod(α, β) =
20

∑
i=1

αiβi.

Average or cross-product profile–profile scoring is a straightforward exten-
sion of the approach used in profile–sequence scoring. The products of the
frequencies are multiplied with the corresponding log–odds elements of the
substitution matrix:

scoreavg(α, β) =
20

∑
i=1

20

∑
j=1

αiβj log
prel(i, j)

pi pj
.

Though not called profile–profile alignment, this approach has been used in
ClustalW [155, 156], where two multiple alignments are aligned using the
average over all pairwise scores between residues.

The log-average scoring multiplies the products of the frequencies by the
corresponding probabilities in the substitution matrix and then takes the
logarithm [165, 167]:

scorelogavg(α, β) = log
20

∑
i=1

20

∑
j=1

αiβj
prel(i, j)

pi pj
.

This scoring is symmetric and scores zero against the background distribution.
For the special case of profile–sequence alignment, i.e. for one of the profiles
corresponding to just one sequence, log-average scoring reduces to scoreev.
For the special case of both profiles corresponding to one sequence, log-
average scoring reduces to the scoring in normal sequence–sequence align-
ment.

The Jensen–Shannon divergence DJS
λ (α, β) = λDKL(α, γ) + (1− λ)DKL(β, γ),

with γ = λα + (1− λ)β for 0 ≤ λ ≤ 1 is based on the information theoretic
Kullback–Leibler distance DKL(α, β) = ∑20

k=1 αk log2
αk
βk

. With p as amino acid
background distribution, Yona and Levitt developed the score [185]:

scoreJensenShannon(α, β) =
1
2
(1− DJS(α, β))(1 + DJS(γ, p)).

Given two profile vectors α and β, the corresponding row vectors of the PSI-
BLAST PSSMs S and T, and the effective number of observations n and m, the
Panchenko score [108] is computed as:

scorePanchenko ((α, S, m), (β, T, n)) =
m α · T + n β · S

n + m
.

The LogOddsMultin score used in the COMPASS tool for comparison of
multiple protein alignments [125] is an extension of the scoring that PSI-
BLAST uses:

scoreLogOddsMultin = c1

20

∑
i=1

n(1)
i log

q(2)
i
pi

+ c2

20

∑
i=1

n(2)
i log

q(1)
i
pi

,
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where n(1)
a and n(2)

a are the effective counts for each amino acid in columns
1 and 2, and where c1 = n(2)−1

n(1)+n(2)−2
, c2 = n(1)−1

n(1)+n(2)−2
= 1− c1 and n(k) =

∑20
j=1 n(k)

j .
These scoring schemes are extensively discussed and experimentally com-

pared in Refs. [164, 171]. Both studies compare and analyze the searching
abilities as well as the quality of the alignments produced with these scorings
schemes. Alignment quality can be monitored with measures like QModeler as
fraction of correctly aligned positions in the profile–profile alignment [130],
QDeveloper as fraction of correctly aligned positions in the structural alignment
[130], or similarly QCombined that penalizes sequence alignments that are either
too long or too short [185]. Measuring alignment quality with QCombined,
the above profile–profile scoring functions perform similarly, while display-
ing differences in QModeler and QDeveloper [171]. The Jensen–Shannon and
LogOddsMultin functions produce shorter, more accurate alignments [171].
The Jensen–Shannon scoring produces better alignments for closely related
sequences [164]. Of the scoring functions above, in terms of search specificity
and sensitivity the LogOddsMultin and log-average perform significantly
better [171].

3.3 Hidden Markov Models (HMMs)

3.3.1 Definition

HMMs (see Chapter 3 or Ref. [34]) can be regarded as a generalization of
profiles and have become an important tool in fold recognition. Introduced
in the late 1960s and 1970s, and popular in speech recognition [118], HMMs
made it into computational biology in the late 1980s [26] and have been
used as profile models since the mid-1990s [73, 151]. For an introduction to
HMMs, see Chapter 3 or Refs. [9, 118]; for review articles in the context of
computational biology, see Refs. [25, 35].

HMMs are probabilistic models that are applicable to signals, time series
or linear sequences. An HMM is a system characterized by the following:
It has a set of hidden states S = {S1, S2, . . . , SN}. The system is in state
qt at time t and has a number M of distinct observation symbols per state,
i.e. a discrete alphabet V = {v1, v2, . . . , vM}. The system randomly evolves
according to a state transition probability distribution matrix A = (aij),
where aij = P(qt+1 = Sj|qt = Si) for 1 ≤ i, j ≤ N and emits characters
from the alphabet V according to an emission probability matrix E = (eik),
1 ≤ i ≤ N, 1 ≤ k ≤ M. When the system is in a given state i, it has a
probability aij of moving to state j and a probability eik of emitting letter vk.
Biological relevance is attached to the hidden states of the Markov model.
Transition and emission probabilities depend on the current state only and
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not on the past. This property is called the first-order Markov assumption.
Only the emitted symbols can be observed, not the underlying random walk
from state to state.

3.3.2 Profile HMM Technology

When applying HMMs to model families of protein sequences one speaks of
profile HMMs. In this case, mainly an alphabet of 20 amino acid letters is used,
but also other alphabets exist such as 64-letter alphabets for codon triplets,
three-letter alphabets (helix, sheet and coil) for secondary structure prediction
and Cartesian products of these alphabets. If necessary, meta-characters such
as gap symbols can be added to the alphabets, as well.

In a standard architecture for protein sequence HMMs there are three
classes of states [9], besides the start and end state: the match, insert and
delete states. Thus S = {start, m1, . . . , mN, i1, . . . , iN+1, d1, . . . , dN, end}.
Typically, the length of the model N is the average length of the sequences
in the family. The match and insert states always emit amino acid symbols,
whereas the delete states never do. The basic path of state transitions is start
→ m1 → m2 → . . . → mN → end. Each match state mj has an outgoing
edge to succeeding match, delete, and insert states, mj+1, dj+1 and ij+1,
respectively. Each delete state dj has outgoing edges to the succeeding delete,
match and insert states dj+1, mj+1 and ij+1. The insert state ij is connected to
the succeeding match and delete states mj+1 and dj+1, and has a loop to itself
allowing for multiple insertions.

There are three typical questions associated with HMMs in this context
[118]. Given an observation sequence of emission characters and a model, how
likely is that sequence for the particular model? Given the observation, i.e.
target, sequence and a model, what is the underlying sequence of states? How
to adjust the model parameters so that the model best describes a multiple
alignment of amino acid sequences?

With profile HMMs [73], sequence families can be characterized. For a
profile HMM, the first question addresses the likelihood of a given amino acid
sequence to be a member of the given family.

For computing the likelihood of a sequence being emitted by a model, the
forward procedure [9, 118] is used. Probabilities of states are propagated
through the model from the start to the end states. From the state probabilities,
the probabilities of a certain letter being emitted at a certain time can then be
computed.

The most likely path of states is computed with the Viterbi algorithm [9,
118]. The path consists of a sequence of matches, insertions and deletions, and
thus corresponds to an alignment of the target sequence with the sequence
family.
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Commonly, with a given multiple alignment the parameters of the standard
architecture are initialized prior to learning as follows: The match state is
assigned to any column of the alignment that contains less than 50% gaps.
Delete states are associated with columns that contain any gaps. Columns with
more than 50% gaps are assigned to corresponding insert states. Emissions
of match and insert states can be initialized from the frequency counts of the
corresponding columns in the multiple alignment. These counts need to be
regularized with Dirichlet distributions or Dirichlet mixtures in order to avoid
emissions associated with zero counts [9]. In a subsequent learning phase, the
HMM parameters are optimized. Various algorithms are available for that,
including the expectation maximization (EM or Baum–Welch) algorithm and
different generalizations of it as well as gradient descent methods [9, 10, 30,
118]. This learning process corresponds to the generation of a profile in the
previous section on profile–profile scoring.

3.3.3 HMMs in Fold Recognition

HMMs have been used for a number of years in fold recognition [25, 35,
66–68] and have been extensively tested (e.g Ref. [110]). One approach [66]
is to iteratively add homologous sequences to a HMM (like the PSI-BLAST
approach does for sequence alignments). Similar to profile methods, HMMs
can turn multiple sequence alignments into position-specific scoring systems
suitable for searching databases for remotely homologous sequences [35].

3.3.4 HMM–HMM Comparisons

Similar to the scoring schemes described in the section on frequency profile
scoring, there are several ways to score profile HMMs against sequences or
against other profile HMMs. Whereas the standard HMM approach was to
compare an HMM to one sequence, Lyngsø and coworkers developed an
algorithm for the alignment of two HMMs based on the maximization of the
coemission probabilities [90]. Recently, Edgar and Sjölander proposed an ap-
proach to align two multiple alignments by constructing a profile HMM from
one of the alignments and aligning the other to that HMM [36]. Söding has
generalized the log-likelihood score maximized in HMM sequence alignments
to the case of HMM–HMM alignments [146].

3.4 Support Vector Machines (SVMs)

3.4.1 Definition

SVMs are a state-of-the-art machine learning method for classification prob-
lems. SVMs have been succesfully applied for fold recognition.
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Conceptually, SVMs map the data points to be classified into a high-
dimensional space called feature space, in which an optimally separating
hyperplane is sought that separates the two classes of points to be distin-
guished by the (binary) classification [132]. Technically, the transformation
into the high-dimensional space can be avoided and only inner products in
that space, called kernels, need to be computed. While the SVM machinery
is fairly standardized, kernel functions are highly problem specific. One
problem for protein sequences is to map the sequences of typically differing
lengths into a space with a constant dimensionality. Several kernel functions
exist for the protein classification problem.

3.4.2 Various Kernels

Jaakkola and coworkers suggest the Fisher kernel function, which is specific
to a protein family [57]. An HMM is trained from positive samples of the
family. The so-called Fisher score is the gradient of the log likelihood score
for an arbitrary sequence X with respect to the HMM parameters. This score
maps the sequence X into a fixed length vector. The Fisher kernel function is
then computed on the basis of Euclidean distances between the Fisher score
vector for X and the score vectors for known positive and negative examples
of the protein family.

Another example, the SVM-pairwise kernel, uses the Smith–Waterman al-
gorithm to align a new protein sequence X against all n sequences in the train-
ing set. The feature vector corresponding to protein X is FX = fx1, fx2, . . . , fxn,
where fxi is the E-value of the Smith–Waterman score between sequence X
and the ith training set sequence [81].

There are numerous other kernels to treat protein sequences, e.g. mismatch
kernels [79], string kernels [126] or motif kernels [12].

3.4.3 Experimental Assessment

Machine learning methods need sufficient training data, which imposes some
restrictions on the experiments. The typical problem tackled by the machine
learning community is the protein classification problem, as described by
Jaakkola and coworkers in 1999 [56]. The protein classification problem is to
predict the SCOP structural class of a protein given its amino acid sequence.
Two sequences with the same superfamily are considered as related by ho-
mology and two domains from different folds are considered as unrelated.
Proteins from different superfamilies within the same fold have an uncertain
relationship, and are not considered in experiments. The classification ques-
tion then is to decide whether a protein belongs to a certain superfamily.

In the standardized experimental setup defined by Jaakkola and coworkers,
and typically used, for each family the protein domains outside the family, but
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within the same superfamily are taken as positive training samples. Positive
test samples are the members of the family. Negative samples are taken from
outside the fold to which the family belongs. The set of negative samples is
randomly split into training and test samples.

Jaakkola suggests to use only families with at least five family members
(positive test) and 10 superfamily members outside the family (positive train).
Liao and coworkers [81] suggest using only families with at least 10 family
members and five superfamily members outside the family. Both restrictions
imply a drastic reduction of the number of families considered at all.

A distincion is made whether all the training data are labeled (supervised
learning) or not (semi-supervised learning). The additional data in semi-
supervised learning can help to better structure the space around the labeled
points. Typically, semi-supervised learning is more expensive and experimen-
tally performs better than supervised learning [177].

Despite the promising developments, it has to be clearly pointed out that
SVMs operating directly on the amino acid sequence with kernels like the
ones mentioned above currently are not actively used to identify suitable
templates. The machine learning methodology requires a certain amount of
data for training. Therefore, the protocols used for testing SVMs on the fold
recognition problem vary slightly, but significantly, from protocols used to
evaluate other current methods. For instance, in CASP6 (see Section 6.3) there
was no prediction group relying on kernel methods for template identifica-
tion.

4 Structure-based Methods for Identifying Templates

Often proteins share similar structure while showing very little (15% or less)
sequence identity [62]. Sequence similarity is not necessary for structural
similarity, instead extreme divergences of sequences are observed as well as
convergent evolution where similar 3-D folds are adopted several times.

Starting in the 1990s, methods were developed for template identification
based on structural information such as secondary structure, burial patterns
or side-chain pair-interactions. These methods are often referred to as inverse
folding, sequence–structure alignment or threading methods. Note, that the
term “threading” is widely used to label any method which attempts to
tackle the problem of aligning two protein sequences the structure of one of
which is known. Originally invented by Jones and coworkers [62] and also
frequently used is an alternative definition, according to which “threading” is
the alignment of a sequence with a protein structure in 3-D without regard to
the sequence associated with the structure [58].
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Sequence–structure alignment methods should be able to recognize not
only homologous proteins but also analogous proteins sharing the same fold
[15, 62]. Most of these methods employ inverse Boltzmann statistics: the
frequencies of observed findings are converted into a pseudo-energy function
which is optimized in order to find a good sequence–structure alignment (see
Section 4.1).

Basically there are two ways of scoring a sequence against a structure. One
is to score the interactions of pairs of amino acids of the target sequence within
the template structure using pair-interaction potentials as energy functions.
Unfortunately, finding a global optimum for this kind of problem has been
shown to be NP-hard [77]. There are several approaches to tackle this and we
will present four conceptually important ones in Section 4.2.

Alternatively, locations of residues may be evaluated with respect to their
placement inside the original template structure afforded by sequence align-
ments of target and template protein. In this case the global optimum
sequence–structure alignment can be found using dynamic programming
methods. Standard methods for this are reviewed in Section 4.3.

Today, hybrid algorithms, combining sequence frequency profile methods
with sequence–structure methods, are common practice. Either profiles can
be integrated into the threading process or methods are exercised separately
and the results are merged afterwards. Reviews can be found in Refs. [59, 70,
149, 160]; however, we will first focus on the basic principles.

4.1 Boltzmann’s Principle and Knowledge-based Potentials

In protein kinetics, the topography of the landscape of free energies is often
described as a funnel [31]. Typically, the energy is assumed to decrease as the
folding process proceeds. This organization of the energy landscape is not
characteristic of random polypeptides, but is a result of evolution. A common
assumption is that the native structure is the one with the lowest free energy.
However, many factors contribute to the free energy of the system. Not
all factors are known and neither is their interplay completely understood.
Therefore, energy landscapes cannot be determined exactly [105].

In addition, in threading we are actually dealing with two structures, i.e. the
one to be identified and the one serving as template. The environments of the
two structures can be substantially different, making it difficult to apply the
same detailed energy potentials to both structures. In spite of these problems,
knowledge-based potentials have been employed successfully in threading
[19]. Information on different levels of abstraction can be extracted from
databases of known structures, with the help of inverse Boltzmann statistics
converted into empirical energy potentials.
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According to the law of Boltzmann [137, 187] a particular state x of a physi-
cal system in equilibrium is occupied with probability f (x):

f (x) =
1
Z

e−
E(x)
kT , where Z =

∫
· · ·

∫
e−

E(x)
kT dx,

k is the Boltzmann’s constant, T is the absolute temperature and Z is called
the partition function. In a discrete state space, the integrals are replaced by
sums. If the energies of all states x are known, the probability densities f (x)
can be computed.

Conversely, if the probability density functions f of a system are given [138],
the energy can be calculated as:

E(x) = −kT ln( f (x))− kT ln(Z).

This is frequently referred to as the inverse Boltzmann principle. Z cannot
be evaluated by measuring the densities and therefore the energy can be only
determined up to the additive constant −kT ln(Z).

Originally, Boltzmann’s equation assumes that the system is in equilib-
rium. Also, the principle can only be applied to complete systems not to
their parts. However, Finkelstein and coworkers showed that a Boltzmann-
like distribution arises naturally from low energy conformations of random
heteropolymers and similarly of proteins [38, 187]. This suggests that the
Boltzmann model can be applied to derive empirical energy functions from
ensembles of protein structures even though they are not systems in equilib-
rium.

4.2 Threading Using Pair-interaction Potentials

Different types of potentials are used in threading. The more accurate po-
tentials rely on pair-interactions of residues (many-body interactions are not
considered at all in threading due to their complexity). Most often, distances
between pairs of residues, considering their amino acid side-chain types,
are condensed into pair-interaction potentials using knowledge-based inverse
Boltzmann approaches. Commonly used choices of interaction centers are
the Cα atoms, the Cβ atoms, the side-chain centers of mass, specially defined
interaction centers or any side-chain atom [142].

Finding the globally optimum threading involving a pair-interaction scor-
ing function is NP-hard if variable-length gaps and interactions between
neighboring amino residues are allowed [77]. This means that, in order to
find an optimal solution, an algorithm requires an amount of time that, in the
worst case, is exponential in the size of the protein. Several strategies have
been developed to tackle this.

Jones and coworkers [62] use a double dynamic programming algorithm in
conjunction with potentials that do not require explicit modeling of all side-
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chain atoms. They use a set of knowledge-based potentials which are derived
from a statistical analysis of known protein structures, according to the inverse
Boltzmann principle [137]. For a given pair of atoms, a given residue sequence
separation and a given interaction distance these potentials provide a measure
of pseudo-energy, which relates to the probability of observing the proposed
interaction in native protein structures. By providing different empirical
potentials for different ranges of sequence separation, specific structural sig-
nificance is conferred on each range. The short-range terms predominate
in the matching of secondary structural elements. By threading a sequence
segment onto the template of an α-helical conformation and evaluating the
short-range potential terms, the probability of the sequence folding into an
α-helix is evaluated. In a similar way, medium-range terms mediate the
matching of super-secondary structural motifs, and the long-range terms the
tertiary packing. Around each residue in turn, their algorithm uses dynamic
programming as in sequence alignment to optimize the threading of the se-
quence onto the structure. It finally computes the best threading through the
whole structure by means of a shortest-path algorithm.

Lathrop and Smith use core structural models to derive a branch and bound
algorithm for threading [78]. A core structural model consists of several core
segments. Each position of each core element is occupied by a single amino
acid residue from the threaded sequence. Typically core segments correspond
to secondary structure elements, i.e. helices or strands. They are connected by
a set of loop regions. Neighboring positions are computed, where positions
are defined to be neighbors if they contribute a pair-interaction term to the
energy-score function. This often but not always requires that they lie close
in space, that is make a noncovalent interaction. The use of core elements as
larger building blocks reduces the problem size drastically.

Recursive dynamic programming (RDP) [154] is another approach to ad-
dressing the full threading problem using heuristics and without restriction
to core elements. It is based on the “divide-and-conquer” paradigm and
maps the target sequence onto the known backbone structure of a template
protein in a stepwise fashion – a technique that is similar to computing local
alignments but utilizing different cost functions. It starts by mapping parts of
the target onto the template that show statistically significant similarity with
the template sequence. After mapping, the template structure is modified in
order to account for the mapped target residues. Then significant similarities
between the yet unmapped parts of the target and the modified template
are searched, and the resulting segments of the target are mapped onto the
template. This recursive process of identifying segments in the target to be
mapped onto the template and modifying the template is continued until no
significant similarities between the remaining parts of target and template are
found. Those parts which are left unmapped by the procedure are interpreted
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as gaps. The RDP method is robust in the sense that different local alignment
methods can be used, several alternatives of mapping parts of the target
onto the template can be handled and compared in the process, and the cost
functions can be dynamically adapted to biological needs.

Xu and coworkers, in their RAPTOR (RApid Protein Threading by Oper-
ation Research technique) method, use a linear programming approach to
do protein 3-D structure prediction via threading [181–183]. Based on the
contact map graph of the protein 3-D structure template, the protein threading
problem is formulated as a large-scale integer programming problem. This
formulation is then relaxed to a linear programming problem, and solved by a
branch-and-bound method. The final solution is globally optimal with respect
to their energy functions. The energy function includes pairwise interaction
preferences and allows variable gaps.

4.3 Threading using Frozen Approximation Algorithms

The alternative to using full pair-potentials in threading is to evaluate a target
sequence with respect to the template structure’s original native sequence.
While threading the target onto the structure, the interaction partners in the
potentials or a set of local environmental preferences are taken from the tem-
plate protein. With these frozen approximation approaches [47,142], a globally
optimum threading – of a problem with reduced complexity compared to the
threading problem using full pair-interaction potentials – can be found using
dynamic programming methods.

Bowie and coworkers [15] start with a known template structure and de-
scribe the environments of its residues by three types of properties: (i) the
area of the residues buried in the protein and inaccessible to solvent, (ii) the
fraction of side-chain area that is covered by polar atoms, and (iii) the local
secondary structure. Based on these parameters each residue is categorized
into an environment class. In this manner, a 3-D protein structure is converted
into a 1-D string, like a sequence, which represents the environment class of
each residue in the folded protein structure. With a sequence-alignment-like
algorithm they then seek the most favorable alignment of a protein sequence
to this environment string. An alignment column now aligns a residue in the
target sequence with an environment class in the template structure. Using
inverse Boltzmann statistics, knowledge-based scoring functions have been
derived for this kind of match. Later the method was extended to also in-
corporate secondary structure predictions (helix, strand, coil) on the sequence
side to be matched to the secondary structure of the templates [121].

Flöckner and Sippl base their method to determine a sequence to structure
alignment on the Needleman–Wunsch algorithm [43, 140]. While in sequence
comparison the similarity of amino acids is measured directly, Flöckner and
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Sippl evaluate the fitness of an amino acid of the query sequence within
the template structure by using the energy field generated by the original
template structure, while mutating that single residue to the type observed
within the query sequence. For this mutated structure a knowledge-based
energy function, composed of pairwise atom–atom interactions is evaluated
for Cβ–Cβ interactions.

Also starting from known structures, Alexandrov and Zimmer [2] describe
the environments of residues by counting the number of contacts that each
amino acid makes in a structure. This information can be matched with
sequence information by previously counting the so-called contact capacities,
i.e. is the normalized number of contacts that each type of amino acid makes
in an ensemble of proteins. Given the number of contact counts per sequence
position in the structure and the number of counts a type of amino acid
prefers, for each position in the structure’s sequence certain types of amino
acids are preferable. This information can be aligned to the target sequence
with dynamic programming just as in sequence alignment.

5 Hybrid Methods and Recent Developments

5.1 Using Different Sources of Information

Secondary structure prediction and disorder prediction are methods for pre-
dicting additional structural features of amino acid sequences (see Chapter
9). Such methods can be used as stand-alone tools to learn more about a
target sequence. Alternatively, they can be directly integrated into template
identification methods by incorporating the additional sources of information
into the scoring functions. In the context of this section, the focus is on the
integration of these methods into sequence comparison.

5.1.1 Incorporating Secondary Structure Prediction into Frequency Profiles
and HMMs

Often, one of the first steps in structure prediction is to predict the secondary
structure of the target protein, that is to annotate each of a sequence’s residues
with a probability of being contained in a helix, coil or sheet (see Chapter 9).
As a result, the field of secondary structure prediction has received consider-
able attention and is reaching a mature state [1, 61, 83, 92, 179].

Predicted secondary structure can be incorporated into other fold recogni-
tion methods, e.g. profile–profile, HMM or threading methods [39, 88]. In the
frequency profile case, the profile matrix with 20 columns for each type of
amino acid is extended with an additional profile matrix with three columns
for helix, coil and sheet. Both profile matrices are scored against other profile
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matrices of the same type and the results is merged to a joint score [46,
166]. Wang and Dunbrack state that incorporation of secondary structure
information improves alignment accuracy slightly [171] and improves the
search capabilities of the average score mentioned in Section 3.2.5 significantly.

Secondary structure information was also used to extend the HMM prin-
ciple [64, 67]. Karchin and Karplus incorporated predicted local structure
into so-called two-track profile HMMs. They did not rely on a simple helix–
strand–coil definition of secondary structure, but experimented with a variety
of local structure descriptions, and established which descriptions are most
useful for improving fold recognition and alignment quality. On a test set of
1298 nonhomologous proteins, HMMs incorporating a three-letter alphabet
improved fold recognition accuracy by 15% over HMMs using amino acids
only. Comparing two-track HMMs to HMMs operating on amino acids only,
on a difficult alignment test set of 200 protein pairs, Karchin found that HMMs
with a six-letter secondary track improved alignment quality by 62%, relative
to DALI [53] structural alignments.

5.1.2 Intrinsically Disordered Regions in Proteins

While the analysis and prediction of secondary structure is a matured subject,
the interest in intrinsic disorder of proteins (see Chapter 9) has grown tremen-
dously over the last couple of years [33, 63, 84, 102,104,119,157, 158, 174].

Intrinsically disordered proteins do not fold into stable 3-D structure; in-
stead, in solution they exist as an ensemble of interchanging conformations.
There are examples of proteins which are disordered completely and others
where only part of the amino acid sequence does not fold stably. In a recent
study [103] based on six genomes, roughly 5% of proteins in bacteria, 7% in
archea and 25% in eukaryotes were estimated to be mostly disordered. Ward
and coworkers [174] predict an average of 2% of archaean, 4% of eubacteria
and 33% of eukaryotic proteins to contain more than 30 residues of disorder.
Thus, proteins with disordered regions seem to be especially common in
eukaryotic cells. Often, proteins with disordered regions perform a function:
they are involved in protein–protein [76, 82, 85] or protein–nucleic acid [148]
interactions. Under certain conditions disordered fragments become struc-
tured during the process of interaction. In the electron density maps of
X-ray crystallographic studies, disordered regions frequently do not appear;
in NMR experiments, they appear highly flexible.

As stretches of amino acids that do not fold into a stable structure should
not be predicted to have a structure, disorder prediction (see Chapter 9) has
become important in structure prediction. Methods have been developed
which annotate each residue of an amino acid sequence with a value of pre-
dicted disorder. These methods are based on machine learning techniques like
neural nets or support vector machines and employ training sets of disordered
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regions to learn to discriminate ordered from disordered stretches of sequence
[63, 84, 103, 104, 119, 168].

To the best of our knowledge such methods have not yet been incorporated
into fold recognition methods as has been done with secondary structure
prediction, but this should only be a matter of time.

5.1.3 Incorporating 3-D Structure into Frequency Profiles

Frequency profiles can be derived from sequences alone, as reviewed in Sec-
tion 3.2.2. Alternatively, structure-based multiple alignments can be used
for the generation of profiles. For this, multiple structure superposition is
performed on the available structures to create a multiple alignment of their
sequences which is then used to generate a frequency profile as described in
Section 3.2.2 above [23, 69, 107, 114, 152, 184]. There are actually two aspects to
this. First, using structure superposition to create multiple alignments even
for cases where sequence alignment is not feasible. This potentially results
in an increase of coverage at a loss of precision. Second, using available
structures to generate more reliable seed alignments, increasing precision.

5.2 Combining Information

Recent contributions to the field of fold recognition have been integrative,
collecting information from many sources. The GenTHREADER program
[60, 93] for automatic fold recognition consists of a neural net which was
trained to combine sequence alignment score, length information and en-
ergy potentials derived from threading into a single score representing the
relationship between two proteins [60]. An improved version incorporates
PSI-BLAST searches and also makes use of predicted secondary structure [93].

Another competitive example for the combination of information is the
TASSER/PROSPECTOR suite of programs developed by Skolnick and cowork-
ers. PROSPECTOR_3 is an iterative approach to search for diverse templates
using a variety of pair potentials and scoring functions [143, 188]. Different
frequency profiles are used in a first round to identify templates. These
targets are further evaluated in subsequent evaluations of pair interactions.
The scoring functions include a quasi-chemical based pair potential [141],
a protein-specific, orientation-independent pair potential based on local
sequence fragments [144] and a pair potential that depends on the orientation
of the side-chains [144]. With the templates identified by PROSPECTOR, the
TASSER program performs tertiary structure assembly via the rearrangement
of continuous template fragments [189].

Another example is the SPARKS method (Sequence, secondary structure
Profiles and Residue-level Knowledge-based energy Score) [191], in which
Zhou and Zhou use a knowledge-based energy function for fold recognition.
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Being a residue-level frozen approximation potential, the dynamic program-
ming method can be used for alignment optimization. The potential contains a
backbone torsion term, a buried surface term and a contact-energy term. With
sequence profile and secondary structure information it is combined into a
joint fold recognition method. Taking advantage of sequence and structure
methods it was highly competitive in the latest CASP experiment.

Like this one, there are a number of other approaches integration infor-
mation from programs running locally or collecting information from web
services [166].

5.3 Meta-servers

Meta-servers collect and analyze results from individual web servers and
combine them into a joint result. Benchmarking results obtained in the last
years indicate that, on average, meta-servers are more accurate than individ-
ual methods.

One first successful attempt to benefit from a number of distributed infor-
mation sources was the PCONS meta-server, which concentrates on a number
of reliable servers at different locations and selects the most abundant fold
among their high-scoring models [86]. It translates the confidence scores
reported by each server into uniformly scaled values corresponding to the ex-
pected accuracy of each model. The translated scores as well as the similarity
between initial models is used as input to a neural network in charge of the
final selection.

Several other meta-methods followed soon afterwards. Current methods
differ in how the initial models are compared, whether scores provided by the
individual methods are used and how the final model is generated.

The 3D-Jury system uses the rationale that the high-scoring models which
are produced by several servers are closer to the native structure than the
single model with highest score. Thus, models occurring with higher than
expected frequencies are are taken for the preferred conformation [44, 163].

The 3D-SHOTGUN meta-predictor employs techniques of so-called coop-
erative algorithms from computer vision. As input it takes the models with
their confidence scores. The result is a hybrid model, which is spliced from
fragments of the input models. It has the potential of covering a larger part of
the native protein than any template structure alone. Thus, 3D-SHOTGUN
entails the first fold recognition meta-predictor attempt to go beyond the
simple selection of one of the input models [40].
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6 Assessment of Models

Once a template is identified it can be assessed in a number of ways. (i) The
significance of the selection of the template can be estimated. (ii) After a model
has been constructed on the basis of the template, the quality of the 3-D model
can be scored. (iii) If the native structure for which the prediction was made
becomes known later, the quality of the model can be evaluated, in terms of
how faithfully it represents the true structure. Thus, conclusions about the
method producing the prediction can be drawn.

6.1 Estimating Significance of Sequence Hits

Essentially, methods for template identification compute a list of candidate
templates for a target sequence. The method typically employs a scoring
system or (virtual) energy function according to which the list is sorted and the
maximum scoring candidate is selected as template. Before using a template
to build a model the question how reliably the template is related to the target
needs to be addressed.

The classic approach to this is to calculate the probability of obtaining a
maximum score greater than the observed score assuming that the protein
sequences compared with the scoring system are unrelated. This probability
is called p-value. To compute it one needs to know the distribution of maximal
scores for unrelated sequences for the particular scoring scheme. The E-value
is a similar concept, additionally taking the size of the database of templates
into account [5, 6].

For some template identification methods the score distributions are known,
thus scores can be readily converted into p-values (see Section 4 in Chapter 3).
For other methods empirical confidence scores have been developed.

For optimal local gapless sequence alignments of independent random se-
quences the score distributions are known to be of an asymptotically extreme-
value or Gumbel form [65]: P(score > t) ≈ 1 − e−Ke−λt

, where λ depends
only on the scoring system and K depends on the scoring system and the
sequence lengths, such that the distribution reflects the fact that the chance
of spurious high scores increases with sequence lengths. The dependence of
the parameters on the scoring system and sequence lengths is known.

For local alignments with gaps of unrelated biological sequences no general
theory is available. However, there is considerable evidence that the distribu-
tion is still of extreme-value form and parameters can be fitted experimentally
[4,75,80,95,112,175]. Local alignments using frequency profile sequences were
also shown to follow an extreme-value distribution [95].

For optimal global alignments, whether with plain sequences or sequence
profiles, theoretically neither the family of distributions nor the dependence of



6 Assessment of Models 377

the expected score (or of other parameters) on the sequence lengths is known.
However, there exist approaches for experimentally fitting distributions to
scores [109, 176].

For frozen approximation sequence–structure alignment the situation is
similar to sequence alignment: the local threading scores of sample sequence–
structure pairs often can be fitted to a Gumbel distribution [147]. In the global
threading case the distribution is unknown.

For the methods for which no theory is available, heuristic approaches
exist for estimating reliability of the predictions. One generic approach is
to derive a function of target and template which is reasonably associated
with reliability, and then statistically test it on a set of proteins to estimate
the probability for an identified target being correct (e.g. Ref. [147]). One
such target–template comparison function is, for example, the difference of
the score of the target sequence aligned to the template and the reversed
target sequence aligned to the template. This is much faster than repeatedly
evaluating the score relative to that of a randomized sequence [66, 143].

For a more detailed discussion, see Ref. [34], where the classical statistical
assessment of significance of scores is also compared to Bayesian approaches.

6.2 Scoring 3-D Model Quality: Model Quality Assessment Programs (MQAPs)

The template identification methods discussed above compute suggestions
for templates. With a target-template alignment, a model can be computed.
MQAPs serve to distinguish near-native structures (i.e. “good” predictions)
from decoys (i.e. “bad” predictions). MQAPs are programs that receive as
input a 3-D model of a protein structure and produce as output a real number
representing the quality of the model (http://www.cs.bgu.ac.il/∼dfischer/
CAFASP4/mqap.html). MQAPs only use the model as input, not the native
structure, and thus stand in contrast to methods that evaluate the quality of a
model when comparing it to the native structure.

In contrast to scoring functions in sequence–structure alignment and to
physical energy functions, MQAPs operate on an intermediate level – they are
more flexible than a sequence–structure alignment function as the dynamic
programming paradigm used in alignment imposes the requirement of prefix
optimality which is not required in MQAPs. On the other hand, MQAP
functions are not sensitive to ruptures in the sequences in contrast to physical
energy functions. MQAPs target at scoring the quality of predicted models.
Typically, MQAPs use one or more different statistical potentials, representing
information coded in protein structures [87, 116, 139, 159]. For example, the
FRST method uses a combination of pairwise, solvation, hydrogen bond and
torsion angle potentials [159]. An intuitive test for a scoring function is picking
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the native structure among a set of decoys. A number of decoy sets have been
made available [127] and are used for training.

In 2004, CAFASP4 [42] provided infrastructure to perform a fully automated
blind test of MQAPs on the CASP target proteins and the structure predictions
made during CASP. In this test the five following programs were rated as
most reliable: FRST [159], Verify3-D [87], RAPDF [128], ProsaII [139] and
ProQ [169].

Generating different alignments between target and template using various
alignment methods and then employing an MQAP to pick out the best one
can potentially lead to an improved overall alignment result.

6.3 Evaluation of Protein Structure Prediction:
Critical Assessment of Techniques for Protein Structure Prediction

The performance of methods like the ones reviewed above needs assessment.
The performance of sequence–structure alignment methods can be assessed
either by testing their fold recognition performance [20, 37, 71] or by bench-
marking their alignment quality [130, 171]. For assessing fold recognition
performance, classification performance of different methods is tested versus
a standard like the SCOP database for structure classification. For measuring
alignment quality, the sequence–structure alignments produced by threading
methods are compared to high-quality alignments as produced by structure
superposition methods. CASP, a blind testing experiment, has had a large
impact on the community and is therefore summarized in the following.

CASP was started in 1994 [98]. The idea was to establish a clearinghouse
between experimental and predicted protein structure. Protein sequences
whose structure is currently being analyzed experimentally are made avail-
able to structure prediction groups. Structural models are predicted by a
number of participating groups and submitted to the CASP organizers before
the release of the crystal structures. After the release of the crystal structures,
the predicted models are compared with them by a number of human experts
– the CASP assessors. Typically, the structures are categorized according to
their difficulty into homology modeling, fold recognition and de novo targets.
CASP has been held biannually. The number of targets has been growing
from 33 (CASP1 in 1994) to 42, (CASP2), 43 (CASP3), 43 (CASP4), 67 (CASP5)
and 64 (CASP6 in 2004), as well as the number of participating prediction
groups from 35 (CASP1) to 152 (CASP2) to 201 human groups and 65 servers
in CASP6.

Within the original setup of CASP humans can interact with computer
programs to generate protein models. In this setting, it is hard to discriminate
between the contribution of the human and the program, respectively. This
issue was resolved by introducing CAFASP [41], where the additional FA in
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the acronym stands for fully automated. In CAFASP, server programs are
directly contacted by the clearinghouse and have to respond within a short
timeframe (usually 48 h) and without human intervention.

In order to perform the comparisons of predicted models and experimental
structures, different assessors have chosen different approaches. Some com-
pletely relied on manual inspection (which is a tremendous amount of work).
Due to the number of participating groups, computerized preprocessing of
the results is becoming the standard procedure. Different distance measures
for measuring the fractional similarity between the experimental and the
predicted structure have been employed. Currently the GDT_TS score is used
for CASP and the MaxSub score in CAFASP. The GDT_TS score is computed
by the LGA program which simultaneously optimizes for local structure and
global RMSD superposition using different cutoffs [186]. MaxSub aims at
identifying the largest subset of Cα atoms of a model that superimpose “well”
over the experimental structure [135]. Both measures produce a single nor-
malized score that represents the quality of the model. Both measures differ
in details, but correlate on concrete examples [190].

CASP5 (2002) results for fold recognition methods are summarized in Ref.
[70], results of CASP6 (2004) are in press at the time of writing [96, 161, 172].
While there is an obvious danger of overtraining to the experiment, the CASP
community has been eager to pick up new trends and find ways to evaluate
them. Examples are the evaluation of predicted intrinsic disorder at CASP5
and CASP6 or the assessment of prediction of domain boundaries and model
quality assessment programs at CASP6.

Continuous experiments, LiveBench and EVA, are performed by weekly
extracting newly published structures from the PDB and submitting them to
automated servers. Based on automated measures like MaxSub, the quality of
the predictions of participating servers can be measured online [21, 122].

7 Programs and Web Resources

The web resources for protein structure prediction are extensive. Since search
engines have a tendency to be more up-to-date and practical than link lists
in books, we give an overview and further pointers here only. Good starting
points for fold recognition via the Internet are meta-servers and the CASP
experiment. Meta-servers provide functionality for unproblematically ex-
ercising a number of servers simultaneously in order to perform structure
predictions. The CASP experiment provides a list of the best performing
methods today; although some of these might not be as easily accessible or
very compute intensive to exercise.
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Bioinfo/3D-Jury http://bioinfo.pl/meta
PredictProtein http://www.embl-heidelberg.de/predictprotein/predictprotein
CASP http://predictioncenter.org
CAFASP http://www.cs.bgu.ac.il/∼dfischer/CAFASP4

For high-throughput experiments as well as confidentiality reasons one may
want to install fold recognition software locally. Unfortunately, this software
tends to depend on a number of libraries (templates, profiles, potentials,
motifs, etc.) which need to be up-to-date in order to be performant and which
have a tendency to be cumbersome to install. An obvious starting point for
downloadable software is PSI-BLAST. Some HMM software is freely available.
Most profile software is available through contacting the respective authors
only. URLs of BLAST and two HMM libraries are:

BLAST http://www.ncbi.nlm.nih.gov/BLAST
HMMer http://hmmer.wustl.edu
SAM http://www.cse.ucsc.edu/compbio/sam.html

Links to key databases are:

PDB http://www.rcsb.org/pdb
SCOP http://scop.mrc-lmb.cam.ac.uk/scop
Entrez DB Collection http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi

Also Kevin Karplus provides an up to date link list, related to this chapter:

http://www.soe.ucsc.edu/∼karplus/compbio_pages
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De Novo Structure Prediction: Methods and Applications
Richard Bonneau

1 Introduction

1.1 Scope of this Review and Definition of De Novo Structure Prediction

This review will focus on the questions: (i) what are the features common
to methods that represent the current state of the art in de novo structure
prediction and (ii) how can these methods benefit biologists whose primary
aim is a systems-wide description of a given organism or system of organ-
isms. The role and capabilities of de novo structure prediction as well as the
relationship of de novo structure prediction to other sequence and structure-
based methods is far from simple. The literature on this subject is rapidly
evolving; for balance in coverage and opinion the reader is also referred to
recent reviews of de novo structure prediction methods [11, 27, 32, 39, 50].

Many methods that are today referred to as de novo have alternately or previ-
ously been referred to ab initio or “new folds” methods. For the purpose of this
review I will classify a method as de novo structure prediction if that method
does not rely on homology between the query sequence and a sequence in the
Protein Data Bank (PDB) to create a template for structure prediction. De novo
methods, by this definition, are forced to consider much larger conformational
landscapes than fold recognition and comparative modeling techniques that
limit the exploration of conformational space to those regions close to the
initial structural template or templates.

Another common pedagogical distinction between structure prediction
methods has been the distinction between methods based on statistical
principles, on the one hand, and physical or first principles, on the other
hand. I will not discuss this distinction here at great length except for noting
that one of the shortcomings of this artificial division is that most effective
structure prediction methodologies are in fact a combination of these two
camps. For example, several methods that are described as based on physical
or first-principles employ energy functions and parameters that are statistical
approximations of data (e.g. the Lennard–Jones representation of van der
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Waals forces is often thought of as a physical potential, but is a heuristic fit to
data). Most current successful de novo structure prediction methods fall into
the statistics camp. A more useful distinction may be the distinction between
reduced complexity models and models that use atomic detail. Through-
out this chapter I will discuss low-resolution (models containing drastic
reductions in complexity such as unified atoms and centroid representations
of side-chain atoms) and high-resolution methods (methods that represent
protein and sometimes solvent in full atomic detail) focusing on this practical
classification/division of methods in favor of distinctions based on a given
method’s derivation or parameterization.

1.2 The Role of Structure Prediction in Biology

What is the main application of structure prediction to biology? At present
this is an open question that will take many years to develop, as the answer
relies on the relative rate of progress in several fields. In short, I will argue
that the main current application of structure prediction in biology lies in
understanding protein function. Structure predictions can offer meaningful
biological insights at several functional levels depending on the method used
to generate the structure prediction, the expected resolution and the compre-
hensiveness or scale on which predictions are available for a given system.

At the highest levels of detail/accuracy (comparative modeling) there
are several similarities between the uses of experimental and computa-
tional/predicted protein structure and the types of functional information
that can be extracted from models generated by both methods [4]. For
example, experimentally determined structures and structures resulting from
comparative modeling can be used to help understand the details of protein
function at an atomic scale, map conservation and mutagenesis data onto a
structural framework, and explore detailed functional relationships between
protein with similar folds or active sites.

At the other end of the prediction resolution spectrum, de novo structure
prediction and fold recognition methods produce models of lower resolution
than comparative models (see Chapter 10). These models can be used to
assign putative functions to proteins for which little is known [15]. At the most
basic level we can use structural similarities between a predicted structure
and known structures to explore possible distant evolutionary relationships
between query proteins of unknown function and other well-studied proteins
for which structures have been experimentally determined. A query protein
is likely to share some functional aspects with proteins in the PDB that show
strong structure–structure matches to a high confidence predicted structure
for that protein. This is based on the assumption that detectable structure
relationships are conserved across a greater evolutionary distance than are
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detectable sequence similarities. This assumption is well supported by mul-
tiple surveys of the distributions of folds and their related functions in the
PDB [48, 68, 76, 83]. The relationship between fold and function, however, is
by no means a simple subject, and I refer the reader to several works that
discuss this relationship in greater detail [56, 70, 84, 107]. Another way of
exploring the functional significance of high confidence predicted structures
is to use libraries of three-dimensional (3-D) functional motifs to search for
conserved active site or functional motifs on the predicted structures [33,
72, 103]. Both basic methods, fold–fold matching and the use of small 3-D
functional motif searches, can in principle be combined to form the basis for
deriving functional hypothesis from predicted structure, thereby extending
the completeness of genome annotations based only on primary sequence.
For more details on how to infer protein function from protein structure, see
Chapter 34.

1.3 De novo Structure Prediction in a Genome Annotation Context, Synergy
with Other Methods

To date, the annotation of protein function in newly sequenced genomes
relies on a large array of tools based ultimately on primary sequence analysis
[3, 9, 19, 100]. These tools have afforded great progress in genome annotation
including large improvements in gene detection, sequence alignment and
detection of homologous sequences across genomes as well as the creation
of databases of common protein families and primary sequence functional
motifs. Comparative modeling methods have been highly successful on many
fronts, creating large databases of highly accurate structure predictions for
many organisms, but are based on primary sequence matches between PDB
and query sequences [87] (see Chapter 10). Primary sequence methods also
exist for the prediction of basic local structure qualities (some of these patterns
being lower complexity patterns) of sequences such as the location of coiled-
coil, transmembrane and disordered regions [52, 80, 99, 104]. Efforts to use
de novo structure prediction (and/or fold recognition) must employ these
sequence-based methods, as these methods provide a solid foundation on
which all de novo methods discussed herein are reliant (see Figure 1). Any
organization of these methods into an annotation pipeline must properly
account for the fact that the accuracy/reliability is quite different between
sequence and structure-based methods. One approach is to use structure
prediction as part of a hierarchy where methods yielding high-confidence
results are exhausted prior to computationally expensive and less accurate de
novo structure prediction and fold recognition [12] . I will describe some early
results from these approaches/pipelines that include structure prediction, the
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Figure 1 Idealized proteome structure
annotation pipeline. Low-complexity regions
such as transmembrane helices, signal
peptides and disordered regions are masked,
and domains dominated by these low-
complexity or transmembrane sequence are
treated separately. Remaining sequences
are parsed to separate regions into structural
domains to the degree that such domains
are detectable (here, Ginzu is shown as the

domain parsing algorithm, see Figure 4).
Domains that do not have strong sequence
matches to the PDB or other matches to
well-annotated domains (Pfam, COG) are
forwarded to structure-based methods.
The use of structure prediction methods is
positioned within this hierarchy of methods
to increase comprehension of the resulting
annotation without compromising the results
obtained by sequence-based methods.

details of these pipelines and the technical and research challenges that remain
in applying these pipelines to genome annotation [6, 45, 86].

The need for methods for predicting transmembrane proteins and under-
standing membrane–protein interactions is not discussed in this work (see
Chapter 9 for this topic), the focus here is instead on soluble domains (in-
cluding soluble domains excised from proteins containing transmembrane
regions). Part of the difficulty in predicting transmembrane protein structure
lies in the paucity of membrane protein structures deposited in the PDB
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[28, 99]. It is only with access to the PDB, an ideal and comprehensive gold
standard, by many criteria, that we can approach the problem of predicting
soluble protein structure.

2 Core Features of Current Methods of De Novo Structure Prediction

We will now discuss core concepts that are common to multiple successful cur-
rent de novo methods. This review is not intended to be encyclopedic and will
invariably fail to mention several methods that are innovative and/or accurate
in its attempt to focus on core concepts instead of distinct methodologies. The
omission of any specific method should not be interpreted as commentary on
the relative accuracy of the omitted method, but is simply due to the scope of
this work and the state of rapid development in this field.

2.1 Rosetta De Novo

Throughout this work I will use examples of key concepts in de novo structure
prediction with several examples drawn from the Rosetta de novo structure
prediction protocol and will thus provide a brief overview of Rosetta before
continuing to discuss key elements of the procedure in greater detail [13,
90, 97, 98] (see Figures 2 and 3). Results from the fourth and fifth Critical
Assessments of Structure Prediction (CASP4, CASP5 and CASP6; see also
Chapter 11) have shown that Rosetta is currently one of the best methods for
de novo protein structure prediction and distant fold recognition [16, 18, 26,
65]. Rosetta was initially developed as a computer program for de novo fold
prediction, but has been expanded to include design, docking, experimental
determination of structure from partial datasets, protein–protein interaction
and protein–DNA interaction prediction [25, 41, 42, 57, 59, 60, 88, 89]. When
referring to Rosetta in this work I will be primarily referring to the de novo
or ab initio mode of the Rosetta code base. Early progress in high-resolution
structure prediction has been achieved via combinations of low-resolution
approaches (for initially searching the conformational landscape) and higher-
resolution potentials (where atomic detail and physically derived energy func-
tions are employed). Thus, Rosetta structure prediction is carried out in
two phases: (i) a low-resolution phase where overall topology is searched
using a statistical scoring function and fragment assembly, and (ii) an atomic-
detail refinement phase using rotamers and small backbone angle moves, and
a more physically relevant (detailed) scoring function. The algorithms for
searching the landscape are Monte-Carlo-type in both phases.
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Figure 2 Schematic outline of Rosetta structure prediction protocol.
Single sequences enter at the top of this schematic and confidence-
ranked structure predictions are produced by the last/bottom step.

In the first phase, Rosetta de novo (Rosetta) uses information from the PDB
to estimate the possible conformations for local sequence segments. The pro-
cedure first generates libraries of local sequence fragments excised from the
PDB on the basis of local sequence similarity (three- and nine-residue matches
between the query sequence and a given structure in the PDB). See Figure 1
for a schematic overview of the low-resolution (or fold prediction) phase of
the Rosetta method, and see Tables 1 and 2 for a complete description of the
Rosetta score. Rosetta fragment generation works well even for sequences
that have no homologs in the known sequence databases; the structures in the
PDB cover possible local sequence well at the three- and nine-residue length
according to the current method. Rosetta then assembles these pre-computed
local structure fragments by minimizing a global scoring function that favors
hydrophobic burial/packing, strand pairing, compactness and highly proba-
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Figure 3 Examples of de novo structure
predictions generated using Rosetta.
(A–C) Examples from our genome-wide
prediction of domains of unknown function
in Halobacterium NRC-1 [12]. In each
case the predicted structure is shown next
to the correct native. For (A–C) only the
backbone ribbons are shown, as these
predictions were not refined using the all-

atom potential and are examples of the utility
of low-resolution prediction in determining
function. (D) A recent prediction where
high-resolution refinement subsequent to
the low-resolution search produced the
lowest energy conformation, a prediction of
unprecedented accuracy (provided by Phil
Bradley) [17].

ble residue pairings. The Rosetta score for this initial low-resolution stage is
described in its entirety in Table 1. For the second, refinement, stage centroid
representations of amino acid side-chains are replaced with atomic detail
(rotamer representations). The scoring function used during this refinement
phase includes solvation terms, hydrogen bond terms and other terms with
direct physical interpretation. See Table 2 for a full description of the all-atom
Rosetta score. Features of the high- and low-resolution phases of the Rosetta
method are described below as I discuss key components of de novo structure
prediction universal to all successful methods.

Using Rosetta generated structure predictions we were able to recapitulate
many functional insights not evident from sequence based methods alone [14,
15]. We have reported success in annotating proteins and protein families
without links to known structure with Rosetta [8, 14]. Various aspects of this
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Table 1 Low-resolution, centroid-based Rosetta scoring function[a]

Name Description
(physical
origin)

Functional form Parameters (values)

env[b] residue en-
vironment
(solvation)

∑
i
− ln[P(aai|nbi)] i = residue index

aa = amino acid type
nb = number of neighboring
residues[c] (0, 1, 2, . . . , 30. >30)

pair[b] residue pair
interactions
(electro-
statics,
disulfides)

∑
i

∑
j>i
− ln

⌊
P(aai, aaj|sijdij)

P(aai|sijdij)P(aaj|sijdij)

⌋
i, j = residue indices
aa = amino acid type
d = centroid–centroid distance (10–12,
7.5–10, 5–7.5, <5 Å)
s = sequence separation (>8 residues)

vdw[g] steric repul-
sion

∑
i

∑
j>i

(r2
ij − d2

ij)
2

r2
ij

; dij < rij i, j = residue (or centroid) indices
d = interatomic distance
r = summed van der Waals radii[h]

rg radius of
gyration
(van der
Waals
attraction;
solvation)

√
〈d2

ij〉 i, j = residue indices
d = distance between residue cen-
troids

cbeta Cβ density
(solvation;
correction
for
excluded
volume
effect
introduced
by
simulation)

∑
i

∑
sh
− ln

⌊
Pcompact(nbi,sh)
Prandom(nbi,sh)

⌋
i = residue index
sh = shell radius (6, 12 Å)
nb = number of neighboring residues
within shell[f]

Pcompact = probability in compact
structures assembled from fragments
Prandom = probability in structures
assembled randomly from fragments

overall protocol will be reviewed in greater detail below. We also encourage
the reader to refer to several prior works where the Rosetta method is de-
scribed in its entirety.

2.2 Evaluation of Structure Predictions

In general the most effective methods for predicting structure de novo depend
on parameters ultimately derived from the PDB. Several methods use the PDB
directly to estimate local sequence and even explicitly use fragments of local
sequence from the PDB to build global conformations. These uses of the
PDB require that methods be tested using structures not present in the sets
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Table 1 continued

Name Description
(physical
origin)

Functional form Parameters (values)

SS[d] strand
pairing
(hydrogen
bonding)

Scheme A: SSφ,θ + SShb + SSd
Scheme B: SS−φ,θ + SShb + SSdσ
where
SSφ,θ = ∑

m
∑

n>m
− ln[P(φmn, θmn|dmn, spmn, smn)]
SShb = ∑

m
∑

n>m
− ln[P(hbmn, |dmn, smn)]
SSd = ∑

m
∑

n>m
− ln[P(dmn, |smn)]
SSdσ = ∑

m
∑

n>m
− ln[P(dmn, σmn|ρm , ρn)]

m, n = strand dimer indices; dimer is
two consecutive strand residues
V̂ = vector between first N and last C
atom of dimer
m̂ = unit vector between V̂m and V̂n
midpoints
x̂ = unit vector along carbon-oxygen
bond of first dimer residue
ŷ = unit vector along oxygen-carbon
bond of second dimer residue
φ, θ = polar angles between V̂m and
V̂n (10, 36◦ bins)
hb = dimertwist,

∑k=m,n 0.5(|m̂ · x̂k | + |m̂ · ŷk |) (<0.33,
0.33–0.66, 0.66–1.0, 1.0–1.33, 1.33–1.6,
1.6–1.8, 1.8–2.0)
d = distance between V̂m and V̂n
midpoints (<6.5 Å)
σ = angle between V̂m and M̂ (18◦
bins)
sp = sequence separation between
dimer-containing strands (<2, 2–10,
>10 residues)
s = sequence separation between
dimers (>5 or >10)
ρ = mean angle between vectors m̂, x̂
and m̂, ŷ (180◦ bins)

sheet[e] strand pair
arrange-
ment into
sheets

− ln[P(nsheetsnlone_strands |nstrands)] nsheets = number of sheets
nlone_strands = number of unpaired
strands
nstrands = total number of strands

HS helix-strand
packing

∑n ∑n − ln[P(φmn, ψmn|spmndmn)] m = strand dimer index; dimer is two
consecutive strand residues
n = helix dimer index; dimer is central
two residues of four consecutive heli-
cal residues
V̂ = vector between first N and last C
atom of dimer
φ, θ = polar angles between V̂m and
V̂n (36◦ bins)
sp = sequence separation between
dimer-containing helix and strand
(binned <2, 2–10, >10 residues)
d = distance between V̂m and V̂n
midpoints (<12 Å)
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of protein structures used to train these methods (or present in the sets of
structures used to predict local structure fragments). The first such evaluation
of structure prediction, CASP (see Chapter 11 for a more detailed description),
showed that published estimates of prediction error were smaller than predic-
tion error measured on a set of novel proteins outside the training set (this is
not surprising given the difficulties of avoiding overfitting in as complex a
data space as protein structure) [64]. Indeed, early experiments showed that
no methods for de novo structure prediction were effective outside of carefully
chosen benchmarks containing only the smallest proteins. Spurred on by these
early evaluations the field returned to the drawing board and two years later
produced multiple methods with much higher accuracies in the new folds or
de novo category (CASP3) [73,75,82]. Thus, the CASP experiments proved to be
invaluable to the field at that point in the development of the field, provoking
a renewed interest in the de novo structure prediction and properly realigned
interest in techniques according to effectiveness.

Arguably, CASP has the flaw that predictors are allowed to intervene and
manually curate their predictions prior to submission to the CASP evaluators.
Thus, the results of CASP are a convolution of: (i) the art of prediction (each
group’s intuition and skill using their tools) and (ii) the relative performance

Footnotes to Table 1:

[a] The individual components in the Rosetta score (the score used by Rosetta during low-
resolution/centroid mode de novo structure prediction) are given as described originally in Simons
[96–98].
[b] Binned function values are linearly interpolated, yielding analytic derivatives.
[c] Neighbors within a 10 Å radius. Residue position defined by Cβ coordinates (Cα for glycine).
[d] Interactions between dimers within the same strand are neglected. Favorable interactions
are limited to preserve pairwise strand interactions, i.e. dimer m can interact favorably with
dimers from at most one strand on each side, with the most favorable dimer interaction
(SSφsθ + SShb + SSd) determining the identity of the interacting strand. SSdσ is exempt from the
requirement of pairwise strand interactions. SShb is evaluated only for m, n pairs for which SSφ,θ
is favorable. SSdσ is evaluated only for m, n pairs for which SSφ,θg and SShb are favorable. A bonus
is awarded for each favorable dimer interaction for which |m −− n| > 11 and strand separation
is more than eight residues
[e] A sheet is comprised of all strands with dimer pairs less than 5.5 Å apart, allowing each strand
having at most one neighboring strand on each side. Discrimination between alternate strand
pairings is determined according the most favorable dimer interaction. Probability distributions
fitted to c(nstrands) – 0.9nsheets –2.7nlone_strands where c(nstrands) = (0.07, 0.41, 0.43, 0.60, 0.61, 0.85,
0.86, 1.12).
[f] Residue position defined by Cβ coordinates (Cα for glycine).
[g] Not evaluated for atom (centroid) pairs whose interatomic distance depends on the torsion
angles of a single residue.
[h] Radii determined from (i) 25th closest distance seen for atom pair in pdbselect25 structures, (ii)
the fifth closest distance observed in X-ray structures with better than 1.3-Å resolution and less
than 40% sequence identity or (iii) X-ray structures of less than 2 Å resolution, excluding i, i + 1
contacts (centroid radii only).
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of the core methods (the performance of each method in an automatic setting).
Although this convolution reflects the reality when workers aim to predict
proteins of high interest, such as proteins involved in a specific function or
proteins critical to a given disease or process being experimentally studied,
it does not reflect the demands placed on a method when trying to predict
whole genomes, where the shear number of predictions does not allow for
much manual intervention. Several additional tests similar to CASP (in that
they are blind tests of structure prediction) have been organized in response
to the concerns of many that it is important to remove the human aspects
of CASP. The Critical Assessment of Fully Automatic Structure Prediction
(CAFASP) is an experiment running parallel with CASP that aims to test fully
automated methods’ performance on CASP targets, mainly testing servers
instead of groups [35, 36]. Several groups have also raised concerns that
there are problems associated with the small numbers of proteins tested in
each CASP experiment, and thus EVA and LiveBench were organized to test
methods using larger numbers of proteins [20, 92, 94]. Both use proteins that
have structures that are unknown to the participating prediction groups, but
that have been recently submitted to the PDB and are not open to the public
at the time their sequences are released to those participating in LiveBench
or EVA. The participating groups then have the time it takes for the new
PDB entries to be validated to predict the structures. Although groups with
amazing computer-hacking skills could in principle access this information,
these efforts effectively create a CAFASP equivalent for a larger number of
proteins.

All four of these tests of prediction methods, as well as benchmarks carried
out by authors of any methods in question, are valuable ways of judging the
performance of de novo methods. The methods, and elements of methods, I
describe herein are generally accepted to be the best performers by the five
above measures (four blind tests and author benchmarks). I will not focus
on the details of the CASP, CAFASP, EVA and LiveBench methods, as they
are described in detail elsewhere and instead attempt to focus on common
elements of top performing methods.

2.3 Domain Prediction is Key

As the size of a protein increases, so to does the size of the conformational
space associated with that protein. Thus, de novo methods, which must sample
this space, have run times that increase dramatically with sequence length.
Current de novo methods are limited to proteins and protein domains less
than 150 amino acids in length (with Rosetta the limit is around 150 residues
for α/β proteins, 80 for β-folds and more than 150 residues for α-only-folds).
This limit means that roughly half of the protein domains seen so far in the
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Table 2 All-atom Rosetta scoring function: the components of the all-atom score (centroids
are expanded using a rotamer description of side-chains) [31,44,58,62,77,105]

Name Description Functional form Parameters, variables References
rama Ramachan-

dran
torsion
preferences

∑
i
− ln[P(φi, ψi|aaissi)] i = residue index

φ, ψ = backbone torsion an-
gles (10◦ , 36◦ bins)
aa = amino acid type
ss = secondary structure
type[a]

Bowers,
2000 [16a]

LJ[c] Lennard–
Jones
interactions

∑
i

∑
j>i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎢⎢⎢⎣( rij

dij

)12

− 2

(
rij

dij

)6
⎥⎥⎥⎦ eij

if
dij
rij

> 0.6

[
−8759.2

(
dij

rij

)
+ 5672.0

]
eij,

else

i,j = residue indices
d = interatomic distance
e = geometric mean of atom
well depths[d]

r = summed van der Waals
radii[e]

Kuhlman,
2000 [59]

hb[f] hydrogen
bonding

∑
i

∑
j
(− ln[p(dij|hjssij)]

− ln[P(cos θij|dijhjssij)]
− ln[P(cos θij|dijhjssij)]
− ln[P(cos ψij|dijhjssij)]

i = donor residue index
j = acceptor residue index
d = acceptor-proton inter-
atomic distance
h = hybridization (sp2, sp3)
ss = secondary structure
type[g]

θ = proton–acceptor–
acceptor base bond angle
ψ = donor–proton–acceptor
bond angle

Kortemme,
2003 [58]

solv solvation ∑
i

⌊
ΔGref

i −∑
j

(
2ΔGfree

i
4π3/2λir2

ij
e−d2

ij Vj

+
2ΔGfreee

i
4π3/2λjr2

ij
e−d2

ij Vi

)⌋
i, j = atom indices
d = distance between atoms
r = summed van der Waals
radii[e]

λ = correlation length[h]

V = atomic volume[h]

ΔGref, ΔGfree = energy of a
fully solvated atom[h]

Lazaridis,
1999 [62]

pair residue pair
interactions
(electro-
statics,
disulfides)

∑i ∑j>i− ln
⌊

P(aai,aaj)|dij)
P(aai|dij)P(aai|dij)

⌋
i,j = residue indices
aa = amino acid type
d = distance between
residues[i]

Kuhlman,
2000 [59]

dun rotamer self
energy

∑i− ln
⌊

P(roti |φiψi)P(aai|φi ,ψi)
P(aai)

⌋
i,j = residue indices
rot = Dunbrack backbone-
dependent rotamer
aa = amino acid type
φ, ψ = backbone torsion an-
gles

Dunbrack,
1997 [31]

ref unfolded
state
reference
energy

∑aa naa aa = amino acid type
n = number of residues

Kuhlman,
2000 [59]
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PDB are within the size limit of de novo structure prediction. Two approaches
to circumventing this size limitation are: (i) increasing the size range of de
novo structure prediction and (ii) dividing proteins into domains prior to
attempting to predict structure. Dividing query sequences into their smallest
component domains prior to folding is one straightforward way to dramat-
ically increase the reach of de novo structure prediction. For many proteins
domain divisions can be easily found (as would be the case for a protein
where one domain was unknown and one domain was a member of a well-
known protein family) while several domains remain beyond our ability to
correctly detect them. The determination of domain family membership and
domain boundaries for multi-domain proteins is a vital first step in annotating
proteins on the basis of primary sequence and has ramifications for several
aspects of protein sequence annotation; multiple works describe methods for
detecting such boundaries. In short, most protein domain parsing methods
rely on hierarchically searching for domains in a query sequence with a col-
lection of primary sequence methods, domain library searches and matches to
structural domains in the PDB [26, 55, 66].

Some notable works use coarse-grained structural simulations/predictions
coupled with methods for assigning structural domain boundaries to 3-D
structures to detect protein domains from sequence. The guiding principle be-
hind this approach is that very low-resolution predictions will pick up overall
patterns of the polypeptide packing into distinct structural domains. Another
recent work attempted to use local sequence signals to detect structure domain
boundaries under the assumption that there would be detectable differences
in local sequence propensities at domain boundaries [37]. As of yet these

Footnotes to Table 2:

[a] All binned function values are linearly interpolated, yielding analytic derivatives, except as
noted.
[b] Three-state secondary structure type as assigned by DSSP.
[c] Not evaluated for atom pairs whose interatomic distance depends on the torsion angles of a
single residue.
[d] Well depths taken from CHARMm19 parameter set (Neria 1996 [77]).
[e] Radii determined from fitting atom distances in protein X-ray structures to the 6–12 Lennard–
Jones potential using CHARMm19 well depths.
[f] Evaluated only for donor acceptor pairs for which 1.4 ≤ d ≤ 3.0 and 90◦ ≤ ψ, θ ≤ 180◦ .
Side-chain hydrogen bonds in involving atoms forming main-chain hydrogen bonds are not
evaluated. Individual probability distributions are fitted to eighth-order probability distributions
and analytically differentiated.
[g] Secondary structure types for hydrogen bonds are assigned as helical (j −− i = 4, main-chain),
strand: (|j −− i| > 4, main-chain) or other.
[h] Values taken from Lazaridis and Karplus [62].
[i] Residue position defined by Cβ coordinates (Cα of glycine).
∗ Also described in Rohl 2005 [90].
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Figure 4 Schematic outline of an ideal
hierarchical approach to domain parsing.
Methods with higher reliability are used
first, with sequence matches to the PDB
being the highest-quality information. As
higher-reliability/interpretability methods are
exhausted, noisier methods are used (such
as parsing multiple sequence alignments,
step 4, and guessing domain boundaries
based on the distribution of domain sizes
in the PDB). Sequence regions hit by
higher confidence methods (represented
as gray rectangles) are masked and the

remaining sequence (represented by white
rectangles) are forwarded onto the remaining
methods. Steps 1–4 and 6 are currently
implemented in the Ginzu program; step 5
(adding sequence homolog independent
methods such as structure-based domain
parsing from sequence to the procedure)
represent future work. Although we recognize
domains in this schematic from left to right
this direction is merely schematic, and Ginzu
recognizes and parses domains in a fully
general (discontinuous, depending on where
the strong hits are at any given level) manner.

methods have unacceptably high error rates and are far too computation-
ally demanding for use in genome wide predictions (David Kim, personal
communication) [38]. In spite of the limitations mentioned above, these
methods (that are not dependent on detecting sequence homologs for a given
query sequence) are attractive for proteins that have no detectable homologs
or matches to protein domain families and future work on this front could
increase the number of proteins within reach of de novo methods considerably.
It is likely that a method which successfully combines these coarse structure-
based methods with existing sequence-based methods into a hierarchically
organized domain detection program (e.g. Ginzu) will eventually outperform
any existing method at domain parsing and greatly increase the accuracy
of downstream structure prediction. Figure 4 shows a schematic domain
detection program (this schematic is implemented as the program Ginzu).
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2.4 Local Structure Prediction and Reduced Complexity Models are Central to
Current De Novo Methods

Several methods for reducing the combinatorial complexity of the protein
folding problem have been employed including lattice models (confining
possible special coordinates to a predefined 3-D grid) and several discrete-
state off-lattice models (e.g. reducing degrees of freedom along the backbone
to a set of discrete angles). For a more exhaustive description of these methods
and their reduced-complexity move sets I refer the reader to earlier reviews of
de novo structure prediction methods [11, 27].

Instead, I will focus on the use of local structure information to constrain
global structure prediction simulations to only conformations consistent with
local structure prediction. Local sequences excised from protein structures
often have stable structures in the absence of their global contacts, demonstrat-
ing that local sequences can have a strong, sequence-dependent, structural
bias towards one or more well defined structures [10, 24, 69, 74, 106]. This
experimental observation is a result of the fact that the polypeptide chain is
heavily constrained by local structure bias in a sequence dependent manner.
The strength of this local, sequence-dependent, structure bias can vary from
strong (a local sequence that exhibits a single well defined local structure)
to weak (local sequences that are disordered or completely determined by
their global environment) with most protein sequences falling into some in-
termediate regime (local sequences that fold into multiple well-defined local
structures depending on their global environment) [21, 46]. Prediction meth-
ods that accurately predict the type, strength and possible multiplicity of
local structure bias for any given query sequence segment drastically reduce
the size of the available conformational landscape. Using either fragment
substitution (assembling fragments of local structure) as a move set or local
structure constraints derived from predicted local structure also has the ad-
vantage that the subsequent global search is limited to protein-like regions of
the conformational landscape (helices, correct chirality of secondary strand
packing, strands and sheets with correct twist, etc.).

There are two main ways to use local structure prediction as an overrid-
ing/hard constraint on the global search: (i) using fragments to build up
global structures (local structure defining the moveset) and (ii) using local
structure as a hard constraint (local structure heavily modifying the objective
function).

Rosetta explicitly uses fragments of three and nine residues of local struc-
ture to build global structures via fragment assembly. Prior to a Rosetta
simulation a library of local structure fragments is generated such that several
fragments (25–200) of different local structure are pre-computed for every
possible three- and nine-residue window along the query. The simulation
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(the search for low-energy conformations given the Rosetta scoring func-
tion) consists primarily of randomly selecting three- and nine-residue win-
dows along the query and replacing torsion angles at that three- or nine-
residue window with torsion angles taken from a different fragment for that
position. These fragments are pulled from a nonredundant version of the
PDB on the basis of local sequence similarity to the query sequence [97].
This work was inspired by careful studies of the relationship between local
sequence and local structure [46], that demonstrated that this relationship
was highly variable on a sequence-specific basis and that there is a great
deal of sequence-specific local structure that could be recognized even in the
absence of global homology. The selection of fragments of local structure
on the basis of local sequence matches dramatically reduces the size of the
accessible conformational landscape. In practice we see that, as desired,
for some local sequence segments there is a strong bias towards a single
local structure in the computed local structure fragments, while other local
sequences exhibit a wide range of local conformations in the fragment library.
Using fragment substitution as a moveset to optimize Rosetta’s objective
function has one major drawback: as the structure collapses (forms many
contacts favorable according to the energy function) late in the simulation the
acceptance rate of fragment moves becomes unworkably small. This is due
to the fact that the substitution of six or 18 backbone dihedral angles creates
large perturbations to the Cartesian coordinates of parts of the protein distant
along the polypeptide chain. The likelihood that such large perturbations
cause steric clashes and break energetically favorable contacts late in a given
simulation is exceedingly large. To recover effective minimization of the
Rosetta score after initial collapse several additional move types have been
added to the Rosetta moveset. The simplest move type consists of small angle
moves (within populated regions of the Ramachandran map). Additional
moves, descriptively named “chuck”, “wobble” and “gunn” moves, aim to
perform fragment insertions that have small effects far from the insertion.
These additional move types are also critical to the modeling of loops in
homology modeling and are described in detail elsewhere [89].

The TASSER method smoothly combines fragments of aligned protein
structure (from threading runs) with regions of unaligned proteins (repre-
sented on a lattice for computational efficiency) to effectively scale between
the fold recognition and de novo regime [108]. Other notable uses of local
structure fragments include the use of I-sites to select fragments that are
then fed to Rosetta as described by Bystroff and Shao [22]. I-sites is a
hidden Markov model (HMM) method designed to detect strong relationships
between sequence and structure as defined by a library of local structure–
sequence relationships. One potential advantage of this method is that the
I-sites method is not constrained to fragments of a fixed length (Rosetta is
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constrained to three- and nine-length fragments) [23]. Thus larger patterns
of local structure bias are expected to be detected better by this method.
Karplus and coworkers also use a similar approach to detecting fragments
of local structure (a two-stage HMM) as part of their de novo method [53].
These methods have the primary advantage of better performance when local
sequence–structure bias is high (e.g. when local structure is strongly and/or
uniquely determined by sequence).

2.5 Clustering as a Heuristic Approach to Approximating Entropic
Determinants of Protein Folding

Several protein structure prediction methods are effectively two-step proce-
dures involving the generation of large ensembles of conformations (each
being the result of a minimization or simulation) followed by the clustering
of the generated ensemble to produce one or more cluster centers that are
taken to be the predicted models. Regardless of how one justifies the use of
clustering as a means of selecting small numbers of predictions or models
from ensembles of decoys conformations, the justification is indirectly sup-
ported by the efficacy of the procedure and the resultant observation that
clustering has become a central, seemingly required, feature of successful
de novo prediction methods. Starting with CASP3 the field has witnessed
a proliferation of clustering methods as post-simulation processing steps in
protein structure prediction methods [14, 51, 96, 108].

Prediction of protein structure de novo using Rosetta relies heavily on a
final clustering stage. In the first step a large ensemble of potential protein
structures is generated, each conformation being the result of an extensive
Monte Carlo search designed to minimize the Rosetta scoring function (see
Figure 1). We then apply clustering to find the centers of the largest clusters.
These cluster centers are ranked by the size of their originating cluster in the
ensemble. The tightness of clustering in the ensemble is also used as a measure
of method success (larger tighter clusters indicate a higher probability that the
method produced correct fold predictions for a given protein). Each Rosetta
simulation/Monte Carlo run can be thought of as a fast quench starting from a
random point on the conformational landscape (defined by the local structure
estimation/fragments). Many of these fast quenches (individual simulations)
results in incorrect conformations that score nearly as well as any correct
conformations generated in the full ensemble of decoy conformations, as
judged by the Rosetta score (a number of other potentials tested also lack
discriminative power at this stage). This lack of discrimination by de novo
scoring functions is partially the result of inaccuracies in the scoring function,
limitations in our ability to search the landscape and the fact that entropic
terms are a major contributor to the free energy of folding. In any case, this
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lack of discrimination is mitigated by a final clustering step and it has been
shown that the centers of the largest clusters in a clustered Rosetta decoy
ensemble are in most cases the conformations closest to native. The ubiquitous
use of clustering can be justified in several ways: clustering can be thought
of as (i) a heuristic way to approximate the entropy of a given conformation
given the full ensemble of decoy conformations generated for a given protein,
(ii) a signal averaging procedure, averaging out errors in the low-resolution
scoring function, or (ii) taking advantage of foldable-protein specific energy
landscape features such as broad energy wells that are the result of proteins
evolving to be robust to sequence and conformational changes from the native
sequence or structure (a mix of sequence and configurational entropy) [95].

An interesting alternative to the strategy of clustering ensembles of results
from independent minimizations is the use of replica exchange methods.
Replica exchange methods employ large numbers of simulations spanning a
range of temperatures (defined physically if one uses a physical potential or
simply as a constant in the exponent of the Boltzmann equation (see Chap-
ter 11) for probabilistic scoring functions). These independent simulations are
carried out in parallel and are allowed to exchange temperatures throughout
the run. This simulation strategy ideally allows for a random walk in energy
space (and thus better sampling) and can be used to calculate entropic term
post facto. Replica exchange Monte Carlo has been used successfully in the
simulation and prediction of protein structure, and is interesting due to its
explicit connection to a physical description of the system and its ability to
search low energy states without getting trapped [81].

2.6 Balancing Resolution with Sampling, Prospects for Improved Accuracy
and Atomic Detail

Every de novo structure prediction procedure must strike a delicate balance be-
tween the computational efficiency of the procedure and the level of physical
detail used to model protein structure within the procedure. Low-resolution
models can be used to predict protein topology/folds and sometimes suggest
function [15]. Low-resolution models have also been remarkably successful
at predicting features of the folding process such as folding rates and phi
values [1, 2]. It is clear, however, that modeling proteins (and possibly bound
water and other cofactors) at atomic detail and scoring these higher resolution
models with physically derived, detailed potentials is a needed development
if higher-resolution structure prediction is to be achieved.

Early progress has focused on the use of low-resolution approaches for
initially searching the conformational landscape followed by a refinement
step where atomic detail and physical scoring functions are used to select
and/or generate higher-resolution structures. For example, several studies
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have illustrated the usefulness of using de novo structure prediction methods
as part of a two-stage process in which low-resolution methods are used for
fragment assembly and the resulting models are refined using a more physical
potential and atomic detail (e.g. rotamers) [31] to represent side-chains [18,
71, 102]. In the first step, Rosetta is used to search the space of possible
backbone conformations with all side-chains represented as centroids. This
process is well described, and has well-characterized error rates and behavior.
High-confidence or low-scoring models are then refined using potentials that
account for atomic detail such as hydrogen bonding, van der Waals forces and
electrostatics.

One major challenge that faces methods attempting to refine de novo meth-
ods is that the addition of side-chain degrees of freedom combined with the
reduced length scale (reduced radius of convergence; one must get much
closer to the correct answer before the scoring function recognizes the confor-
mation as correct) of the potentials employed require the sampling of a much
larger space of possible conformations. Thus, one has to correctly determine
roughly twice the number of bond angles to a higher tolerance if one hopes
to succeed. An illustrative example of the difference in length scale (radius of
convergence) between low-resolution methods and high-resolution methods
is the scoring of hydrogen bonds. In the low-resolution Rosetta procedure
backbone hydrogen bonding is scored indirectly by a term designed to pack
strands into sheets under the assumption that correct alignment of strands
satisfies hydrogen bonds between backbone atoms along the strand and that
intra-helix backbone hydrogen bonds are already well accounted for by the
local structure fragments. This low-resolution method first reduces strands
to vectors, and then scores strand arrangement (and the correct hydrogen
bonding implicit in the relative positions/arrangement of all strand vector
pairs) via functions dependent on the angular and distance relationships
between the two vectors. Thus, the scoring function is robust to a rather large
amount of error in the coordinates of individual electron donors and acceptors
participating in backbone hydrogen bonds (as large numbers of residues are
reduced to the angle and distance between the two vectors representing a
given pair of strands). In the high-resolution, refinement mode of Rosetta an
empirical hydrogen bond terms with angle and distance dependence between
individual electron donors and acceptors is used [88]. This more-detailed
hydrogen bond term has a higher fidelity and a more straightforward connec-
tion to the calculation of physically realistic energies (meaningful units), but
requires more sampling, as smaller changes in the orientation of the backbone
can cause large fluctuations in computed energy.

Another major challenge with high-resolution methods is the difficulty of
computing accurate potentials for atomic-detail protein modeling in solvent;
with electrostatic and solvation terms being among the most difficult terms to
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accurately model. Full treatment of the free energy of a protein conformation
(with correct treatment of dielectric screening) is complicated by the fact that
some waters are detectably bound to the surface of proteins and mediate
interactions between residues [34]. Another challenge is the computational
cost of full treatment of electrostatic free energy by solving the Poisson–
Boltzmann or linearized Poisson–Boltzmann equations for large numbers of
conformations. In spite of these difficulties several studies have shown that
refinement of de novo structures with atomic-detail potentials can increase our
ability to select and or generate near native structures [78]. These methods can
correctly select near native conformations from these ensembles and improve
near native structures, but still rely heavily on the initial low-resolution search
to produce an ensemble containing good starting structures [63,71,102]. Some
recent examples of high-resolution predictions are quite encouraging and an
emerging consensus in the field is that higher resolution de novo structure
prediction (structure predictions with atomic-detail representations of side-
chains) will begin to work if sampling is dramatically increased.

Progress in high-resolution structure prediction will invariably be carried
out in parallel with methods including, but not limited to, predicting protein–
protein interactions, designing proteins and distilling structures from partially
assigned experimental data sets. Indeed, many of the scoring and search
strategies that high-resolution de novo structure refinement methods employ
were initially developed in the context of homology modeling and protein
design [61, 90].

3 Applying Structure Prediction: De Novo Structure Prediction
in a Systems Biology Context

Sequence databases are growing rapidly, with new genomes being deposited
at a phenomenal pace. A large portion of each of these newly sequenced
genomes can be expected to contain proteins that have no detectable ho-
mologs or only homologs of unknown function. It can be expected that even
with the continued progress of large experimental structural biology efforts
there will remain a large number of proteins for which de novo structure
prediction and distant fold recognition methods are the only options.

3.1 Structure Prediction as a Road to Function

The relationship between protein structure and protein function is discussed
in detail in Chapter 33, but will be reviewed briefly here in the context of
de novo structure prediction. One paradigm for predicting the function of
proteins of unknown function in the absence of homologs, sometimes referred
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to as the “sequence-to-structure-to-structure-to-function” paradigm, is based
on the assumption that 3-D structure patterns are conserved across a much
greater evolutionary distance than recognizable primary sequence patterns
[33]. This assumption is based on the results of several structure–function
surveys which show that structure similarities (fold matches between different
proteins in the PDB) in the absence of sequence similarities imply some shared
function in the majority of cases [48,67,70,84,101]. One protocol for predicting
protein function based on this observation is to predict the structure of a query
sequence of interest and then use the predicted structure to search for fold or
structural similarities between the predicted protein structure and experimen-
tally determined protein structures in the PDB or a nonredundant subset of the
PDB [49, 76, 83, 85]. There are several problems associated with deriving func-
tional annotation from fold similarity, e.g. old similarities can occur through
convergent evolution and thus have no functional implications. Also, aspects
of function can change throughout evolution leaving only general function
intact across a given fold superfamily [43, 56, 91]. Fold matches between
the predicted structures and the PDB are thus treated as sources of putative
general functional information, and are functionally interpreted primarily in
combination with other methods such as global expression analysis and the
predicted protein association network. To circumvent these ambiguities one
can (i) use de novo structure prediction and/or fold recognition to generate a
confidence ranked list of possible structures for proteins or protein domains
of unknown function, (ii) search each of the ranked structure predictions
against the PDB for fold similarities and possible 3-D motifs, (iii) calculate
confidences for the fold predictions and 3-D motif matches, and, finally, (iv)
evaluate possible functional roles in the context of the other systems biology
data, such as expression analysis, protein interactions, metabolic networks
and comparative genomics.

3.2 Initial Application of De Novo Structure Prediction

To date there have been few studies using de novo structure prediction as a
method for genome annotation, due primarily to the computational expense
of the calculations and the relative novelty of the methods. These studies
have been carried out in combination with a variety of fold recognition and
sequence-based methods for gene annotation, and have provided preliminary
results that highlight several successes. It is based on these studies that we
argue that de novo structure prediction is a viable option for exploring genes
of unknown function.

The first emergence of de novo structure prediction methods for large-scale
structure prediction was heavily limited by available computer resources.
These studies were essentially pilot studies to evaluate the potential worth of



410 12 De Novo Structure Prediction: Methods and Applications

genome-wide de novo structure predictions. In one early study workers were
limited to generating predictions for 85 proteins in Mycoplasma genitalium,
producing around 24 correct fold predictions [54]. Another study approached
the computational limitation by folding representatives of Pfam protein fam-
ilies of unknown structure and function [14]. Using this method we were
able to generate high confidence fold/structure predictions for around 60%
of the 510 protein families for which Rosetta predictions were attempted,
covering an additional roughly 12% of the sequences available at that time.
Subsequent experimental determination for several of these protein families
has shown our computed confidence values to be good estimates of our
predictive performance, with success rates (rates of correct fold identification)
on internal benchmarks and success rates from blind tests (CASP results
and recently solved structures) nearly indistinguishable. Alas, the results
of this study were not widely used by biologists due partially to the fact
that at the time methods for integrating the resultant low-resolution structure
predictions with other data types were not in place. The results of these early
studies suggested, however, that whole-genome application of de novo struc-
ture prediction would result in usable annotations if presented to biologists
properly, i.e. integrated with other available data types.

3.3 Application on Genome-wide Scale and Examples of Data Integration

Genome-wide measurements of mRNA transcripts, protein concentrations,
protein–protein interactions and protein–DNA interactions generate rich
sources of data on proteins, both those with known and those with unknown
functions [5, 7]. These systems-level measurements seldom suggest a unique
function for a given protein of interest, but often suggest their association with
or perhaps their direct participation in a previously known cellular process.
Investigators using genome-wide experimental techniques are thus routinely
generating data for proteins of hitherto unknown function that appear to play
pivotal roles in their studies.

The first full-genome application of de novo structure prediction was to the
genome of Halobacterium NRC-1 [12]. This archaeon is an extreme halophile
that thrives in saturated brine environments such as the Dead Sea and solar
salterns. It offers a versatile and easily assayed system with several well-
coordinated physiologies that are necessary for survival in its harsh environ-
ment. The completely sequenced genome of Halobacterium NRC-1 (containing
around 2600 genes) has provided insights into many of its physiological capa-
bilities; however, nearly half of all genes encoded in the halobacterial genome
had no known function prior to our re-annotation [29, 30, 79, 93]. A multi-
institutional effort is currently underway to study the genome-wide response
of Halobacterium NRC-1 to its environment, elevating the need for applying
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improved methods for annotating proteins of unknown function found in the
Halobacterium NRC-1 genome. Rosetta de novo structure prediction was used
to predict 3-D structures for 1185 proteins and protein domains (less than 150
residues in length) found in Halobacterium NRC-1. Predicted structures were
searched against the PDB to identify fold matches [85] and were analyzed in
the context of a predicted association network composed of several sources
of functional associations, such as predicted protein interactions, predicted
operons, phylogenetic profile similarity and domain fusion. This annotation
pipeline was also applied to the recently sequenced genome of Haloarcula
marismortui with similar rates of correct fold identification.

An application of de novo structure prediction to yeast has also been de-
scribed. This study focused on the application and integration of several
methods (ranging from experimental methods to de novo structure prediction)
to 100 essential open reading frames (ORFs) in yeast [47]. For these 100
proteins the group applied affinity purification followed by mass spectrom-
etry (to detect protein binding partners), two-hybrid analysis, florescence
microscopy (to localize proteins) and de novo structure prediction (Ginzu to
separate domains [26, 55] and Rosetta to build structures for domains of
unknown function). Due to the cost of experiments and the computational
cost of Rosetta de novo structure prediction, the group was initially able to
prototype the method on just these 100 proteins. Function was assigned to
48 of the proteins (as defined by assignment to Gene Ontology categories). In
total, 77 of the 100 proteins were annotated (had confident hits) by on of the
methods employed. Given that the starting set represented a difficult set of
ORFs of no known function this represents a significant milestone. Scaling this
sort of approach up to whole genomes (including large eukaryotic genomes)
is still a significant challenge. A grid computing solution (Section 3.4) is
currently being employed to complete this study (fold the remaining ORFs
in the genome) and, due to the wide use of yeast as a model organism, we
can expect this complete resource to be a major step in crossing the social
and technical barrier that has so far prevented the wide application of de novo
structure prediction to biology. A similar approach has also been applied
to the Y chromosome of Homo sapiens [40]. By integrating fold recogni-
tion with de novo structure prediction folds were assigned to around 42 of
the 60 recognized domains examined (these 60 domains originated from the
27 proteins thought to be encoded on this chromosome at the time of the
study). In both of these application, yeast and human, careful thought was
put into reducing the set of proteins examined and scaling-up de novo structure
prediction remains a critical bottleneck (the introduction of all-atom or high-
resolution refinement of these predicted structures will only exacerbate this
critical need for computing).
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3.4 Scaling-up De Novo Structure Prediction: Rosetta on the World Community
Grid

There are several strategies one can use to limit the number of protein domains
for which computationally expensive de novo structure prediction needs to be
carried out, allowing for the calculation of useful de novo structure predictions
for only the most relevant subsets of larger genomes, as discussed above. In
spite of these strategies, finding the required compute resources has been
a constant challenge for the application of de novo structure prediction to
functional annotation and has limited the application of the method. To
circumvent this problem we are currently applying a grid, distributed com-
puting, solution to folding over 100 000 domains with the full Rosetta de
novo structure prediction protocol (www.worldcommunitygrid.org). These
domains were chosen by applying Ginzu [26,55] to over 60 complete genomes
as well as several other appropriate sequences in public sequence databases.
The results will be integrated with data types that are appropriate/available
for a given organism in collaboration with several other groups [12, 47]. This
work is ongoing in collaboration with David Baker, Lars Malmstroem (Univer-
sity of Washington) Rick Alther, Bill Boverman and Viktors Berstis (IBM), and
United Devices (Austin, TX). Currently (11:10 AM, pacific coast time, 14 April
2005), there are over 1 million volunteers (people who have downloaded the
client to run grid-Rosetta) comprising a virtual grid of over 3 million devices.
Interested parties wishing to participate (donate idle CPU time on your desk-
top computer to this project) can download the grid-enabled Rosetta client
at www.worldcommunitygrid.org. This amount of computational power will
enable us to remove the barrier represented by the computational cost of de
novo methods.

4 Future Directions

4.1 Structure Prediction and Systems Biology: Data Integration

Even with dramatically improved accuracy we still face challenges due to
the ambiguities of the relationship between fold and function seen for many
fold families (indeed, even close sequence homology is not always trivial
to interpret as functional similarity, see also Chapter 30). Thus, the full
potential of de novo structure prediction in a systems biology context can only
be realized if structure predictions are integrated into larger analysis, and
subsequently made accessible to biologists through better data integration,
analysis and visualization tools. One clear example of this is provided by the
bacterial transcription factors, for which even strong sequence similarity can
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imply several possible functions and system-wide information is required to
determine a meaningful function (the target of a given transcription factor).

4.2 Need for Improved Accuracy and Extending the Reach of De Novo Methods

Although I have argued that data integration is as critical a bottleneck as any
other and that there are current applications of de novo structure prediction,
it is clear that improved accuracy is also essential for progress in the field
and for the acceptance of de novo structure methods by the end users of
whole-genome annotations. There is still a significant amount of error in
predictions generated using current structure prediction and domain parsing
methods. Extending the size limit of protein folding methods is a promising
area of active research as is the development of higher-resolution refinement
methods. De novo structure prediction requires large amounts of CPU time
compared to sequence-based and fold recognition methods (although the use
of distributed computing and Moore’s law continue to make this less of a
bottleneck). Integrating de novo predictions with orthogonal sources of general
and putative functional information, both experimental and computational,
will likely facilitate the annotation of significant portions of the protein se-
quences resulting from ongoing sequencing efforts, as well as proteins in
currently sequenced genomes.
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Structural Genomics
Philip E. Bourne and Adam Godzik

1 Overview

1.1 What is Structural Genomics?

Inspired by the success of the genome-sequencing projects, particularly the
Human Genome Project [41], research-funding bodies in the US, Japan and
Europe decided to embark on an equally ambitious project of large-scale
macromolecular structure determination. Looking at biology in terms of
increasing complexity and scale, this made sense – from the sequence of
genomes comes structure from which molecular function can be derived.
Individual functions define processes that occur in different parts of the cell,
different cell types make up an organism and so on. Thus, the next logical step
in understanding living systems was large-scale macromolecular structure
determination. These efforts, weakly correlated and distributed over several
institutions on several continents, became collectively known as structural ge-
nomics. The hope was that structural genomics would continue an explosive
growth in raw data, knowledge and technology [32,35]. This chapter describes
structural genomics on its fifth anniversary. Where representative examples of
the work being undertaken are needed, they are taken from the Joint Center
for Structural Genomics (JCSG), one of the US structural genomics centers that
is close to the authors both in space (it is located in San Diego) and in spirit
(one of us, A. G., leads the bioinformatics core at JCSG).

1.2 What are the Motivators?

Whereas the goal of the human genome project was straightforward, i.e.
determine the 3 billion nucleotides that comprise the specific genome (hu-
man), the goal of structural genomics is less so. The most often stated goal
was to provide “structural coverage” of protein space, by solving enough
structures that all known proteins could be accurately modeled [7, 42]. Other
goals, such as targeting disease-relevant genes, were also listed [8]. Last, but
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not least, structural genomics aimed to develop new structure determination
technologies that would lower the costs and time needed to solve protein
structures. Without a formal definition of its goals, structural genomics was
adopted as a broad research goal by a loose coalition of researchers from
around the world. A list of the current projects is given in Table 1 and up-to-
date information is available from the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB) [4] which tracks all projects
(http://sg.pdb.org/target_centers.html) [10, 22].

In the US, structural genomics efforts resulted in the launch of the National
Institutes of Health (NIH) Protein Structure Initiative (PSI), which in time de-
veloped its own goals and milestones [30] that partly overlapped the original
overall goals of structural genomics. The same could be said of developments
in other parts of the world. Recently, the PSI initiatives in the US have received
their second round of 5-year funding and goals and milestones are being
further refined. Table 1 indicates major US centers from round 1 as PSI-1 and
the subset of those with major funding in round 2 as PSI-2. Regardless of
the stated objectives, structural genomics already accomplished (or perhaps
coincided with) a major paradigm shift in structural biology – moving from a
strictly functionally driven endeavor to a genomically driven endeavor. As we
discuss subsequently, this both requires and is driven by contributions from a
variety of communities. From the perspective of bioinformatics research, this
includes problems in defining the universe of protein structures, recognition
of natural units of protein evolution (domains), understanding the complex
relationship between protein function(s) and sequence and structure, devel-
opment of protein structure prediction in general, and homology modeling in
particular, and many others.

1.2.1 Fold Coverage as a Motivator

The often repeated goal of structural genomics is “coverage of protein struc-
tural space”. However, there are at least two levels on which this goal can
be achieved. On one level, solving at least one example of all possible folds
would provide some information about how large and complex is protein
fold space. On another level, many structures from each fold would have to
be solved to provide structural templates for possible comparative modeling
for every existing protein. The first level, coarse-grained coverage of fold
space, seems to be tractable in terms of number of structures that need to
be solved, with a total number of folds estimated to be in the 5000–10 000
range. However, choosing structures that would have to be solved would be
a formidable task, as it is difficult to predict from sequence which proteins
would have a new fold – once the sequence identity drops below 25% the
relationship to an existing structure may not be detected, yet folds are often
the same below 10% sequence identity [31] (see Chapters 10 and 12). This
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Table 1 Structural genomics projects worldwide

Project Major objectives (as described on their
website)

Protein structure initiative centers US
Berkeley Structural Genomics Center
(BSGC) PSI-1

two minimal genomes, Mycoplasma genital-
ium and Mycoplasma pneumoniae

Center for Eukaryotic Structural Genomics
(CESG) PSI-2

variety of eukaryotic targets

Joint Center for Structural Genomics (JCSG)
PSI-2

targets from all superkingdoms with em-
phasis on T. maritima, mouse and yeast

Midwest Center for Structural Genomics
(MCSG) PSI-2

various

NorthEast Structural Genomics Consor-
tium (NESG) PSI-2

coverage of fold space

New York Structural Genomics Research
Consortium (NYSGRC) PSI-2

technology development

Southeast Collaboratory for Structural Ge-
nomics (SECSG) PSI-1

Caenorhabditis elegans, Homo sapiens and
homologs from Pyrococcus furiosus

Structural Genomics of Pathogenic Proto-
zoa Consortium (SGPP) PSI-1

various diseases

Mycobacterium tuberculosis Structural Ge-
nomics Consortium (TB) PSI-1

study of tuberculosis

Structural genomics projects in Europe and
environs
Bacterial Targets at IGS-CNRS, France
(BIGS)

rickettsia, ORFan targets from Escherichia.
coli, antibacterial gene targets

deCode – decode Genetics, Iceland various diseases
Israel Structural Proteomics Center (ISPC) various
Marseilles Structural Genomics Program,
France (MSGP)

unknown

NWSGC – North West Structural Genomics
Centre, UK

tuberculosis

Oxford Protein Production Facility, England
(OPPF)

technology development

Protein Structure Factory, Germany (PSF) various
Structural Proteomics in Europe, England
(SPINE)

structures related to human health and
disease

Mycobacterium Tuberculosis Structural
Proteomics Project, Germany (XMTB)

tuberculosis

Paris-Sud Yeast Structural Genomics,
France (YSG)

relevant proteins with homologs in
Schizosaccharomyces pombe

Structural genomics projects in North
America
Montreal-Kingston Bacterial Structural Ge-
nomics Initiative, Canada (BSGI)

various

OCSP – Ontario Centre for Structural Pro-
teomics, Canada

various

Project CyberCell, Canada various
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Table 1 continued

Project Major objectives (as described on their
website)

SGC – Structural Genomics Consortium,
Canada, UK

various proteins of medical relevance

Structure 2 Function Project, US (S2F) Haemophilus influenzae
Structural genomics projects in Asia
KSPRO – Korean Structural Proteomics
Research Organization, Korea

Helicobacter pylori and human cancer genes

RIKEN Structural Genomics Initiative,
Japan (RSGI)

various

SGCGES – Structural Genomics Consor-
tium for Research on Gene Expression
System, Japan

proteins associated with protein synthesis

difficulty is illustrated in Figure 1, where the growth in the number of new
folds is shown not to have increased significantly since the advent of the
structural genomics projects in 2000. The picture is complicated by how one
defines a new fold. Figure 1 is based upon the Structure Classification of
Proteins (SCOP) [1], but other definitions exist as will be described subse-
quently. Further, proteins not homologous to already crystallized proteins are
significantly more difficult to handle and have lower success rates at almost
every stage of the structure determination process. On the second level,
covering protein space at a fine-grained level requires a number of potential
targets counted in hundreds of thousands, thus making the goals of structural
genomics essentially unattainable. It is clear that the practical strategy must
steer clear from both these extremes and, as we will discuss below, this is
indeed what most structural genomics centers have been doing in practice.

Despite improvements in structure determination technology, it is clear that
we have not achieved a breakthrough that could be compared to, for example,
what shotgun sequencing did for accelerating genome-sequencing projects.
Automation and streamlining have been applied at every step, but overall
improvements have been incremental rather than dramatic, and as of today
even the best centers do not produce more than 10–15 structures a month
at a cost of US$50 000–$60 000 per structure. While this is impressive by
the standards of structural biology from even a few years ago, at this rate
and cost it is clear that fine-grained coverage of protein structural space is
impossible to attain. Therefore, the ultimate goal of structural genomics could
only be achieved by combining experimental and theoretical approaches,
and improvements in comparative modeling are necessary to improve the
convergence radius of successful model building.

Another means of defining a goal for structural genomics is to consider that
goal from a biological perspective.
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Figure 1 Growth in the number of folds per year as defined by SCOP.
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1.2.2 Structural Coverage of an Organism as a Motivator

One stated and ambitious goal of structural genomics is to provide an un-
derstanding of an entire organism at the molecular level. Some structural
genomics centers focused on single organisms, e.g. the JCSG cloned and
attempted the expression of 1777 of the predicted 1877 open reading frames
from Thermotoga maritima leaving aside some of the putative genes with obvi-
ous problems in predicted boundaries, etc. From a predicted 1377 soluble
proteins, 705 were expressed and 581 made it to crystallization trials. To
date, JCSG have solved 155 T. maritima structures, which, when combined
with structures of T. maritima proteins solved at other centers, gives direct
structural coverage of 25% of the expressed soluble proteins and around 12%
of this organism’s proteome. After taking into account structures that can be
modeled through homology and fold recognition, this percentage rises to over
70% (over 90% of predicted crystallizable proteins). Thus, we are only a few
dozens structures away from having complete structural coverage of an entire
organism. However, as we shall see subsequently, based on a detailed discus-
sion of the coverage of the human genome, what constitutes genome coverage
by models is open to interpretation. Beyond that, Brenner and colleagues
have pointed out [9] that even the determination of several complete archaeal
or bacterial proteomes would still leave many protein families structurally
uncovered.

1.2.3 Structure Coverage of Central Metabolism Pathways as a Motivator

Here we consider a specific example. Structures solved at JCSG and other PSI
centers allow us to take a structure-based view of the metabolic pathways in
T. maritima. In collaboration with the SEED project (http://theseed.uchicago.
edu/FIG/index.cgi), an integrated T. maritima annotation project was initiated
combining structural, functional and genomic annotations (Figure 2). Results
of this effort, which will soon be available on the T. maritima annotation
website, will provide a unique genome annotation resource. At this point,
all T. maritima metabolic pathways can be covered by experimental or mod-
eled structures, providing a first of its kind structural view of an organism’s
metabolome. Structure determination has resolved many outstanding issues
in what seemed to be incomplete or redundant pathways and identified novel
aspects of T. maritima metabolism. For instance, T. maritima is one of only four
known organisms that do not depend on biotin decarboxylase for fatty acid
metabolism. About 40% of all JCSG-solved T. maritima structures had their
functional annotations changed or significantly updated after their structures
were determined.
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1.2.4 Disease as a Motivator

According to a recent study [45] the PDB currently covers approximately
70% of the human disease categories described by the Online Mendelian
Inheritance in Man (OMIM) resource [15], but that coverage is not even. For
example, diseases of the central nervous system have a disproportionately
large number of solved structures and structural genomics targets relative to
the number of proteins associated with this class of disease in the human
genome. Blood- and lymph-based diseases have a disproportionately large
number of solved structures in the PDB, yet an appropriate underrepresen-
tation of structural genomics targets being attempted. Diseases of the ear,
nose and throat, which are currently structurally underrepresented in the
PDB, have few targets being attempted and yet there are a significant number
of proteins identified as being responsible for this class of disease in the
human genome [45]. Some structural genomics projects (Table 1) are targeting
specific diseases, e.g. Mycobacterium tuberculosis, Chagas’ disease and malaria,
and a more balanced coverage of proteins associated with human diseases is
expected in the next 5 years.

1.3 How Does Structural Genomics Relate to Conventional Structural Biology?

What should be apparent from the above discussion of motivators is that
structural genomics changes the conventional paradigm of “I know something
about the function of this protein from biochemical evidence, let me determine
the single structure of this protein to better elucidate the mechanism” to an
almost reverse approach at a different scale of biology, “I see a protein that
seems to be important – it is conserved, essential, sits on a virulence island,
but its function is unknown, lets solve a structure to start the functional
characterization process”. One outcome of this paradigm shift is that, for the
first time, we are seeing a number of structures which have yet to be func-
tionally characterized offering new challenges for computational biologists
to determine function from sequence and structure, not necessarily a trivial
undertaking, but success is possible.

Taking a specific example, for 42 of the T. maritima structures solved by
the JCSG, structural analysis provided strong indications for the possible
functions of proteins which were previously listed as “hypothetical proteins”.
Further, by incorporating structural information into the annotation process,
functional annotations of 90 out of 122 structures have been modified, usu-
ally by making the function annotation more specific and occasionally by
correcting it. Importantly, for some proteins even knowledge of their three-
dimensional (3-D) structure did not help to elucidate their function. For
instance, TM0875 (a specific JCSG target), with a unique fold and no known
homologs, remains uncharacterized a few years after structure determination.
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Currently, over 900 proteins in PDB are classified as “structural genomics
unknown function”.

Interestingly, while the value of structural genomics was questioned by
some structural biologists at the outset, the consensus opinion now seems
to be that advances made in structure determination through structural ge-
nomics have fed back to impact conventional structural biology laboratories
through, for example, improved software, streamlined procedures at the syn-
chrotron beamlines, and improved techniques for expression, purification and
crystallization. We now consider some of these advances.

2 Methodology

Structural genomics employ a variety of methods – X-ray crystallography,
nuclear magnetic resonance (NMR), electron microscopy, neutron diffraction,
mass spectrometry, etc. It is beyond the scope of this chapter to describe all
of these. Rather, we consider X-ray crystallography as the most prevalent of
the methods (85% of structures in the PDB to date) to illustrate the impact that
structural genomics is having on the methods employed to solve structures by
single crystal X-ray diffraction. Figure 3 is a schematic of the basic process. We
consider each step and demonstrate what has been achieved by one project,
the JCSG, as an example of progress that is being made.

2.1 Target Selection

The motivation for selecting targets was introduced above. The goal of target
selection is to ascertain that the sequence of the protein meets the criteria
defined for the anticipated structural outcome. That could be biological, i.e. it
has a particular function usually determined by identification of homology to
another protein known to have this function (see Chapters 30–35), or method-
ological, i.e. a specific globular domain can be identified which is likely to
be amenable to crystallization. Neither recognizing distant homologs nor
domains from sequence is a solved problem, although these are active areas
of endeavor. See, for example, Ref. [20] for the latest on domain recognition
from the Sixth Critical Assessment of Structure Prediction (CASP) [39].

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Fragment of the metabolic map of T. maritima with
experimental structures identified by ribbon diagrams and models
identified by a green highlight of the enzyme name. Most of the
pathways have complete structural coverage and the remaining
proteins are being targeted in the fifth year of JCSG.
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Figure 3 The basic steps in a single-crystal X-ray diffraction
experiment (top) and associated on-going developments (bottom)
being catalyzed by structural genomics efforts worldwide.

2.2 Crystallomics

Crystallomics is a term to collectively define the steps of protein isolation,
expression, purification and crystallization. The initial phase of structural
genomics has yielded great progress here. Large-scale, fully automated fa-
cilities for protein production have been developed by all structural genomics
centers and, increasingly, many commercial solutions are available. Structural
genomics centers cloned over 56 000 targets, expressed over 30 000 targets,
purified over 10 000 targets and crystallized about 4000 targets in the period
since program inception in 2000 to October 2005 (Figure 4). Additional con-
stantly updated statistics are available at http://targetdb.pdb.org/. Consider
the approach of JCSG. Many options for creating expression systems were
evaluated to maximize flexibility and minimize cost. Ultimately the JCSG
team chose to automate a conventional cloning approach. They developed a
robotic platform and were able to provide up to 384 validated clones per week.
To date, over 2500 clones have been generated and expressed with this system
from over 30 000 attempts. The system is efficient, needing only a single
person to operate. Escherichia coli has been used as the expressions system.
To purify the expressed protein, a two-process system has been adopted, both
processes being controlled by robotics. Together, they can produce 48–96
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Figure 4 Progress within the structural genomics initiative worldwide
as of 17 November 2005.

proteins a week on a 10–50 mg scale. Further details on this process can be
found at http://www.jcsg.org/scripts/prod/technologies1.html.

Crystallization strategies vary but are high throughput involving multi-
well robotic systems. The JCSG system includes an automated system for
shooting digital images of each well and automatic recognition of crystalline
samples. To date over 3 million images have been taken and analyzed. Once a
sample is identified a prescreening is undertaken to determine if the crystal is
of diffraction quality before being sent to the synchrotron for data collection.
In excess of 500 crystals are prescreened by JCSG on a monthly basis.

2.3 Data Collection

Crystal samples are transported to the synchrotron in specially designed com-
pact, cylindrical, aluminum crystal cassettes, which holds 96 crystals. Upon
reaching the synchrotron samples are automatically mounted, entered into
the high-energy X-ray beam and aligned automatically, a process taking ap-
proximately 30 s. Using a video system it is intended that data collection will
eventually be done remotely without the need for the researcher to travel to
the beamline itself. The online report of each crystalline sample is automati-
cally augmented with information from the data collection process.
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2.4 Structure Solution

Data collection provides X-ray diffraction patterns from the ordered crystal
lattice which appear as a set of diffraction spots. The positions of the spots
is defined by the size and type of crystal lattice; however, the intensity of the
spots is a function of their amplitude based on the types of atoms (known)
and their phases based on the positions of the atoms (unknown at the outset).
This is referred to as the phase problem in crystallography. The majority of
structures determined by the structure genomics centers worldwide solve the
phase problem by establishing a starting set of phases using multi-wavelength
anomalous dispersion [17] which requires collecting data at slightly different
wavelengths, a process that is possible using synchrotron beamlines which
can be tuned for this purpose. The discreet scattering of the X-ray beam by
the electron cloud from specific atom types (anomalous scatterers), usually
selenium introduced into the structure in the form of selenomethionine, when
collected at different wavelengths, provides a starting set of phases, based
on the atomic positions of the anomalous scatterers which can now be re-
solved. A disadvantage of this approach is that data must be collected at each
wavelength, lengthening the data collection time. An alternative approach to
establishing a starting set of phases is to have a model which approximates the
final atomic positions. From this model a starting set of phases can be derived,
hence solving the phase problem assuming, first, that the model is accurate
enough and, second, that it can be positioned correctly within the crystal
lattice. This technique, known as molecular replacement (MR), works well
for similar structures, e.g. taking an existing solved native protein structure
and using it to phase a mutant structure containing post-translational modifi-
cations. An exciting prospect is to routinely use a theoretically derived model
structure to determine a staring set of phases. Likelihood for the routine
success of this approach relies on having a wide variety of experimentally
determined structures from which to model. While this represents somewhat
of a chicken-and-egg situation, the number of available structures is increasing
rapidly.

In general, MR solutions are seldom attempted (and are even less often
successful) against templates with less than 35% sequence identity. Using a
fold recognition approach [13] as opposed to an approach based solely on
homology, to date, the JCSG MR pipeline was successfully applied to over
20 cases with less than 35% sequence identity, 10 cases with less than 30% and
several cases where sequence identity was close to 15%. The analysis shows
that fold recognition models, derived from work done in the discipline of
protein structure prediction [44], have a significantly higher success rate than
homology modeling, especially when the unknown structure and the search
model share less than 35% sequence identity. Using the software programs
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MOLREP [40] and EPMR [21], three out of 26 MR targets under 35% sequence
identity could only be solved with models derived from fold recognition
methods, and six showed significantly better statistics and behavior in sub-
sequent refinement [34] than those defined by homology.

2.5 Structure Refinement

Structure refinement implies maximizing the agreement between the intensi-
ties observed on the diffraction pattern spots and those calculated from the
atomic model. This can be roughly divided into two tasks: (i) getting the
main chain and side chains into an optimal position and (ii) performing a final
minimization. Ideally both steps must be completely automated to maximize
throughput. Improvements to algorithms and usability of software are key
factors in this process. A final check must be made to be sure the stereochem-
ical quality of the model is reasonable and this is done primary by checking
the relatively low-resolution structure of the complete macromolecule against
what is known about macromolecular structure en masse (e.g. allowable
dihedral angles) and what is known from high-resolution structures of small
molecules, such as single amino acids and nucleotides. Despite significant
progress in recent years, large parts of the refinement process are still done
by hand and high-quality refinement is one of the most time-consuming
tasks in high-throughput structure determination. Despite these difficulties,
the quality of structures determined by structural genomics centers matches
and often exceeds the quality of structures coming from standard structural
biology laboratories [38].

2.6 PDB Deposition

Deposition within the PDB (http://www.pdb.org) [4] is a requirement for all
structural genomics centers, thereby facilitating the maintenance of a single
worldwide archive of macromolecular structures. An ideal goal is to fully
automate the deposition process whereby a full structure submission contains
not just the final atomic coordinates and experimental data (NMR restraints
or X-ray structure factors), but all experimental information including exper-
imental protocols for all the above steps. This would then be validated by
the PDB prior to submission. This process is not yet in place, but significant
progress has been made. A key element of the process is an ontology which
defines in a formal way the items to be collected and their interrelationships.
While details of the structure itself have been defined in this way using an
ontology referred to as the macromolecular crystallographic information file
(mmCIF) [14], additional ontological terms for the various detailed experi-
mental protocols have yet to be fully defined. The progress that has been made
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thus far is reflected in the Protein Expression Purification and Crystallization
Database (PEPCdb; http://pepcdb.pdb.org) which collects experimental pro-
tocols according to the beginnings of a full ontological description.

2.7 Functional Annotation

One of the underling goals of structural genomics is to study the relationship
between gene sequence, protein structure and protein function, thereby ex-
panding the knowledge of the underlying biology. However, at present most
structural genomics centers, by design, stop after structure determination. As
a result, a large number of proteins solved by structural genomics groups
are listed in the PDB as “hypothetical proteins”. This growing list provides
raw data from which bioinformatics groups worldwide can apply a variety of
methods to assigning putative function(s) to these uncharacterized structures
(see Chapters 30–35, especially Chapter 33) [46]. Here, we outline a few of the
approaches that have been adopted. In the results section some success stories
are introduced. Popular approaches are as follows.

2.7.1 Biological Multimeric State

The structure solved in many cases does not comprise the biologically active
molecule. Rather, it represents a unique component. That component may
be one domain in a multi-domain protein, a situation found in the PDB in
general. For example, multiple SH2 and SH3 domains have been solved and
are known to be part of a larger macromolecular complex. Alternatively, the
application of crystallographic symmetry can be used to construct the biologi-
cally active molecule. Identifying what components comprise the biologically
active molecule often requires expert input, although efforts have been made
to automate this determination. The Protein Quaternary Server (PQS) uses the
notion of proximity of components to define the multimeric state [18].

2.7.2 Active-site Determination

This is an active area of research (see [37] for a review and Chapter 33). Active
sites include a small number of residues involved in catalysis, substrate and
cofactor binding sites, sites of protein–protein interaction, phosphorylation
sites, glycosylation sites, fatty acylation sites, prosthetic group binding sites,
hinge regions, domain–domain contacts, sites of membrane association and
more. The complexity and importance of the problem is well illustrated by
subtilisin and chrymotrypsin. Both are endopeptidases, yet share no sequence
identity and their folds are unrelated. However, they share an identical 3-D
motif comprising a Ser–His–Asp catalytic triad. The challenge becomes one
of identifying an identical motif in two different structures undoubtedly re-
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sulting from convergent evolution. Methods are varied, but all comprise basic
steps of protein structure representation, application of a search algorithm and
assessment of the reliability of the result. Early work used a graph theoretic
approach [2], progressing to the use of fuzzy functional forms [11], template
modeling [43] and, most recently, an elegantly simple approach based on the
proximity of the active site of an enzyme to the centroid of the molecule [3]
has emerged. Each method builds upon empirical observations made as more
structures are determined and functions classified by biochemical analysis.
Thus, we have a rich repertoire from which functional prediction can only
improve.

The need for improved methods for function prediction from structure
leads to increased research into automated function prediction. The first two
meetings of the Automated Functional Prediction (AFP) special interest group
were held in 2005 and 2006 (http://biofunctionprediction.org) and the pro-
ceedings will be published in 2006. The first metaserver, collecting and analyz-
ing prediction for several servers is now in beta testing (http://jafa.burnham.
org).

2.8 Publishing

The original macromolecular structures represented a scientist’s life’s work.
We are now faced with a situation where the rate-determining steps may well
be writing the publication. Hence, a number of structures, while deposited
in the PDB, remain unpublished. At the time of writing only a small per-
centage of structures determined by structural genomics are described by
peer-reviewed publications, placing additional emphasis on the individual
centers websites and the PDB to disseminate as much information about these
structures as possible.

JCSG structures are shared with the scientific community not only through
deposition in the PDB, but also through publication of a “structure note”.
Structure notes are short papers describing the annotation, biology, structure
and functional implications of each protein. The process of collecting all rel-
evant data from all stages of the JCSG pipeline has been streamlined through
the central JCSG database, which includes information on the sequence, anno-
tation, cloning, purification, crystallization, data collection, structure solution,
tracing, refinement and structural evaluation. The structure note automat-
ically captures any functional information in the JCSG annotation system
(functional annotation is described above). The paper introduction, for exam-
ple, includes annotation information, with a brief biological background taken
and curated from the Pfam [12], Interpro [28], SwissProt [6], BRENDA [33]
and SEED databases (http://theseed.uchicago.edu/FIG/index.cgi). Method-
ological and experimental data, as well as all crystallographic statistics, are
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automatically harvested from the JCSG database, and assembled into purifi-
cation, crystallization, structure solution and refinement paragraphs. The
structure description and the preparation of figures are done manually using
PyMOL (http://pymol.sourceforge.net/). Structures are analyzed, compared
and evaluated for biological significance using a plethora of structure analysis
tools including structural homology searches (DALI [19], CE [36], FATCAT
[25]) and extensive literature searches. In this way the preparation of a
structure note is a semiautomated process.

3 Results – Number and Characteristics of Structures Determined

As of 17 November 2005 there were 90 613 targets under consideration by
structural genomics projects. Of these 57 019 had been cloned and could be
considered under investigation. Figure 4 from http://targetdb.pdb.org/ [10]
shows the success rate for the steps described in Section 2. A total of 2540
structures have appeared in the PDB, which is 4.5% of the targets under
investigation; 1% has come from NMR structure determination and 3.5%
from X-ray crystallography. At that time 7.5% of all structures in the PDB
could be considered from structural genomics, with an overall contribution
of between 15 and 20% per year. An earlier study from Todd and coworkers
[38], when only 316 structures had been deposited, indicated that the quality
and size of structures determined by structural genomics versus functionally
driven structure determination were comparable. Further, 29% of the domains
solved revealed evolutionary relationships not apparent from sequence alone.
Similarly, 19 and 11% contributed new superfamilies and folds, respectively.
While this number of folds is significantly higher that the contribution from
all structures (2% based on the SCOP definition of fold as indicated earlier), it
reflects on the difficulty of finding new folds and surely indicates that protein
fold space is indeed quite limited.

To get a sense of what structural genomics is contributing, it is first
necessary to get some measure of what structure is contributing overall to
our understanding of living systems. Clearly, this contribution is somewhat
intangible and can be defined in different ways. One recent approach was
to review what both structures and targets contribute to the functional and
disease coverage of the human genome [45]. In some sense this measure
cuts across the various criteria for choosing structural genomics targets
that was outlined above. This contribution was measured by looking at
the functional coverage of the human genome using either EC numbers
(http://www.chem.qmul.ac.uk/iubmb/enzyme/) or Gene Ontology (GO)
classifiers [16] and disease via the OMIM [15] classifiers and comparing what
the solved structures and targets contributed. Human genome annotation
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was taken from Ensembl [5] and structure data from the PDB and targets
from targetdb [10], the repository maintained by the RCSB PDB of protein
sequences from all the structural genomics centers that are being considered
for structure determination (http://targetdb.pdb.org). Comparisons were
made for both single domains and whole structures. In addition, the ability to
homology model was ascertained based on results from SUPERFAMILY [26].
SUPERFAMILY identifies proteins within complete proteomes based on their
structural characterization. As such it represents the percentage of a given
proteome that can be modeled by existing structures. The results can be
summarized as follows:

• Single domains cover 37% of the GO molecular function classes identified
in the human genome

• Whole structures cover 25% of the human genome.

• The 37% domain coverage extends to 56% using homology modeling.

• The 25% whole structure coverage extends to 31% using homology models.

• If all current structural genomics targets were solved (∼3 times the current
PDB):

37% goes to 69%
25% goes to 44%

4 Discussion

4.1 Follow-up Studies

One of the ultimate measures of the impact of a new structure is the number
of follow-up studies and publications. This impact may not be apparent
for several years and is difficult to assess in this comparatively short time
frame. However, taking as an example JCSG, their structures have evoked
numerous individual collaboration agreements (over 50), associations with
larger consortiums detailed in Section 3.7, and numerous requests for clones
and proteins for biochemical studies. As an example, TM0449 [23, 24] (PDB
code: 1kg4) represents a novel fold which has inspired studies from three
different laboratories [27, 29] and has led to the elucidation of a novel bio-
chemical pathway of thymidylate synthesis present, among others, in several
important human pathogens. TM0449 and its homologs present an attractive
antibacterial drug target, since humans and most eukaryotes depend upon the
conventional thymidylate synthase.
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4.2 Examples of Functional Discoveries

Again we use JCSG to illustrate the power of long range function and structure
projections. In these cases, a bacterial structure from a relatively obscure
organism such as T. maritima proves to have significant biomedical relevance.
For example, the T. maritima protein TM1620 provided a template to model a
human protein PA26, which belongs to GADD (genes active in DNA defense)
family that is highly upregulated in several cancers. It also highlights an in-
teresting conservation of DNA antioxidant defense from bacteria to humans.
TM1620 is the second protein solved in this family (the first was AhpD from
Mycobacterium tuberculosis), which is closely related to 1300 proteins from all
kingdoms of life. The mechanism of action of proteins from this family is not
clear.

As a second example, TM0813 was shown to be unexpectedly similar to a
domain from a known protein involved in antibiotic resistance. Interestingly,
a homologous domain is also present in sacsin – a protein whose mutations
are responsible for a human neurogenerative disease resulting in autosomal
recessive spastic ataxia, often found in Quebec, but also in Turkey and several
other areas of the world. In these and other similar cases there is a chance
that bacterial proteins, which are easier to characterize and study, would
provide hints as to specific mechanism of action of their (very distant) human
homologs.

5 The Future

Remaining PSI centers in the US (labeled PSI-2 in Table 1) have just received
a second round of 5-year funding and are working together to define the
most valuable target list of proteins to be structurally determined. While the
objectives of structural genomics remain relatively nebulous relative to the
completion of the human genome, solving a significant number of protein
structures on that final target list will have a significant outcome. That out-
come will be measured in an improved understanding of structure-function
relationships, improved coverage of protein fold space and improved tech-
nologies for all concerned within the science of structural biology.
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RNA Secondary Structures
Ivo L. Hofacker and Peter F. Stadler

1 Secondary Structure Graphs

1.1 Introduction

The tendency of complementary strands of DNA to form double helices is
well known since the work of Watson and Crick. Single-stranded nucleic acid
sequences will in general contain many complementary regions that have the
potential to form double helices when the molecule folds back onto itself.
The resulting pattern of double-helical stretches interspersed with loops is
what is called the secondary structure of an RNA or DNA. Secondary structure
elements may in turn be arranged in space to form three-dimensional (3-D)
tertiary structure, leading to additional noncovalent interactions (an example
is shown in Figure 1). Energetically, however, these tertiary interactions are
weaker than secondary structure. As a consequence RNA folding can be
regarded as a hierarchical process in which secondary structure forms before
tertiary structure [129, 130]. Since formation of tertiary structure usually does
not induce changes in secondary structure, the two processes can be described
independently. Functional RNA molecules (tRNAs, rRNAs, etc., as opposed
to pure coding sequences), usually have characteristic spatial structures – and
therefore also characteristic secondary structures – that are prerequisites for
their function. As a consequence, secondary structures are highly conserved
in evolution for many classes of RNA molecules.

Both the experimental determination of full spatial RNA structures and
computational predictions of RNA 3-D structures are very hard tasks – ar-
guably even harder than the corresponding problems for proteins [62, 82].
Computational approaches to RNA tertiary structure thus have been suc-
cessful only for selected cases (see Chapter 15). RNA secondary structures,
on the other hand, not only have a definite physical meaning as folding
intermediates and are useful tools in the interpretation RNA molecules, but
they give rise to efficient computational techniques. Secondary structure
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Figure 1 Secondary and tertiary structure of
yeast phenylalanine tRNA. (a) The cloverleaf
shaped secondary structure consisting of
four helices. The dotted blue lines mark
evolutionary conserved tertiary contacts.
(b) Coaxial stacking results in two extended

helices that form the L-shaped tertiary
structure. (c) Tertiary structure taken from
Protein Data Bank entry 4TRA. The color
code (from red to blue) indicates the position
along the chain.

prediction and comparison, the focal topics of this chapter, have therefore
become a routine tool in the analysis of RNA function.

RNA secondary structures consists of two distinct classes of residues: those
that are incorporated in double-helical regions (so called stems) and those that
are not part of helices. For RNA, the double-helical regions consist almost
exclusively of Watson–Crick C–G and A–U pairs as well as the slightly weaker
G–U wobble pairs. All other combinations of pairing nucleotides, called
noncanonical pairs, are neglected in secondary structure prediction, although
they do occur, especially in tertiary structure motifs.

1.2 Secondary Structure Graphs

A secondary structure is primarily a list of base pairs Ω. To ensure that the
structure is feasible, a valid secondary structure should fulfill the following
constraints:

(i) A base cannot participate in more than one base pair, i.e. Ω is a match on
the set of sequence positions.

(ii) Bases that are paired with each other must be separated by at least three
(unpaired) bases.

(iii) No two base pairs (i, j) and (k, l) ∈ Ω “cross” in the sense that i < k < j <
l. Matchings that contain no crossing edges are known as loop matchings
or circular matchings.
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Condition (i) excludes tertiary structure motifs such as base triplets and G-
quartets; condition (ii) takes into account that the RNA backbone cannot bend
too sharply.

Base pairs that violate condition (iii) are said to form a pseudoknot. While
pseudoknots do occur in RNA structures, our definition (somewhat arbitrar-
ily) classifies them as tertiary structure motifs. This is done in part because
most dynamic programming algorithms cannot deal with pseudoknots. How-
ever, including pseudoknots entails other complications, since most hypothet-
ical structures that violate condition (iii) would also be sterically impossible.
Furthermore, little is known about the energetics of pseudoknots, except for
some data on H-type pseudoknots [43], the simplest and most common type
of pseudoknot (Figure 2). Pseudoknots should therefore be regarded as a first
step toward prediction of RNA tertiary structure.

Secondary structures can be represented by “secondary structure graphs”
(first two panels in Figure 3). In this representation one creates a graph
whose nodes represent nucleotides. There are two kinds of edges: one kind
representing the adjacency of nucleotides along the RNA sequence and the
other kind representing base pairings. Condition (iii) above assures that this
graph is planar, more precisely an outer-planar graph, in which all nodes can be
arranged along a single face of the planar embedding made up by the edges
forming the RNA sequence. We can therefore draw the secondary structure
by placing the backbone on a circle and drawing a chord for every base pair
such that no two chords intersect.

Figure 2 Example of an H-type pseudoknot from beet western yellow
virus. The crystal structure (right) shows that the two helices S1 and
S2 are coaxially stacked to form a single 3-D helix.
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Figure 3 Representations of secondary
structures. From left to right: Circle plot,
conventional secondary structure graph,
mountain plot and dot plot. Removing
the backbone edges from the first two
representations leaves the matching Ω.

Below, the structure is shown in “bracket
notation”, where each base pair corresponds
to a pair of matching parentheses. The
structure shown is the purine riboswitch
(Rfam RF00167).
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1.3 Mountain Plots and Dot Plots

A representation that works well for large structures and is well suited for
comparing structures is the so-called mountain representation. In the moun-
tain representation a single secondary structure is represented in a 2-D graph,
in which the x-coordinate is the position k of a nucleotide in the sequence and
the y-coordinate the number m(k) of base pairs that enclose nucleotide k (third
panel in Figure 3).

Another possible representation is the dot plot, where each base pair (i, j)
is represented by a dot or box in row i and column j of a rectangular grid,
representing the contact matrix of the structure. Dot plots are well suited
to represent structure ensembles by superimposing structural possibilities. In
particular, they are used to represent thermodynamic ensembles by plotting
for each pair a box with area proportional to the equilibrium probability of the
pair pij. Similarly, mfold uses colors to indicate the best possible energy for
structures containing a particular pair (right-most panel in Figure 3).

1.4 Trees and Forests

Secondary structures can also be stored compactly in strings consisting of dots
and matching brackets: For any pair between positions i and j (i < j) we place
an open bracket “(” at position i and a closed bracket “)” at j, while unpaired
positions in the molecule are represented by a dot (“.”) (bottom of Figure 3).
Since base pairs may not cross, the representation is unambiguous.

An ordered forest F is a sequence of rooted ordered trees T1, T2, . . . , Tm such
that within each tree Ti the left-to-right order of siblings (children of the same
parent) is given. In order to represent RNA secondary structures as ordered
forests, we will need to associate a label from a suitable alphabet A with each
node.

This representation of secondary structures in terms of matched parentheses
suggests to interpret the structure as a tree [117, 119]. In the full-tree represen-
tation [32] each base pair corresponds to an interior node and each unpaired
base is represented by a leaf (Figure 4). A virtual root vertex is added mostly
for graphical reasons.

Leaves may be labeled with the corresponding unpaired base, while in-
terior nodes are labeled with the corresponding base pair. In an extended
representation, two leaves, one labeled with the 5′ and one labeled with the
3′ nucleotide of the base pair, are attached as the left-most and right-most
children to each interior vertex. In this representation the sequence of the
molecule can be read of the leaves of the Bielefeld tree in pre-order.

Various coarse-grained representations have been considered. Homeomor-
phically irreducible trees represent entire helices as interior nodes, while
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Figure 4 A variety of tree and forest representations of RNA
secondary structures have been described in the literature. From left
to right: conventional drawing, sequence annotated trees (as e.g.
used in RNAforester [51]), “full tree” [32], Shapiro-style tree [117]
and branching structure. For comparison, we also show the “bracket
notation”

leaves correspond to runs of unpaired bases. Optionally, the length of such
a structural element can be used as a weight. Shapiro–Zhang trees [117,
119] explicitly represent the different loop types (hairpin loop, interior loops,
bulges, multiloops) as well as stacked regions with special labels. Figure 4
summarizes a few examples.

1.5 Notes

Since RNA secondary structures are planar graphs, they can always be drawn
on paper without intersections. Nevertheless, finding a visually pleasing
layout is difficult especially for large structures. Layout algorithms for RNA
typically make use of the tree-like topology of secondary structure (e.g. Refs.
[18, 47, 98, 118]). The problem becomes more complicated when pseudoknots
are allowed [46].

2 Loop-based Energy Model

2.1 Loop Decomposition

Secondary structures can be uniquely decomposed into loops, i.e. the faces
of the planar drawing of the structure. More formally, we call a position k
immediately interior of the pair (i, j) if i < k < j and there exists no other base
pair (p, q) such that i < p < k < q < j. A loop then consists of the closing
pair (i, j) and all positions immediately interior of (i, j). As a special case the
exterior loop contains all positions not interior of any pair. The loops form a
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Figure 5 The major types of loops in RNA secondary structures.

minimal cycle basis of the secondary structure graph and this basis is unique
for pseudoknot-free structures [80].

A loop is characterized by its length, i.e. the number of unpaired nucleotides
in the loop, and its degree, given by the number of base pairs delimiting
the loop (including the closing pair). Loops of degree 1 are called hairpin
loops, interior loops have degree 2 and loops with degree above 2 are called
multiloops (Figure 5). Bulge loops are a special cases of interior loops in which
there are unpaired bases only on one side, while stacked pairs correspond to
an interior loop of size zero.

The loop decomposition forms the basis of the standard energy model
for RNA secondary structures, where the total free energy of a structure is
assumed to be a sum over the energies of its constituent loops. As the energy
contribution of a base pair in a helix now depends on the preceding and
following pair, the model is often called the nearest-neighbor model.

2.2 Energy Parameters

Note that a secondary structure corresponds to an ensemble of conformations
of the molecule at atomic resolution, i.e. the set of all conformations compati-
ble with a certain base-pairing (hydrogen-bonding) pattern. For example, no
information is assumed about the spatial conformation of unpaired regions.
The entropic contributions of these restricted conformations have to be taken
into account; hence, we are dealing with free energies which will be dependent
on external parameters such as temperature and ionic conditions.

Qualitatively, the major energy contributions are base stacking, hydrogen
bonds and loop entropies. While hydrogen bond and stacking energies in
vacuo can be computed using quantum chemistry, the secondary structure
model considers free energy differences between folded and unfolded states
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in an aqueous solution with rather high salt concentrations. As a consequence
one has to rely on empirical energy parameters.

Energy parameters are typically derived by following the unfolding of RNA
oligomers using a collection of energy parameters is maintained by the group
of David Turner [90, 91, 145]. These standard parameters are measured in a
buffer of 1 M NaCl at 37◦C. As examples we list the free energies for stacked
pairs in Table 1. Stacked pairs confer most of the stabilizing energy to a sec-
ondary structure, a single additional base pair can stabilize a structure by up
to −3.4 kcal mol−1. For comparison, the thermal energy at room temperature
is about RT = 0.6 kcal mol−1, i.e. the stabilizing energy contribution of a
single base pair is typically of the same order of magnitude as the thermal
energy. (RNA energy parameters are still published in kcal mol−1 to facilitate
comparison with previous parameter sets; 1 kcal mol−1 ≈ 4.2 kJ mol−1 in SI
units.)

In general, loop energies depend on the loop type and its size. Except for
small loops (which are tabulated exhaustively [90]), sequence dependence is
conferred only through the base pairs closing the loop and the unpaired bases
directly adjacent to the pair. Thus, the loop energy takes the form:

Eloop = Emismatch + Esize + Especial, (1)

where Emismatch is the contribution from unpaired bases inside the closing
pair and the base pairs immediately interior to the closing pair. The last
term is used, for example, to assign bonus energies to unusually stable tetra
loops, such as hairpin loops with the sequence motif GNRA. Polymer theory
predicts that for large loops Esize should grow logarithmically. For multiloops,
however, energies that are linear in loop size and loop degree have to be used
in order to allow efficient dynamic programming algorithms for structure
prediction. While the model allows only Watson–Crick (AU, UA, CG and GC)
and wobble pairs (GU, UG), nonstandard base pairs in helices are treated as
special types of interior loops in the most recent parameter sets.

The energy model above contains inaccuracies, on the one hand because it
assumes that loop energies are strictly additive, on the other hand, because

Table 1 Free energies for stacked pairs (in kcal mol−1).

CG GC GU UG AU UA

CG −2.4 −3.3 −2.1 −1.4 −2.1 −2.1
GC −3.3 −3.4 −2.5 −1.5 −2.2 −2.4
GU −2.1 −2.5 1.3 −0.5 −1.4 −1.3
UG −1.4 −1.5 −0.5 0.3 −0.6 −1.0
AU −2.1 −2.2 −1.4 −0.6 −1.1 −0.9
UA −2.1 −2.4 −1.3 −1.0 −0.9 −1.3

G

A

5’

5’

3’

3’
U

C

−2.4

kcal mol−1

Note that both base pairs have to be read in 5′–3′ direction.
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energy parameters carry experimental errors (typically about 0.1 kcal mol−1).
Most seriously, the sequence dependence of loop energies has to be kept
relatively simple in order to deduce the parameters from a limited number
of experiments.

2.3 Notes

Adjacent helices in multiloops may stack coaxially to form a single extended
helix. tRNA structures are prominent examples of this. In the four-armed mul-
tiloop the acceptor stem coaxially stacks on the T-stem and the anticodon stem
stacks on the D-arm. This results in two extended helices which then form
the L-shaped tertiary structure characteristic for tRNAs (Figure 1). Strictly
speaking, coaxial stacking goes beyond the secondary structure model, since
one has to know which helices in the loop will stack in order to include the
energetic effect; the list of base pairs is no longer sufficient information to
compute the energy. Coaxial stacking is also cumbersome to include in struc-
ture prediction algorithms. It has, however, been shown to improve prediction
quality [135]. Useful energy parameters for structures with pseudoknots have
so far only been collected for simple H-type pseudoknots [43].

3 The Problem of RNA Folding

3.1 Counting Structures and Maximizing Base Pairs

In order to understand the basic ideas behind the dynamic programming
algorithms for RNA folding, it is instructive to first consider the underlying
combinatorial problem: given an RNA sequence x of length n, enumerate
all secondary structures on x. Let xi denote the i-th position of x. We will
simply write “(i, j) pairs” to mean that the nucleotides xi and xj can form a
Watson–Crick or a wobble pair, i.e. xixj is one of GC, CG, AU, UA, GU or
UG. A subsequence (substring) will be denoted by x[i, . . . , j]. For notational
convenience we interpret x[j + 1, . . . , j] as the empty sequence and associate a
single empty structure with it.

The basic idea is that a structure on n nucleotides can be formed in only two
distinct ways from shorter structures: either the first nucleotide is unpaired,
in which case it is followed by an arbitrary structure on the shorter sequence
x[i + 1, . . . , j], or the first nucleotide is paired with some partner base, say
k. In the latter case the rule that base pairs must not cross implies that we
have independent secondary structures on the subintervals x[i + 1, . . . , k− 1]
and x[k + 1, . . . , j]. Graphically, we can write this decomposition of the set of
structures like this:
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i jj i i+1 j i i+1 k−1 k k+1
|=

It is now easy to compute the number Nij of secondary structures on the
subsequence x[i, . . . , j] from positions i to j [139, 140]:

Nij = Ni+1,j + ∑
k, (i,k) pairs

Ni+1,k−1Nk+1,j, (2)

with Nii = 1. The independence of the structures on x[i + 1, . . . , k − 1] and
x[k + 1, . . . , j] implies that we can simply multiply their numbers. This simple
combinatorial structure of secondary structures was realized by Waterman in
the late 1970s [139, 140].

Historically, the first attempts at secondary structure prediction tried to
maximize the number of base pairs in the structure. The solution to this
problem by the Nussinov algorithm [101] is very similar to the combinato-
rial recursion above. Denote by Eij the maximal number of base pairs in a
secondary structure on x[i, . . . , j]. Using the decomposition of the structure
set, we see that Eij is the optimal choice among each of the alternatives. In this
context, independence of two substructures in the paired cases implies that
we have to optimize these substructures independently. If we like, we can
associate each base pair with a weight (negative energy) βij which depends on
xi and xj; we arrive immediately at the recursion:

Eij = max

{
Ei+1,j, max

k, (i,k) pairs

{
Ei+1,k−1 + Ek+1,j + βik

}}
. (3)

Replacing the weights by binding energies (which are negative for stabilizing
interactions) we simply have to replace max by min in the above recursions. In
practice, this simplified energy model does not lead to reasonable predictions
in most cases. We use it here for didactic purposes and relegate a more
detailed description of the complete RNA folding problem to Section 3.3.

The energy contributions of individual base pairs are of the same order of
magnitude as the thermal energy at room temperature. Thus, RNA molecules
exist in a distribution of structures rather than in a single ground-state struc-
ture. Thermodynamics dictates that, in equilibrium, the probability of a
particular structure Ψ is proportional to its Boltzmann factor exp[−E(Ψ)/RT].
Here E(Ψ) is the energy of the sequence in conformation (secondary structure)
Ψ, R is the molar gas constant (Boltzmann’s constant in molar units) and T is
the absolute ambient temperature in Kelvin. This ensemble of structures is
determined by its partition function:
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Z = ∑
Ψ

exp(−E(Ψ)/RT) , (4)

or, equivalently, by the free energy ΔG = −RT ln Z. The partition function Z
can be computed in analogy to Eq. (3). Using Zij as the partition function over
all structures on subsequence x[i, . . . , j] we obtain [93]:

Zij = Zi+1,j + ∑
k, (i,k) pairs

Zi+1,k−1Zk+1,j exp(−βik/RT) . (5)

Note that we can transform the recursion for Eij in Eq. (3) into the equation
for Zij simply by exchanging maximum operations with sums, sums with
multiplications and energies by their corresponding Boltzmann factors.

The partition function allows us to compute the equilibrium probability of a
structure Ψ as p(Ψ) = exp[−E(Ψ)/RT]/Z. The formalism is also used to effi-
ciently compute the equilibrium probability of a base pair pij = ∑(i,j)∈Ψ p(Ψ).
To this end one needs to compute the partition function Ẑij of structures outside
the subsequence x[i, . . . , j] using a recursion similar to the one above for Z. We
can now compute the partition function over all structures containing the pair
(i, j) and thus its probability:

pij = ẐijZi+1,j−1 exp(−βij/RT)/Z . (6)

Further variants of this scheme can be employed to compute, for example, the
number of states with a given energy, to explicitly list all possible structures or
to determine structures that optimize other properties. In Section 5.5 we will
briefly mention how such variants can be constructed in a systematic way
within the framework of algebraic dynamic programming (ADP) [36].

3.2 Backtracing

Recursion (3) computes only the optimal energy, not an optimal structure
which realizes this energy. This is typical for most dynamic programming
algorithms: one first computes the value of the optimum, then uses backtracing
(sometimes called backtracking) to generate one (or more) structures in a step-
wise fashion based on the information collected in the forward recursions.
This section closely follows an exposition of the topic in Ref. [29]. The basic
object is a partial structure π consisting of a collection Ωπ of base pairs and a
collection Υπ of sequence intervals in which the structure is not (yet) known.
Positions that are known to be unpaired can easily be inferred from this
information. The completely unknown structure on the sequence interval
[1, n] is therefore ∅ = (∅, {[1, n]}) while a structure is complete if it is of the
form π = (Ω, ∅).
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Suppose I = [i, j] ∈ Υ are positions for which the partial structure π =
(Ω, Υ) is still unknown. If we know that i is unpaired, then π′ = (Ω′, Υ′) with
Ω′ = Ω Υ′ = Υ \ {I} ∪ {[i + 1, j]}. If (i, k), i < k ≤ j, is a base pair, then
Ω′ = Ω ∪ {(i, k)} and Υ′ = Υ \ {I} ∪ {[i + 1, k− 1], [k + 1, j]}. Here we use
the convention that empty intervals are ignored. Furthermore, base pairs can
only be inserted within a single interval of the list Υ. We write π′ = π � (i)
and π′ = π�(i, k) for these two cases.

The energy of a partial structure π is defined as:

E(π) = ∑
(k,l)∈Ω

βkl + ∑
I∈Υ

Eopt(I) , (7)

where Eopt(I) = Eij is the optimal energy for the substructure on the interval
I = [i, j].

The standard backtracing for the minimal energy folding starts with the
unknown structure. Instead of a recursive version we describe here a variant
where incomplete structures are kept on a stack S. We write π ← S to mean
that π is popped from the stack and π → S to mean that π is pushed onto the
stack.

If we want all optimal energy structures instead of a single representative
we simply test all alternatives, i.e. we omit the next in Algorithm B1, Table
2. It is now almost trivial to modify the backtracing to produce all structures
within an energy band Eopt ≤ E ≤ Emax above the ground state.

Stochastic backtracing procedures for dynamic programming algorithm
such as pairwise sequence alignment are well known [97]. Replacing Zij by Nij
in Algorithm B3 we recover recursions for producing a uniform ensemble of
structures similar to the procedure for producing random structures without
sequence constraint used in Ref. [127].

Note that the probabilities of π�(i + 1) and π�(i, k) for all k add to 1 so that
in each iteration we take exactly one step. Hence, we simply fill one structure
which we output as soon as it is complete. See Table 2.

3.3 Energy Minimization in the Loop-based Energy Model

Using the loop-based energy model is essential in order to achieve reasonable
prediction accuracies. As we shall see, the more complicated energy model
results in somewhat more complicated recursions and requires additional
tables. However, memory and CPU requirements are still O(n3) and O(n2).
The main difference from the simple model discussed in the previous sec-
tions is that we now have to distinguish between different types of loops.
Thus, we have to further decompose the set of substructures enclosed by
the base pair (i, k) according to the loop types: hairpin loop, interior loop
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Table 2 Comparison of backtracing recursions for different algorithms

Algorithm B1 [101, 150]:
Backtracing a single
structure

Algorithm B2 [144]:
Backtracing multiple
structures

Algorithm B3 [21]:
Stochastic backtracing

∅→S.
whileS 
= ∅

π← S;
if π is complete then output π
[i, j] = I ∈ Υπ.
π′ = π�(i + 1)
if E(π′) = Eopt then π′ →S;
next;
for allk ∈ [i, j] do

π′ = π�(i, k)
if E(π′) ≤ Eopt
then π′ → S; next;

∅→S.
while S 
= ∅

π←S;
if π is complete then output π
for all [i, j] = I ∈ Υπ do

π′ = π�(i + 1)
if E(π′) ≤ Eopt + ΔE
then π′ →S;
for allk ∈ [i, j] do

π′ = π�(i, k)
if E(π′) ≤ Eopt + ΔE
then π′ →S;

∅→S.
while S 
= ∅

π←S;
if π is complete then output π
for all [i, j] = I ∈ Υπ do

π′ = π�(i + 1)
π′ →S with probability
Z(π′)/Z(π)
for allk ∈ [i, j] do

π′ = π�(i, k)
π′ → S
with prob. Z(π′)/Z(π)

and multi(branched) loops (Figure 6). The hairpin and interior loop cases are
simple since they reduce again to the same decomposition step.

The multiloop case is more complicated, however, since the multiloop en-
ergy depends explicitly on the number of substructures (“components”) that
emanate from the loop. We therefore need to decompose the structures within
the multiloop in such a way that we can at least implicitly keep track of the
number of components. To this end we represent a substructure within a
multiloop as a concatenation of two components: an arbitrary 5′ part that
contains at least one component, and a 3′ part that starts with a base pair and
contains only a single component. These two types of multiloop substructures
are now decomposed further into parts that we already know: unpaired inter-

Figure 6 Decomposition of RNA secondary structure. Dotted lines
indicate unpaired substructures, while full lines denote arbitrary
structures; base pairs are indicated as arcs. Multiloop contributions
with an arbitrary number of components are shown as irregular
“mountains”. See text for further details.
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vals, structures enclosed by a base pair and (shorter) multiloop substructures
(Figure 6). It is not too hard to check that this decomposition really accounts
for all possible structures and that each secondary structure has a unique
decomposition.

Given the recursive decomposition of the structures, we can now rather
easily derive the associated energy minimization algorithm. We will use the
abbreviations H(i, j) for the energy of a hairpin loop closed by the pair (i, j),
similarly I(i, j; k, l) shall denote the energy of an interior loop determined
by the two base pairs (i, j) and (k, l). We will also tabulate the following
quantities:

Fij free energy of the optimal substructure on the subsequence x[i, . . . , j].

Cij free energy of the optimal substructure on the subsequence x[i, . . . , j]
subject to the constraint that i and j form a base pair.

Mij free energy of the optimal substructure on the subsequence x[i, . . . , j]
subject to the constraint that that x[i, . . . , j] is part of a multiloop and has
at least one component.

M1
ij free energy of the optimal substructure on the subsequence x[i, . . . , j]

subject to the constraint that that x[i, . . . , j] is part of a multiloop and has
exactly one component, which has the closing pair i, h for some h satisfying
i < h ≤ j.

The recursions for computing the minimum free energy of an RNA molecule
in the loop based energy model were first formulated by Zuker and Stiegler
[150]. They can be summarized as follows:

Fij = min
{

Fi+1,j, min
i<k≤j

(
Cik + Fk+1,j

) }

Cij = min

{
H(i, j), mini<k<l<j

(
Ckl + I(i, j; k, l)

)
,

mini<u<j
(

Mi+1,u + M1
u+1,j−1 + a

) }

Mij = min
{

mini<u<j
(
(u− i + 1)c + Cu+1,j + b

)
,

mini<u<j
(

Mi,u + Cu+1,j + b
)
, Mi,j−1 + c

}

M1
ij = min

{
M1

i,j−1 + c, Cij + b
}

, (8)

where we assume linear multiloop energies of the form EML = a + b ·degree +
c · size. In contrast to most implementations the version shown here decom-
poses structures in such a way that each substructure occurs exactly once.
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While this is not strictly necessary for energy minimization, it allows us to
use essentially the same recursions for all variants of the problem, including
the computation of the partition function, or the backtracing of all or a sample
of suboptimal structures.

3.4 RNA Hybridization

Intermolecular base pairing between two RNA molecules can be treated in the
same way as intramolecular interactions. The most straightforward approach
is to concatenate the two molecules. One can then apply the folding algo-
rithms for single molecules. There is only a single necessary modification to
the folding algorithms: the energy contribution of the loop that contains the
cut point is different. Implementations of this approach are RNAcofold [56]
and pairfold [5].

From a physics point of view, however, additional effects need to be taken
into account: the interaction of two distinct molecules is concentration de-
pendent. Furthermore, there is an additional (entropic) contribution for the
initiation of an intermolecular interaction. The extension of the folding algo-
rithms of course compute both inter- and intra-molecular contributions. It is
therefore necessary to correct for the initialization energy Ei:

ZAA = (Z◦AA − Z2
A) exp(−Ei/RT)

ZBB = (Z◦BB − Z2
B) exp(−Ei/RT) and

ZAB = (Z◦AB − ZAZB) exp(−Ei/RT) .

(9)

where Z◦ is the partition function as calculated from the folding algorithm
for the concatenated sequences, and ZA and ZB are the partition functions of
the isolated molecules A and B. Standard statistical thermodynamics can then
be used to compute the concentration dependencies of the complex formation
(e.g. Ref. [20] for a discussion in the context of RNA hybridization).

Various simplified approaches have been discussed in recent years. In par-
ticular, the most common approximation is to neglect the secondary structures
of the two interacting molecules. This amounts to a model in which the
concatenated structure can only have base pairs and interior loops, and the cut
point is located in the single hairpin loop. It does, however, result in a much
faster algorithm with time complexityO(n ·m) instead ofO((n + m)3) for two
sequences of length n and m. Algorithms for this case have been described in
Refs. [20, 105]; the Vienna RNA Package also provides an implementation.
The RNAhybrid program was in particular used to detect microRNA/target
interactions.
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3.5 Pseudoknotted Structures

Many functionally important RNA structures contain pseudoknots, including
rRNAs [12], RNase P RNAs [10, 49] and tmRNA [151]. Recently, algorithms
have been described that are able to deal with certain classes of pseudoknotted
structures. However, as we shall see below, these are plagued by considerable
computational costs. In addition, a common problem of all these approaches is
the still very limited information about the energetics of pseudoknots [43,66].

In the general case of unrestricted pseudoknots the problem is NP-complete
when a loop-based energy model is used [3, 86]. Arbitrarily complex pseu-
doknots, however, are also biologically unrealistic. While every secondary
structure has a plausible 3-D realization (this follows directly from the tree
structure of secondary structures), this is not true for more general structures:
it may well be impossible to embed a given arbitrary set of base pairs in
3-D space such that chemically reasonable distances are maintained. By
construction, such constraints cannot be incorporated into our graph-based
model of RNA structure. One remedy is to restrict oneself to certain (simple)
classes of pseudoknots.

Figure 7 shows the algorithmic problem with pseudoknots. In principle, one
could include (a certain type of) pseudoknots as additional structural elements
into the dynamic programming recursion. The further decomposition of the
structure, however, requires at least two coupled cut points, here k and l, even
if we assume that the structures of crossing arc sets are only single stems. This
increases the CPU requirements to at least O(n4). More realistic models, such
as the H-type model, require additional memory as well.

Figure 7 Additional requirements for computing pseudoknotted
structures. In order to evaluate the contribution for the pseudoknot
on [i, j] we need to iterate over all combinations of cutpoints k < l.

Algorithms for a number of different classes of pseudoknots have been pub-
lished in recent years, (e.g. Refs. [3, 22, 86, 104, 109]). Figure 8 summarizes the
relationships between the algorithmic complexities of predicting secondary
structures from some of these structure classes [16].

3.6 Notes

The basic counting recursion can be readily modified to enumerate other
quantities of interest such as the structures with particular properties and
distributions of structural elements (e.g. Ref. [58]). The combinatorics of RNA
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Figure 8 The most prominent classes of pseudoknotted structure are
those investigated by Reeder and Giegerich R&G [104], Dirks and
Pierce D&P [22], and Rivas and Eddy R&E [109].

secondary structures and related mathematical objects such as ordered trees,
Motzkin paths and noncrossing partitions is still an active area of research
(e.g. Refs. [13, 19, 81] and the references therein).

The recursions for the loop-based energy model as displayed above, in fact,
give rise to O(n4) CPU requirements due to the interior loop contribution.
However, very long interior loops are extremely unlikely (and unstable), so
that the length of interior can be bounded by a constant, e.g. M = 30. The
interior loop contribution thus remains quadratic. Under certain plausible
assumptions on the interior loop energies, a cubic time algorithm can be
designed [87] that takes interior loops of all sizes into account.

A restriction of the folding algorithm to local structure is described in Ref.
[57]. Here, the maximum span |j− i + 1| of a base pair (i, j) is bounded by a
constant L. The resulting “scanning” algorithms are linear in time and space,
and hence can be used to screen entire genomes for locally stable structures.

Circular RNA molecules are rare, but their secondary structures are of
considerable interest because structural features are important, e.g. in viroids
[108,123]. A straightforward way of dealing with circular RNA molecules is to
compute Cij and Mij also for the subsequences of the form x[j, . . . , n]x[1, . . . , i]
[149]. The disadvantage of this approach is, however, that it doubles the
memory requirements. An alternative is described in Ref. [60].

A secondary structure Ω is saturated if none of its stems can be elongated,
i.e. if any single base pair that is inserted into Ω does not stabilize the structure
by stacking to any other base pairs. The recursions (Figure 6) can be modified
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to produce only saturated structures [26]. Similarly, we may call Ω locally base
pair optimal if Ω cannot be expanded by any additional base pair. In Ref. [15]
a dynamic programming algorithm is described that computes such locally
optimal structures in quartic time with cubic memory requirements.

Prediction of pseudoknotted structures based on maximum matching can
be done using algorithms for Maximum Weighted Matching [125]. While
this approach requires only O(n3) time, it cannot take the loop-based energy
model into account. “Iterated loop matching”, i.e. the repeated (greedy) appli-
cation of the Nussinov algorithm, is another approximate way of computing
pseudoknotted structures [113]. Finally, heuristics such as genetic algorithms
can be used to compute pseudoknotted structures [78].

4 Conserved Structures, Consensus Structures
and RNA Gene Finding

4.1 The Phylogenetic Method

Most functional RNA molecules have characteristic secondary structures that
are highly conserved in evolution. Well-known examples include rRNAs,
tRNAs, RNase P and MRP RNAs, the RNA component of signal recognition
particles, tmRNA, group I and group II introns, and small nucleolar RNAs.
It is therefore of considerable practical interest to efficiently compute the
consensus structure of a collection of such RNA molecules.

Given a sufficiently large database of aligned RNA sequences, one can
directly infer a consensus secondary structure from the data. The basic idea
is that substitutions in the sequence will respect the common structural con-
straints. Therefore, substitutions in helical regions have to be correlated, since
in general only six (GC, CG, AU, UA, UG and GU) out of the 16 combinations
of two bases can be incorporated in the helix. Two columns in the alignment
thus will covary if they form a base pair.

For concreteness, assume that we are given a multiple sequence alignment
A of N sequences. By Ai we denote the i-th column of the alignment, while
aα

i is the entry in the α-th row of the i-th column. The length of A, i.e. the
number of columns, is n. Furthermore, let fi(X) be the frequency of base X at
aligned position i and let fij(XY) be the frequency of finding simultaneously
X at position i and Y at j.

The most common way of quantifying sequence covariation for the purpose
of RNA secondary determination is the mutual information score [14, 44, 45]:

MIij = ∑
X,Y

fij(XY) log
fij(XY)

fi(X) fj(Y)
. (10)
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Usually, the mutual information score makes no use of RNA base-pairing
rules. For large datasets this is desirable, since it allows us to identify non-
canonical base pairs and tertiary interaction. For the small datasets considered
in the following subsections, however, neglecting base pairing rules does more
harm (by increasing noise) than good. In particular, mutual information does
not account at all for consistent noncompensatory mutations, i.e. if we have,
say, only GC and GU pairs at positions i and j then Mij = 0. Thus, sites
with two different types of base pairs are treated just like a pair of conserved
positions.

A straightforward measure of covariation takes the form:

Cij = ∑
XY,X′Y′

fij(XY)DXY,X′Y′ fij(X′Y′). (11)

where a suitable choice for the 16 × 16 matrix D has entries DXY,X′Y′ =
dH(XY, X′Y′) if both XY ∈ B and X′Y′ ∈ B and DXY,X′Y′ = 0 otherwise.
Here B = GC, CG, AU, UA, GU or UG, and dH(XY, X′Y′) is the Hamming
distance of XY and X′Y′. The idea here is that consistent mutations such as
GC → GU should count less (here half) of a compensatory mutation such as
GC→ AU. Note that Eq. (11) is a scalar product, Cij = 〈 fijD fij〉 and hence can
be evaluated efficiently. If desired, D could be replaced by a different kernel
that, for example, could incorporate measured substitution rates [35].

The purely phylogenetic approach suffers from two limitations. (i) It re-
quires a very large set of sequences in order to obtain a reliable estimate of
covariance or mutual information for each pair of sequences. With the excep-
tion of rRNAs and tRNAs, such large datasets are usually not (yet) available.
(ii) It is sensitive to alignment errors and hence not applicable to very diverse
sets of sequences. A possibly remedy is provided by approaches towards
solving the folding and alignment problems simultaneously or iteratively.
These are discussed in the following section.

4.2 Conserved Structures

The amount of data that is required for inferring structures can be reduced
dramatically by taking thermodynamics of folding into account. Indeed, Ref.
[48] suggested to resolve ambiguities in the phylogenetic analysis based on
thermodynamic considerations.

However, the converse approach, i.e. to use the information which base
pairs are thermodynamically plausible, appears to be more efficient. Most
of the alignment-based methods therefore start from thermodynamics-based
folding and use the analysis of sequence covariations or mutual information
for postprocessing (see, e.g. Refs. [54, 59, 71, 77, 84, 85]). We describe here the
alidot algorithm (Figure 9) [54, 59].
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For each of the aligned sequences secondary structures are computed sep-
arately. The resulting lists of base pairs from either minimum free energy
calculations or from a partition function calculation are then superimposed by
using the multiple sequence alignment to determine which pairs in different
sequences are equivalent. For each pair we now have both thermodynamic
and sequence covariation information, which is used to hierarchically rank
order base pairs depending on their support across the entire data set. A
greedy procedure then extracts contiguous stems from the rank ordered list
and combines them to a partial secondary structure which contains only those
sequence/structure elements that are significantly conserved throughout the
aligned input sequences.

An alternative to the ranking/greedy approach of alidot is to compute a
score or weight wij for each possible base pair. The program ConStruct [84]
uses a simple scoring function that exclusively combines the base-pairing
probabilities of the individual sequences. Covariance or mutual information
score as well as contributions that consider the potential to extend the pair to a
longer helix [141] could easily be included. A secondary structure can then be
computed using the Nussinov algorithm with weights wij for the base pairs.
The downside of this approach is that it returns a global secondary structure
rather than a collection of well-supported local features.

Comparative approaches are based on the fact that RNA secondary struc-
ture is quite fragile against randomly placed point mutations. Our earlier
computational studies suggest that even with 85% sequence identity we
should expect no significant structural similarity [33, 116]. While this result

Figure 9 Flow chart of the alidot algorithm.
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may seem surprising, there has been convincing experimental evidence (see
e.g. Ref. [115]). Methods such as alidot thus can discriminate very well
between conserved and nonconserved RNAs. Both alidot and ConStruct
require interactive work and are therefore best suited for small genomes as
found in RNA viruses [61, 131, 142].

4.3 Consensus Structures

Sometimes it is known a priori that the aligned sequences should fold into
a common secondary structure. This is the case, for example, for rRNAs,
tRNAs and many other small noncoding RNA (ncRNA) molecules. In this
case it makes sense to ask, what is the most stable structure that can be
formed simultaneously by all (or almost all) input sequences? This problem
is solved in a rather straightforward way by RNAalifold [55]. It treats the
entire alignment like a single sequence and solves the secondary structure
problem for this “generalized sequence”. To this end, of course, an extension
of the standard energy model to alignments is required. RNAalifold simply
averages the energy contribution over all sequences. In the simple case of
base-pair-dependent energies this means:

βA
ij =

1
N ∑

α
βxα

i ,xα
j
. (12)

For the realistic energy model, energies for the different loop types are aver-
aged individually.

Both the mutual information score and the covariance score assign a bonus
to compensatory mutation. Neither score deals with inconsistent sequences,
i.e. with sequences that cannot form a base pair between positions i, j. The
simplest ansatz for this purpose is to simply count the number of sequences
qij that cannot form a canonical base pair between columns i and j. Here,
combinations of a nucleotide and a gap are counted as inconsistent while gap–
gap combinations (i.e. deletions of an entire base pair) are ignored.

In a multiple alignment of a larger number of sequences we have to expect
occasional sequencing errors and of course there will be alignment errors.
Thus, we cannot simply mark a pair of positions as nonpairing if a single
sequence is inconsistent. Furthermore, there is the possibility of a nonstan-
dard base pair [44]. Thus, we define a threshold value for the combined score
Bij = Cij − φ1qij and declare a pair of positions i, j as nonpairing if Bij is too
small.

Figure 10 shows the consensus structure of the mir-105 microRNA family
as an example. Such consensus structures are needed for the derivation of
pattern descriptions that can be used to search for structurally similar RNAs
in genomic DNA, as briefly described in the following section.
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4.4 RNA Gene Finding

It is, of course, possible to identify genomic sequences that are homologous
to known RNA genes, using either BLASTN or, as in the case of tRNAs, more
specialized methods. For most functional ncRNA molecules the secondary

Figure 10 Consensus secondary structure
of the 11 sequences from mammalian
microRNA mir-105. Sequences are taken
from the microRNA Registry (version 6.0)
and from BLAST searches in vertebrate
genomes. (a) Mountain plot: a base pair
(i, j) is represented by a slab ranging from
i to j. The 5′ and 3′ sides of stems thus
appear as up-hill and down-hill slopes,
respectively, while plateaus indicate unpaired
regions. Colors indicate sequence variation
by encoding the number of different types
of base pairs (GC, CG, AU, UA,GU, UG)

that occur in the two paired columns of the
alignment. Pairs with conserved sequence
are shown in red; ocher, green, cyan, blue
and violet indicate two to six types of base
pairs. Pairs with one or two inconsistent
mutations are shown in (two degrees of) pale
colors. (b) In the conventional secondary
structure graph paired positions are color
coded as in the mountain plot. Consistent
mutations are indicated by circles around the
varying position, compensatory mutations
thus are marked by circles around both
pairing partners.
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structure is much more conserved than their sequence. This can be used to
identify putative ncRNA sequences using programs such as RNAmot [34],
tRNAscan [83] or HyPa [40]. Nevertheless, all these approaches are restricted
to searching for new members of the few well-established families such as
tRNAs, small nucleolar RNAs, microRNAs and certain spliceosomal RNAs.

A different approach is taken in the program QRNA [110]. This method
for comparative analysis of two aligned homologous sequences can detect
novel structural RNA genes by deciding whether the substitution pattern
fits better with (i) synonymous substitutions, which are expected in protein-
coding regions, (ii) the compensatory mutations consistent with some base-
paired secondary structure or (iii) uncorrelated mutations.

The alidot approach has never been used for large-scale gene finding since
it has turned out to be nontrivial to assign statistical significance values to
its results. Most recently, however, a conceptually related technique has been
developed that is efficient and sensitive enough to allow genome-wide screens
for RNAs.

The program RNAz [138] combines a comparative approach (scoring con-
servation of secondary structure) with the observation [8,76,136] that ncRNAs
are thermodynamically more stable than expected by chance. This excess
stability is conveniently measured in terms of the z-score:

z =
E− E

σ
, (13)

where E and σ are mean and standard deviation of the distribution of shuffled
sequences. Instead of dealing with individual sequences, RNAz uses multiple
sequence alignments of potential RNAs from different species as input. The
computation of z by direct sampling is extremely time-consuming. In RNAz
it is therefore replaced by a support vector machine that has been trained to
solve the regression problems of estimating E and σ from properties of the
input sequences.

Structural conservation is also quantified in thermodynamical terms. The
structure conservation index S is defined as the ratio of the average energy of
the consensus structure (as computed by RNAalifold) and the average of the
unconstrained folding energies of the individual sequences. An alignment of
identical sequences thus has S = 1. On the other hand, completely unrelated
sequences will not be able to form a consensus structure since there are always
some sequences that contradict any particular pairing, thus S = 0. Sequences
that form a well-conserved consensus sequence in the presence of sequence
covariations, finally, will have the same energy contributions in the consensus
and in the individual folds. In addition, however, the consensus energy
contains the bonus contributions for sequence covariations, so that we obtain
S > 1. See Figure 11.
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RNAz uses a support vector machine (SVM) [17] to determine from the z-
score and the structure conservation index whether a given multiple sequence
alignment is a structurally conserved RNA. Surveys of animal genomes [96,

Figure 11 Scatter plot of structure conservation index S (x-axis) and
energy z-score (y-axis) for different families of structured ncRNAs. In
each panel, the properties of the true sequences (dark) are compared
with controls obtained by shuffling the sequence. Data are taken from
Ref. [138].
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137] reveal a very large number of previously unknown candidates for both
independent ncRNAs and structured cis-acting elements in mRNAs.

4.5 Notes

Including covariation information is also a good way to improve the accuracy
of structure predictions including pseudoknots. One approach is to forgo
a loop-based energy model and use base pair scores instead, in which case
the resulting Maximum Weighted Matching problem can be solved efficiently
[125]. Good accuracies can be achieved by using a combination of covariance
and thermodynamic criteria for scoring potential base pairs [141]. The ILM
program of Ruan and coworkers [113], uses the Nussinov algorithm itera-
tively in order to build pseudoknotted structures.

5 Grammars for RNA Structures

5.1 Context-free Grammars (CFGs) and RNA Secondary Structures

The recursions for RNA folding in Figure 6 suggest a close connection with
certain grammars. More precisely, we may interpret Figure 6 as the production
rules of an “RNA language”. The tree representations in Figure 4, on the other
hand, are suggestive of a connection between RNA structures and parse trees
of a grammar that generates RNA sequence. As we shall see in this section,
these connections can be made precise and open the door to the application of
learning techniques in RNA bioinformatics.

Recall that a formal language L is a set of strings over a given alphabet A.
A grammar G for the language L consists of:

• A set T of terminals which are the letters of the alphabet A possibly aug-
mented by the null-character ε.

• A set N of nonterminals which represent the syntactic categories of L
• A set P of production or derivation rules which are used to derive the strings

in L. Each production consists of a nonterminal “head” that is produced
and a string of zero or more nonterminal and terminals (the “body” of the
production)

• A single nonterminal S ∈ N that is designated as the start symbol.

The “dot-parenthesis” grammar for RNA, in the simplest case, can be written
as G0 = (T, N, P, s) with T = {(, ), ., ∅}, N = {S}, s = S and:

P =
{

S→ S., S→ (S)S, S→ ∅

}
, (14)
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where ∅ denotes the empty string. The grammar above is context-free since all
productions are of the form V → w, where V is a nonterminal and w is a string
consisting of terminals and/or nonterminals. The grammar generates strings
of dots and balanced parenthesis; the parse trees of this grammar correspond
to the secondary structures. More elaborate grammars can be designed that
explicitly encode different types of loops or other substructures. In particular,
the decompositions of the structure sets in Section 3.3 can be recast in terms of
a grammar:

F→ uF|CF|∅
C→ pL′ p̄ | pLCLp̄ | pMN p̄

M→ LC | MC | Mu

N → Nu | C
L′ → uuuL

L→ uL | ∅.

(15)

This grammar generates RNA sequences, while again the parse trees corre-
spond to secondary structures (Figure 12). The terminal u denotes an unpaired
base, while p and p̄ is a shorthand for one of the six pairing combinations of
bases. The start symbol F represents any structure, L stands for an unpaired
sequence within a loop, M and N represent the left and right half of a multi-
loop. The production for L′ enforces the minimum length of a hairpin loop.

Chomsky normal forms have only productions of the form V → XY and
V → a with V, X, Y ∈ N and a ∈ T. One can show that every context-free
grammar can be converted to normal form, i.e. there is a CFG in normal form
that produces the same language L.

Figure 12 Parse tree and secondary structure drawing for a small
example structure, using the grammar from Eq. (15). Productions of
the form L→ ∅ are left out for simplicity.
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Given a CFG G = (T, N, P, s) we obtain a stochastic CFG (SCFG) by assigning
probabilities P(α) to all productions α ∈ P such that ∑α∈P P(α) = 1 is
satisfied.

The probabilities associated with the individual productions take on the
role of the energy parameters in the previous sections. While the energy
parameters must be measured directly, the values of P(α) can be inferred from
training sets of known sequence/structure pairs in a generic machine learning
setting. Thus, they can, at least in principle, readily combine different sources
of information that can be expressed probabilistically, such as an evolutionary
model (derived from a comparative analysis of RNA sequences) and a bio-
physically motivated model of structure plausibility. In the following three
subsection we briefly outline the basic techniques: finding the most likely
parse-tree, computing the probability of a given word and the estimation of
production probabilities from a given dataset. None of these algorithms is
RNA specific; rather, they apply to any SCFG in Chomsky normal form.

5.2 Cocke–Younger–Kasami (CYK) Algorithm

The analog of the minimum free energy folding problem in the SCFG setting
can be phrased in the following way: given a string x ∈ L, find the most likely
parse tree for x in a grammar G.

Under the assumption that G is in Chomsky normal form, there is an
efficient (polynomial-time) solution to this question, the CYK algorithm [146].

Let w(i, j, V) denote the likelihood of the most likely parse tree on the
substring x[i, . . . , j] rooted at the nonterminal V. Clearly, we have w(i, i, V) =
log P(V → xi) for all i and V. For all larger substrings, j > i, we try all
productions of the form V → XY and select the one that maximizes the
likelihood. This immediately leads to the recursion

w(i, j, V) = max
X

max
Y

max
i≤k<j

[
log P(V → XY) + w(i, k, X) + w(k + 1, j, Y)

]
(16)

with the initialization w(i, i, V) = log P(V → xi). The same type of backtrac-
ing approach as in the Nussinov algorithm can be used to explicitly recover
the parse tree, which corresponds to the secondary structure of the RNA
molecule.

5.3 Inside and Outside Algorithms

Instead of retrieving the most likely parse tree one may instead be interested in
the probabilities of generating substrings in a particular way. In particular, let
p(i, j, V) be the probability that the “inside” substring x[i, . . . , j] is generated
by the nonterminal V. Furthermore, let q(i, j, V) be the probability that the
“outside” substrings x[1, . . . , i − 1] ∪ x[j + 1, . . . , n] are generated from the
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start symbol S under the condition that (the parse subtree of) the subse-
quence x[i, . . . , j] is rooted at V. Conceptually, these quantities correspond
to the partition functions inside and outside of a subsequence x[i, . . . , j]. It is
straightforward to derive the corresponding inside recursion:

p(i, j, V) = ∑
X

∑
Y

j

∑
k=i

P(V → XY)p(i, k, X)p(k + 1, j, Y), (17)

which is initialized with p(i, i, V) = P(V → xi). The outside recursion consists
of two parts, depending on whether the root V of the interior parse tree is the
right or the left nonterminal in the previous production. This yields:

q(i, j, V) = ∑
X

∑
Y

∑
k<i

P(Y → XV)p(k, i− 1, X)q(k, j, Y)

+ ∑
X

∑
Y

∑
k>j

P(Y → VX)q(i, k, Y)p(j + 1, k, X),
(18)

with the initial conditions q(1, n, S) = 1 and q(1, n, X) = 0 for all X ∈ N \ {S}.
The probability to produce the sequence x is:

P(x) = p(1, n, S) = ∑
X

q(i, i, X)P(X → xi). (19)

5.4 Parameter Estimation

One problem with SCFG approaches is that the production probabilities have
to be estimated from data. To this end, we compute the expected number c(V)
that V is used to parse x and the expected numbers c(α) that production α is
used in the derivation of x. It is straightforward to derive:

c(V) =
1

P(x)

n

∑
i,j=1

p(i, j, V)q(i, j, V)

c(V → a) =
1

P(x) ∑
i:xi=a

q(i, i, V)P(V → a)

c(V → XY) =
1

P(x)

n

∑
i,j=1

j

∑
k=i

q(i, j, V)p(i, k, X)p(k + 1, j, Y)P(V → XY).

(20)

Updated estimates for the production probabilities can thus be obtained as
P′(α) = c(α)/c(V) for all α ∈ P. The procedure is then repeated until
∑α |P′(α)−P(α)| < ε, where ε is a user-defined accuracy.

5.5 Algebraic Dynamic Programming

Algebraic Dynamic Programming (ADP) [36] was introduced to facilitate and
systematize the development of dynamic programming algorithms. Concep-
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tually, a dynamic programming algorithm consists of three components: a
search space of candidate solutions (in our case RNA secondary structures),
a scoring scheme (free energies, partition functions, etc.) and an objective
function [minimize (energy), sum up (Boltzmann factors)]. The idea behind
ADP is to separate these three aspects. For a comprehensive discussion of
ADP in the context of bioinformatics we refer to Ref. [36]. We can give here
only a very brief, qualitative sketch of the topic.

The search space is defined by a yield grammar, i.e. a tree grammar that
generates a string language by mapping its terminal symbols at the leaves of
the tree into sequences of symbols. A tree grammar is similar to a CFG, with
terminal and nonterminal symbols, and productions where the right-hand
sides are trees (formulas) from some underlying term algebra. Intuitively,
first the search space is “constructed” by enumerating all candidate solutions.
This is a parsing problem for which standard solutions, so-called tabulating
yield parsers, exist. Scoring and choice are described in terms of an evaluation
algebra, which is independent of the details of the search space.

The main advantage is that complex variants of folding problems can be
implemented very easily. It suffices to modify the grammar to restrict the
dynamic programming recursions to all canonical secondary structures, i.e.
those that have no isolated base pairs. Conversely, the evaluation algebra can
be changed easily. Once the energy model is implemented, one can change
the choice function from minimizing energies to adding up Boltzmann factors
or listing all structures within an energy range.

The restrictions of the search space can be quite dramatic. One can, for
example, restrict oneself to saturated secondary structures, which consist
solely of maximally extended stacking regions, i.e. no adjacent single-stranded
nucleotides exist that could form a base pair and stack on top of a helix [26]. A
particularly interesting application of the ADP framework is RNAshapes [37]
which can be used to systematically generate (sub)optimal RNA structures
belonging to distinct course-grained structural classes. For example, one can
search for the most stable clover-leaf shaped secondary structure that can be
formed by the input sequence.

5.6 Notes

Due to space restrictions we only gave a brief sketch of the SCFG approach
to RNA secondary structures. A variety of implementations of SCFG-based
algorithms are available for different purposes: pfold [74, 75] as an SCFG-
approach to “folding an alignment” similar in spirit to the thermodynamics-
based RNAalifold.

A general approach to computing suboptimal parse trees, similar in spirit to
the backtracing of RNA secondary structures with suboptimal energies, is de-
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scribed in Ref. [70]. A systematic comparison of several alternative grammar
models for RNA secondary structures showed that the actual performance of
SCFGs can depend considerably on the details of the grammar being used [23].

A practical problem for the application of SCFGs is that one needs a gram-
mar that is both unambiguous and in Chomsky normal form. The decom-
position of Figure 6, for example, does not satisfy this requirement, because
the last case in the second line, for example, requires nonterminals for the
closing base pair as well as for the two enclosed multiloop components.
Without discussing the details here, this creates problems in particular with
the multiloop decomposition.

Sean Eddy’s Infernal [25] creates a covariance model from local alignments
and can be used to search a sequence database for sequences that are likely
to be produced from this SCFG. Rsearch [73] aligns an RNA query to target
sequences, using SCFG algorithms to score both secondary structure and
primary sequence alignment simultaneously.

So-called pair SCFGs can be used to solve the combined folding and align-
ment problem in analogy to Sankoff’s algorithm described in the next section,
(e.g. Ref. [63]). The QRNA program [111] uses a pair SCFG to compute the
probability that the substitution pattern in a pairwise alignment is derived
from RNA secondary structure conservation. It has been used successfully
to predict ncRNA candidates in Escherichia coli and Saccharomyces cerevisiae
[94, 112]. Most recently, Pedersen and coworkers [102, 103] devised an SCFG-
based algorithm for detecting conserved secondary structure motifs specif-
ically within coding sequences. An SCFG-like approach to pseudoknotted
structures can be found in Ref. [11].

6 Comparison of Secondary Structures

Many classes of functional RNA molecules, including tRNAs, rRNAs and
many other “classical” ncRNAs, are characterized by highly conserved sec-
ondary structures, but little detectable sequence similarity. Reliable multiple
alignments can therefore be constructed only when the shared structural fea-
tures are taken into account. Since multiple alignments are used as input for
many subsequent methods of data analysis, structure-based alignments are
an indispensable necessity in RNA bioinformatics. This problem is far from
being solved in a satisfactory way, both because the available approaches are
computationally expensive and because little is known about the evolution of
RNA at the structural level, and hence on the appropriate edit cost parameters.
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6.1 String-based Alignments

The problem of comparing two structures Ψ1 and Ψ2 of the same RNA
molecule is trivial. Since a secondary structures is simply a set of base pairs
one may use, for example, the size of the symmetric difference between the
two sets |Ψ1Ψ2| as a distance measure that is obviously a metric. In other
words, we simply count the number of base pairs that occur in one of the
structures, but not in both,

The question immediately becomes nontrivial, however, if we do not as-
sume that the two structures have the same underlying sequence length, i.e.
if we do not know a priori which sequence positions in the two molecules
correspond to each other.

As we have seen, RNA secondary structures can be faithfully represented as
strings over the alphabet {(, ), .}. Clearly, we can use this string representation
to compute a metric on secondary structures by means of standard sequence
alignment methods, e.g. using the Needleman–Wunsch algorithm [99].

This approach can be generalized to a comparison of base pair probability
matrices [7]. From the pairing probabilities of base i we construct a vector
containing the probabilities of being paired upstream p<(i) = ∑j>i Pij, down-
stream p>(i) = ∑j<i Pji or unpaired p◦(i) = 1− p<(i)− p>(i). The resulting
profiles can be aligned by means of a standard string/profile alignment algo-
rithm in O(n2) time using:

ρ =
√

p>
A p>

B +
√

p<
A p<

B +
√

p◦A p◦B, (21)

as the match score (or 1− ρ as an edit cost). While this approach of “string-like
alignments” is fast, it often produces misaligned pairs (Figure 13).

Figure 13 Sequence versus structure alignment. Compared to the
structural alignment (right), the sequence alignment (from ClustalW)
misaligns five of the seven base pairs.

6.2 Tree Editing

The string-based alignments above essentially use only the information
whether a nucleotide is paired or unpaired, but neglect the connectivity infor-
mation who pairs with whom. This limitation can be overcome by methods
based on the tree representation of secondary structures. Of particular interest
are tree editing and the related tree alignment, since they are still fast enough
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to be applicable to genome wide surveys. We present these approaches in
detail here since there does not appear be a good textbook exposition of this
topic.

The three most natural operations (“moves”) that can be used to convert or-
dered trees (and, more generally, ordered forests) into each other are depicted
in Figure 14:

(i) Substitution (x → y) consists of replacing a single vertex label x by
another vertex label y.

(ii) Insertion (∅ → z) consists of adding a vertex z as a child of x, thereby
making z the parent of a consecutive subsequence of children of x. A
node z can also be inserted at the “top level”, thereby becoming the root
of a tree.

(iii) Deletion (z → ∅) consists of removing a vertex z, its children thereby
become children of the parent x of z. Removing the root of a tree produces
a forest in which the children of z become roots of trees.

Naturally, we associate a cost with each edit operation, which we will denote
by γ(x → y), γ(∅ → z) and γ(z → ∅) for substitutions, insertions and
deletions, respectively. We assume that γ is a metric on the extended alphabet
A ∪ {∅}. By using an appropriate alphabet of vertex labels, one can easily
include sequence information in the cost function.

Figure 14 Elementary operations in tree editing

A sequence of moves that transforms a forest F1 into a forest F2 is known as
an edit script. Its cost is the sum of the costs of edit operations in the script.

A mapping from F1 to F2 is a binary relation M ∈ V(F1)×V(F2) between the
vertex sets of the two forests such that for pairs (x, y), (x′, y′) ∈ M holds

(i) x = x′ if and only if y = y′ (one-to-one condition).

(ii) x is an ancestor of x′ if and only if y is an ancestor of y′ (ancestor
condition).

(iii) x is to the left of x′ if and only if y is to the left of y′ (sibling condition).
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By definition, for each x ∈ F1 there is a unique “partner” in y ∈ F2 such that
(x, y) ∈ M or there is no partner at all. In the latter case we write x ∈ M′1.
Analogously, we write y ∈ M′2 if y ∈ F2 does not have a partner in F1. With
each mapping we can associate the cost:

γ(M) = ∑
(x,y)∈M

γ(x → y) + ∑
y∈M′2

γ(∅→ y) + ∑
x∈M′1

γ(x→ ∅). (22)

Clearly, each edit operation gives rise to a corresponding mapping between
the initial and the final tree. In the case of a substitution, all vertices have
partners; in the case of insertion and deletion, there is exactly one vertex
without partner.

Mappings are relations and hence they can be composed in a natural way.
Consider three forests F1, F2 and F3 and mappings M1 from F1 to F2 and M2
from F2 to F3. Then:

M1 ◦M2 =
{
(x, z)

∣∣∃y ∈ V(F2) such that (x, y) ∈ M1 and (y, z) ∈ M2
}

, (23)

is a mapping from F1 to F3. It is easy convince oneself that the cost function
defined in Eq. (22) is subadditive under composition, γ(M1 ◦M2) ≤ γ(M1) +
γ(M2). Using this result and the fact that every mapping can be obtained as a
composition of edit operations one can show that the minimum cost mapping
is equivalent to the minimum cost edit script [128].

For a given forest F we note by F− x the forest obtained by deleting x and
F \ T(x) is the forest obtained from F by deleting with x all descendants of
x. Note that T(x)− x is the forest consisting of all trees whose roots are the
children of x.

Now consider two forests F1 and F2, and let vi be the root of the right-most
tree in Fi, i = 1, 2 and an optimal mapping M. Apart from the trivial cases,
in which one of the two forests is empty, we have to distinguish three cases.
(i) v2 has no partner in the optimal mapping. In this case, v2 is inserted and the
optimal mapping consists of an optimal mapping from F1 to F2− v2 composed
with the insertion of v2. (ii) v1 has no partner. This corresponds to the deletion
of v1. (iii) both v1 and v2 have partners. In this case (v1, v2) ∈ M.

To see this, one can argue as follows. Suppose (v1, h) ∈ M, h 
= v2 and
(k, v2) ∈ M. By the one-to-one condition, k 
= v1. By the sibling condition,
if v1 is to the right of k, then h must be to the right of v2. If v1 is a proper
ancestor of k, then h must be a proper ancestor of v2 by the ancestor condition.
Both cases are impossible, however, since both v1 and v2 are by construction
right-most roots.

For each of the three cases it is now straightforward to recursively compute
the optimal cost of M. We arrive directly at the dynamic programming



472 14 RNA Secondary Structures

recursion:

D(F1, F2) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(F1− v1, F2) + γ(v1 → ∅),

D(F1, F2 − v2) + γ(∅→ v2),

D(T(v1)− v1, T(v2)− v2)+
D(F1 \ T(v1), F2 \ T(v2)) + γ(v1 → v2).

(24)

which allows us to compute the tree edit distance D(F1, F2) from smaller
subproblems. The initialization is the distance between D(∅, ∅) = 0 of two
empty forests. In the cases where one of the two forests is empty, Eq. (24)
reduces to D(∅, F2) = D(∅, F2 − v2) + γ(∅ → v2) and D(F1, ∅) = D(F1 −
v1, ∅) + γ(v1 → ∅).

One can show that the time complexity of this algorithm is bounded by
O(|F1|2|F2|2). Various more efficient implementations exist (see in particular
Refs. [72, 148]). A detailed performance analysis of the algorithm by Zhang
and Shasha [148] is given in Ref. [24].

A common feature of all tree representations discussed above is that each
subtree T(x) rooted at a vertex x corresponds to an interval Ix of the underly-
ing RNA sequence. We can thus regard every pair (v1, v2) as a prescription to
match up the intervals Iv1 with Jv2 between the two input sequences. In par-
ticular, if v1 and v2 are leaves in the forests F1 and F2, then they correspond to
individual bases. Interior nodes serve as delimiters of intervals in Giegerich’s
encoding, while they correspond to base pairs in the encoding used in the
Vienna RNA Package. In either case, one can derive all (mis)matches directly
from M. The sibling and ancestor properties of M guarantee that (mis)matches
preserve the order in which they appear on the RNA sequence. All other
nucleotides, i.e. those that correspond to vertices v1 ∈ M′1 and v2 ∈ M′2, are
deleted or inserted, respectively, in the appropriate positions. Every mapping
M therefore implies a (canonical) pairwise alignment A(M) of the underlying
sequences.

6.3 Tree Alignments

An alternative way of defining the difference of two forests is using tree
alignments [69]. Consider a forest G with vertex labels taken from (A∪{−})×
(A ∪ {−}). Then we obtain restrictions π1(G) and π2(G) by considering
only the first or the second coordinate of the labels, respectively, and by then
deleting all nodes that are labeled with the gap character “–” (Figure 15). We
say that G is an alignment of the two forests F1 and F2 if F1 = π1(G) and
F2 = π2(G). Naturally, we score the alignment G by adding up the costs of the
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Figure 15 Alignment of two forests F1 and F2 and a mapping from F1
to F2 that cannot be derived from an alignment.

label pairs:

γ(G) = ∑
(v1,v2)∈G

γ(v1 → v2), (25)

where a pair (v1,−) corresponds to the edit operation (v1 → ∅). On the other
hand, an alignment G defines a mapping MG from F1 to F2 by setting (v1, v2) ∈
MG iff (v1, v2) ∈ G and neither v1 nor v2 is a gap character. One easily verifies
that the three defining properties of mapping are satisfied. Furthermore, it
follows that γ(MG) = γ(G) as pair of the form (v1,−) and (−, v2) corresponds
to deletion and insertion operations, respectively. Note that, in the special
case of two a totally disconnected forests, the problem reduces to ordinary
sequence alignment with additive gap costs.

However, as the example in Figure 15 shows, not all mappings derive from
alignments. It follows, therefore, that the minimum cost alignment is more
costly than the minimum cost edit script, in general.

In order to compute the optimal alignment, let us first investigate the
decomposition of an alignment at a particular (mis)match (v1, v2) or in/del
(−, v2) or (v1,−). We will need a bit of notation (Figure 16). Let F be an
ordered forest. By i : F we denote the subforest consisting of the first i trees,
while F : j denotes the subforest starting with the j + 1-th tree. By F↓ we
denote forest consisting of the children trees of the root v = rF of the first tree
in F. F→ = F : 1 is the forest of the right siblings trees of F.

Now consider an alignment A of two forests F1 and F2. Let a = rA be the
root of its first tree. We have either:

(i) a = (v1, v2). Then v1 = rF1 and vr = rF2 ; A↓ is an alignment of F↓1 and F↓2 ;
A→ is an alignment of F→1 and F→2 .

(ii) a = (−, v2). Then v2 = rF2 ; for some k, A↓ is an alignment of k : F1 and F↓2
and A→ is an alignment of F1 : k with F→2 .
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Figure 16 Decomposition of tree alignments.
(a) In the match case the subtrees F↓1 and F↓2
are aligned to form A↓ and, correspondingly,
the sibling subforests F→1 and F→2 must be
aligned to yield A→. (b) In the deletion case

the subforest F↓1 − v1 must be aligned with
a part k : F2 of the second forest. F→1 then
must be aligned with remainder of F2 : k of
the top-level trees of F2. The insertion case is
analogous to the deletion case, with the roles
of F1 and F2 exchanged.

(iii) a = (v1,−). Then v1 = rF1 ; for some k, A↓ is an alignment of F↓1 and k : F2
and A→ is an alignment of F→1 with F2 : k.

See Figure 16 for a graphical representation.
Let S(F1, F2) be the optimal score of an alignment of the forests F1 and F2.

For easier comparison with the tree-editing algorithm in the previous section
we formulate the problem here as a minimization problem. One can, however,
just as well maximize appropriate similarity scores. The three cases discussed
above and in Figure 16 imply the following dynamic programming recursion:

S(F1, F2) = min

⎧⎪⎨
⎪⎩

S(F↓1 , F↓2 ) + S(F→1 , F→2 ) + γ(v1 → v2)
mink S(k : F1, F↓2 ) + S(F1 : k, F→2 ) + γ(∅→ rF2)
mink S(F↓1 , k : F2) + S(F→1 , F2 : k) + γ(rF1 → ∅).

(26)

In the special cases where one of the forests is empty this reduces to S(∅, F2) =
S(∅, F↓2 ) + S(∅, F→2 ) + γ(∅ → rF2) for the insertion case, and S(F1, ∅) =
S(F↓1 , ∅) + S(F→1 , ∅) + γ(rF1 → ∅) for the deletion case. The initial condition
is again S(∅, ∅) = 0.

In order to estimate the resource requirements for this algorithm, we ob-
serve that we have to consider only those subforests of F1 and F2 that consist
of trees rooted at an uninterrupted interval of sibling nodes. These forests
have been termed closed subforests in Ref. [51]. If di is the maximum of the
number of trees and the numbers of children of the nodes in Fi, we see that
there are at most O(d2

i ) closed subforests at each node and hence at most
O(|F1| |F2|d2

1d2
2) entries S(F1, F2) need to be computed, each of which requires

O(d1 + d2) operations, i.e. tree alignments can be computed in polynomial
time. A compact, memory-efficient encoding of the subforests is described in
detail in Ref. [51], where a careful analysis shows that pairwise tree alignments
can be computed inO(|F1|d1 |F2|d2) space andO(|F1| |F2| d1 d2(d1 + d2)) time.
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6.4 The Sankoff Algorithm and Variants

David Sankoff described an algorithm that simultaneously allows the solution
of the structure prediction and the sequence alignment problem [114]. The
basic idea is to search for a maximal secondary structure that is common to
two RNA sequences. Given a score σij,kl for the alignment of the base pairs
(i, j) and (k, l) from the two sequences (as well as gap penalties γ and scores
αik for matches of unpaired positions) we compute the optimal alignment
recursively from alignments of the subsequences x[i, . . . , j] and y[k, . . . , l]. Let
Sij,kl be the score of the optimal alignment of these fragments. We have:

Sij;kl = max
{

Si+1,j;kl + γ, Sij;k+1,l + γ, Si+1,j;k+1,l + αik,

max
(p,q) paired

{
Si+1,p−1;k+1,q−1 + σij,pq + Sp+1,j;q+1,l

}}
.

(27)

Backtracing is just as easy as in the RNA folding case. Only now π is a
partial alignment of two structures and we insert aligned positions instead of
positions in individual structures. More precisely we have to insert individual
columns or pairs of columns of the form:

π�
(

i.
_

)
π�

(
_
j.

)
π�

(
i.
j.

)
π�

(
i( j)
p( , q)

)
, (28)

into a growing partial alignment π, just as we insert unpaired bases or base
pairs in the backtracing of the folding algorithm in Section 3.2.

This algorithm is computationally very expensive, however. It requires
O(n4) memory and O(n6) CPU time. Currently available software packages
such as foldalign [39,65] and dynalign [92] therefore implement only restricted
versions. The simple, maximum matching style version is used in pmcomp
[52] as an approach to comparing base pairing probability matrices.

6.5 Multiple Alignments

Pairwise alignment methods, be they for sequences or structures, can be
readily generalized to alignments of many objects. Usually, it is too costly
to compute optimal multiple alignments exactly and one therefore resorts
to heuristics such as progressive multiple alignments. pmmulti [52], for
example, produces multiple structural alignments in the context of the Sankoff
algorithm by calling pmcomp for pairwise alignments. For tree alignments,
the RNAforester programs can be used to compute both pairwise and pro-
gressive multiple alignments.

As we have seen above, the mappings produced by tree editing do not
correspond to tree alignments in general. These methods can therefore not
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be used for comparing multiple structures. The edit scripts can, however, be
interpreted in terms of a sequence alignment. One may therefore still use
these methods as the starting point for multiple sequence alignments. This is
the central idea of the MARNA program [121] which uses pairwise structural
alignments as input to the multiple alignment program T-Coffee [100].

6.6 Notes

Various variants, specializations and generalizations of the tree-editing ap-
proach have been described in recent years. Examples include efficient al-
gorithms for similar trees [67] and with simplified edit cost models [120].
Tree-editing with restricted mappings M satisfying stronger requirements on
structural conservation are described in Ref. [147]. Let lca(a, b) denote the
“last common ancestor” of a and b. For all (x′, x′′), (y′, y′′), (z′, z′′) ∈ M holds:
lca(x′, y′) is a proper ancestor of z′ if and only if lca(x′′, y′′) is a proper ancestor
of z′′. Other variants of tree edit distances have also been discussed (e.g.
Ref. [132]). A tree-edit model for RNA that allows additional “node-fusion”
and “edge-fusion” events is described in Ref. [4].

More general edit models with application to RNA structures are described
in Refs. [68, 88], an alignment distance for pseudoknotted structures can be
found in Ref. [9].

A very different approach to the pairwise comparison of RNA structures,
with or without pseudoknots, converts the RNA alignment problem into an
integer programming problem [79]. Recently, efficient algorithms based on
Lagrangian relaxation have been developed [6], that have helped to make the
performance of this approach comparable to other methods.

A partition function version of the Sankoff algorithm, which can be used
to compute the probabilities of all possible (mis)matches in a structural align-
ment of two RNA base pairing probability matrices is described in Ref. [53].
RNA structure comparison can also be recast in the SCFG framework [64]. The
corresponding pair-SCFG algorithms correspond to the Sankoff algorithm.

7 Kinetic Folding

7.1 Folding Energy Landscapes

The folding dynamics of a particular RNA molecule can also be studied suc-
cessfully within the framework of secondary structures. The folding process
is determined by the energy landscape [or potential energy surface (PES) in
the terminology of theoretical chemistry]. Instead of considering all possible
spatial conformations, it is meaningful to partition the conformation space
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into sets of conformations that belong to a given secondary structure. Instead
of a smooth surface defined on a space of real-valued coordinate vectors
we are therefore dealing with a landscape on a complex graph [107]. The
vertices of this graph are the secondary structures that can be formed by the
given RNA sequence, the edges are determined by a rule specifying which
structures can be interconverted and the height of the landscape at a structure
x is its free energy E(x). Typically, one considers a “move set” that allows
the insertion and deletion of single base pairs. In addition, a shift-move that
changes (i, j) to (i, k) or (h, j) is sometimes included [30]. Further coarse-
grainings of this landscape can be achieved, e.g. by considering secondary
structures as composed of stacks instead of individual base pairs.

7.2 Kinetic Folding Algorithms

Several groups have designed kinetic folding algorithms for RNA secondary
structures, mostly in an attempt to obtain more accurate predictions or in
order to include pseudoknots (see e.g. Refs. [2, 41, 89, 95, 126]). Only a few
papers have attempted to reconstruct folding pathways [42, 50, 124]. These
algorithms generally operate on a list of all possible helices and consequently
use move sets that destroy or form entire helices in a single move. Such a move
set can introduce large structural changes in a single move and, furthermore,
ad hoc assumptions have to be made about the rates of helix formation and
disruption. A more local move set is, therefore, preferable if one hopes to
observe realistic folding trajectories.

The process of kinetic folding itself can be modeled as homogeneous
Markov chain. The probability px that a given RNA molecule will have the
secondary structure x at time t is given by the master equation:

dpx

dt
= ∑

y∈X
rxy py(t) , (29)

where rxy is the rate constant for the transition from secondary structure y to
secondary structure x in the deterministic description [38]. The transition state
model dictates an expression of the form:

ryx = r0e−
E 
=yx−E(x)

RT for x 
= y and rxx = − ∑
y 
=x

ryx, (30)

where the transition state energies E 
=yx must be symmetric, E 
=yx = E 
=xy, and r0
is a scaling constant. In the simplest case one can use:

E 
=yx = max{E(x), E(y)}. (31)

For short sequences or very restricted subsets of conformations Eq. (29) can be
solved exactly or integrated numerically [126]. Solving the master equation
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for larger conformation spaces is out of the question. In such cases the
dynamics can be obtained by simulating the Markov chain directly by a
rejection-less Monte Carlo algorithm [27] and sampling a large number of
trajectories.

7.3 Approximate Folding Trajectories and Barrier Trees

An alternative approach to the direct simulation of the master equation (29)
starts with a more detailed analysis of folding energy landscape. Let us start
with a few definitions.

A conformation x is a global minimum if E(x) ≤ E(y) for all y ∈ X and a
local minimum if E(x) ≤ E(y) for all neighbors y of x. The energy Ê of the
lowest saddle point separating two local minima x and y is:

Ê[x, y] = min
p∈Pxy

max
z∈p

E(z), (32)

where Pxy is the set of all paths p connecting x and y by a series of con-
secutive transformations taken from the move set. If the energy function is
nondegenerate then there is a unique saddle point s = s(x, y) connecting x
and y characterized by E(s) = Ê[x, y]. To each saddle point s there is a unique
collection of conformations B(s) that can be reached from s by a path along
which the energy never exceeds E(s). In other words, the conformations in
B(s) are mutually connected by paths that never go higher than E(s). This
property warrants to call B(s) the basin of attraction below the saddle s.

Two situations can arise for any two saddle points s and s′ with energies
E(s) < E(s′). Either the basin of s is a “subbasin” of B(s′) or the two basins
are disjoint. This property arranges the local minima and the saddle points
in a unique hierarchical structure which is conveniently represented as a tree,
termed a barrier tree (Figure 17).

An efficient flooding algorithm [31] can be used to identify local minima
and saddle points starting, for example, from the complete list of suboptimal
secondary structures produced by the RNAsubopt program [144]. Consider
a stack Σ which initially contains all secondary structures in the order of
ascending energy. We pop the element z from the top of Σ and check which of
its neighbors we have already seen before, i.e. which of its neighbors have a
lower energy. There are three cases:

(i) z has no neighbor with lower energy, then it is a local minimum, i.e. a
new leaf of the barrier tree.

(ii) z has only lower energy neighbors that all belong the same basin, say
B(x). Then z itself also belongs to B(x).
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Figure 17 (a) Barrier tree of short artificial sequence
UAUGCUGCGGCCUAGGC. The leaves of the tree are the local minima
of the energy landscape. (b) Folding kinetics from the open structure.
Population density pα for the basin containing the local minimum α is
shown for the six largest basins as a function of time.

(iii) z has lower-energy neighbors in two or more different basins. In this case
z is the saddle point separating these basins, i.e. an interior vertex of the
barrier tree. For the subsequent computation we now unify all basins
connected by z into a new basin B(z) and remove its subbasins from the
list of “active” basins.

At the end, we are left with the barrier tree of the landscape. As a byproduct
we also obtain the assignment of each secondary structure to its basin B(x).
Instead of searching through the list of all previously encountered structures it
is more efficient to generate all neighbors of z and to check whether they have
already been seen before by means of a hash-table lookup. The procedure thus
runs in O(LD) time, where L is the length of the list of structures and D is the
maximal number of moves that can be applied to a secondary structure. The
barriers program implements this algorithm [31].

A description of the energy landscape or the dynamics of an RNA molecule
based on all secondary structures is feasible only for very small sequences. We
therefore need to coarse-grain the representation of the energy landscape. Let
Π = {α, β, . . . } be a partition of the state space. The classes of such a partition
are macrostates. As a concrete example consider the partition of X defined by
the gradient basins B(z) of the local energy minima. To each macrostate α we
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can assign the partition function:

Zα = ∑
x∈α

e−E(x)/RT, (33)

and the corresponding free energy:

G(α) = −RT ln Zα. (34)

The transition rates between macrostates can be obtained at least approx-
imately from the elementary rate constants using the assumption that the
random process is equilibrated within each macrostate [143]. Then:

rβα = ∑
y∈β

∑
x∈α

ryx
e−E(x)/RT

Zα
for α 
= β. (35)

We can use the transition state model to define the free energies of the transi-
tion state G 
= by setting:

rβα = r0e−
G 
=βα−G(α)

RT . (36)

A short computation then yields:

G 
=βα = −RT ln ∑
y∈β

∑
x∈α

e−
E 
=yx
RT , (37)

as one would expect.
In practice one can compute rβα “on the fly” while executing the barriers

program if two conditions are satisfied: (i) for each x we can efficiently
determine to which macrostate it belongs and (ii) the double sum in Eq. (35)
needs to be evaluated only for pairs of neighboring conformations (x, y).
Condition (i) is easily satisfied for each of the gradient basins: in each step
of the barriers algorithm all neighbors y of the newly added structures x that
have a smaller energy have already been processed. Condition (ii) is satisfied
by construction of the microscopic transition rates rxy, which vanish unless x
is a neighbor of y. In the case of short sequence, both the microscopic model
and the macro-state model can be solved exactly. In many cases (e.g. Figure 17)
the macro-state model provides a very good approximation of the dynamics.

7.4 RNA Switches

Some RNA molecules exhibit two meta-stable conformations, whose equi-
librium can be shifted easily by external events, such as binding of another
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molecule. This can be used to regulate gene expression, when the two mu-
tually exclusive alternatives correspond to an active and in-active conforma-
tion of the transcript. The best known example of such behavior are the
riboswitches [133] found in the 5′ untranslated regions of bacterial mRNAs,
where the conformational change is triggered by binding of a small organic
molecule.

Molecules that may be RNA switches can be recognized by inspection of the
barrier tree, but this is feasible only for rather short sequences. The paRNAss
program [134] instead uses a sample of suboptimal structures, and computes
for every pair of structures “morphological” distance (e.g. tree edit distance)
and a simple estimate of the energy barrier. The structures are then clustered
according to these two measures, RNA switches are expected to exhibit two
well separated clusters.

Interestingly, for any two secondary structures there exist sequences that are
compatible with both structures, i.e. that can form both structures in principle
[106]. If both structures are reasonably stable, it is not hard to design switching
sequences with these two structures as stable conformations [28].

7.5 Notes

The analysis of landscapes becomes technically more complicated when struc-
tures, in particular adjacent structures, may have the same energy. In this case
there is no unique definition of gradient basins and a variety of concepts, all
related to saddle points, have to be distinguished (see Ref. [31] for further
details).

The notion of barrier trees can be generalized to multivalued landscapes,
which arise, for example, in the context of multiobjective optimization prob-
lems with conflicting constraints [122].

A computationally simpler alternative to the macrostate approach for tran-
sition rate is to assume an Arrhenius law rβα ∼ exp(E 
=/RT) and to approxi-
mate the transition state energy E 
= by the energy of the saddle point between
the local minima α and β [143]

A generalization of the “intersection theorem” characterizes sets of more
than two secondary structures that can be realized simultaneously by a com-
mon RNA sequence [28]. This observation can be used as a starting point for
computational designs of switches with multiple states [1].

8 Concluding Remarks

Secondary structure drives the RNA-folding process, arguably even more so
than it is the case for proteins. This renders the prediction of RNA secondary



482 14 RNA Secondary Structures

structure highly relevant for the prediction of RNA structure and analysis,
in general. As this chapter shows, the field of RNA structure prediction is
comparatively well developed. As a matter of fact, it is one of the fields in
bioinformatics that benefits most comprehensively from algorithmic methods
derived from computer science. The comparatively technical makeup of this
chapter is a mirror of this phenomenon. Notably, very different questions,
which in the protein world require different mathematical models, can be
described and analyzed in the RNA case at the level of secondary structures:
the thermodynamics of folding as well as the thermodynamics of RNA–RNA
interactions are accessible via the same parameters and the same algorithms
that can also be used to compute consensus structures in an evolutionary
context or to investigate the dynamics of the folding process itself.

With the increased importance of RNA in biology, in general (consider, for
instance, the recent surge in work on RNA interference (see also Chapter 45)
and in the analysis of structural aspects of mRNA in the context of gene regu-
lation), RNA secondary structure prediction is rapdily becoming an obligatory
tool in the arsenal of bioinformatics analysis methods.
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15
RNA Tertiary Structure Prediction
François Major and Philippe Thibault

1 Introduction

During the last decade, the number of high-quality X-ray crystallographic
RNA three-dimensional (3-D) structures has increased significantly, and the
resolution of the large ribosomal subunit crystal structure was considered
a major step towards a better understanding of RNA tertiary structure and
folding. The recent discovery of the RNA interference (RNAi) pathway (see
Chapter 45) has also contributed greatly to the popularity of RNAs, by sug-
gesting their direct implication in genetic expression and regulation. More
than ever, determining rapidly and precisely the tertiary structure and func-
tion of noncoding RNAs is a crucial step towards our understanding of several
cellular metabolic pathways.

This chapter is dedicated to the RNA tertiary structure prediction problem –
the determination of the complete set of chemical interactions (and therefore 3-
D fold) of an RNA from sequence data. To achieve RNA structure prediction,
one needs to discover and apply its structural and architectural principles,
which can be learnt from thermodynamics, as well as from structural data
gathered from X-ray crystallography and other high-resolution, but also low-
resolution, experimental methods. Here, we present a series of nomenclatures
and formalisms to describe RNA tertiary structure, as well as computer data
structures and algorithms that implement three important research activities
with the aim of solving RNA tertiary structure prediction: annotation, motif
discovery and modeling.

We present in Section 2 a series of RNA structure components and the
terms employed by the RNA specialists to discuss them – their universe of
discourse (nowadays referred to as their ontology). First, we present an
ontology of nucleotide conformations and binary interactions. Then, visual
or automated inspection of RNA 3-D structures is necessary to depict higher-
order architectural principles (the next abstraction levels). In Section 3, we
introduce a definition of n-ary nucleotide interactions to describe RNA higher-
order motifs, which are found repeated in RNA structures, and are often
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linked to specific structural and biochemical functions, and an approach to
search them. Finally, in Section 4, we present how accurate computer models
of RNA tertiary structures can be generated and how, by challenging them
experimentally, they bring insights about function.

The flowchart in Figure 1 shows the relationships between structural
data and hypotheses, and how the research activities that aim at solving
the RNA tertiary structure prediction problem are intimately linked. The
high-resolution (better than 3 Å) X-ray crystal structures of the Protein Data
Bank (PDB) (www.rcsb.org) [1] constitute an excellent structural (learning)
data set that aids the research, and from which RNA tertiary structure
prediction algorithms can be inspired and tested. The characterization
and formalization of RNA structural data (annotation), the discovery of
high-order components (motif discovery) and the building of RNA tertiary
structure models (modeling) contribute directly to the learning and discovery
processes, leading to new knowledge that is fed back to research.

An ultimate solution to the tertiary structure prediction problem will pro-
vide us with invaluable structural information, and will allow us to determine
the function and the evolutionary relationships of RNAs. Knowledge of RNA
tertiary structure impacts on molecular medicine techniques to control genetic
expression, and to inhibit and activate specific cellular functions. The cell
controls its own genetic expression by processing micro RNAs through the
RNAi pathway. As we discover and characterize the elements of RNAi, we
learn how to design RNAs that interfere and block the expression of several
genes. Knowledge of the structure and of the interplay between the RNAs
and the other RNAi elements is fundamental. Alternatively, we could target
the natural micro RNAs of the cell using drugs. Again, knowledge of the
targeted RNA structure is necessary to design accurate drugs. Targeting
the noncoding RNAs of the cell allows us to manipulate its fundamental
mechanisms prior to protein translation; like playing with the “source code”
of the cell. Antibiotics such as aminoglycosides and macrolides target the
site-A of prokaryotic ribosomes, blocking protein translation. The search and
discovery of other sites in the ribosome or in other RNAs involved in such
fundamental mechanisms require the determination of their tertiary structure
if we want to design drugs capable of inhibiting them. Ribozymes are catalytic
RNAs that can cleave a substrate efficiently and precisely. For instance,
ribozymes can be used to cleave a messenger prior to its translation by the
ribosome. Here, again, knowledge of the tertiary structure of ribozymes and
of their complex with the substrate is essential for rational design.
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Figure 1 Data flow and research activities of tertiary structure
prediction. Structural data are used to develop the (computational)
tools employed by the researchers to annotate, inspect and model
RNA tertiary structures. Structural hypotheses are generated and,
when challenged experimentally, bring new structural data to research.

2 Annotation

The annotation of an RNA tertiary structure is the assignment (manual or
automated) of appropriate symbols, taken from the RNA ontology, that apply
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to a given RNA. One can see annotation as a data refinement process that
complements the 3-D atomic coordinates – a different and perhaps higher
level of abstraction which can be thought of as an efficient and sound data
format to study further tertiary structures.

A human RNA expert recognizes the attributes of tertiary structures by
visualization using interactive computer graphics and can therefore annotate
a given RNA 3-D structure. An automated procedure loads the RNA 3-D
atomic coordinates in memory and then computes the annotations. Gendron
and coworkers have developed a computer program, MC-Annotate, which
annotates a fraction of the current RNA ontology, in particular the terms
related to the nucleotide conformations, as well as base stacking and base
pairing types [2] (see Section 2.2). MC-Annotate can be run over the web
(www-lbit.iro.umontreal.ca; under Research and MC-Annotate). Westhof and
coworkers, in collaboration with the PDB, developed RNAView, a computer
program that draws the secondary structure of an RNA while using the LW
nomenclature (see Sections 2.2.2) to display the base pair types [3]. RNAView
is accessible on the web (ndbserver.rutgers.edu/services).

In this section, we present a series of RNA tertiary structure attributes and
how they can be computed from 3-D atomic coordinates from X-ray crys-
tallographic structures of the PDB. We present the nucleotide conformations
(Section 2.1) and interactions (Section 2.2) that are needed to define higher-
order RNA components (Section 3), and to build and describe RNA tertiary
structure (Section 4).

2.1 Nucleotide Conformations

RNAs are polymeric molecules. The monomer unit is a ribonucleotide, or
simply nucleotide, which divides in three units: the nucleobase (or simply
base), the ribose and the phosphate group (see Figure 2). There are four bases:
adenine (A), guanine (G), cytosine (C) and uracil (U). The four bases partition
in two families: the pyrimidines (Y) C and U, which are composed of a single
pyrimidine ring, and the purines (R) A and G, which are composed of the
fusion of the pyrimidine ring (C4H4N2) and an imidazole ring (C3H4N2). The

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2 RNA chemical structure. The
polynucleotide chain (on the left) is made
of the bases (hexagons), riboses (pentagons)
and phosphate groups (diamonds). The four
common types of bases (on the right): the
two purines adenine and guanine, and the
two pyrimidines cytosine and uracil. The
phosphodiester linkage (middle) connects

two nucleotides. The ribose (center) links
two phosphate groups: one to its 5′ oxygen
(above) and the other to its 3′ oxygen
(below). The conventional atomic numbering
system is used. Small black circles represent
the carbon atoms and their complementary
hydrogen atoms are not shown.
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International Union of Pure and Applied Chemistry (IUPAC) defined a one-
letter code for all possible subsets of {A, C, G, U} (shown in Table 1).

Table 1 IUPAC nucleotide nomenclature

Code Nucleotide subset
M {A, C}
R {A, G}
W {A, U}
S {C, G}
Y {C, U}
K {G, U}
V {A, C, G}
H {A, C, U}
D {A, G, U}
B {C, G, U}
N {A, C, G, U}

The ribose links the phosphate groups to which the bases are attached by the
glycosidic bond: C1′–N9 in purines and C1′–N1 in pyrimidines. The riboses
and the phosphate groups constitute the backbone, and are linked through
diester bonds: C5′–O5′ and C3′–O3′. The chain C3′–O3′–P–O5′–C5′ from one
ribose to another is referred to as the phosphodiester linkage that ties the
nucleotides together (see Figure 2).

When 3-D points represent the center of the atoms in the structure, the cova-
lent bond lengths, and the bond and torsion angles can be computed directly.
The covalent bond length between atoms A and B is simply defined by the
Cartesian distance between points A and B. The covalent bond angle between
atoms A, B and C is defined by the angle between vectors

−→
BA and

−→
BC. Finally,

the covalent bond torsion angle between atoms A, B, C and D is defined by the
angle between the projection of

−→
BA and

−→
CD in a plane perpendicular to

−→
CD.

In general, bond lengths and angles are considered constant in most computer
prediction systems. Consequently, the 3-D conformation of a nucleotide can
be described by its torsion angles. The phosphodiester linkage has six torsions
(α, β, γ, δ, ε and ζ), the ribose has five torsions (θ0–θ4) and there is one torsion
around the glycosidic bond (χ) (see Figure 3a).

Note the δ and θ1 torsions are measured on the same covalent bond, C3′–
C4′, but from different end-points, respectively, C2′ and O4′ in the ribose for
θ1, and C5′ and O3′ in the phosphodiester chain for δ. The glycosidic torsion,
χ, is measured respectively in purines and pyrimidines from atoms O4′–
C1′–N9–C4 and O4′–C1′–N1–C2. The furanose ring stereochemistry imposes
interdependent relations on θ0−4, which is expressed by the cosine function:

θj = θmax cos(ρ + jϕ), (1)

where j = 0, . . . , 4 and ϕ = 144◦ (720◦/5).
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Figure 3 The nucleotide torsion angles.
(a) Individual torsions are shown using grey
arrows: χ on the glycosidic bond between
the base and the ribose, θ0−4 around
the ribose, and α, β, γ, δ, ε and ζ along
the phosphodiester chain (θ1 and δ are
defined on the same covalent bond). (b) θ0
measurement. The torsion is computed as

the angle between the projection of vectors−−−→
C2′C1′ and

−−−→
C3′C4′ in the plane perpendicular

to vector
−−−→
C2′C3′ (crossed circle). (c) The 2T3

twist shape C2′-exo–C3′-endo ribose pucker
mode. (d) The 3E envelope shape C3′-endo
ribose pucker mode. (e) The 2E envelope
shape C2′-endo ribose pucker mode.

When j = 0, we have:

θ0 = θmax cos(ρ). (2)

In Eqs. (1) and (2), ρ is the pseudorotation of the ribose ring [4]. By varying
ρ from 0 to 360◦ by steps of 90◦, θ0 goes from θmax to 0, to θ–θmax, back to
0 and, finally, back to θmax. The θmax value is reached twice – at the initial
conformation [ρ = 0, as cos(0) = 1] and at ρ = 360◦. At each step of ρ + 180◦,
the sign of all torsions is inversed, corresponding to the mirror image of
the conformation at ρ. A useful equation is derived from Eq. (1), which
determines ρ:

tan ρ =
(θ2 + θ4)− (θ1 + θ3)
2θ0(sin 36◦ + sin 72◦) . (3)

Equation (2) determines θmax.
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Two geometric shapes characterize the stereochemistry of the ribose: en-
velope and twist (or half-chair). The ribose forms an envelope when only
one of the five atoms of the furanose (C1′, C2′, C3′, C4′ or O4′) is out of
the plane formed by the four others. The ribose forms a twist when two
atoms are out of the plane formed by the remaining three. In a 360◦ period
of the pseudorotation angle, the ribose stereochemistry alternates from the
envelope to the twist shapes, successively, on each atom. At ρ = 0◦, the
ribose is in the twist shape with the C3′ atom above and the C2′ atom below
the plane, which is conveniently denoted by 3T2 (numbered atom above
the plane in superscript and below the plane in subscript), as illustrated
in Figure 3(c). All molecule 3-D rendered images were generated using
MolScript [5] and Raster3D [6], as well as PyMOL (www.pymol.org). When
the ball-and-stick representation is used, sphere radii are proportional to
atomic masses (C < N < O < P). Then, the geometry of the ribose shifts at
each 18◦; for ρ ∈ [18◦, 36◦], the ribose forms an envelope with the C3′ atom
above the plane, 3E (see Figure 3d); for ρ ∈ [36◦, 54◦], the geometry changes to
3T4; 4E for ρ ∈ [54◦, 72◦] and so forth for the 20 different geometries [7]. The
ribose geometries are referred to as the sugar pucker modes. Another widely
used ribose pucker mode nomenclature among RNA structure specialists is
one where the atom(s) bulging out of the plane are suffixed with either endo
or exo, respectively, for above and below the plane. Thus, in the example of
Figure 3(c), the 3T2 shape is equally named C2′-exo-C3′-endo; C3′-endo for the
example in Figure 3(d) and C2′-endo for the example in Figure 3(e).

Single-stranded RNAs fold back on themselves to form double-stranded
helices in the A-RNA conformation which is similar to the A-DNA double
helix. Among all 20 ribose pucker modes, the C3′-endo is the most common,
as it is the conformation of the riboses in the Watson–Crick base pairs of the
A-RNA double helix (Figure 4). The asymmetry of the Watson–Crick base
pair geometry (Section 2.2.2) induces the formation of two grooves in the
helix. The major groove of the A-RNA double helix is narrow and deep,
whereas the minor groove is broad and shallow (Figure 4b). Theoretically,
the C2′-endo mode, adopted by the nucleotides in the B-RNA double-helical
form, is unstable because of the proximity of the 2′-OH groups to the bases.
Nevertheless, a good fraction of RNAs contain nucleotides in the C2′-endo
conformations, as in loop regions and at the extremities of a double helix.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4 Type A-RNA double helix. (a) The bases form stacked
Watson–Crick base pairs. The 5′-strand is shown in dark; the 3′-strand
in light. The thread follows the phosphorus atoms. The hydrogen
atoms are not shown. (b) Major and minor grooves. The bases are
in red; the backbone in blue. The 3-D structures were generated by
MC-Sym (see Section 4.2).
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In addition to the pucker mode, the glycosidic torsion χ is also divided in
a range of values. The anti conformation characterizes a base oriented away
from the ribose. From χ = 180◦, where the plane of the base is aligned with
the O4′–C1′ bond in a direction away from O4′, the anti conformation covers a
rotation of±90◦: χ ∈ [–180◦, –90◦] and χ∈ [90◦, 180◦] (see Figure 5a). At χ = 0◦,
where the plane of the base is aligned with the O4′–C1′ bond in a direction
towards the O4′ atom, the syn conformation covers the remaining rotations of
±90◦: χ ∈ [–90◦, 90◦] (see Figure 5b). The nucleotide conformations in both
the A-RNA and B-RNA double-helical forms adopt the anti conformation.

Figure 5 The glycosidic bond torsion. The ranges of χ values are
shown in grey. (a) The anti conformation aligns the base away from
the ribose. (b) The syn conformation aligns the base towards the
ribose.
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The nucleotide conformations can be annotated directly from their torsion
angles: θ0−4 to determine the ribose puckering modes (C3′-endo, C2′-endo, etc.)
and χ to determine the base to ribose relative orientation (anti or syn).

As mentioned above, the nucleotide conformation is mainly, if not com-
pletely, characterized by its free torsion angles. Consequently, many attempts
aim at classifying nucleotide conformations according to torsion angles. In the
late 1970s, Olson reduced the six phosphodiester chain torsions to two pseu-
dotorsions of virtual bonds spanning the chain in two C–C–O–P segments
(C4′–C5′–O5′–P and C4′–C3′–O3′–P). She reported a statistical correlation
between the individual torsions and those spanned by the two pseudotorsions
[8]. Gautheret and coworkers proposed a different approach that analyzed
the clustering of dinucleotide conformations. They used a RMSD distance to
compare pairs of dinucleotides aligned by their P–O3′ bond. The clustering
discriminated families of dinucleotides with similar P–P orientations, and
was used as the basis of a conformational search space in early versions of
the MC-Sym computer program (see Section 4.2) [9, 10]. They observed with
this approach the “crankshaft effect” [11], as different torsion patterns lead to
similar 3-D conformations. In more recent studies, Duarte and coworkers ex-
tended Olson’s work by defining two pseudotorsions and identified recurrent
torsion patterns as well [12].

Hershkovitz and coworkers analyzed individual Gaussian distribution data
fitting of the four backbone torsions α, γ, δ and ζ in the crystal structure of
Haloarcula marismortui 23S rRNA. They identified 37 different conformers from
which they defined nucleotide signatures [13]. Others, such as Murray and
her colleagues, have classified three-torsion patterns (α, β, γ) and (δ, ε, ζ) into
42 conformers by applying quality filtering to high-resolution X-ray crystal
structures [14]. According to them, each nucleotide conformer represents
a high-quality reference nucleotide conformation. Schneider and coworkers
have analyzed the torsion angles of dinucleotides by Fourier averaging of
six selected 3-D distributions. They found 18 conformers, apart from the
overrepresented A-RNA helical conformation [15]. Similarly to Gautheret and
coworkers, they concluded the structural conformational space of RNA 3-D
structures could be sampled by a small number of dinucleotide conformers.

2.2 Nucleotide Interactions

Inter-nucleotide interactions contribute to the overall stability of RNA tertiary
structure. The obvious example is the stacked Watson–Crick base pairs that
forms the A-RNA double helix. Interactions outside double helices that are
distant in sequence are often referred to as tertiary interactions and play a
major role in RNA folding. Here, we define and present a nomenclature to
describe base stacking and base pairing information.
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2.2.1 Base Stacking

Base stacking involves London dispersion inter-molecular interactions be-
tween two bases that induce a 3-D arrangement where one base is stacked on
top of the other (see Figure 4). Bases can stack towards each side and therefore
there are four different base stacking types. To identify on which side a base
is stacked, a vector normal to the plane of the base is defined so that any
base in a classical A-form helix have their normal vectors oriented in the same
direction; towards the 3′-strand end-point. In pyrimidines, this normal vector
is the rotational vector−→n Y obtained by a right-handed rotation from N1 to N6
around the pyrimidine ring. The pyrimidine ring in purines is reversed with
respect to that of pyrimidines, as stacked in the A-form helix, and therefore
the pyrimidine ring normal vector for purines must be reversed. We define−→σ
as the normal vector for any base: −→σ = −→n Y in cytosine and uracil, whereas−→σ = −−→n Y in adenine and guanine (see Figure 6a). When bases A and B
stack, −→σ A is in the same or opposite direction to −→σ B, and B is either above
or below A. Therefore, a base stack is “straight” or “reverse” and the second
base is either “above” or “below”.

The four cases are shown in Figure 6(b). The “upward” stacking corre-
sponds to “straight” and “above”; “downward” to “straight” and “below”;
“inward” to “reverse” and “above”; and “outward” to “reverse” and “below”.
Consequently, the base stack in A-form helices is “upward”. The four cases
can be written using the less than (<) and greater than (>) characters. For
instance, if A and B stack inward, then we can simply write “A >< B” (see
Figure 6b).

Note that base stacking is independent of the backbone direction. Two adja-
cent bases in a sequence can be stacked in any of the four cases. As an example,
consider the A-riboswitch aptamer module adenine-sensing messenger RNA
(mRNA) crystal structure from Vibrio vulnificus (PDB ID 1Y26), where U22
and A23 are stacked downward (U22 << A23) (see Figure 7). This particular
stacking interaction occurs at a junction that connects two fragments inside
the adenine-sensing pocket. Both U22 and A23 participate in base triples (a
base simultaneously pairs to two other bases) [16].

MC-Annotate implements base stacking as in Gabb and coauthors [17],
by using the distance between the ring centers, and the dihedral angle and
horizontal shift between the rings. As purines are made of two rings, the
pyrimidine and imidazole, both are verified. The base stacking interactions
are labeled according to the nomenclature above. Note that biased cutoffs on
each parameter are needed to decide whether two bases stack.
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Figure 6 Base stacking. (a) The base normal vector −→σ in terms
of the pyrimidine ring normal vector −→n Y. In pyrimidines (left, here
a cytosine), −→σ is defined as −→n Y, the rotational vector obtained
from a right-handed rotation around the pyrimidine ring from atoms
1–6. In purines (right, here a guanine), −→σ is defined as −−→n Y.
(b) Nomenclature of the four stacking cases. Bases A and B are
represented by planes.
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Figure 7 A-riboswitch aptamer. (a) Secondary structure. The bases
shown in color are involved in two base triples: U22 (blue) with A52
(red) and A73 (orange), and G46 (green) with U23 (blue) and C53
(red). U22 and A23 are stacked downward. The LW nomenclature is
used: w for water-mediated; circle for W; square for H; triangle for S.
(b) Tertiary structure of the two base triples. The arrows indicate each
normal vector, −→σ
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2.2.2 Base Pairing

Base pairing involves the formation of hydrogen bonds between exocyclic
hydrogen donor groups (mainly NH and NH2) and acceptor groups (mainly
CO and N). The well-known canonical Watson–Crick G=C and A–U base pairs
have three and two hydrogen bonds, respectively. Successive Watson–Crick
base pairs that stack upward result in the A-form helix, also called stem (see
Figure 4). The determination of the helices of an RNA from sequence data is
the goal of secondary structure prediction (see Chapter 14). As stems have
a tight and local 3-D structure, they are often manipulated as rigid objects in
computer modeling. Other than Watson–Crick base pairs abound in RNAs;
near 20% in the yeast phenylalanine transfer RNA (tRNA-Phe) and near 50%
in the large ribosomal subunit), and are often qualified as “non-canonical”, or
non-Watson–Crick.

In his famous 1984 book, Saenger compiled 28 base pairing patterns involv-
ing at least two hydrogen bonds [7]. Each base pair was assigned a roman
number: for instance XIX for the G=C Watson–Crick base pair, XX for the A–
U Watson–Crick base pair, XXIII for the “Hoogsteen” A–U base pair, XXIV for
the “reverse Hoogsteen” A–U base pair and XI for the “sheared” G–A base
pair; see Ref. [7], p. 120 for the complete list).

More recently, Leontis and Westhof proposed a new nomenclature, LW [18].
In LW, three hydrogen bond contact edges (W = Watson–Crick, H = Hoogsteen
and S = Sugar) were defined in each base (see Figure 8). To describe a base pair,
one has simply to name its interacting edges. For the Watson–Crick base pair,
since the hydrogen bonds are formed by chemical groups on the W edges of
each base, we refer to it as W/W. In addition, the relative orientation of the
riboses with respect to the plane of the base pair is annotated as cis or trans,
respectively, if the glycosidic bonds extend towards the ribose are in the same
(as in the A-form helix) or opposite orientation (see Figure 9a).

To introduce more precision and distinguished among possible ambiguities
of the LW, and in particular in one-hydrogen-bond base pairs, Lemieux and
Major divided each contact edge in three regions they named faces [19]. In
this extension of LW, LW+, each possible hydrogen bond face is named by
its corresponding LW edge, to which one of three possible orientations was
added: w, h and s. For instance, the W edge has the Ww face at the center of
the edge, the Wh face towards the H edge and the Ws face towards the S edge
(see Figure 8). The wobble GU base pair is annotated W/W in LW, and more
precisely Ww/Ws in LW+. Bifurcated hydrogen bonds that oscillate between
two LW edges have their own faces in LW+: Bh between W and H edges, and
Bs between W and S edges.

Finally, the normal vector−→σ used to annotate base stacking can also be used
in base pairing to address the relative orientation (parallel or antiparallel) of
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Figure 8 Base pairing patterns. The two
canonical Watson–Crick base pairs and
their hydrogen bonds (dashed lines) are
shown (top: G=C; bottom: A–U). The LW
nomenclature is shown by engulfing shaded
triangles, where the arcs represent the W,
H and S edges on the four standard bases.

Here, the W edges are in contact in both
base pairs. Notches along each edge delimit
the LW+ faces for each base. The major
groove of the A-RNA double helix is on the
H side, whereas the minor groove is on the S
side.

the two bases in a base pair. The cis W/W base pairs in the A-form helix are
characterized by the antiparallel orientation (see Figure 9b).
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Figure 9 Base pairing orientations. (a) From
the plane of the base pair, if both glycosidic
bonds are oriented on the same side of
the line that splits the plane evenly in two
(dashed gray line), the base pair is cis (left).
Else, if the glycosidic bonds are on each
side, the base pair is trans (right). (b) Base

normal vector −→σ relative orientation. Two
bases, A and B, represented here by planes
in perspective view, are either “parallel” if
their −→σ are oriented in the same direction
(left) or “antiparallel” if their −→σ are oriented in
opposite directions (right).

In order to limit the bias of using cutoffs, Gendron and coworkers, in
MC-Annotate, implemented the detection of the base pair types by using
unsupervised learning [19]. Single hydrogen bonds are selected by Gaussian
distribution fitting of three geometric parameters calculated between all pairs
of bases: the hydrogen, the donor, the acceptor and the lone electron pair (po-
sitioned 1 Å away from the acceptor in the direction of the orbital). The subset
of hydrogen bonds between two bases is selected by solving the equilibrium
state of the maximal flow of the directed bipartite graph formed by all possible
hydrogen bonds between the two bases. The base pair is labeled according to
the LW+ nomenclature. The relative orientations of the glycosidic bonds (cis or
trans) and of the normal vectors (parallel or antiparallel) are also computed.
The RNAView annotation procedure of base pairs differs considerably from
the one implemented in MC-Annotate, as it is based on geometrical cutoffs.

Lee and Gutell proposed an alternative topological nomenclature, LG. Start-
ing with the Watson–Crick C=G or A–U, or even with the wobble G–U base
pair, they defined 14 families by successively manipulating the base plane and
glycosidic bond relative orientations: shearing, flipping, reversing, paralleling
or slipping. The resulting 14 families are the Watson–Crick (WC), wobble
(Wb), slipped Watson–Crick (sWC), slipped wobble (sWb), reversed Watson–
Crick (rWC), reversed wobble (rWb), Hoogsteen (H), reversed Hoogsteen
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(rH), sheared (S), reversed sheared (rS), flipped sheared (fS), parallel flipped
sheared (pfS), parallel sheared (pS) and reversed parallel sheared (rpS) [20].

2.2.3 Isosteric Base Pairs

Base pairs are isosteric if they preserve a local tertiary structure and, thus,
function, as observed in evolutionary related RNAs whose sequences may di-
verge. Leontis and coworkers have superimposed the geometry of all possible
base pairs according to their C1′–C1′ distances and cis/trans base orientations
[21]. Then, they mapped all 16 combinations to the 12 families of the LW
nomenclature, which resulted in isostericity matrices from which it can be
shown that all canonical Watson–Crick combinations are isosteric and that the
wobble G–U base pair is isosteric to the protonated A–C base pair. Walberer
and coworkers defined isostericity from a theoretical analysis [22]. They
generated a base pair database for all possible hydrogen bond arrangements
and deduced an isostericity measure based on glycosidic bond overlap. They
observed high isostericity values in helical base pairs, validating their ap-
proach, and more surprisingly in several purine–purine and pyrimidine–
pyrimidine combinations.

Accurate RNA sequence comparison requires precise (structural) align-
ments in order to ensure the positions compared truly correspond in the
tertiary structure. Including isosteric information in sequence alignment
gives better insights into the sequence requirement of structural motifs (see
Section 3) across RNA phylogenies [23]. The presence of isosteric base pairs is
another fact that supports a structural rather than sequential RNA evolution.

3 Motif Discovery

In the previous section, we presented a series of nomenclature and formalisms
to describe some already acknowledged components of RNA tertiary struc-
ture: the nucleotide conformations and interactions. Here, we take one step
further and describe higher-order RNA components.

The increase in high-resolution X-ray crystallographic structures, in partic-
ular the resolution of the large ribosomal subunit [24–26], has increased the lit-
erature describing repeated RNA fragments or motifs [27]. Many occurrences
of each of these fragments can be found in one or among several different 3-D
structures, they are conserved among evolutionary related RNAs, and they
are often related to specific structural and biochemical functions.

One can think of RNA motifs as fundamental RNA building blocks. There-
fore, finding and characterizing all of them should provide us with invaluable
knowledge about RNA folding and aid substantially in tertiary structure
prediction. Here, we present some classical RNA motifs, and introduce a
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formal definition allowing us to computationally represent, search for and
discover them.

3.1 RNA Motifs

The most obvious RNA motif is the double helix, which is composed of
a succession of stacked Watson–Crick base pairs. Similarly to the double
helix, RNA motifs are thermodynamically stable and fold into similar tertiary
structures that can be found in various structural contexts.

Let us define an RNA motif as a graph of nucleotide conformations and
interactions, where the nucleotides are the vertices of the graph. An arc
between two nucleotides is present if the two nucleotides are adjacent in the
sequence or if their bases interact. Note that if we use the nomenclature
introduced in the previous section, then this definition is equivalent to our
formal representation of an annotated RNA tertiary structure and is, in fact,
the output of the MC-Annotate computer program.

While RNA graphs are easily represented in computer programs by classical
data structures, there is currently no consensus in the RNA ontology nor
is there a data file format to represent them. RNA graphs in computer
programs such as MC-Annotate are serialized into opaque binary files using
the C++ MC-Core library developed in our laboratory (also freely available at
sourceforge.net/projects/mccore). The RNAML format, derived from XML
(extensible markup language), can handle RNA graphs and is portable among
many different RNA applications [28, 29].

Since RNA motifs can be represented by characteristic RNA graphs, they
can be searched within hosting RNA tertiary structures via graph isomor-
phism; the occurrences of an RNA motif are simply the isomorphic subgraphs
in the hosting graphs. Our laboratory implemented the classical graph iso-
morphism algorithm [30] in a computer program called MC-Search. The input
to MC-Search is a description of the target RNA structure, or pattern, from
which MC-Search returns all occurrences of the target motif found in a set of
pre-selected PDB files.

3.1.1 Classical Examples

Consider the sarcin/ricin motif (Figure 10), which has been predicted to occur
in many different locations of the large ribosomal subunit by comparative
sequence analysis [31]. The MC-Search descriptor file for the sarcin/ricin
motif is shown in Figure 10(b). MC-Search finds seven occurrences of this
motif in the crystal structure of the H. marismortui 23S rRNA (PDB ID 1JJ2).
All occurrences found share a maximum RMSD of 0.93 Å. Interestingly, the
annotation of the found occurrences revealed four conserved base stacking
interactions (see Figure 10c), including those among nonadjacent nucleotides:
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Figure 10 Sarcin/ricin motif. The motif is
made of two strands, here named X (shown
in blue) and Y (red), and their nucleotides,
respectively, numbered 1–4 and 1–3. (a) A
schematic representation using LW (circle
for W; square for H; triangle for S). (b) MC-

Search input. (c) The seven occurrences in
H. marismortui 23S rRNA crystal structure
optimally aligned (stereoview). The threads
follow the phosphorus atoms in each strand.
The hydrogen atoms are not shown.

AX1 <> UX3 (outward), GX2 >< GY1 (inward) and AX4 <> AY2 (outward).
Here, the two strands involved in the motif were arbitrarily named X and Y,
and their nucleotides numbered, respectively, 1–4 and 1–3.

A motif corresponding to the T-loop conserved across tRNAs was matched
in the ribosome. In tRNAs, the loop capping the T-stem is characterized by a
trans W/H U–A base pair stacked on the last W/W G=C base pair of the stem
with a two- or three-nucleotide bulge on the A side. Several instances of the
motif where found by visual inspection in H. marismortui 23S and in Thermus
thermophilus 16S subunits [32]. These tRNA T-loop motifs in the ribosome
were found to interact with other elements of their rRNA through tertiary
interactions, similarly to the interactions found between the T- and the D-loop
in tRNAs. Two instances of the two-nucleotide bulge version are found by
MC-Search in the H. marismortui 23S subunit (Figure 11).

The frequently observed A-minor motif [33] is made of an adenine that
interacts with the minor groove of a double helix and is of particular interest
since it is involved in the selection of tRNAs by the ribosome [34]. Nine
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Figure 11 T-loop motif. The motif is made
of one strand, here named X, and the
nucleotides, respectively, numbered 1–9. (a)
A schematic representation using LW (circle
for W ; square for H; triangle for S). (b) MC-
Search input. (c) The two occurrences in H.

marismortui 23S rRNA crystal structure (PDB
1JJ2) optimally aligned (stereoview). The
instance found at X1 = 334 is shown in blue;
the one at X1 = 1387 in red. The threads
follow the phosphorus atoms in each strand.
The hydrogen atoms are not shown.

instances of the A-minor motif are found by MC-Search in the H. marismortui
23S subunit (Figure 12). Note that the S edge in the base pair annotation of
the double-helix nucleotide indicates the minor groove interaction. The A-
minor motif is a key element of the larger K-turn motif which induces a bend
between two double helices [35]. The core of the K-turn motif is constituted of
two S/H G–A base pairs. There is only one occurrence of the K-turn motif in
the H. marismortui 23S subunit (Figure 13).

The tetraloop/receptor motif is most frequent in RNAs. It stabilizes the
conformation of a hairpin loop interacting with the minor groove of a stem. It
was discovered in the hammerhead ribozyme [36] and in the group I intron
[37]. The tetraloop/receptor participates in protein translation fidelity, and in
the association of the rRNA 16S and 30S subunits, as mutations in the motif
induce loss of ribosomal activity [38]. In T. thermophilus rRNA, a conserved
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Figure 12 A-minor motif. The motif is made
of three strands, here named X (shown in
blue), Y (green) and Z (red); the nucleotides
are, respectively, numbered 1–3, 1–3 and
1. (a) A schematic representation using LW
(circle for W; square for H; triangle for S). (b)

MC-Search input. (c) The nine occurrences
in H. marismortui 23S rRNA crystal structure
optimally aligned (stereoview). The threads
follow the phosphorus atoms in each strand.
The hydrogen atoms are not shown.

GCAA tetraloop (referred to as loop 900) caps helix 27 in the 16S subunit and
binds to the minor groove of helix 24 in the 30S subunit. Two occurrences
of the tetraloop/receptor motif-binding stems of at least three W/W base
pairs are found by MC-Search in the H. marismortui 23S subunit (Figure 14).
Interestingly, the two occurrences found have different base pair orientations.

As found in many pathogenic viruses, the formation of a pseudoknot motif
in mRNAs may induce frameshifting in the protein translation [39, 40]. The
pseudoknot is made of a hairpin stem–loop whose nucleotides in the loop
participate in the formation of a second stem. In fact, a pseudoknot occurs
when the four strands, A5′, A3′, B5′ and B3′, involved in the formation of two
stems, A and B, interleave in the sequence: A5′–B5′–A3′–B3′. Pseudoknots
are reported by the MC-Annotate computer program, and 15 are found in
the crystal structure of the H. marismortui 23S rRNA (PDB ID 1JJ2). In feline
immunodeficiency virus (FIV), a pseudoknot was found by comparative se-
quence and mutagenesis analyses [41]. The secondary and tertiary structures
of the FIV pseudoknot are shown in Figure 15. See Section 4.3.2 for details
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Figure 13 K-turn motif. The motif is made
of two strands, here named X (shown in
blue) and Y (red), and their nucleotides,
respectively, numbered 1–4 and 1–7. (a)
A schematic representation using LW
(circle for W; square for H; triangle for

S). (b) MC-Search input. (c) The one
occurrence in H. marismortui 23S rRNA
crystal structure (stereoview). The threads
follow the phosphorus atoms in each strand.
The hydrogen atoms are not shown.

how Fabris and his collaborators combined mass spectroscopy and computer
modeling to determine the FIV pseudoknot tertiary structure [42].

3.2 Catalytic Motifs

The structure and function of catalytic RNAs (ribozymes) have extensively
been studied [43–51]. In particular, the crystal structure of the hammerhead
ribozyme shows a three-way junction catalytic core [45]. The three-way junc-



514 15 RNA Tertiary Structure Prediction

Figure 14 Tetraloop receptor. The motif
is made of three strands, here named X
(shown in blue), Y (green), and Z (red); the
nucleotides, respectively, numbered 1–3, 1–
3 and 1–4. (a) A schematic representation
using LW (circle for W ; square for H;
triangle for S). (b) MC-Search input.
(c) The occurrence in H. marismortui
23S rRNA crystal structure at position

X1 = 1552, Y1 = 1567 and Z1 = 1629.
The Z4–Y2 base pair is parallel. (d) The
occurrence in H. marismortui 23S rRNA
crystal structure at position X1 = 2529,
Y1 = 2490 and Z1 = 1055. The Z4–Y2 base
pair is antiparallel. The threads follow the
phosphorus atoms in each strand. The
hydrogen atoms are not shown.
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Figure 15 FIV pseudoknot structure. (a)
Secondary structure. The phosphodiester
linkage is shown by thin lines. The W/W
base pairs are shown by thick lines. The
tertiary interactions predicted by chemical

cross-linking are shown in dashed lines. (b)
Tertiary structure (stereoview). The thread
shows the phosphodiester backbone. The
hydrogen atoms are not shown.
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Figure 16 Neurospora VS ribozyme. (a)
Secondary structure. The substrate domain
is shown in the box. The dotted line indicates
the tertiary interactions of the circled bases.
(b) Inactive state of the substrate domain.
C637 becomes the base pair partner of G623,
which affects the base pair registry of stem
I. C637 to C634 (shown in bold) are shifted
by one base pair towards the 5′ strand. As

a result, C634 looses its base pair partner in
the active state. (c) Active state. The arrow
points the cleavage site. (d) Mutant stem–
loop I (SL1′). Uppercase nucleotides belong
to the wild-type; lowercase to mutations.
The sheared G–A base pairs identified in
the NMR structure are shown using the LW
nomenclature (circle for W ; square for H;
triangle for S).

tion motif is made of three double helices, and its topology has been much
studied by Lescoute and Westhof [52]. Interestingly, the H/H and S/S loop–
loop interactions involved in the catalytic mechanism of the hammerhead
have been characterized by 3-D modeling by Massire and Westhof, using their
computer program MANIP [53, 54].
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Figure 17 VS ribozyme SL1′ active internal
loop motif. (a) MC-Search input. The strands
are named ”X” and ”Y”, respectively, for the
5′ and 3′ strands. A star in the schema (left)
is used as a wildcard matching any type of
base pairs, which is denoted “pairing” in the
input file (right). (b) The secondary structure
of the occurrence found in T. thermophilus
16S rRNA. LW is used (circle for W ; square
for H; triangle for S). This motif matches in

helix 44 of the 16S rRNA (left) and forms
many ribose–ribose contacts and two A-minor
motifs with helix 13 (right). (c) Stereoview of
helix 44 (blue) and helix 13 (red). The match
is at 1.40 Å of RMSD of the NMR structure
of the VS ribozyme SL1′ loop. The shared
sheared G–A base pairs are shown in bold.
The nucleotides in helix 13 that participate to
the A-minor motifs are shown in bold.

Another relationship between the structure and catalytic activity of RNAs
was discovered in the Neurospora Varkud Satellite (VS) ribozyme. Six helical
domains characterize the secondary structure of the self-cleaving VS ribozyme
(see Figure 16a). The substrate domain at stem–loop I is recognized by the
catalytic core by, so far, unknown loop–loop interactions between stem–loop
I and V [55]. The cleavage mechanism of this ribozyme is induced by a
modification of the base pair registry in stem I (see Figure 16b and c). C637
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Figure 18 Secondary structures of the four localization elements
within ASH1 mRNA in yeast S. cerevisiae: E1, E2A, E2B and E3. Only
fragments hosting the loop–stem–loop common motif are shown, with
the conserved CGA and C shown in bold.

is paired to G623 in the active state, reducing the size of the 3′ strand of the
internal loop from three to two.

To get a deeper insight into the 3-D structure of the VS ribozyme active
conformation, a nuclear magnetic resonance (NMR) spectroscopy structure of
a stem–loop I mutant (SL1′) was built to mimic the active conformation [56].
In previous NMR structures of the inactive stem–loop I, the 3–3 internal loop
was composed of three stacked base pairs, two S/H G–A base pairs and a
wobble A–C base pair. In the SL1′ active structure, the A–C base pair is broken
by the helix shift, resulting in a double S/H base pair shared between both As
on the 5′ strand and the G on 3′ strand (see Figure 16c).

This distinctive internal loop motif was searched in other RNAs with the
MC-Search computer program without any specific interaction types in the
loop, by using the “pairing” keyword. The pattern matched a fragment in
helix 44 of the T. thermophilus 16S rRNA, which is at 1.4 Å of RMSD to the
NMR structure of the interior loop of SL1′ (see Figure 17). Helix 44 in the
rRNA interacts with helix 13 to form a ribose zipper motif [57], which is
defined by ribose–ribose interactions and the presence of the A-minor motif.
Both adenines share one sheared (S/H) G–A base pair. The SL1′ structure
became a model for the active substrate element of the VS ribozyme, which
can bind to another helix and form a ribose zipper motif. Since the catalytic
mechanism is characterized by tertiary interactions between stem–loop I and
V (see Figure 16a), the authors suggest that the specific interaction needed for
an accurate recognition of the substrate is this ribose zipper.
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3.3 Transport and Localization

A joint effort between Chartrand’s laboratory in Montreal and our group
resulted in a deeper understanding of the molecular basis behind cytoplasmic
mRNA transport and localization to the yeast bud [58]. A small RNA motif
was found conserved across four localization elements within the mRNA of
the ASH1 protein. The motif was found to interact with She2p, one of the
important components of the yeast mRNA localization machinery in Saccha-
romyces cerevisiae.

Three localization elements occur in the coding region (E1, E2A and E2B)
[59] and the fourth is located in the 3′ untranslated region (E3) [60]. Conserved
nucleotides in each element were identified by in vivo selection from a poly-
merase chain reaction (PCR) library. Similar She2p RNA motif-binding sites
were characterized, and their secondary structures predicted. The generalized
motif is composed of two loops, separated by a short stem, which contains
a conserved C on the 3′ strand and a CGA sequence on the 5′ strand (see
Figure 18), but for E3 for which the loops are inversed.

A structural rule of the generalized She2p-binding motif was deduced: i:s:j,
where i is the number of nucleotides in the loop before the conserved CGA
sequence (cf. one in the 5′ loop of E1: GCGAAGA), j is the number of
nucleotides before the conserved C in the 3′ loop (cf. one in the 3′ loop of
E1: ACCCAAC) and s the length of the stem separating the two loops (cf. four
in E1). The localization element E1 is thus a 1:4:1 motif, E2A and E2B are 2:4:0,
and E3 is a 0:5:1. The sum i + s + j = 6 is invariant.

To find a structural explanation of the invariant rule, MC-Search was used
to scan the high-resolution RNA 3-D structures to seek occurrences of these
three types of She2p-binding motifs (see Figure 19). In total, 123 matches
were found for type 1:4:1 (E1), 85 for type 2:4:0 (E2A/E2B) and 717 for type
0:5:1 (E3). The distance between the 3′ phosphate groups of the two conserved
cytosines in all occurrences was 28.3 ± 0.9 Å for type 1:4:1, 28.0 ± 1.0 Å for
type 2:4:0 and 28.2 ± 0.7 Å for type 0:5:1. Increasing the length of the She2p-
binding motif stem in each localization elements in the yeast three-hybrid
assay resulted in a total loss of interaction with She2p.

The resolution of the X-ray crystal structure of She2p revealed a helical
region essential for its interaction with ASH1 mRNA localization elements.
This helical region covers a distance of about 27 Å. It was thus logical to the
authors to propose a model of the ASH1 mRNA localization element motif
binding to this region of the protein through interactions between the two
conserved Cs. An interesting conclusion from this project is that tertiary
structure conservation of the RNA motif is more relevant to the binding
function than sequence conservation.
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4 Modeling

In the previous sections, we introduced an ontology to model RNA tertiary
structure components and motifs. Here, we employ the term “modeling” to
describe 3-D model building. Two types of 3-D models exist: physical or
handicraft models (wood, plastic, metal or any other artistic materials) and
computer models (interactively built or directly generated). Often, scientists
start with the former type, mainly to draft ideas and to get a global picture
of the RNA tertiary structure, and then, when enough structural data are
gathered, they switch to the latter.

The goal of RNA tertiary structure modeling is to summarize and project in
3-D structural data. In the last few decades, many low-resolution techniques,
e.g. footprinting, and enzymatic and chemical probing, have improved and
produced a large quantity of structural data. Consequently, RNA tertiary
structure modeling has become very popular and useful in recent years to
translate these structural data in to precise 3-D models. The low-resolution
techniques compensate when higher-resolution ones cannot be applied, e.g.
in the case of in vivo or reactive conformations.

In this section, we focus on computer-assisted model building. There are
two major approaches to 3-D modeling. The first approach starts with all
nucleotides in an extended or randomized state, which is then successively
modified until a folded and satisfactory state is reached. The conformational
space of such folding methods is defined by the number of accessible states,
e.g. molecular mechanics is a folding method that defines satisfaction as the
optimum of an objective function. Harvey’s laboratory has developed an
RNA objective function composed of penalty terms corresponding to exper-
imentally determined nucleotide interactions and distances. The objective
function is penalized if the observed interactions and distances are not present
in a state. They simplified the RNA model by using one to five points per
nucleotide to speedup the folding operations. Using YAMMP, their computer
program, they were able to build models of large ribosomal subunits [61]. In
the second approach, one assembles the components of the RNA by using

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 19 The She2p-binding motif. (a)
MC-Search input for the three motif types,
from left to right 1:4:1 (E1), 2:4:0 (E2A/B) and
0:5:1 (E3). The conserved Cs are shown in
bold. (b) Stereoview of three occurrences,
one for each type, aligned by their stems.
Type E2A/B is shown in red and was found
in H. marismortui 23S rRNA (PDB ID 1M1K,
strands 1463–1467 and 1477–1485 in chain

‘A’). Type E3 is shown in blue and was found
in Deinococcus radiodurans 23S rRNA (PDB
ID 1JZY, strands 295–300 and 363–369
in chain “A”). Finally, type E1 is shown in
green and was found in a NMR structure of
a hairpin similar to the P5abc region within
group I intron (PDB ID 1EOR, strands 4–11
and 16–21 in chain “A”). The conserved Cs
are shown in bold in the three models.
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construction operators to position and orient them in 3-D space. MANIP [54],
an interactive system, and MC-Sym [62], an automated procedure, are among
the most employed computer systems to model RNA tertiary structures.

In this section, we present how RNA tertiary structure modeling can be
mapped to the discrete constraint satisfaction problem (CSP) and how the CSP
solver was implemented in the MC-Sym computer program.

4.1 The CSP

The CSP can be described by three finite sets: the variables V = {v1, v2, . . . , vn},
the domains D = {d1, d2, . . . , dn} and the constraints C = {c1, c2, . . . , cm} [63,64].
A variable vi is assigned values from domain di = {di,1, di,2, . . . , di,|di|}. Each
constraint restricts the assignment of a subset of V, called the constraint scope.
For example, if the scope of c1 ∈ C is {v2, v4, v5} ⊂ V, then c1 ⊂ d2 × d4 × d5.

The three sets are defined in the context of the problem application. In RNA
tertiary structure prediction, the variables could be the nucleotides and the do-
mains their possible 3-D coordinates. An example of constraint would be two
nucleotides that form a base pair. The scope of the base pair constraint is the
two nucleotide partners which link their relative positions and orientations in
3-D space.

A solution to the CSP is a complete variable assignment, vi ∈ di for
i ∈ {1. . . n}, so that all constraints in C, cj ∈ C for j ∈ {1. . . m} are satisfied. A
constraint cj is satisfied only if its scope in the solution is assigned according
to the relation it defines. Solving the CSP consists in finding one, many or all
solutions.

The search space of a CSP is the Cartesian product of all di:

n

∏
i=1
|di| . (4)

The size of a CSP search space is exponential in the number of variables
domain sizes. The solutions of a CSP are found by exploring the variable
assignments of its search space and verifying if they satisfy the constraints.
Backtracking is the classical search algorithm to solve a CSP deterministically
and exhaustively. In backtracking, the variables are assigned values systemat-
ically, one at a time and to the next available value from its associated domain.
When all the values of a domain have been tried, the domain is reset and
backtracking moves to the previous variable, assigning its next value, before
continuing. The search finishes when the domain of the first variable is reset,
indicating that all possible assignments have been tried.

Backtracking develops a search tree (see Figure 20), where the nodes are
visited in a depth-first manner. A path from the root of the search tree to a
leaf represents a solution if all of its nodes are consistent (the black nodes in
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Figure 20 Backtracking search tree. The
search space is defined by V = {v1, v2, v3,
v4} and D = {d1, d2, d3, d4}, where d1 = {d1,1,
d1,2, d1,3}, d2 = {d2,1, d2,2}, d3 = {d3,1, d3,2,
d3,3} and d4 = {d4,1, d4,2}. Any path from
the root (empty circle) to a leaf assigns

each variable to a value from its respective
domain. A verification of the constraint {(v1,
v2) ∈ d1 × d2 | (v1, v2) �= (d1,2, d2,1)}
prunes the subtree in grey, as soon as the
backtracking assigns v2 to d2,1, and then the
search jumps to the next assignment for v2.
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Figure 20). The search tree size is given by Eq. (5):

1 +
n

∑
i=1

i

∑
j=1
|di| . (5)

However, the search can avoid visiting most inconsistent nodes by pruning
from the search tree inconsistent branches (those with grey nodes in Fig-
ure 20), as soon as one inconsistent node is found. This trick does not change
the search time complexity of backtracking, which is exponential in n and
|di|, but can reduce the search time in practice. Using MC-Sym (see next
section), the search space of a particular instance of the CSP for the yeast
tRNA-Phe tertiary structure was 1026, but the constraints used to explore it
defined a consistent search tree of only about 5 × 105, which was explored
in seconds and included only about 30 solutions [65]. The best model was at
approximately 3.0 Å of RMSD to the yeast tRNA-Phe, as well as with the yeast
tRNA-Asp crystal structures (crystal structure resolution). In RNA tertiary
structure prediction, it is customary to assess the quality of a prediction
method by evaluating its performances at refolding known structures, and
RMSD is a very popular quantitative measure.

4.2 MC-Sym

MC-Sym (Macromolecular Conformations by SYMbolic programming) is a
computer program for building RNA tertiary structure models from syntactic
descriptions of the RNA, similar to the ones used for MC-Search. The com-
puter program implements a CSP solver with backtracking and thus generates
models that are consistent with the constraints [6, 62, 65, 66].

In MC-Sym, the variables, V, correspond to the vertices, v, and arcs, a, of
the RNA graph (see Section 3.1). The domains of the vertices, Dv, are rigid nu-
cleotides (the relative 3-D atomic coordinates never change) and those of the
arcs, Da, are linear transformation matrices encoding base stacking and base
pairing. Consequently, the domains, D, are taken from the Cartesian product,
D = Dv × Da. The goal is to generate consistent 3-D atomic coordinates to each
nucleotide in the global frame of the RNA. The rigid sets of nucleotide 3-D
atomic coordinates, as well as the linear transformation matrices, are extracted
from the PDB [1]. The nucleotide is defined by cutting the phosphodiester
chain at the O3′–P bond.

The linear transformation matrices combine nucleotide rotations and trans-
lations in 4-D homogeneous coordinates, which represent the spatial relation
between two stacked or paired bases. As we saw in Section 2.2, nucleotide
interactions involve their bases and thus we represent their spatial relations
by coordinate frame relative transformations. The frames are defined at the
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Figure 21 Nucleotide coordinate frame.
Hydrogen and backbone atoms are not
shown. (a) Frame for a purine (here an
adenine). The origin is on the N9 atom,
and the XY plane is aligned on the plane
described by atoms N9, C4 and C8, shared
by all purines. (b) Frame for a pyrimidine
(here a cytosine). The origin is on the N1

atom, and the XY plane is aligned on the
plane described by atoms N1, C2 and C6,
shared by all pyrimidines. (c) Transformation
of cytosine B in adenine A’s frame that
expresses a stacking interaction. B is moved
from a position aligned on A’s local frame to
B’ by applying A MB.

terminal nitrogen atom (N9 in purines and N1 in pyrimidines), with the XY
plane aligned with the base plane (see Figure 21a and b).

For any coordinate frames A and B, the relative transformation A MB ex-
presses B’s position (right subscript) in A’s coordinates (left superscript). For
example, let A MB be a relative transformation that expresses a stacking inter-
action between an adenine (frame A) and a cytosine (frame B). As the relative
transformation A MB is defined in A’s frame, B can be moved from a position
aligned on A’s frame to a position that expresses the stacking interaction
between the two bases (Figure 21c). This relative transformation places B in
the local frame of A, independently of A’s position in the global frame. Then,
to obtain B’s position in the global frame, O, it must be transformed by the
relative matrix O MA, which expresses A’s position in the global frame.

Using such transformations, all nucleotides of an RNA graph can be posi-
tioned relative to another by starting with an initial origin nucleotide, whose
frame defines the global frame, O. A construction order is defined by selecting
a spanning tree of the RNA graph rooted at the origin nucleotide. The trans-
formations of the arcs of the spanning tree applied to the rigid coordinates of
the vertices build the RNA (see Figure 22). Ideally, the chosen spanning tree
of the RNA graph would include all arcs. However, RNA graphs are rarely
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Figure 22 A two-stacked G=C base pairing
CSP. (a) RNA graph. The vertices are in
uppercase; arcs in lowercase. The arcs of
a chosen spanning tree are shown in bold;
rooted at vertex A (shaded). (b) One solution:
the nucleotide structure for each vertex and
a local transformation matrix for each arc
(Mi for arc “i”). The root is aligned to the
global coordinate frame O. B is positioned
by applying Ma = AMB in the local frame A,

which is aligned with O, and thus B is directly
placed in the global frame by Ma; vertex
C directly placed by Mb = A MC. Finally,
to position D, Mc = C MD is applied in the
local frame of C, which is then moved to the
global frame by applying Mb = A MC. The
O3′–P bond lengths shown in dashed lines
are verified by a distance constraint. In this
spanning tree, arc d is not considered in the
construction.

trees, 1as they include cycles of interactions. (The only situation where an
RNA graph is a tree is when the only information available is the sequence.)
Consequently, the missing arcs must be represented by constraints in the CSP,
C. As we will see in Section 4.3.3, this problem can be overcome.

The search space for an RNA tertiary structure prediction problem defined
with this instance of the CSP is given by the spanning tree n nucleotide
variables and n – 1 interactions. Equation (6) gives the size of the search space,
the Cartesian product Dv × Da, where xi ∈ Dv, yi ∈ Da:

n

∏
i=1
|xi| ×

n−1

∏
i=1
|yi| . (6)

Two types of constraints need to be verified at each variable assignment: the
atomic clashes and the O3′–P covalent bond distances. The scope of the atomic
clash constraints is all nucleotide pairs and they are needed to insure that no
pair of atoms from both nucleotides are overlapping. A threshold inter-atomic
distance, typically 1 Å, implements the steric clash constraints.

The adjacency constraint, as we name it, has a scope of two adjacent nu-
cleotides in the sequence and is used to verify the covalent O3′–P bond

1) The only situation where a RNA graph is a tree is when the only
information available is the sequence.
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distance (dashed lines in Figure 22b), as the nucleotide backbone are posi-
tioned independently. The distance threshold is fixed by a user distance range,
typically set to [1,2] Å, as the O–P theoretical distance is approximately 1.6 Å
(see Section 4.3). Note that choosing a lower bound smaller that the atomic
clash threshold would be useless. Increasing the upper bound is equivalent to
“relaxing” the CSP. If an overstretched backbone results from choosing a high
upper bound, it can easily be fixed by applying numerical refinement [9].

4.2.1 Backbone Optimization

In the above mapping of the RNA tertiary structure CSP, the adjacency con-
straint is violated more than 50% of the time, even if its range is relaxed to
[1,5] Å. This problem comes from the rigid nucleotide conformations that do
not reflect well the overall flexibility of the backbone.

To address this problem, we propose a slight modification of the above CSP
mapping. We make the assumption that the RNA tertiary structure is driven
by rigid base interactions. Consequently, the backbone conformation can be
derived from the bases, and we can define a new CSP on the bases alone.
The new CSP defines a search space over the transformation matrices, Da,
reducing considerably its size to ∏n−1

i=1 |yi| (see Eq. 6).
To reduce the complexity of building a complete backbone from six free

torsion angles (11 in total minus the five of the furanose), we define rigid
conformations made of the base and the phosphate group. The ribose in-
terconnects a base with two phosphate groups. To position all of the ribose
atoms, six free torsions are needed: θ0, θ1, θ2, θ3, θ4 and χ (see Figure 3a).
However, we know from Eqs. (1) and (3) that θ0 to θ4 are all related by the
single pseudorotation angle ρ (Section 2.1). Hence, by fixing all covalent bond
lengths and angles to their theoretical values, a ribose structure can be built
by optimizing a suitable function, f (ρ, χ). f builds a ribose using torsions ρ
and χ and returns the RMSD between the theoretical and the implicit values
of the C5′–O5′ and C3′–O3′ bonds (see Figure 23). Equation (7) gives the
value of f (ρ, χ), where lk are the measured distances and λk are the theoretical
distances, k = 5′ or k = 3′, respectively, for the C5′–O5′ or the C3′–O3′ bond

f (ρ, χ) =

√
(l5′ − λ5′)2 + (l3′ − λ3′)2

2
. (7)

Finding the optimal parameters that minimize Eq. (7) builds a ribose attached
to its base and interconnecting phosphate groups. The minimization can be
solved using classical optimization methods, such as the cyclic coordinate
method that does not require derivatives [67]. In this context, each evaluation
of the function builds a different ribose conformation. Consequently, the time
complexity is proportional to the number of evaluations needed. However,
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Figure 23 Ribose construction. (a) A base and two phosphate
groups. (b) The ribose structure is appended to the base, and is
parameterized by ρ and χ. The lengths of the implicit interconnections
(shown in dashed lines), l5′ and l3′ , respectively, represent the
covalent C5′–O5′ and C3′–O3′ bonds, which quantify the precision
of the construction.

we recently derived an optimal parameter estimation of Eq. (7), which solves
the ribose optimization in constant time.
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Theoretically, the backbone construction can be applied once all variables
of the CSP are assigned values – when all bases and phosphate groups are in
place. After the backbone construction, however, there is no guarantee that
the final model is free from steric conflicts. Therefore, in practice, as soon
as the two phosphate groups adjacent to a base are in place, the backbone is
built for this nucleotide and the steric clashes verified. This, as in the former
backtracking, allows us to prune the search tree.

4.2.2 Probabilistic Backtracking

Exhaustive searches for all valid RNA 3-D structures are useful to analyze
possible alternative folding of an RNA. However, sometimes only one or few
valid models are desired. We recently developed a probabilistic search algo-
rithm that generates valid structures faster and with an increased diversity
rate than that of the deterministic backtracking.

We select a random path from the root node of the search tree to any leaf. If
at any variable assignment along the random path a constraint is not satisfied,
a fixed-size regular backtracking is run until a consistent node is found, which
resumes the probabilistic search. If the fixed-size regular backtracking cannot
find a consistent node, then a new random path from the root node is selected.

4.2.3 “Divide and Conquer”

As for many problems, the “divide and conquer” paradigm has proven use-
ful in RNA tertiary structure prediction as well. A “divide and conquer”
algorithm splits a complex problem in many smaller and simpler to resolve
subproblems. The solutions of the smaller problems are then combined in
complete solutions of the larger problem.

RNA structures can be split into smaller fragments (as we saw in Section 3).
Each fragment can be built independently and then merged in complete ter-
tiary structures. In the CSP context, solving a fragment means locally enforc-
ing the constraints in its scope: solving subset W ⊂ V involves the verification
of the constraints defined on W only. The solutions of W become the values of
the domain of a new variable, say w, which is added to the CSP. The new CSP,
CSP′, is defined over the variables V′ = (V\W) ∪ {w}, the new domain for w
and the new constraints C′ = C\Cw.

The search space sizes of CSP and CSP′ can be compared. Let D = {d1, . . . ,
dn} be the domains for the n variables in V and as defined in the CSP. E = {e1,
. . . , ek} are the domains for the k variables in W, E ⊂ D. The domain for the
new variable, w, is dw, the solutions of W. If S and S′ are, respectively, the
search space sizes of CSP and CSP′, then from Eq. (4) we obtain:

S′ < S⇔ ∏n
i=1 di

∏k
i=1 ei

× dw <
n

∏
i=1

di ⇔ dw <
k

∏
i=1

ei
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showing the trivial result that CSP′ has a smaller search space than CSP if the
search space size of CSP′ is larger than |dw|, which is generally the case in
the presence of actual structural constraints. To save even more time, when
fragments of a tertiary structure correspond to RNA motifs, as described in
Section 3, their solutions can directly be taken from the X-ray crystal structures
[53]. We sometimes refer to this practice as RNA homology modeling.

4.3 MC-Sym at Work

Here we show how MC-Sym can be used to generate RNA tertiary structure
models. The input description file has sections to describe the sequence, the
nucleotide conformations, the nucleotide interactions, the constraints, and
execution arguments.

Figure 24 shows an example for the modeling of a tandem W/W base
pairs: C=G stacked with A–U. Figure 24(a) shows the secondary structure
of this simple fragment, made of two strands: “a” 5′-AC-3′ and “b” 5′-GU-3′.
Figure 24(b) shows the spanning tree of the RNA graph, as chosen by the user,
to build the fragment.

In the input (Figure 24c), the “sequence” section defines the two strands
and introduces a global numbering system for the nucleotides. The “residue”
section defines the nucleotide conformations, Dv, and sampling sizes; here, 10
different C3′-endo anti conformations. The nucleotide interactions are defined
in the “connect” and “pair” statements, specified using the LW+ nomencla-
ture. The “connect” statement is used for adjacent nucleotides in the sequence.
In the example, one of the two base stack interactions is included in the
spanning tree and five different stacking transformations will be assigned.
The “pair” statement is used for the two Watson–Crick base pairs. Here, seven
different Watson–Crick transformations will be assigned.

The “backtrack” statement defines the spanning tree, instructing MC-Sym
about the order in which the nucleotides will be inserted in the models. Here,
a1 is selected as the global referential, then b2 is Watson–Crick to a1, a2 is
stacked with a1 and, finally, b1 is Watson–Crick to a2.

The domain specifications are translated by MC-Sym into queries to the
appropriate nucleotide conformation or interaction database. The results
of the logical queries define the domains. For instance, the query for the
conformation of the cytosine a2 could match entries #5 and #8 in the con-
formation database shown in Table 2, resulting in the conformation domain
{S5, S8}. Similarly, the Watson–Crick query for the a2–b1 interaction could
match database entries #1, #3 and #8 in Table 3, resulting in the transformation
domain {T1, T3, T8}.

As indicated in Tables 2 and 3, the conformation and transformation do-
mains come from X-ray crystal structures. The atomic coordinates for the
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Figure 24 Tandem |W/W| base pairs. (a) RNA graph. (b) Spanning
tree. (c) MC-Sym input. The “stack” keyword is used as a wildcard
matching any of the four stacking types: upward, downward, inward or
outward.

Table 2 MC-Sym nucleotide conformation database snippet

# 3-D coordinates set [a] Symbols list Origin [b]

1 S1 A, C3’-endo, anti 1EVV ‘A’23
2 S2 U, C3’-endo, anti 1FFK ‘0’55
3 S3 G, C2’-endo, anti 1EHZ ‘A’18
4 S4 A, C2’-exo, anti 1EVV ‘A’35
5 S5 C, C3’-endo, anti 1JJ2 ‘0’361
6 S6 U, C3’-endo, syn 1FFK ‘0’10
7 S7 A, C4’-exo, anti 1JJ2 ‘0’407
8 S8 C, C3’-endo, anti 1EHZ ‘A’13
[. . .]

[a] Each Si contains the 3-D coordinates of the nucleotide.
[b] PDB ID and numbering of the nucleotide.

conformations are directly extracted. The transformation between two nu-
cleotides, A and B, is extracted by computing the relative transformation
that places B’s frame in A’s local frame (Figure 25). If O MA and O MB are
respectively the relative transformations that place the frame of A and B in



532 15 RNA Tertiary Structure Prediction

Table 3 MC-Sym nucleotide interaction database snippet

# 3-D coordinate
set [a]

Symbol list Origin [b]

1 T1 C-G, Ws / Ww, cis, antiparallel 1JJ2 ‘0’284, ‘0’367
2 T2 U-C, adjacent, upward 1EHZ ‘A’59, ‘A’60
3 T3 C-G, Ww / Ww, cis, antiparallel 1EVV ‘A’27, ‘A’43
4 T4 A-C, adjacent 1FFK ‘0’337, ‘0’338
5 T5 A-C, outward 1EVV ‘A’6, ‘A’7
6 T6 G-U, Ww / Ws, cis, parallel 1EHZ ‘A’4, ‘A’69
7 T7 G-A, Ss / Hh, cis, antiparallel 1FFK ‘0’2865, ‘0’2891
8 T8 C-G, Ww / Ww, cis, antiparallel 1JJ2 ‘0’154, ‘0’182
[. . . ]

[a] Each Ti corresponds to the relative transformation matrix of the interaction.
[b] PDB ID and numbering of the two interacting nucleotides.

the global frame, O, then we extract the relative transformation A MB so that
O MB = O MA × A MB. Isolating for A MB, we obtain A MB = O M−1

A × O MB. We
save the A MB matrix in the database so that it can be reproduced for any other
pair of bases in any local frame.

The MC-Sym database contains nearly 3000 nucleotide conformations and
nearly 20 000 base interactions; hence, the domain size argument next to each
conformation and interaction. It is the task of the modeler to assign domain
sizes so that the conformational space of a given tertiary structure is correctly
addressed – not too small to miss valid models and not too large to avoid
prohibitive search space sizes.

4.3.1 Modeling a Yeast tRNA-Phe Stem–Loop

In Figure 26, we present a modeling example for the yeast tRNA-Phe T-stem–
loop tertiary structure. The secondary structure of the stem–loop is shown
in Figure 26(a). The stem and hairpin loop are modeled independently, and
the results of each modeling merged. Figure 26(b–d) shows the three inputs.
The first describes the structure of the first four base pairs of the stem. The
second describes the hairpin loop, closed by the last base pair of the stem. The
last merges the resulting fragments and, thus, models the entire stem–loop.
Figure 26(e–g) illustrates the spanning trees defined by the three inputs.

The “res_clash” and “adjacency” statements parameterize the steric clashes
and adjacency constraints, respectively. The “explore” statement launches
the CSP solver. The RNA graph of the loop is divided into two sections by
the W/H U54–A58 base pair, leaving the sequence adjacency implicit to the
construction between G57 and A58, and between C60 and C61. Figure 26(h)
shows one solution.
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4.3.2 Modeling a Pseudoknot

To model the tertiary structure of the FIV pseudoknot (see Section 3.1.1), a
novel methodological protocol based on mass spectroscopy and computer
modeling was designed by Fabris and his coworkers. The experimental data
were generated using multiplexing solvent-accessibility probes and chemical
bifunctional crosslinkers with a characterization by an electrospray ionization
Fourier transform mass spectrometry method (ESI-FTMS) [68]. The chemical
and enzymatic probes cleave at specific sites or attack specific chemical groups
that are exposed to the solvent. The secondary structure, detailed protection
maps and inter-nucleotide distance information were then input to MC-Sym,
which generated a set of consistent tertiary structures. Finally, the modeled
structures were refined by energy minimization using the Crystallography
and NMR System (CNS) [69].

Figure 25 Extraction of the
A14–U8 H/W base pair
transformation in the yeast tRNA-
Phe X-ray crystal structure (PDB
ID 1EVV). A thread follows the
strands by the phosphorus atoms.
Hydrogen atoms are not shown.

The base pair is zoomed and
shown with the frames (O MA14
and O MU8) defined in the global
frame, O. The transformation
A14MU8 = O M−1

A14 × OMU8 is
extracted.
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4.3.3 Cycles of Interactions

Traversal of a spanning tree to build tertiary structures implies a conceptual
problem, as was pointed out in Section 4.2. A spanning tree does not cover
all the arcs of the RNA graph. User constraints must be added to the input
to make sure the dropped interactions are satisfied. However, such ad hoc
constraints are difficult to define and compute. Lemieux and Major have
designed a novel building approach to decompose an RNA graph in a series
of minimum cycles of interactions [70], whose solutions can be combined by
superimposing common arcs. The RNA graph in Figure 24, for instance, is a
minimum cycle of four nucleotides. The product of the four transformation
matrices is the identity matrix, representing an additional constraint to ensure
the consistency of the cycle and the satisfaction of the four interactions.

These minimum interaction cycles could well be used as first-class objects
in stochastic graph grammars [71, 72] to represent the tertiary structure of
related RNAs and of their sequence alignment. This is similar, but yet more ex-
pressive, than stochastic context-free grammars employed to represent RNA
secondary structures [73, 74].

5 Perspectives

Accurate prediction of RNA tertiary structures from sequence alone is still an
unresolved problem. In the meantime, formalizing RNA attributes, searching
for higher-order levels of structural organization and modeling their tertiary
structure represent current efforts towards better understanding of the RNA
architectural principles. In addition, formalizing RNA structural knowledge
in computer programs offers the possibility to apply it in a systematic and
objective manner, allowing us to generate new and experimentally testable
data.

The recent resolution of several RNA structures by X-ray crystallography,
NMR, as well as by computer modeling, has allowed us to observe repeated
RNA fragments and to infer their function. We are starting to understand
the sequence constraints imposed by the tertiary structure of these fragments,
and to discover local and global folding rules. In the coming years, as we can

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 26 Yeast tRNA T-stem–loop. (a)
Secondary structure. (b) MC-Sym input for
the stem fragment. (c) MC-Sym input for the
loop fragment. (d) MC-Sym input for merging
both fragments. (e) Spanning tree of (b). (f)
Spanning tree of (c). (g) Spanning tree of

(d). (h) Stereoview of a final model generated
by MC-Sym. The bases are shown in blue;
the U54–A58 W/H base pair in lighter blue.
The backbone is shown in yellow. The thread
follows the phosphodiester chain. Hydrogen
atoms are not shown.
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expect agreement on an RNA ontology (nomenclatures and formalisms), we
might assist in the deployment and implementation of these folding rules into
accurate RNA tertiary structure prediction algorithms. An RNA ontology will
enable the interoperability of research results. Consequently, as we identify
the RNAs of key cellular processes, determine their structure and characterize
their role, we will be in a better position to manipulate them. As a result, we
should observe an increase in the number and an improvement in the accuracy
of RNA-based molecular medicine techniques.
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Part 5 Analysis of Molecular Interactions

16
Docking and Scoring for Structure-based Drug Design
Matthias Rarey, Jörg Degen and Ingo Reulecke

1 Introduction

As a result of structural genomics activities, more and more protein structures
are becoming available weekly (see also Chapter 13). At the beginning of
2005, more than 29 000 protein structures were deposited in the Protein Data
Bank (PDB) [25, 26]. Although experimental structure elucidation via X-ray
crystallography or nuclear magnetic resonance (NMR) spectroscopy cannot
be fully automated at present, it has become a routine task for several protein
structural classes. If one excludes complex structures like membrane-bound
proteins (e.g. ion channels, G-protein-coupled receptors), one can expect that
the three-dimensional (3-D) structure for a protein of interest can be solved
with a reasonable chance.

In order to understand a protein’s function – or even more challenging
to modulate a protein’s function – it is important to be able to predict and
understand the interactions a protein undergoes with other biomolecules.
On the computational side, one has to solve the docking problem: given
two molecules, we would like to know whether these molecules will form
a complex, how stable this complex is and what it looks like geometrically.
Interactions occur between all types of biomolecules – proteins form stable
protein–protein complexes, and interact with RNA, DNA and small organic
molecules. The interactions between small organic molecules and proteins
are of special interest. These interactions often give important hints on the
protein’s function. Moreover, small molecules can inhibit or activate protein
functions and, therefore, play a dominant role in pharmaceutical research. Re-
cently, small molecules have also been applied as a biological tool for revealing
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Figure 1 Protein–ligand complex. HIV protease in complex with the
nonpeptidic inhibitor XK263 from Dupont Merck.

protein function [276]. The focus of this chapter is on reviewing computational
methods for predicting interactions between proteins and small molecules,
called ligands in this context. Chapter 17 concentrates on modeling protein
interactions with macromolecular binding partners.

Figure 1 gives an example of a protein–ligand complex. The protein is
HIV-protease, a protein from the human immunodeficiency virus (HIV) with
the function of cutting a translated multi-protein peptide chain into pieces
which fold to HIV proteins (see also Chapter 40). Since this function is not
required by the host, i.e. the infected patient, HIV protease is a useful drug
target: inhibiting HIV protease prevents the virus from replicating. The ligand
molecule is a known inhibitor of HIV protease. The two molecules show a
perfect complementarity of the molecule’s shapes. In Section 3 we will see that
steric as well as physicochemical complementarity is a key aspect in molecular
docking calculations.

A computer method for the prediction of protein–ligand complexes has two
major ingredients: an algorithm creating potential protein–ligand complex
geometries (pose generation) and a function predicting the binding affinity of
the ligand to the protein based on the complex geometry (scoring). Scoring
and pose generation both contribute to the difficulty of the docking problem.
Several physical effects like electrostatics, van der Waals forces, hydrogen
bonding, and hydrophobic and entropic effects influence the binding affinity,
some of which can only be estimated roughly. Since these effects can increase
or decrease binding affinity, the balance of the terms is of major importance
and makes scoring such a difficult task. An introduction to scoring functions
will be given in Section 2.

Pose generation involves consideration of several degrees of freedom. The
most important ones are the relative orientation of the two molecules and the
conformation of the ligand molecule. Apart from these, the protein conforma-
tion may also vary, water molecules can be located at the interface between the
molecules and the protonation states of the molecules can change. All of these
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variables are subject to a complicated network of constraints. A small change
in one variable may decide whether an overlap between the two molecules
occurs or whether a hydrogen bond between two groups can be formed. This
implies that the scoring functions for protein–ligand docking typically contain
several local minima, and have steep slopes or points of degeneracy and
discontinuity. Thus, they are difficult to optimize. Several pose generation
methods will be discussed in Section 3.

Although no general solution of the docking problem is available today,
several scoring functions and pose generation algorithms for various variants
of the docking problem have been developed and successfully applied. This
chapter will give an overview of these functions and algorithms. Additional
recent review articles on software for structure-based drug design can be
found in the literature [42, 110, 115, 152, 168, 187, 209, 243, 265]. Before starting
our methods overview, we will summarize the types of docking problems and
describe some typical application scenarios.

1.1 A Taxonomy of Docking Problems

Docking problems can best be classified by the type of input molecules.
In macromolecular docking, two macromolecules like proteins or DNA are
docked. The major characteristics of these problems are that the complex
typically has a large contact area and that the molecules, although still flexible,
have a fixed overall shape. These features imply that methods based on
geometric properties such as shape complementarity alone can already be
used efficiently for creating energetically favorable complexes. A survey of
methods for protein–protein docking is given in Chapter 17 and elsewhere
[197, 275].

The second class contains docking problems in which a small molecule is
docked to a macromolecule. The macromolecule can be a DNA fragment or
a protein; in the latter case, the problem is called protein–ligand docking. In
general, the small molecule is an organic molecule, e.g. a natural substrate or
an inhibitor like the protease inhibitor mentioned in the example above.

Small-molecule docking differs substantially from macromolecular docking
in the fact that the ligand is typically not fixed in its overall shape. The con-
formational flexibility of the ligand molecule is of importance and geometric
properties alone are often not sufficient to determine low-energy complexes.
Even in cases in which the molecule is more or less rigid, the shape of the
molecule is not characteristic enough to find low-energy complexes based on
shape alone. Therefore, the algorithms that have been developed for small-
molecule docking differ from those for macromolecular docking.

For various reasons pertaining to important drug properties, like their
bioavailability, most drugs are small molecules. Therefore, small-molecule
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docking is of great interest in pharmaceutical research. Since pharmaceutical
targets are often proteins, most docking algorithms are developed for protein–
ligand docking.

In principle, docking of small molecules to DNA can be handled by the
same algorithms. Differences occur in the handling of DNA-specific binding
mechanisms like covalent binding or binding of so-called intercalators [235].
An intercalator is a small molecule that binds to DNA between two subse-
quent bases. Since a structural change in the DNA is necessary for binding,
conformational flexibility of the DNA must be taken into account. This can be
done by docking into a distorted DNA structure [112]. A better alternative
is to deal with the DNA flexibility directly. For example, Zacharias and
coworkers [305] developed an algorithm based on normal mode analysis for
handling structural changes of the DNA during docking calculations.

Protein–ligand docking problems can be further distinguished by the size
of the ligand molecule. The typical ligand molecule occurring in drug design
docking problems has about five to 12 rotatable bonds. Thus, often the
question of placing only a part of the ligand, a fragment, in the active site of the
protein arises. In contrast to a typical drug molecule, the conformational space
of a fragment is quite small and does not necessarily have to be taken into
account explicitly. Therefore, algorithms handling only the relative orientation
of the two molecules (rigid-body docking algorithms) can be applied. Docking
fragments to proteins is a subproblem handled in several more complex dock-
ing algorithms. Some examples are the protein–ligand docking algorithms in
which flexibility is handled by dividing the ligand into smaller fragments (see
Section 3.2.2), de novo design algorithms in which new molecules are created
from a fragment database (see Section 5.2) or combinatorial docking algo-
rithms in which combinatorial libraries of molecules are docked by combining
placements for individual building blocks of the library (see Section 4.2).

Orthogonal to the classification by the type of input molecules, the second
important parameter for categorizing docking algorithms is the time spent
per prediction. The number of molecules which have to be processed covers
a range from single molecules to several hundred thousands and depends on
the specific application scenario.

1.2 Application Scenarios in Structure-based Molecular Design

Molecular docking techniques are frequently used during the lead generation
and optimization phase of a drug design project. Most prominent is surely
the search for new lead structures in the very early phase of drug design.
If the structure of a target protein of interest is available, molecular docking
can be used to prioritize compounds in a virtual library [187]. This process,
called structure-based virtual screening, simply docks each compound of the
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library into the active site of the target protein and estimates the free binding
energy using the scoring function. Virtual screening has a quite long history.
Only recently, however, have the methods become applicable due to better
docking algorithms and scoring functions as well as fast and cheap computer
hardware.

Even with modern scoring functions, virtual screening gives only rough
estimates for binding affinities, and is therefore a prefilter used to reduce the
number of compounds entering the costly and time-consuming experimental
validation. Nevertheless, several case studies have been published in which
virtual screening was used to select up to a few hundred compounds which
were then experimentally tested [164]. All case studies have two aspects
in common: (i) substantial knowledge of the modeler went into the virtual
screening process with the consequence that we cannot consider the process
as fully automated and (ii) in all cases the authors were able to identify
reasonable lead structures. In summary, we can say that although virtual
screening is not a fully automated process, it is a very powerful tool in the
hands of experienced modelers.

Structure-based virtual screening is often combined with experimental
high-throughput screening. For example, virtual screening can be used
to preselect promising sublibraries from the compound inventory. Virtual
screening may be less reliable than experimental high-throughput screening;
however, it gives results which are much better suited for in-depth analysis.
Since the proposed complex structure is available, the modeler is able to
judge on the basis of this structure, cluster compounds by their binding mode
and further reduce the set of solutions by filtering out unwanted geometrical
solutions.

The ability to quickly access potential complex geometries makes molecular
docking an essential tool for structure-guided lead optimization. Based on a
validated lead, focused libraries can be designed and evaluated before the
library has to be synthesized. Individual modifications for improving the
binding affinity can be suggested much more easily if the complex structure
is available. Functional groups in the molecule that are not involved in
complex formation can be identified on the basis of the complex geometry.
These groups are of major interest in the optimization of second-order drug
properties like bioavailability, specificity and synthesizability.

In the near future, we can expect that more and more structures of func-
tionally important human proteins will become available. This will open a
new application route for molecular docking tools. With so-called inverse
screening, we can predict the binding affinity of a lead compound to a large
set of protein structures. With such an approach, further proteins interacting
with the lead apart from the target protein can be identified. This will give
important hints to potential side-effects, toxicity or inappropriate absorption,
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distribution, metabolism and elimination (ADME) profile of the lead. First
publications show that molecular docking can, in principle, be applied in this
scenario [223].

In the virtual world we are not limited to existing, already synthesized
molecules. Molecular docking can be applied to hypothetical molecules,
opening up a completely new route in drug design. In the 1980s, the idea arose
of constructing a molecule inside the active site of a protein from scratch (de
novo ligand design). Today, de novo design is an accepted alternative strategy
for lead identification, especially if the protein structure is available. The
main issue in modern de novo design methods is to estimate the synthetic
accessibility of a compound. Section 5 summarizes the current strategies for
taking synthetic accessibility into account.

2 Scoring Protein–Ligand Complexes

As virtual high-throughput screening is gaining importance in the lead dis-
covery process, the need for a reliable scoring function becomes ever more
pressing. Scoring functions have to fulfill three kinds of requirements in
docking applications – different poses of a ligand inside a protein binding site
have to be compared in order to identify the natural binding mode. Many
ligands have to be ranked according to their binding affinity in order to
distinguish possible lead structures from nonbinding molecules. Thus, as a
scoring function needs to be evaluated very often, it has to be very fast to
compute.

Since scoring is such a crucial concern in virtual drug design, a number
of review articles deal with this problem in great detail, most recently Refs.
[40, 103, 151, 161, 262]. In the following we will give a short overview over
the basic features of protein–ligand association and commonly used scoring
functions.

2.1 Modeling Protein–Ligand Interactions

A noncovalently bound inhibitor is subject to the dynamic equilibrium be-
tween the complex R–L and the uncomplexed state where both the ligand L
and the receptor (protein) R are surrounded by solvent molecules (Figure 2).
Applying the law of mass action, one can derive a measure of binding free
energy from each species’ concentration and chemical activity, respectively.
Conversely, if we know the binding free energy of a ligand with regard to a
certain target protein, we also know if it will bind to the protein or prefers the
solvated state. Equation (1) reveals the relationship between the binding-free
energy ΔGbinding and the individual concentrations, which are denoted by the
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Figure 2 Energetic contributions. Schematic representation of (a)
receptor R and ligand L uncomplexed and both surrounded by solvent
molecules (shaded circles), and (b) receptor–ligand complex R–L.
Hydrogen bonds are represented by dotted lines.

bracket terms.

ΔGbinding = ΔHbinding − TΔSbinding = −RT ln
[R− L]
[R] · [L]

, (1)

where R is the gas constant and T is the absolute temperature. Binding free
energy is composed of enthalpic and entropic contributions: Binding entropy
ΔSbinding is a term derived from a change in the degree of order upon complex
formation due to the change in the number of translational, rotational and
conformational degrees of freedom, whereas the binding enthalpy ΔHbinding
sums the changes of inter- and intramolecular forces. Typical attractive in-
termolecular forces are of electrostatic nature, but induction and dispersion
effects also play a crucial role. With decreasing distance between the atoms,
intermolecular forces become repulsive due to the penetration of the electron
shells. A special case of intermolecular force is hydrogen bonding which
occurs between a hydrogen atom bound to an electronegative atom and the
lone pair of another electronegative atom [44]. Electronegative atoms relevant
for protein–ligand docking are mainly oxygen and nitrogen.

When estimating binding free energy, one should also keep in mind that
the protein, the ligand and the complex are surrounded by solvent molecules,
which also take part in interactions. In particular, water, which is the natural
solvent for a protein, has properties which are difficult to take into account
[302].
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2.2 Scoring Functions based on Force Fields

Force field or first principle type scoring approaches are of the general form

Etotal = ∑
bond

Kr(r− req)2 + ∑
angles

Kθ(θ− θeq)2 + ∑
dihedrals

Vn

2
[1 + cos(nφ− γ)]

+ ∑
i<j

[
Aij

R12
ij
− Bij

R6
ij

+
qiqj

εRij

]
, (2)

where the energy Etotal of a system is computed by summing up over inner
strain and (noncovalent) binding energy values. Energies resulting from
deviations from standard bond lengths req and angles θeq are calculated by
simple harmonic potential functions. Out-of-plane deviations φ are penalized
using a periodic function, and intermolecular forces between the atoms i
and j are approximated by Lennard–Jones and Coulomb expressions, which
depend on the distance Rij between the atoms. Force field calculations require
many parameters which are optimized for specific types of molecular systems.
Force fields often used for biomolecular interactions are AMBER [64], OPLS-
AA [139], CHARMM [188] and GROMOS [217].

As can be seen in Eq. (2), force field expressions are lacking terms for
entropic contributions. Therefore, force fields are mainly used in molecular
dynamics (MD) or Monte Carlo (MC) methods. In these methods, free energy
and entropy, respectively, are derived from generating an ensemble of states
and applying the Boltzmann equation [27]. Solvation effects can be considered
in principle, either indirectly by using a distance-dependent dielectric con-
stant (Poisson–Boltzmann model) for simulating electrostatic shielding [130]
or by considering the solvent molecules explicitly.

Such simulations can be performed in order to find the natural binding
mode and the free energy of the system. In order to rank two compounds
against each other a common reference state is required. Figure 3 shows
the thermodynamic cycle for calculating the relative binding free energy
ΔΔGL → L∗ of a ligand L* with respect to another ligand L for a common re-
ceptor R. ΔG3 and ΔG4 denote the binding free energy of L and L* with respect
to R and ΔΔGL → L∗ the difference between them. In a thermodynamic cycle
the energy is independent from the path it was derived from and thus, if ΔG3
is known from experiment, ΔG4 can be calculated from ΔG1 and ΔG2. These
are the energies needed for transforming L to L* uncomplexed and in complex
with R, respectively. They can be computed from stepwise thermodynamic
integration over the reaction pathway. In practice, the transformation between
the two systems is replaced by a series of transformations between non-
physical intermediate states. This method is called free energy perturbation
(FEP) (see Ref. [156] for further details).
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Figure 3 Thermodynamic cycle. Thermodynamic cycle for calculating
the relative binding free energy difference ΔΔGbinding between two
ligands L and L∗ binding to the same protein R.

ΔΔGL→L∗ = ΔG4 − ΔG3 = ΔG2 − ΔG1 . (3)

It is also possible to calculate the total binding free energy ΔG4 of L∗ by
using a “dummy molecule” instead of L. The dummy molecule has no
energetic influence on the complex, therefore ΔG3 is zero. Since ΔG3 is
zero, ΔG4 is derived directly from the thermodynamic calculations. As this
FEP method requires many simulation steps all over the reaction pathway to
acquire ensemble averages and according free energy values, it is very time-
consuming and not applicable for screening purposes.

Åqvist and coworkers [12] introduced the linear interaction energy method
(LIE), by which simulations are carried out only for the corners of the ther-
modynamic cycle. Rather than integrating over the reaction pathway, binding
free energy is linearly approximated depending on the difference in polar and
non-polar interaction energy before and after complex formation. The polar
and nonpolar free energy contributions are estimated according to:

ΔGbind = αΔ
〈

Vvdw
l−s

〉
+ βΔ〈Vel

l−s〉+ γ , (4)

where the Δ〈Vl−s〉 terms denote the differences in the MD or MC averages
between the nonbonded and the complexed state, separated in van der Waals
(vdw) and electrostatic (el) interactions of the ligand with the surrounding
environment. α, β and γ are constants.

Another method for speeding up force field-based docking calculations is
to precalculate energy values for different kinds of atom probes placed at the
nodes of a grid which is superposed with the protein’s active site. Computing
pairwise energies between ligand and protein atoms is therefore reduced
to calculations pertaining to the grid points near to the ligand atoms. The
historically first and still most frequently used software for this task is the
GRID program [106]. Recently, Pearlman [226] introduced the OWFEG (one-
window free energy grid) method, by which grid-point energies are derived
from FEP calculations and directly related to free energy values.
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2.3 Empirical Scoring

Empirical scoring functions are based on correlating geometric parameters
of the protein–ligand complex with measured binding free energies. The
overall score is a sum of terms representing different physicochemical effects
contributing to both entropic and enthalpic energy changes on binding. This
approach was pioneered by Böhm [34]. He applied such formula to protein–
ligand complexes in the de novo design program LUDI [33, 35]:

ΔGbinding = ΔG0 + ΔGhb ∑
H−bonds

f (ΔR, Δα) + ΔGionic ∑
ionic int.

f (ΔR, Δα)

+ΔGlipo|Alipo|+ ΔGrotNROT . (5)

In LUDI, the binding free energy ΔGbinding is calculated by counting hydrogen
bonds, ionic interactions, the lipophilic contact surface area between ligand
and receptor, and the number of rotatable bonds in the ligand. Hydrogen
bonds and ionic interactions, which diverge from ideal geometry by distance
ΔR or angle Δα, score with a linearly decreasing value. The contact surface
is estimated for modeling the hydrophobic effect and the number of rotatable
bonds is used to rate the loss of entropy due to freezing the ligand in a specific
conformation upon binding. The individual scoring parameters ΔGi originate
from multiple linear regression analysis of 45 receptor–ligand complexes from
the PDB with experimental determined binding affinities. The intercept ΔG0
is regarded as entropic contribution due to the loss of the ligand’s degrees of
freedom of rotation and translation.

Based on Böhm’s work many empirical scoring functions were released
which differ mainly in the functional form for the individual terms [37, 77, 87,
92, 99, 121, 134, 148, 159, 205, 242, 249, 272, 279, 293, 294]. For example, pairwise
contact terms or atom-based partial logPo/w parameters are used instead of
surface area terms for incorporating the hydrophobic effect. The term for loss
of conformational entropy is also implemented in different ways, accounting
for the fact that not all of the ligand’s side-chains get stuck in a specific confor-
mation and the rotamers are not independent from each other. Furthermore,
with the increasing number of elucidated 3-D structures the parameterization
datasets became more voluminous and other regression techniques (partial
least squares [93], genetic algorithms [105], neural networks [201]) have been
introduced that seem more appropriate for this kind of problem. POEM [8]
is a recently published method which combines the design of experiment
(DOE) approach [203] with various regressing techniques in order to train an
empirical scoring function on a specific target protein.



2 Scoring Protein–Ligand Complexes 551

2.4 Knowledge-based Scoring

Apart from the empirical scoring functions, the so-called knowledge-based
approaches or potentials of mean force, originating from protein folding stud-
ies [268], have become quite popular. Assuming that an observed crystal-
lographic complex represents the optimum placement of the ligand relative
to the protein, protein–ligand atom pair potentials can be derived from the
distance distributions of interactions between atoms of specific types found in
structural databases. A popular member of this class of scoring functions is
the PMF function, introduced by Muegge [208]:

Aij(r) = −kBT ln

[
f j
Vol_corr(r)

ρij
seg(r)

ρij
bulk

]
. (6)

The potential of mean force Aij between a receptor atom i and a ligand atom j
is calculated from a pair-correlation (radial distribution) function, where ρseg
is the number density of pairs ij that occur in a certain radial segment and ρbulk
is the overall distribution when no interaction occurs. fVol_corr is a correction
factor for the ligand atom j, which was introduced in order to consider the
volume occupied by the ligand itself. kB is the Boltzmann constant and T is
the absolute temperature. The final PMF score is calculated as a sum over all
protein–ligand atom pairs ij within a certain cutoff radius.

Other knowledge-based potentials were introduced [70,81,102,133,200,213,
221, 306], mostly differing in the specific functional form of the atom pair
potential or the size of the training dataset. Gohlke introduced the DrugScore
[102] function with an additional nonpolar surface dependent single atom
term to reflect the hydrophobic collapse. Muryshev [213] derived the potential
function from pair-correlation studies, but retained some adjustable parame-
ters which were then fitted to experimentally determined binding affinities.

2.5 Evaluation

There are three basic questions to consider when evaluating the reliability of
a scoring function:

(i) Is the scoring function able to rate the docking pose most similar to the
natural binding mode of a ligand with the best score?

(ii) Can the score of two ligands be used to decide which one binds better to
a specific protein?

(iii) Is the score a direct measure for binding affinity such that results from
different target proteins can be compared with each other?
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As the amount of experimental data grows and becomes available to the sci-
entific community in online databases [52,122,247,291,292,307], an increasing
number of evaluation and comparison studies measuring the performance of
different scoring functions have been carried out. Several studies on the topic
of screening and docking evaluation have been published recently [29,82,146,
194, 225, 231, 232, 295, 296].

It is a common conviction that there is no scoring function which performs
well on all kinds of proteins. Each scoring function is able to account espe-
cially well for certain specific types of interaction patterns and protein classes.
Furthermore, it is often found that combining the results of different scoring
functions leads to more consistent results and the rate of false hits can be
reduced by such consensus approaches. Often, a single scoring function is
superior for the protein class of interest.

Therefore, a consensus score rarely performs as well as the best scoring
function for a specific target, but might be the best choice if there is no
additional knowledge about the target protein [51, 56, 273]. It is common
sense that actual scoring functions are able to produce satisfying results, in
particular, when they are trained to a specific problem. As scoring is such a
major concern in computer-aided drug design, there is a great need for further
improvements in this field.

3 Methods for Protein–Ligand Docking

The following section contains a survey of algorithms applied to the various
types of docking problems as well as a short summary on scoring functions.
The methods are typically related to specific software tools also mentioned
here.

3.1 Rigid-body Docking Algorithms

Rigid-body docking algorithms have historically been the first approaches to
screening sets of ligands with respect to their fit to a given target protein. The
protein as well as the ligand is considered rigid, which reduces the problem
to the search for the relative orientation of the two molecules with the lowest
energy, involving six degrees of freedom.

Reviewing the development of more recent approaches to fragment dock-
ing, two enhancements were made. (i) More elaborate algorithms for search-
ing in 3-D space, often adapted from other disciplines, were applied (see,
e.g. Sections 3.1.2 and 3.1.3). These methods allow for a reasonable cover-
age of search space in short computing times. (ii) More information on the
physicochemical properties of binding are included directly into the search
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process. Therefore, energetically unfavorable fragment placements are di-
rectly avoided, even if they make sense from a steric point of view. Both
enhancements are essential for achieving a high performance for large variety
of molecular fragments.

3.1.1 Approaches based on Clique Search

The docking problem can be understood as a problem of matching charac-
teristic local features of the two molecules in 3-D space [165]. A match is
an assignment of a ligand feature to a protein feature. Such a feature can
either be a piece of volume of the active site of the protein or the ligand or
an interaction between the molecules. The search procedure maximizes the
number of matches under the constraint that they are compatible in 3-D space,
i.e. that they can be realized simultaneously. In other words, compatibility
means that a transformation can be found which simultaneously superim-
poses all ligand features to the matched protein features. In order to search
for compatible matches, the following graph G is used: the vertices of Gare all
possible matches between the protein and the ligand; the edges connect pairs
of vertices representing compatible matches. Mostly, compatibility means
distance compatibility within a fixed tolerance ε: the matches (p1, h1),(p2, h2)
are distance-compatible if and only if |d(p1, p2) – d(l1, l2)| < ε. A necessary
condition for a set of matches to be simultaneously realizable is that all pairs
of matches are distance-compatible. Therefore, an algorithm for enumerating
cliques (fully connected subgraphs) can be applied to G. By superimposing
the matched features of a clique one obtains an initial orientation of the ligand
molecule in the active site of the protein.

One of the historically first and today probably most widely used software
tool for molecular docking, the DOCK program [166], is based on the idea of
searching distance-compatible matches. Starting with the molecular surface
of the protein [61, 62, 246], a set of spheres is created inside the active site as
shown in Figure 4. The spheres represent the volume which can be occupied
by the ligand molecule. The ligand is either represented by spheres inside the
ligand or directly by its atoms. In DOCK, an enumeration algorithm searches
for sets with up to four distance-compatible matches. Each set is used for an
initial fit of the ligand into the active site. Then the set is augmented by further
compatible matches and the position of the ligand is optimized and scored.
Since its first introduction, the DOCK software has been extended in several
directions. The matching spheres can be labeled with chemical properties
[267] and distance bins are used to speed up the search process [198, 266].
Recently, the search algorithm for distance-compatible matches changed to
the clique-detection algorithm introduced by Kuhl and coworkers [78, 165].

An interesting algorithmic extension was introduced by Knegtel [155]. In-
stead of using a single protein, an ensemble of protein structures is used for
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Figure 4 Sphere matching with the DOCK algorithm. (a) A protein
active site is shown filled with spheres as they are used in the DOCK
algorithm. (b) A ligand covered with spheres is shown. An example
for a distance-compatible matching is highlighted in grey. All distances
compared are shown by arrows.

the docking calculation. By averaging over the structures, a soft potential
representing all structures at the same time can be constructed. With this
approach limited protein flexibility can be taken into account. Two of the
flexible ligand docking approaches based on DOCK will be introduced below.
Furthermore, several scoring functions have been applied in combination with
the DOCK algorithm [113, 199, 200, 266].

While the initial DOCK algorithm uses volume as the feature to be matched,
other approaches use chemical interactions. Mizutani and coworkers [202]
presented the program ADAM in which hydrogen bonding is the feature
used for matching. Possible matchings are enumerated and filtered based on
distance compatibility.

Further examples for distance-compatibility as an initial screen for fragment
orientations are the well-known de novo ligand design program LUDI [33, 36]
and the rigid-body docking program CLIX [170]. While LUDI’s placement
is based on matching hydrogen bond vectors and hydrophobic points, CLIX
uses energetically favorable regions for functional groups of the ligand for its
analysis. These regions are precalculated with the computer program GRID
[106] employing a force field potential (see also Section 2). CLIX uses only two
points for an initial matching. After fitting the two matched sites, the rotation
about the common axis between the matched sites remains as an open degree
of freedom. This rotation is then sampled in regular intervals.

3.1.2 Geometric Hashing

Geometric hashing [169] originated from computer vision and was first ap-
plied to molecular docking problems by Fischer and coworkers [84, 85]. In
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computer vision, the geometric hashing scheme was developed for the prob-
lem of recognizing (partially occluded) objects in camera scenes. For sim-
plicity, we explain the geometric hashing algorithm for the 2-D case first and
describe its application to the 3-D molecular docking afterwards.

Given a picture of a scene and a set of objects which can occur therein (called
models in this context) both represented by points in 2-D space, the goal is to
recognize some of the models in the scene. In a preprocessing phase, a hash
table is created from the set of models. For each model, each pair of points
defines a so-called basis. Then, for each basis, every third point belonging to
the model is expressed in coordinates relative to the basis. A tuple (model,
basis) is stored in a hash table addressed by the relative coordinates of the
third point. The reason for having several bases for a model instead of a single
one is that it is unknown in advance whether a part of the model is occluded
in the scene.

In the recognition phase the scene is analyzed as follows. Every pair of
points is considered as a basis. Once the basis is defined, all other points
can be expressed by relative coordinates with respect to the basis resulting
in a query for the hash table created before. The query votes for all matching
tuples (model, basis) stored in the hash table. Finally, models with many votes
are extracted, a transformation is calculated from the matching points, and the
match is verified.

Two aspects make geometric hashing attractive for molecular docking prob-
lems: it is time-efficient and it deals with partial matchings standing for
partially occluded objects in the terms of pattern recognition. The latter is
extremely important because in most docking applications not all of the ligand
features are matched with the protein since parts of the ligand surface are in
contact with bulk water.

In order to apply geometric hashing to molecular docking, Fischer and
coworkers [84, 85] used the sphere representation of DOCK as the underlying
model. As docking is performed in 3-D space, three points (here spheres or
atoms) are necessary to define a basis. As a consequence, the number of hash
table entries increases with the fourth power of the number of ligand atoms,
resulting in unacceptably large hash tables. Therefore, the basis is described
by only two points leaving one degree of freedom open (rotation around the
axis defined by the two points). With this model in mind, the geometric
hashing approach can be directly applied to the molecular docking problem.

3.1.3 Pose Clustering

Pose clustering [181] is a different approach originating from pattern recog-
nition that has been applied to the molecular docking problem [245]. Pose
clustering was originally developed for detecting objects in pictures with an
unknown camera location. The algorithm matches each triangle of object
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Figure 5 Interaction surfaces and points.
Interaction surfaces of three hydrogen-bond
acceptors in thrombin (shown in red). Protein
atoms are drawn with sticks, ligand atoms

with balls and sticks. (a) The interaction
surfaces itself and (b) the approximation by
interaction points used in the pose clustering
algorithm.

points with each triangle of points from the picture. From a match, a camera
location can be computed such that the triangles superimpose. The camera
locations are stored and clustered. If a large cluster is found, the object
is identified and the orientation of the camera with respect to the object is
determined.

For applying pose clustering to molecular docking, the LUDI model of
molecular interactions [33, 36] is used as the underlying representation. For
each interacting group, an interaction center and an interaction surface is de-
fined (see Figure 5). The interaction surfaces of the protein are approximated
by discrete points, which then form the scene in the pose clustering algorithm.
The centers of the ligand interactions are the object points which have to be
matched to the scene.

While in the pattern recognition problem each triangle of object points can
be matched to each triangle of picture points, in the docking application
the matches are limited in various ways; (i) the interaction types must be
compatible and (ii) matching triangle edges must have approximately the
same length. A hashing scheme is necessary to efficiently access matching
protein interaction surface triangles (picture points) for a given ligand in-
teraction center triangle (object points). The hashing scheme stores edges
between two points, and addresses them by the two interaction types of
the points and the edge length. A list-merging algorithm then creates all
triangles based on lists of fitting triangle edges, for two of the three edges
of the query triangle. For a match, additional directionality constraints for
the three interactions are checked. Then, a transformation is calculated that
superimposes the two triangles. In the original application of pose clustering,
the transformation is used to calculate the camera location. In molecular
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docking, the transformation directly describes the location of the fragment
in the active site.

Finally, the transformations must be clustered. We use complete-linkage
hierarchical clustering for this task. Up to a user-given distance-threshold,
the two closest clusters are merged to a single one. The distance between
two clusters is defined as the maximal distance between their objects. As a
distance measure between transformations, the root-mean-square deviation
(RMSD) of the atoms after applying the transformations is used. After a
linear-time preprocessing phase, this quantity can be calculated from the
transformations in constant time [245]. For each of the clusters generated,
the typical postprocessing steps are performed, like searching for additional
interactions, checking for protein–ligand overlap and scoring.

3.1.4 Fast Shape Comparison

In molecular similarity, fast methods for comparing molecule shapes are of
great interest. A strategy developed in the 1980s is to model atoms by Gaus-
sian functions instead of van der Waals spheres [144, 154]. This method leads
to volume-based similarity measures like the Carbo and Hodgkin Indices
[49, 126], and allows for fast numerical optimization.

The concept of Gaussian shapes can be adapted to molecular docking [195].
The scoring function measuring the quality of fit consists of two terms. The
first quantifies the volume overlap between the protein and the ligand which
has to be minimized. The second measures an area intersection which has
to be maximized in order to achieve a tight fit. The overall function is
differentiable and can therefore be used in combination with fast numerical
optimization. Gaussian shapes are the underlying concept of the fast rigid-
body docking software FRED which is frequently used [1].

3.1.5 Superposition of Point Sets
In each of the discussed algorithms for rigid-body docking, the superposi-

tion of point sets is a fundamental subproblem that has to be solved efficiently
and therefore is discussed here briefly.

The superposition problem can be described as follows: Given two sets X,Y
with n vectors each, find a transformation T = Ω,t minimizing the root-mean-
square deviation between Xand the transformed vector Y: RMSDX,Y(T) =√

(1/n) ∑i(xi −Ωyi − t)2. Let Ω describe a rotation around the centroid of Y,
then t′ = (1/n) ∗ (∑i xi −∑i yi) minimizes RMSDX,Y(T) for all rotations Ω.

Optimizing Ω is a more difficult task. Ferro and Hermans [83] and later
Sippl and Stegebuchner [269] proposed iterative algorithms rotating subse-
quently around the x-, y- and z-axes. If the axis is fixed, the optimal rotation
angle can be determined analytically.

Kabsch [141, 142] formulated the problem as a constrained optimization
problem. Using Lagrange multipliers and the calculation of eigenvectors,
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Kabsch was able to solve the problem directly. Kabsch’s algorithm is very
time-efficient and used in several codes for molecular docking today. A recent
further development based on Kabsch’s ideas combined with quaternions for
describing rotations can be found in Ref. [65].

3.2 Flexible Ligand-docking Algorithms

The major limitation of rigid-body docking algorithms is that the confor-
mational flexibility of the ligand molecule is not considered. Often small
molecules have large conformational spaces with several low-energy states.
Significant differences between the bound conformation and the calculated
low energy conformation can occur even for small molecules with only a few
rotatable bonds [286].

3.2.1 Conformation Ensembles

In principle, ligand conformational flexibility can be incorporated by applying
rigid-body docking algorithms to ensembles of rigid structures, each repre-
senting a different conformation of the same ligand. The size of the ensemble
is critical, since the computing time increases linearly with the number of
conformations, and the quality of the result drops with increasing difference
between the most similar conformation of the ensemble and the complex
conformation.

Miller and Kearsley developed the Flexibase/FLOG docking algorithm
based on conformation ensembles. Flexibases [145] store a small set of diverse
conformations for each molecule from a given database. The conformations
are created with distance geometry methods [66, 119, 120] which will be
introduced later in the context of docking. Then up to 25 conformations per
molecule are selected by RMSD dissimilarity criteria. Each conformation of a
molecule is then docked using the rigid-body docking tool FLOG [203] which
is similar to the DOCK algorithm discussed above.

A different approach based on conformation ensembles was presented by
Lorber and Shoichet [184]. Here, about 300 conformations per molecule are
created on average for a database of molecules. For each molecule, a rigid
part, e.g. an aromatic ring system, is defined. The conformation ensemble is
created such that the atoms of this rigid part are superimposed.

Then, the DOCK algorithm is applied to the rigid part and all conformations
are subsequently tested for overlap and finally scored. With this method, a
significant speedup can be achieved compared to an independent docking of
the conformations.

An important point in this scheme is the dependence between the confor-
mation generation algorithm and the docking algorithm: the fewer conforma-
tions are created, the higher the tolerance in the matching phase of the docking
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algorithm must be. Therefore, the algorithms applied to the two subproblems
are related making it necessary to tune parameters describing the coverage of
conformational space in accord with the tolerance in protein–ligand overlap.

A key element for the success of these methods is obviously the conforma-
tion generator. Frequently used are systematic approaches like ROTATE [3]
and OMEGA [2]. As a rule of thumb, a few hundred conformations have to
be generated in order to have a representative below 1.5 Å RMSD compared
to the bound conformation.

The probably most frequently used docking tools based on conformational
ensembles are GLIDE [87,114] and FRED [1,195]. GLIDE uses conformational
ensembles for fast prescreening of ligand poses. The most promising can-
didate poses are then numerically optimized and scored. Further examples
of software tools following the ensemble strategy are EUDOC [222] and the
method by Diller [72].

3.2.2 Flexible Docking based on Fragmentation

A possible way to handle conformational flexibility directly in the dock-
ing algorithm is by fragmentation. Here, the ligand is divided into several
fragments. Each fragment is either rigid or has only a small number of
conformations which can be handled by a conformation ensemble. Obviously,
the fragment-based docking approaches and de novo ligand design are closely
related. The major difference is that, while in the docking algorithm the frag-
ments stem from a single molecule, the de novo ligand design algorithm picks
a fragment out of a database. De novo design algorithms will be discussed in
Section 5.2.

3.2.2.1 “Place & Join” Algorithms
With respect to the way in which the fragments are reconnected during the
docking calculation, we can distinguish between two classes of algorithms.
In a “place & join” algorithm, each fragment is docked independently. Then,
placements for adjacent fragments in which the connecting atoms overlap are
identified and reconnected.
The first algorithm of this kind was developed by DesJarlais and coworkers
[69]. The ligand is manually divided into two fragments having one atom
in common. Then, placement lists are created for each fragment using the
docking algorithm DOCK. The algorithm searches through these lists for
placement pairs in which the common atom is located approximately at the
same point. Finally, the fragments are reconnected, energy minimized, and
scored.

Sandak and coworkers [254–256] applied the geometric hashing paradigm
to develop a “place & join” algorithm. As before, the ligand is divided into
fragments with one overlapping atom, called the hinge. For each ligand
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atom triplet of a fragment, a hash table entry is created and addressed with
the pairwise distances between the atoms. The entry contains a fragment
identification as well as the location of the hinge. In the matching phase,
protein sphere triplets are used to extract ligand atom triplets with similar
distances. As a result a vote is counted for a hinge location for each match.
Hinge locations with many votes are then selected, and the fragments are
reconnected accordingly and finally scored.

“Place & join” algorithms are advantageous in cases in which the molecule
consists of a small set of medium-sized rigid fragments. If the fragments are
too small, it is difficult to place them independently. Another difficulty is
to generate correct bond lengths and angles at the connecting atom without
destroying the previously found interactions of the fragments to the protein.

3.2.2.2 Incremental Construction Algorithms
The second kind of fragment-based docking algorithms – the one which is
used most frequently today – follows the incremental construction method.
Instead of placing all fragments of the ligand independently, the incremental
construction algorithm starts with placing one fragment (called base or anchor
fragment) into the active site of the protein. Then, the algorithm adds the
remaining parts of the ligand to the already placed fragment iteratively. Thus,
an incremental construction algorithm has three phases: the selection of base
fragments, the placement of base fragments and the incremental construction
phase. An incremental construction algorithm can start with several base frag-
ments; however, in contrast to the “place & join” algorithms the placements
are not combined, but taken as anchoring orientations to which the remaining
parts of the ligand can be added.
Incremental construction originated from the area of de novo ligand design.
Moon and Howe [204] presented the peptide design tool GROW based on
this strategy. The first docking algorithm based on incremental construction
was developed by Leach and Kuntz based on the DOCK program [174].
First, a single anchor fragment is selected manually and docked into the
active site using a variant of the DOCK algorithm which handles hydrogen-
bonding features in the matching phase. A subset of placements is selected
for which the incremental construction phase is started. For this phase, a
backtracking algorithm is used that enumerates the space of nonoverlapping
placements of the whole ligand in the active site. After adding a fragment to
the current placement, a refinement routine is used to eliminate steric strain
and to improve hydrogen bond geometries. The final placements are then
filtered, refined and scored with a force field-based approach. Although there
are several manual steps in this procedure, the work demonstrated that the
incremental construction idea can be applied to the docking problem.
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Leach published a second docking algorithm [172] similar to incremental
construction with respect to the way that the degrees of freedom are fixed
sequentially. Degrees of freedom considered are the ligand orientation and
conformation described by a discrete set as well as a set of rotamers for
selected protein side-chains. Leach used a variant of a “branch & bound”
scheme, called A* algorithm with dead-end elimination, to search efficiently
through the space of possible configurations.

The docking algorithm contained in the FlexX package [?, 239, 241] is also
based on incremental construction. FlexX is a fully automated approach to
molecular docking developed for virtual screening purposes. In the first
phase, a small number of base fragments are selected. An efficiently com-
putable scoring function is used to select fragments which are suitable for
placement. Base fragments should contain a reasonably large number of
interacting groups and at the same time a relatively small number of low-
energy conformations. A necessary condition for a successful calculation is
that the selected base fragment binds to the protein and is not mostly exposed
to water in the final protein–ligand complex. In order to ensure this, a small
set of base fragments distributed over the ligand is selected.

For placing the base fragments, the pose clustering algorithm is applied.
Base fragment conformations are enumerated within the placement algo-
rithm. The advantage of the pose clustering algorithm is that it is based on the
molecular interactions instead of the shape of the fragment. This facilitates the
handling of much smaller fragments than in shape-based algorithms, down
to the size of a single functional group. All calculated placements up to
a given number form the input to the incremental construction phase. In
contrast to Leach’s algorithm, a greedy strategy is applied always selecting
the k placements with the highest estimated score (k ∼ 800). Each iteration of
the incremental construction algorithm contains the following steps: adding
the next fragment in all possible conformations to all placements from the
previous iteration (or the base placement phase), searching for new protein–
ligand interactions, optimizing the ligand position to improve the interaction
geometries and reduce steric strain, selecting a subset of placements with
high score, and clustering the placements to achieve a reasonable degree of
diversity in the solution set. The overall search strategy is shown in Figure 6.

Ligand conformations within FlexX are based on the MIMUMBA model
[153]: To each rotatable bond, a set of low-energy torsion angles is assigned,
previously derived from a statistical analysis of the Cambridge Structure
Database (CSD) [7]. Ring system conformations are precomputed using the 3-
D structure generator Corina [89, 252]. For scoring protein–ligand complexes,
a variant of Böhms empirical scoring function [34] is used.

Several extensions of the FlexX approach have been developed. The in-
teraction model has been extended such that hydrophobic fragments can be
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Figure 6 Incremental construction. Flexible ligand docking by
incremental construction. The search tree resulting after the steps of
the algorithm as described in the text are shown in grey. The black line
illustrates the construction process for one placement of the complete
ligand.

handled with the pose clustering algorithm [238]. Further development of
the interaction scheme allows for even faster virtual screening. FlexX-Scan
is a special FlexX variant which makes use of a new interaction scheme
resulting in speedups of up to a factor 4 [257]. In order to place critical water
molecules and metal ions located in the protein–ligand interface, the “particle
concept” has been invented and integrated into the FlexX software. The
particle concept allows for automatic placement and energetic consideration
of approximately spherical objects during the docking calculation [240]. FlexE
is an extension of FlexX regarding the handling of protein flexibility [57, 58].
Similar to Knegtels approach mentioned above, FlexE takes an ensemble of
slightly differing protein structures as input. However, the structures are
not numerically merged to a single description. FlexE uses various graph
algorithms to explicitly consider the different alternative conformations for
protein parts like side-chains or small loop fragments and combine them
to a single protein conformation which is best suited for the protein–ligand
complex created during the docking calculation.

Two other approaches based on incremental construction have been pub-
lished. The program Hammerhead [300] and its successor Surflex [135] differ
from FlexX in the construction strategy. Instead of adding small fragments
(cut between each rotatable bond), the ligand is divided into a small set
of large fragments. During the construction phase, the next fragment is
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added such that the connecting atom (or bond) overlaps and interactions
to the protein can be formed. Therefore, there is no discrete sampling at
the torsion angle of the added fragment. However, since the bond angle
at the overlapping atom may vary, high-energy conformations will also be
generated and the situation in which a fragment does not interact directly
with the protein is more difficult to handle.

Makino and Kuntz [191] and later Ewing and Kuntz [79] presented a fully
automated incremental construction docking algorithm based on backtrack-
ing. A single anchor fragment is selected maximizing hydrogen bonding
features. During the incremental construction phase, the number of confor-
mations for each fragment is limited to reduce the size of the search space.
This method is called a limited backtrack search. For scoring, the AMBER
force field [224] is used with a modification allowing the handling of multiple
protonation states.

Incremental construction algorithms are the basis for widely used docking
tools like DOCK and FlexX. The quality of the predicted structures strongly
depends on the number of different placements considered in each iteration of
the incremental construction process. Therefore, although the overall concept
of incremental construction is simple, much effort must be put in the time-
efficient analysis of partially placed ligands, e.g. the protein–ligand overlap
test, the evaluation of the scoring function and the postoptimization of the
ligand placement.

In practice, incremental construction has proved to be a reasonable compro-
mise between accuracy and computing speed. This holds especially for virtual
screening applications, in which computing speed is of central importance.
For accurate docking, the question about the loss in quality due to the greedy
strategy during incremental construction arises. For FlexX, an implementation
of an alternative “branch & bound” method shows that for several complexes
no significant improvement can be achieved by a full enumeration of the
solution space [111].

3.2.3 Genetic Algorithms and Evolutionary Programming

Since the mid-1990s, genetic algorithms have been applied to the molecular
docking problem in several approaches [50, 55, 92, 137, 138, 205, 219, 280, 303].
A genetic algorithm [104] is a general-purpose optimization scheme which
mimics the process of evolution. The individuals are configurations in the
search space. A so-called fitness function is used to decide which individuals
survive and produce offspring.

Several elements must be modeled in order to use the idea of genetic
algorithms for an application like molecular docking. First of all, a linear
description of a configuration (the chromosome) is needed describing all de-
grees of freedom of the problem. Finding the chromosome description is the
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most difficult modeling part. A suitable description is free of redundancy and
models constraints of the configuration space directly such that configurations
violating constraints are never generated during the optimization.

Second, a fitness function has to be developed. The fitness function is
closely related to scoring functions for molecular docking with one extension.
Scoring functions normally work on 3-D coordinates. Therefore, the chro-
mosome of an individual has to be interpreted in order to apply the scoring
function. This step is called the genotype-to-phenotype conversion. Since most of
the computing time is spent on evaluating the fitness function, the conversion
and the evaluation have to be done efficiently.

The optimization scheme itself is more or less independent from the appli-
cation. Typically, several parameters have to be chosen like the population
size, the number of generations, crossover and mutation rates, etc. Here, it
is important to achieve a reasonable trade-off between optimizing the fitness
function and keeping the diversity in the population.

The genetic algorithm which is probably most widely applied for molec-
ular docking today was developed by Jones and coworkers [137, 138] and
is implemented in the software tool GOLD. A configuration in GOLD is
represented by two strings. The first string stores the conformation of the
ligand and selected protein side-chains by defining the torsion angle of each
rotatable bond. The second one stores a mapping between hydrogen-bond
partners in the protein and the ligand. For fitness evaluation, a 3-D struc-
ture is created from the chromosome representation by first generating the
ligand conformation. According to the mapping stored in the second string,
hydrogen bond atoms are superimposed onto hydrogen-bond site points in
the active site. Finally, a scoring function evaluating hydrogen bonds, the
ligand internal energy as well as the protein–ligand van der Waals energy
is applied as the fitness function. Recently, the Chemscore scoring function
was implemented in GOLD, showing an improvement in the virtual screening
performance [285].

Oshiro and coworkers [219] developed two variants of a docking method,
both based on genetic algorithms and the DOCK approach. The variants differ
in the way the relative orientation of the ligand to the protein is described. The
first variant is similar to the GOLD algorithm and encodes the matching of
ligand atoms to protein spheres in the chromosome. A superposition is used
to generate the 3-D orientation of the ligand. The second variant stores the
relative orientation directly by a translation vector and three Euler angles. For
scoring, a simplified version of the AMBER force field was used.

Gehlhaar and coworkers [92] developed a docking algorithm based on evo-
lutionary programming called EPDOCK. In contrast to a genetic algorithm,
offspring are created from one parent by mutation only. Each member of a
population is competing for survival in a so-called tournament. EPDOCK
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contains a self-developed scoring function based on atomic pairwise linear
potentials for steric interactions and hydrogen bonding.

3.2.4 Distance Geometry

Distance geometry [119,120] is a well-known technique from the area of struc-
ture determination via NMR technology. Instead of describing a molecule by
coordinates in Euclidean space, it is described by a so-called distance matrix
containing all interatomic distances. Based on distance matrices, a set of
conformations can be described in a comprehensive form by calculating a
distance interval for each atom pair.

The distance geometry methodology can be directly used in the docking al-
gorithm based on clique search and distance compatibility (see Section 3.1.1).
Two matches between protein site points and ligand atoms are compatible if
the site point distance lies within the distance interval of the ligand atom pair.
The drawback of this approach is that the distance matrix with n2 distances
compared to 3n atom coordinates is overdetermined: fixing the atom–atom
distance between a given atom pair to a single value causes other distance
intervals to shrink. Since the exact new interval boundaries are difficult to
calculate, the triangle and tetrangle inequality are used to approximate them
[74, 75]. In other words, only a very limited number of distance matrices can
be converted back to 3-D space.

Ghose and Crippen [95] first worked on this approach on a more theoretical
basis. Later, Smellie and coworkers [270] applied this methodology to real test
cases. Billeter and coworkers [28] combined the description of molecules by
distance constraints with an efficient algorithm for constrained optimization.

The screening software Specitope, later versions named SLIDE, developed
by Schnecke and coworkers [259] uses distance matrix comparisons as a first
filter step. However, the flexibility of molecules is not modeled by distance
intervals. Instead, a weighting scheme is defined to scale down the contribu-
tions of more flexible atom pairs in the overall score.

3.2.5 Random Search

Once a scoring function for evaluating protein–ligand complexes is available,
random search algorithms can be applied to the docking problem. Random
placements can be either created directly by randomly fixing all degrees of
freedom or they can be derived from a (random) starting structure by random
moves. In most cases the structure generation is combined with a numerical
optimization driving the placements to the closest local minima. Most ap-
proaches of this kind are MC algorithms discussed separately in Section 3.3.3.

Sobolev and coworkers [271] presented a random-search algorithm in their
docking program LIGIN. A large set of starting structures is created randomly
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and then optimized in two steps. The surface complementarity is optimized
first, the hydrogen bond geometry in a second step. So far, LIGIN does not
include ligand flexibility although the method is in principle able to handle it.

In order to avoid the repeated evaluation of very similar structures, Baxter
and coworkers [22] use a method called tabu search in their docking software
called PRO_LEADS. Starting with an initial random structure, new structures
are created by random moves. In tabu search optimization, a list (the tabu list)
is maintained containing the best and most recently visited configurations.
Moves which result in configurations close to one in the tabu list are rejected
except if they are better than the best scoring one. The tabu list technique
improves the sampling properties of the random search algorithm in that it
avoids revisiting configurations.

3.3 Docking by Simulation

While all previous methods for the docking problem are based on some
kind of combinatorial optimization algorithm, there are several approaches
tackling the problem by simulation techniques. Instead of trying to enumerate
a discrete low-energy subspace of the problem, these approaches begin their
calculation with a starting configuration and locally move to configurations
with lower energy.

3.3.1 Simulated Annealing

Simulated annealing [150] is a well-known simulation technique which is
also frequently used for solving complex optimization problems without any
physical interpretation of the simulation itself. The overall simulation routine
iterates the following steps. Starting with a configuration A with an energy
or score value E(A), a random local move to a new configuration B with
energy E(B)is calculated. The acceptance of the new configuration is based
on the Metropolis criterion, which means that the configuration is accepted if
E(B) ≤ E(A) or with probability P = e−(E(B) − E(A))/(kBT) otherwise where kB
is the Boltzmann constant. Over simulation time, the temperature T is reduced
based on a so-called cooling schedule such that accepting configurations with
increased energy becomes less likely.

The AUTODOCK program for protein–ligand docking developed by Good-
sell and coworkers [107,108,206] is based on this strategy. For energy calcula-
tion, molecular affinity potentials [106] are precalculated on a grid. Yue devel-
oped a program for optimizing distance constraints for rigid-body docking
based on simulated annealing [304]. There are several methodical improve-
ments of simulated annealing developed over time. One example which was
also used for molecular docking is stochastic tunneling [192, 201, 202] which



3 Methods for Protein–Ligand Docking 567

rescales the potential energy surface in order to improve the probability of
transition between local minima.

3.3.2 MD Simulations

In principle, molecular docking problems can be solved with MD simulations.
In fact, the earliest approaches for predicting protein–ligand interactions with
the computer were based on MD calculations [234].

In MD, a force field is used to calculate the forces on each atom of the
simulated system. Then, following Newtonian mechanics, velocities and
accelerations are calculated, and the atoms are moved slightly with respect
to a given time step. Introducing MD and force fields is clearly beyond the
scope of this chapter. However, some aspects of docking by MD simulations
will be mentioned briefly. The simulation becomes more exact, the smaller
the time step and the more atoms of the system are taken into account.
Thus, MD simulations can become very time consuming and are therefore
not appropriate for inspecting large sets of molecules.

In order to avoid very long computing times, methods performing greater
moves of the ligand in a single step have been developed. This decreases
the dependence of the outcome of the calculation from the starting structure
and allows a better sampling of the search space. Di Nola and coworkers
[71, 193] developed a technique for this purpose called “helicopter view”. For
a limited time, the temperature of the system is increased for selected degrees
of freedom (protein–ligand relative orientation) and the repulsive terms of the
energy function are decreased. This enables the algorithm to escape from local
minima in the energy function. A similar effect can be achieved by shrinking
and growing the ligand inside the active site of the protein [220].

Given and Gilson have developed a four-phase docking protocol based on
MD [100]. First, a set of low-energy ligand conformations is created using
MD with alternated heating (in order to perturb the structure) and cooling (in
order to minimize the structure). Then, the ligand is placed randomly into the
active site and several times minimized. In the final phase, the most stable
configurations are investigated further using MD with alternate heating and
cooling. The goal of the last phase is to explore the search space around the
stable conformations in more detail.

A frequently used technique of speeding up MD simulations is the precal-
culation of force-field contributions from protein atoms on grids. The force
acting upon a ligand atom can then be efficiently calculated by a simple
table-lookup instead of summing over all protein atom contributions. The
potentials, however, can only be precalculated for atoms which do not change
their orientation in space. In order to avoid complete neglect protein flexibil-
ity, Luty and coworkers [186,298] divided the protein into a rigid and a flexible
part. Every atom sufficiently far away from the active site is considered as
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fixed in space; all force-field contributions of these atoms can be precalculated
on a grid. During the MD simulation, only the active site atoms of the protein
and the ligand atoms are allowed to move and have to be considered explicitly
in the force-field calculation.

3.3.3 MC Algorithms

In an MD simulation, the local movements of the atoms are performed due to
the occurring forces. In contrast, in a MC simulation, the local moves of the
atoms are performed randomly. The simulated annealing algorithm discussed
above is one special variant of an MC simulation. Two components are of
major importance in the development of an MC algorithm: the description of
the degrees of freedom and the energy evaluation.

Concerning the degrees of freedom, the aim is a method that avoids sam-
pling high-energy states. A good example of how to realize this concept is the
description of the conformational space of a molecule by internal coordinates
(bond lengths, bond angles and torsion angles) shown in Figure 7 instead
of by Cartesian coordinates for all atoms. With internal coordinates, each
type of variable is related to a different energy scale. Changing a bond
length is energetically more expensive than changing a bond angle, which
in turn is energetically more expensive than changing a torsion angle. Using
internal coordinates, it is possible to navigate through the low-energy confor-
mational space by defining the amounts by which the variables of each type
are changed. Thus, internal coordinates are the more appropriate description
form for MC algorithms.

There are several examples for MC-based docking algorithms. Hart and
Read [118] developed an MC scheme combined with simulated annealing. In
the MC run, random orientations are created and moved such that protein–
ligand overlap is reduced. The results are then optimized in a simulated

Figure 7 Internal coordinates. Internal
coordinate representation of a molecule. The
3-D structure can be constructed from bond
lengths, bond angles and torsion angles.
Most of the computing time during an MC

simulation is spent in the calculation of the
energy (or score) of a state. Therefore, this
step has to be as time-efficient as possible.
Often, energy potentials are precalculated on
a grid to speed up this step.
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annealing optimization scheme. Protein–ligand overlap and scores are cal-
culated based on precalculated grids. McMartins and Bohaceks QXP program
[196] implements a similar approach which can be applied to molecular dock-
ing and structural superposition. Wallqvist and Covell [289] also use MC for
optimizing the final ligand orientation. Instead of a random set of starting
structures, a surface matching algorithm is used.

Abagyan and coworkers [5] developed the software package ICM com-
bining the MC algorithm with an internal coordinate description such as
explained above. In contrast to other approaches making purely random
moves, ICM is able to make moves based on probability distributions for
variable sets. For example, a probability distribution for a torsion angle can
be defined such that low-energy torsion angles are more likely to occur than
high-energy torsion angles. This biases the MC calculation towards low-
energy states.

MC algorithms can be used to overcome the limitation of MD simulations
to get stuck in local minima. In order to get low-energy structures, MC can
then be combined with energy minimization as described by Apostolakis and
coworkers [11]. After a random creation of starting structures, a minimization
with a modified van der Waals potential is performed. The energy function
for the evaluation of the conformations is a sum of three terms: a force-field
energy, a hydrophobic solvation term which is proportional to the SAS of the
complex and an electrostatic solvation term obtained from the solution of the
linearized Poisson–Boltzmann equation. The best scoring configurations are
further analyzed with a MC simulation method called MCM. MCM performs
MC interleaved with minimization steps and uses the energy function men-
tioned above.

PRODOCK is an MC-based docking algorithm developed by Trosset and
Scheraga [283, 284]. The software uses either the AMBER IV or ECEPP/3
force field with a grid-based energy evaluation. For calculating energy val-
ues within the grid, Bezier splines were used allowing for a more accurate
estimation of the energy value as well as information about the derivatives
at this point. Like ICM, an internal description of the degrees of freedom is
used. The MC simulation is interleaved with energy minimization steps like
in Apostolakis’ approach.

Brutlag and coworkers proposed a stochastic roadmap simulation (SRS)
as an efficient tool for studying molecular motion [9, 10]. A directed graph
(roadmap) is calculated, where each node represents a randomly sampled con-
formation of the ligand and the associated protein using internal coordinates.
The edges are labeled with transition probabilities, which correspond to the
relative motions between such conformations. The probabilities are calculated
between every pair of neighboring nodes using Boltzmann statistics. As the
roadmap implicitly defines a Markov chain, steady-state occupancies can be
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calculated without simulating thousands of possible paths through various
conformational states.

3.3.4 Hybrid Methods

Due to the complexity of the docking problem, all methods have their pros
and cons. Fragment-based approaches and genetic algorithms achieve a wide
coverage of the configuration space; however, simulation-based methods out-
perform others in finding exact local minima, i.e. predicting an exact place-
ment. Combining different methods is therefore a reasonable approach which
can result in methods containing the best of each.

Two approaches have been published recently which combine rapid fragment-
based searching techniques with sophisticated MD or MC simulations.

Wang and coworkers [290] developed a multistep approach based on rigid-
body docking and MD. First, a set of low-energy conformers is created. Each
conformer is docked rigid into the active site using DOCK. The high-scoring
placements are then optimized using an MD-based simulated annealing opti-
mization in combination with the AMBER force field.

Hoffmann and coworkers [127] combined the incremental construction al-
gorithm in FlexX with an MD-based procedure for postoptimization. First,
FlexX is used to create a sample of a few hundred ligand placements. The
goal of the second phase is to improve the overall ranking of the solutions and
to identify the correct placement. The placements are first energy-minimized
using the CHARMM force field. For re-ranking, the software package CAM-
Lab [128] is used. The final score consists of three contributions: a force-field
energy, an electrostatic part and a nonpolar part of the solvation energy.
The electrostatic part of the solvation energy is calculated by solving the
Poisson equation using fast multigrid methods, while the nonpolar part is
approximated by the total solvent-accessible surface.

4 Structure-based Virtual Screening

A molecular docking algorithm and a scoring function are obviously the key
elements in a structure-based virtual screening software package. In order to
make it complete, technical issues like parallel computing on large compute
clusters and data management have to be resolved. On a second look, one
also identifies slightly different algorithmic problems worthwhile to address:
considering pharmacophoric constraints and the exploitation of compound
similarity for accelerating the screening process.
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4.1 Considering Pharmacophoric Constraints

A frequent scenario for structure-based virtual screening is that, apart from
the protein structure, key interacting groups within the active site are known.
We would like to guide the docking algorithm to only create poses in which
the ligand forms interactions to these key groups. This will focus the resulting
compounds to those able to form the interactions requested by the modeler.
Since these additional pharmacophoric constraints reduce the number of de-
grees of freedom, they should also reduce the computational demands as a
positive side-effect.

In an early version of DOCK, there was the option to mark some of the
protein active site spheres as essential (so-called red spheres). The clique
detection algorithm can limit its search to those cliques containing the red
spheres. If the red spheres are in the clique, they are matched and therefore the
required interaction is formed. In addition, less computing time is required for
the clique detection.

In a flexible docking algorithm, the situation is more complicated. Ob-
viously, the pharmacophoric constraints can be checked after the pose was
generated. This is inefficient, however, since the constraints are applied
at a very late phase of the algorithm. The first algorithmic approach for
considering pharmacophoric constraints in a flexible docking algorithm was
FlexX-Pharm [123, 124]. FlexX-Pharm allows for a variety of pharmacophoric
constraints (hydrogen bonding, hydrophobic and steric spots, chemical group
locations) combined in a logical expression. During the incremental construc-
tion algorithm, for each partially built-up ligand, FlexX-Pharm keeps book
about the constraints already obeyed and those which still have to be obeyed
in order to achieve a valid solution. FlexX-pharm performs a cascade of fast
logical and geometric checks in order to rule out the partial solution which
cannot be extended to a valid solution. Today, most molecular docking tools
allow for the consideration of pharmacophoric constraints.

4.2 Docking of Combinatorial Libraries

The development of combinatorial chemistry and its application to drug de-
sign [88, 109] has led to new search problems in the context of molecular
docking. An example of a combinatorial library is given in Figure 8. The num-
ber of molecules which can be synthesized on the combinatorial chemistry
bases has increased dramatically compared to classical methods. Therefore,
any screening methodology has to face many more molecules.

Probably most important for the development of docking methods is the
introduction of formal structure into this increased search space. If an un-
structured compound collection is given, each molecule has to be analyzed
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Figure 8 Combinatorial libraries. Based on the Ugi reaction,
combinatorial libraries with four different R-groups can be created.
After the reaction, all library molecules have the core shown on the
right in common, but differ in the four R-groups attached to it.

independently in a screening experiment. Combinatorial libraries, however,
follow a systematic build-up law for synthesizing molecules from a limited
set of building blocks. This structure can be exploited to drastically reduce the
runtime of virtual screening calculations.

In the context of combinatorial libraries, one can distinguish between three
kinds of docking problems:

• Combinatorial docking problem: given a library, calculate the docking score
(and the geometry of the complex) for each molecule of the library.

• R-group selection problem: given a library, select molecules for the individual
R-groups in order to form a smaller sublibrary with an enriched number of
hits for the target protein.

• De novo library design problem: given a catalog of molecules, design a library
(including the rules of synthesis) optimizing the number of hits for the
target protein.

Methods for these problems have emerged from the area of molecular
docking and de novo ligand design (see Ref. [163] for an early overview on
combinatorial docking methods). In the first case, the docking algorithms
are applied to individual molecule fragments like R-groups or the core of the
library and the resulting information is then combined yielding placements
for individual library molecules. The methods for combining the placements
differ. As in the case of docking algorithms, they can also be classified as either
a “place & join” or an incremental construction method. In the latter case, the
de novo ligand design is constrained by predefined rules of synthesis.

Early algorithms for the combinatorial docking problem analyzed the sim-
ilarity in given ligand datasets in order to speed up the search process. The
focus in these papers is on structurally relating ligands within the dataset.
One approach to do so is to generate a minimal tree structure representing the
whole ligand dataset [237]. Another approach is to speed-up conformational
searching based on clustering similar molecules [190]. In both cases, the de-
rived hierarchy of molecules can then be used in an incremental construction
docking method.
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The combinatorial docking tools PRO_SELECT [211] and CombiDOCK
[278] are based on the incremental construction method. In both approaches,
a library is formed by a template (or core) molecule with a set of attachment
points to which one out of a predefined set of substituents can be connected.
The template is then positioned inside the active site without considering its
substituents. Starting from a few orientations of the template, the substituents
are placed into the active site of the protein independently. In case of
PRO_SELECT, substituents are then selected based on score and additional
criteria like 2-D similarity and feasibility of synthesis. CombiDOCK calculates
a final score for whole library molecules by combining fragment scores.

An algorithm that [244] is part of a combinatorial docking extension of
FlexX, called FlexX-C, handles the library as a rooted tree in its closed form.
Molecules from the library required during the docking calculations are cre-
ated on the fly. With this method libraries with a few hundred thousand
molecules can be handled in main memory during a docking calculation. The
tree representation allows for handling complex libraries consisting of several
R-groups which can be arbitrarily linked with the one limitation that no ring
closures over different R-groups are allowed. The recursive combinatorial li-
brary algorithm is a natural extension of the incremental construction method
to multiple molecules – in each incremental construction step, all possible R-
group molecules are added sequentially [244].

Several approaches based on ligand de novo design software have been
published for R-group selection problems. Kick and coworkers [149] applied
a variant of the BUILDER program [248] to the preselection of substituents
for a library targeted to Cathepsin D. Böhm [41] applied the LUDI program to
the docking of two groups of fragments which can be connected pairwise in
a single-step reaction to search for new thrombin inhibitors. In principle, all
programs for fragment-based de novo ligand design can be applied in a similar
way to the R-group selection problem.

Finally, we mention two methods for de novo library design. Caflisch [48]
applied the MCSS technique generating fragment placements which are sub-
sequently connected. The DREAM++ software [190] combines tools for frag-
ment placement and selection. The selection process is done such that only
a small set of well-characterized organic reactions are needed to create the
library.

4.3 Database Approaches

When a large compound library has to be screened, the question arises
whether commonalities of compounds can be used, in principle, to speed up
the screening process. Like in the case of combinatorial libraries, we would
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like to perform computations on similar or identical parts of compounds only
once in order to improve the efficiency of the overall calculation.

For some docking approaches, the algorithmic idea behind them nicely
extends to the case of virtual screening. The probably best example for such
a case is geometric hashing (see Section 3.1.2). In this method, multiple
compounds can be added to the geometric hash table and will be retrieved
by the appropriate protein-based query. The program SLIDE [259] basically
follows this strategy for handling multiple compounds.

For fragment-based docking algorithms, a possible strategy would be
to avoid the recalculation of poses for common fragments. Lorber and
Shoichet demonstrated this approach for a multi-conformation docking tool
NWDOCK [184, 277] (see also Section 3.2.1). They extracted rigid fragments
from molecules and docked the fragments individually. All molecules con-
taining the fragment are then superimposed on the fragment pose reusing
the placement information calculated once for the fragment. With FlexX, we
found out that the storage and retrieval of base fragment poses can reduce
the required computing time by a factor of 3–4 depending on the library
used [258].

Alternatively to looking at common fragments, one can also look for com-
mon pharmacophores. The software PHDOCK by Joseph-McCarthy and
coworkers [140] follows this idea. A multi-conformer database of compounds
is organized by common pharmacophores. The docking algorithm (in this
case the DOCK method) can first match pharmacophores. In case of a match-
ing pharmacophore, the compounds containing it are retrieved and further
examined. This small selection of methods already shows that understanding
virtual screening as an integrated problem is a promising research direction
towards even faster methods.

5 From Molecules to Fragment Spaces:
Structure-based De Novo Design

Instead of moving from single-molecule docking to virtual screening and
database approaches to cover a larger part of the chemical universe, a compli-
mentary strategy can be the de novo assembly of compounds within an active
site of a protein. This has already been mentioned several times throughout
this chapter and will be addressed in the following.

A recent review on de novo design methods can be found in Ref. [260].
Here, we will focus on summarizing the concept of fragment spaces and
algorithms to search them. In addition, the issue of synthetic accessibility will
be surveyed and a couple of application scenarios will be described briefly.
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5.1 Modeling Fragment Spaces

The difference between a compound library and a fragment space is rather
small, but significant. A compound library is basically a collection of molecules,
whereas a fragment space contains a collection of fragments. In contrast to the
definition given earlier, here, a more general definition of the term fragment
is useful. Concerning size, a fragment can be rather large or it can be a
single atom only. In addition, a fragment in this context has one or several
attachment points, each of a certain type. In some cases, these attachment
points are just indicated by missing (hydrogen) atoms and the corresponding
chemical environment, therefore, defines the type. In others cases, additional
link atoms, sometimes also called links, are used which are essentially dummy
atoms of certain types connected to the attachment points of the fragment.
There, the link itself defines the type.

To make a collection of fragments actually become a fragment space, a set
of rules is required determining which of the links are compatible with each
other. Fragments that have compatible links can be connected via a new bond
between the attachment points to form a larger fragment. Figure 9 shows
an example of such a fragment collection. The lines connect fragments with
compatible links. In case dummy link atoms are used, as is the case in this
example, these will be removed upon fragment connection. The resulting
fragment can contain additional links. This depends on the number of links
in each of the two fragments that are to be connected. Furthermore, some
additional specifications for the modification of the geometry upon fragment
connection and the definition of terminal groups for link atoms may be nec-
essary. The fragment space shown was generated by applying the RECAP
method [176] to a subset of the WDI. This fragment space was used within the
program TOPAS for the first time [261].

The probably most prominent example of a fragment space is a combinato-
rial library that fulfils all the essential criteria defined above (sees Section 4.2).
Other examples for fragment spaces are the use of privileged molecular sub-
structures [23, 24], cyclic and acyclic compounds [13], chemical functional
groups [70, 251], building blocks [67], scaffolds and linkers [160], and single
atoms [32, 227] or molecular fragments [204, 274].

5.2 De Novo Design Algorithms

As we have already outlined earlier, algorithms for docking and structure-
based de novo design are closely related. Following the docking section above,
we will summarize the methods used briefly.
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Figure 9 Fragment spaces. Collection of
fragment prototypes contained in a fragment
space. Each fragment has a (dummy)
link atom that represents a corresponding
chemical environment (L1–L12). Fragments
can be connected via the formation of a

bond between the atoms adjacent to the
link atoms. The link atoms themselves will
be removed upon fragment connection. The
lines connecting the fragments indicate the
compatibility of the link atoms. By this, the
fragments span up the fragment space.

5.2.1 Rigid-body Algorithms

Lewis and Dean published one of the first approaches for de novo design
more than 15 years ago in the late 1980s. They considered purely geometri-
cal properties and used a collection of 2-D spacer skeletons and rigid-body
transformations in order to explore the geometrical constraints of a receptor
pocket [179]. The approach was extended to the third dimension in a sub-
sequent publication [178]. Their program BUILDER uses docked molecules
for the creation of regular or irregular molecular lattices. Thereon, linear
atomic chains are constructed in a partly interactive manner [177, 180]. The
amount of chemical knowledge, which could be taken into account for the first
approaches, was very limited. That means that for the creation of the atomic
chains, for example, only sp3 carbon atoms were used. Therefore, the chemical
models in the BUILDER program were extended in its second version [248].

5.2.2 Simulation Methods

One possible first step to take for a structure-based de novo design method
is exactly the same as for docking calculations, i.e. one has to determine
favorable interaction sites in a protein cavity. As mentioned previously, using
different kinds of simulation methods can be used for this task. In the case
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of de novo design, the calculation can be carried out, for example, by a grid-
based algorithm like in GRID [106], via a MD simulation as in MCSS [205]
or by using a fragment-based docking method as done in SEED [189]. This
information can then be used in subsequent computational steps. The DLD
method, for example, searches a database for appropriate skeletons that can
link several MCSS-derived minima [204]. There are a number of other pro-
grams that use GRID- or MCSS-derived minima as starting points [76, 170]
(for a comparison, see Ref. [31]).

An alternative method is the following. Template structures are combined
in a stepwise manner to create molecular skeletons, which satisfy the steric
constraints of a given receptor. In a subsequent step, atom-type assignment
is then carried out on these molecular skeletons to generate molecules that
have complementary chemical properties to the active site. The atom assign-
ment problem has been extensively examined in this context by, for example,
Barakat and coworkers [15–19]. Programs based on this kind of approach
are SPROUT [96–98, 136], which is based on graph-searching algorithms, and
Skelgen [281, 282], which uses a MC-type method.

A third algorithmic alternative is to randomly place fragments in the ac-
tive site, and assign atom types and connections between these fragments.
This can be done by performing a MD simulation as in CONCEPTS [227] or
CONCERTS [228], or by using a MC algorithm as implemented in MCDNLG
[91], SMoG [70], GrowMol [32] or the method developed by Pellegrini and
coworkers which replaces fragments of an already docked compound [230].

The characteristics of MD simulations are the same for de novo design as
for screening large sets of molecules. Therefore, MD is not an appropriate
method for exploring fragment spaces. Nevertheless, it can be of use for
optimizing a limited number of solutions that were generated from a de
novo design method. For the MC-type approaches, the statistical nature of
the approach becomes even more apparent in the context of de novo design.
Whereas this leads “only” to different sets of orientations of the ligand in
the case of a docking calculation, for de novo design, sets of possibly totally
different compounds are generated in each run. This makes it in most cases
necessary to perform a multitude of calculations in order to obtain a diverse
and probably more comprehensive set of solutions.

5.2.3 “Place & Join” Algorithms

In contrast to the corresponding docking approaches, the number of frag-
ments available in a fragment space is obviously much larger than for a typical
ligand molecule. Additionally, there is no information available concerning
the topology and the size of the final compound(s). This is of course due to
the nature of the fragment space, but has to be pointed out here, since this is
a fundamental difference compared to docking methods. There are a couple
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of de novo design programs available which follow this strategy; all of them
operate in a very similar way.

LUDI fits molecular fragments onto previously derived interaction sites
in the protein cavity. In the first version, these start fragments were then
connected by using bridge fragments from a database. Alternatively, LUDI
can also be used for adding new substituents to an already existing ligand
[33, 34, 38, 39]. Quite similar in concept are the following programs: CLIX
[170], which uses fragment energy minima derived from GRID calculations,
SPLICE [125], PRO_LIGAND [53, 54, 86, 212, 299, 301] and HOOK, which take
fragments derived from MCSS minima as starting positions [76]. Leach and
Kilvington used a “tweak” algorithm to generate families of acyclic linkers for
combining a set of molecular fragments [173].

One advantage of “place and join” algorithms is that specific key interac-
tions can be accounted for right from the beginning of the calculation. This
ensures that all resulting compounds have this specific interaction pattern.
However, the main difficulty of all the programs described above is the same
as for the corresponding docking approaches. The compounds resulting
from the bridging of multiple fragments within an active site are very much
dependent on the amount and type of bridge fragments available. In addition,
the probability of obtaining strained conformations is relatively high, which
means that in most cases an additional energy minimization of the final
compounds is necessary. This is then of course more costly in terms of
computation time and may also alter the initial fragment positions.

5.2.4 Sequential Growth Algorithms

The use of incremental construction algorithms has originally been invented
for de novo design and was already covered in Section 3.2. Therefore, the
main difference here is the same as already outlined for the “place & join”
algorithms, i.e. that the amount of fragments available in a de novo design
approach is much larger. In principle, two types of sequential growth methods
for de novo design can be distinguished, those that use atoms as basic building
blocks and those that use molecular fragments.

The atom-based programs often involve random elements concerning the
selection of atom types and attachment points. In general, only a limited
number of atom types, hybridization states and constraints for bond lengths
and bond angles are taken into account. Programs using these kinds of
approaches include LEGEND [214, 215], GenStar [250] and RASSE [185].

The fragment-based methods can be divided into programs that incremen-
tally build up molecules and those that replace parts of an already docked
molecule. Two representatives of the first category are GROW [204], which
uses amino acid templates, and COREGEN [13], which uses a ring-linker-
based assembly procedure. Programs belonging to the second category are,
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for example, GroupBuild [251], which replaces individual functional groups
for a given compound, and PRO_SELECT [211], which uses a database ap-
proach to search for corresponding combinatorial chemistry replacements.

FlexNovo is a fragment-based molecular design program developed by
our own group and belongs to the first category. It is based on the FlexX
[242] molecular docking software, and therefore uses the same algorithms,
chemical models and scoring functions. FlexNovo deals with large fragment
spaces, incorporates the concept of pharmacophore type constraints and a
large number of additional physicochemical property, geometry and diversity
filters [68].

When using incremental construction algorithms, the probability of ob-
taining strained conformations in the end is probably lower compared to
“place & join” algorithms. However, a difficulty that arises especially in the
context of de novo design is that optimal intermediate solutions might not
lead to optimal global solutions. Whereas this does not necessarily have to
be the case for docking programs using these kinds of algorithms, which
was already mentioned above, for de novo design programs the case is more
complicated. There, not only the ranking of intermediate solutions for a
single compound is important, rather a set of compounds each having totally
different intermediate solutions has to be ranked accordingly. In the end, this
often results in compounds that are not optimally positioned inside the active
site or that lack some key interactions. This can be partially compensated by
using pharmacophore type constraints to guide the construction more in the
“right” direction, but is of course no guarantee for finding an optimal solution.

5.2.5 Genetic Algorithms and Evolutionary Programming

Nondeterministic approaches, such as genetic algorithms or evolutionary pro-
gramming, have not been used in de novo design methods right from the
beginning. They became popular approximately a decade ago and are now
frequently used in quite a number of programs.

The main difference between all the de novo design methods based on these
kinds of algorithms is the type of fitness function used for the ranking of solu-
tions. Typically, this is a more or less standard energy function that accounts
for the different energetic and geometric contributions to the total energy.
Alternatively, scoring functions known from molecular docking programs can
also be directly used. This is done for example by the ADAPT program [229],
which uses the DOCK scoring function, or LEA3D [73], where the fitness
evaluation is based on the FlexX scoring function.

In addition, the employed fragment spaces differ slightly, but not signif-
icantly. Glen developed a rather general genetic algorithm procedure that
generates molecular structures under different types of constraints, for exam-
ple a protein cavity, a pharmacophore or certain molecular properties [101]. In
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most cases, however, different types of molecular fragments are used as done,
for example, in LigBuilder [297], ADAPT [229], PEP [45] and LEA3D [73].

Due to the nature of genetic algorithms, the outcome of different calcula-
tions will result in different solution sets. Therefore, often not a single, but
a couple of program runs are necessary in order to obtain probably a more
reasonable set of diverse results, which is especially important in the field of
de novo design.

5.3 Synthetic Accessibility

Synthetic accessibility has always been and still is one of the key issues in the
computational de novo design area as shown by Stahl and coworkers [274] and
recently surveyed by Baber and Feher [14]. Obviously, this is not the only
criterion that a proposed lead or drug candidate has to fulfill. There are a
number of at least equally important prerequisites, such as pharmacological
activity and ADME toxicology properties [175,236]. The coverage of the latter
is clearly beyond the scope of this chapter and is described in Chapter 19.

One way to incorporate synthetic accessibility in a de novo design approach
is to encode it directly in the fragment space. This can be done by carefully
choosing the set of fragments and by using well-defined connection rules.
The (justified) assumption here is that compounds created from this fragment
space will have a high probability on being synthetically tractable [23, 24, 67,
171, 233, 261].

5.3.1 Fragment Selection

There are quite a number of publications that deal with the issue of frag-
ment selection. Each of them tries to identify and select common molecular
substructures or functional groups in known drugs. This has been done,
for example, for molecular frameworks [23] and side-chains [24], privileged
molecular fragments [176], frequently replaced chemical groups [264], multi-
activity substructures in molecules which show different biological activities
[263], and heterocycles [43].

A complementary approach is to select fragments according to specific
property ranges. The underlying assumption here is that there is a drug-like
subspace in the vastness of the chemical universe that can be described by a
limited number of easy accessible physicochemical properties [117, 182, 218].
Obviously, not all of the approaches for property prediction and selection
can be directly applied to fragments as well. Nevertheless, there are some
publications, which deal especially with the problem of fragment properties.
A couple of them will be described below.

Following Lipinski’s “Rule of Five” [183] (see also Chapter 18), Congreve
and coworkers proposed a “Rule of Three” for fragment-based lead discovery
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and indicated that these property ranges might be useful for fragment selec-
tion [60]. Vieth and coworkers performed a survey on characteristic physi-
cal properties and the corresponding structural fragments for marketed oral
drugs [287]. Hopkins and coworkers suggested the term “ligand efficiency”
as an estimate of the binding energy of a compound on a per atom basis [132],
which makes this approach in principle also applicable for fragments. This
concept has been recently reviewed and extended by Abad-Zapatero and
Metz [4].

Additionally, the exclusion of specific substructures could be a desirable
task. Baurin and coworkers formulated a medicinal chemistry tractability fil-
ter for reactive or unwanted chemical features [20, 21]. Kazius and coworkers
derived a set of toxicophores for mutagenicity prediction [143]. These filters
have to be handled with care though [162], but can be of use for fragment-
based drug discovery in principle [80].

5.3.2 Virtual Synthesis

The definition of the compatibility of fragments is essential when working
with fragment spaces. There are several approaches for performing virtual
synthesis of molecules. Each of the de novo design methods described above
has its own definition of fragment compatibility. This ranges from the con-
struction of molecules on an atom-per-atom basis to the connection of very
specific substructures. Therefore, the methods differ mainly with respect to
the level of sophistication they use for the evaluation carried out upon the
formation of new bonds. In the following, a couple of approaches will be
described which perform virtual synthesis in a more elaborate and, therefore,
in a probably more accurate way.

The compatibility of fragments generated by the RECAP method, for exam-
ple, is defined following the same rules for the connection of fragments that
were used for cleaving compounds in the first place [176]. A more sophis-
ticated evaluation is performed by the program package WODCA [90] and
especially in a specific part of this package, the EROS program. This approach
incorporates more elaborate physicochemical concepts and therefore tries to
model a broad scope of organic reactions [129]. SYNOPSIS simulates organic
reaction steps in a different way. For each compound, appropriate functional
groups are detected and then different reactions are chosen from a collection
of 70 different reaction types [288].

5.3.3 Compound Analysis

The use of drug-like fragments and the definition of a drug-like property
range can be beneficial for the outcome of a de novo design approach for
obvious reasons, but it is by no means sufficient to guarantee the synthetic
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accessibility of a certain compound [162]. There are a couple of other meth-
ods available which take more information into account than just molecular
substructures. For example, neural nets have been used for distinguishing
between drug-like and nondrug-like compounds [6, 47, 253], Muegge and
coworkers used a pharmacophore point filter [207], and Byvatov and cowork-
ers and Müller and coworkers used a support vector machine approach [47,
210]. It has been shown that each of these methods can be used for classifying
compounds according to their similarity to known drugs or another training
set of compounds with reasonable accuracy (see also Chapter 18).

Another possibility is to do an exhaustive retrosynthetic analysis for a given
compound. The first attempts in doing this with computers were published
in 1969 by Corey and Wipke [63]. Since then, a couple of related approaches
have been published. Again, the coverage of all the information is beyond the
scope of this article, but this subject has been excellently reviewed recently
by Hanessian [116]. Such programs can identify possible synthesis pathways
and appropriate starting chemicals from compound catalogues. Due to the
fact that these are knowledge-based approaches, the outcome is very much
dependent on the chemistry actually implemented in the program and the
level of sophistication with which the analysis is done. The outcome of such
an analysis can be of great help in the decision making process. However,
still, it seems that the issue of synthetic accessibility cannot be described in a
simple and consistent manner, as was recently investigated by Lajiness [167].

6 Structure-based Drug Design at Work:
Validation Studies and Applications

Every computational tool for structure-based drug design is published with
an initial validation of the method. Basically, we have to distinguish retrospec-
tive from prospective validation. In a retrospective study, previously collected
experimental data, either X-ray crystal structures or binding affinities, are
used to design a test scenario. In a prospective study, the calculated structures
or binding affinities are validated afterwards by experiment.

A necessary condition for the applicability of a docking algorithm is its
ability to reproduce X-ray structures of the molecular complexes. Usually, a
few tenths of these structures are considered and most docking tools are able
to reproduce roughly 70% of them within an error margin of 2 Å RMSD. The
selection of these test cases is not a simple task: structures may be inappropri-
ate (covalently bound ligands, ligand binding influenced by crystal contacts,
etc.), of low resolution or even contain errors. A very good collection of
protein–ligand complexes can be found in Ref. [216] and an alternative set has
been published in Ref. [158]. When considering these redocking experiments,
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one has to keep in mind that the protein structure is usually taken from the
bound conformation which makes redocking of X-ray structures to an easier
problem than performing true predictions.

Several comparison studies have been published with the last 5 years (see,
e.g. Refs. [29, 46, 87, 146, 157]). These comparisons have to be read with
care because the results are influenced by many hidden parameters like the
composition of the test cases, the preparation of the ligand and especially the
protein, the selection of the active site, and the personal experience with the
software tools just to name a view (see Ref. [59] for an excellent review on
fallbacks in comparison studies).

Since most docking tools are applied for virtual screening, the question of
whether the programs are able to extract bioactive compounds from large
libraries has to be addressed. Obviously, predicting the complex structures
correctly is necessary; however, it is not sufficient for virtual screening. In
particular, the scoring function plays a more dominant role in virtual screen-
ing. While in redocking the scoring function has to select the right pose only,
in virtual screening it has to distinguish between different ligand molecules.
In retrospective screening studies, a set of known actives is mixed with other
molecules having similar physicochemical properties than the known active
ones. Literature containing retrospective virtual screening analysis is given in
Ref. [59]. Chapter 18 gives a comprehensive review of structure-based virtual
screening applications.

The ultimate test for a molecular docking or de novo design engine is a
prospective study. Here, the experiments for structure determination or bind-
ing affinity measurement are done after the prediction. There are excellent
reviews summarizing practical applications and success stories of structure-
based virtual screening [164]. Chapter 18 further discusses these applications.
Concerning de novo design, the field is not examined and reviewed in such
great detail, as is the case for docking or virtual screening. Nevertheless,
there have been a couple of more comprehensive studies for the use of such
methods in drug discovery [131, 160, 274].

7 Concluding Remarks

The development of computational approaches for the prediction of protein–
ligand interactions has a history lasting more than 30 years. Retrospectively,
we can associate key developments with every decade. The 1970s were
dominated by the simulation approach. In the 1980s, the first algorithmic
approaches were presented. At this time, it was firstly possible to perform
screening, i.e. to prioritize a large collection of compounds instead of looking
at individual compounds only. Most approaches presented at that time were
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rigid-body docking algorithms. In the 1990s, docking tools began to consider
ligand flexibility while maintaining the efficiency necessary for virtual screen-
ing. In parallel, several methods and software tools for structure-based de novo
design were developed. The question arises as to what the current decade,
once behind us, will stand for?

With no doubt, the most challenging problems in molecular docking are
the consideration of protein flexibility during ligand binding (modeling the
induced fit) and an accurate prediction of free binding energies. First algorith-
mic approaches dealing with protein flexibility can be found in the literature,
some of them are covered in this chapter. These algorithms are able to deal
with special cases like side-chain flexibility. However, none of them has yet
been applied successfully in a virtual screening exercise. So far, the increasing
number of false positives is the major stumbling block. Concerning scoring
functions, we notice a continuous development of new and improvement
of existing scoring functions. However, none of these developments can be
considered as a big step forward. So for both fields, no satisfactory solution
is in sight and it remains questionable whether these problems will be solved
soon.

Although the scientific achievements for these two major problems in
structure-based drug design are small, we can surely say that currently a big
step is being made concerning the technology, applicability and acceptance
of structure-based molecular design techniques. While the end of the 1990s
was dominated by interest in (experimental) high-throughput screening,
nowadays we recognize great interest in virtual screening techniques. Virtual
screening facilities were established in nearly every large pharmaceutical
company. According to PubMed, in 2004 about 400 papers related to virtual
screening were published, compared to 134 in 1999. De novo design is not
yet an established procedure in pharmaceutical industry, but is considered
a complementary technique. In particular, in cases where virtual screening
fails, de novo design can be of use as a generator of ideas for the identification
of new chemotypes or for increasing the potency of a known inhibitor. Despite
known deficiencies of the existing methods, they prove to be useful and
belong today to the methodical standard repertoire for drug design.
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Modeling Protein–Protein and Protein–DNA Docking
Andreas Hildebrandt, Oliver Kohlbacher and Hans-Peter Lenhof

1 Introduction

Since Paul Ehrlich formulated his famous principle corpora non agunt nisi fixata
[meaning that a substance is not (biologically) active unless it is bound] at the
beginning of the 20th century [32], physical interaction has been known as the
key step in most biochemical processes. Direct physical interaction (binding)
between an enzyme and a ligand is required as an initial step in metabolic
reactions. Similarly, protein–protein interactions are crucial in signal trans-
duction and protein–DNA interactions are the key events in gene regulation.

With the availability of a sufficient number of protein structures from X-
ray crystallography in the 1980s it became feasible to predict the structure of
protein–protein complexes from the structures of the unbound proteins. This
prediction problem, known as the protein–protein docking problem (PPD),
has since been tackled using a wide range of computational techniques. More
recently, the intense research in protein–protein interaction networks has
sparked renewed interest in docking techniques to predict or validate these
networks from a structural perspective and to aid in the understanding of the
fundamentals of these interactions. In addition, the understanding of protein–
protein interactions and protein–DNA interactions is essential for the study
of gene regulatory networks (GRNs). While most of the research in protein–
protein docking is thus still basic research, biomedical applications are rapidly
gaining interest. In contrast to protein–ligand docking, these applications are
less direct. In particular with complex multicausal diseases the understanding
of the interactions of potential targets with other proteins is pivotal during the
target identification phase of modern drug design. Computational validation
of regulatory and interaction networks can provide useful insights during this
phase. Another application exists at the interface between protein–protein
and protein–ligand docking. Small molecules inhibiting protein–protein
association are hard to identify using ligand-docking approaches, because
they usually do not bind to well-defined, deep binding pockets. Instead,
association inhibitors can form their own binding sites in the protein interface
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[8]. Techniques from protein–protein docking might be more appropriate than
techniques from protein–ligand docking to handle such cases.

Algorithms to model biomolecular interactions have to solve two problems:
they have to predict both the binding mode (i.e. the relative orientation of the
partners binding) and the binding affinity (i.e. their binding free energy ΔG)
as precisely as possible. Obviously, these two goals go hand in hand: no
accurate estimation of the binding free energy is possible if the binding mode
is not correct and without a decent energy function the identification of the
correct binding mode is impossible. Many algorithms address the first issue,
the identification of the binding mode, based on the lock-and-key principle
proposed by Emil Fischer in 1894 [39]. The lock-and-key principle implies a
strong geometric complementarity of the binding partners. Rigid-body dock-
ing (RBD) algorithms exploit this principle to identify complementary regions
of the two partners and thus deduce possible binding sites. Unfortunately,
there are many examples where the molecules experience significant changes
in their geometry upon binding – a mechanism known as induced fit [65]. This
is one of the two most serious problems in protein docking today.

The second important issue in protein docking is the accurate estimation
of the binding affinity. All docking algorithms employ a scoring function or
energy function of some kind to identify good approximations of the “true”
complex structure observed in nature (true positives) from incorrect complex
structures (false positives or decoys). An ideal energy function would cleanly
separate structures close to the true structure from these decoys. The problem
of predicting the binding free energy turns out to be quite complex. It requires
the modeling of numerous physical interactions, some of which are still not
understood in their entirety. Particularly troublesome is the modeling of the
effects of water on the biomolecular interactions. Water is responsible for
the hydrophobic interaction and has a strong influence on the electrostatic
interaction.

It is beyond the scope of this chapter to review every aspect of protein–
protein and protein–DNA docking in detail. Instead, we want to focus on a
spectrum of sophisticated docking techniques. Section 2 discusses protein–
protein docking while Section 3 describes protein–DNA docking. For those
readers who want to learn more, we want to point out several recent re-
views. Two comprehensive reviews [103, 108] cover the majority of relevant
techniques and a number of interesting new developments in protein–protein
docking. Correlation-based protein–protein docking has been reviewed at
length by Eisenstein and Katchalski-Katzir [33]. The review by Russell and
coworkers [100] briefly discusses protein–protein docking in the context of
protein–protein interactions.
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2 Protein–Protein Interactions

2.1 Basic Concepts of Docking

Numerous methodologies have been developed to predict the three-dimensio-
nal (3-D) structure of a protein complex AB from the structures of its unbound
components A and B. Most methods follow the general algorithmic scheme
described below (see also Figure 1).

(i) Preprocessing. The 3-D structures of A and B are read from files. If the
hydrogen atoms are not contained in the imported structure files, they
are usually added to the structures. Depending on the method, atom
radii and charges have to be assigned, and representations of the protein
surfaces of A and B have to be calculated. The calculated molecular sur-
faces represent artificial boundaries between the interior and the exterior
of the proteins.

(ii) Generation of putative complex structures. The majority of docking ap-
proaches are based on the assumption that the two proteins A and B
undergo only limited conformational change during the docking process.
RBD techniques treat the proteins A and B as completely rigid 3-D objects.
Usually, an RBD approach scans the conformation space and generates a
very large number of putative complex conformations (candidates) that
are stored in a list. If the complex generation procedure is successful, the
candidate list contains a sufficient number of true positives. Candidate
structures are often generated by matching procedures that map regions
of the surface of B onto geometrically and chemically ‘compatible’ regions
of the surface of A.

(iii) Filtering steps. The generated putative complex conformations are evalu-
ated with respect to shape and chemical complementarity using scoring
functions. Candidate conformations with low scores are removed from
the candidate list. The filtering procedure can be repeated with different
scoring functions, starting with functions that can be computed effi-
ciently. Apart from geometric and energetic scoring functions, distance
constraints and other experimental data of the complex structure can be
used to filter out decoys.

(iv) Realizing protein flexibility. RBD approaches usually succeed in the correct
prediction of the protein complexes if the bound structures of A and
B are sufficiently close to their unbound, native structures. However,
small conformational changes involving only a few side-chains can cause
RBD approaches to fail. In order to realize protein flexibility, docking
algorithms thus optimize the conformations of the remaining candidates.
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Figure 1 Schematic overview of the major steps in protein–protein
docking algorithms.

Some algorithms account for the flexibility of the amino acid side-chains
at the binding site or of backbone hinges only, while other approaches
optimize the coordinates of all atoms in the complex.

(v) Clustering and re-ranking. Candidate lists produced by docking algo-
rithms often include families of similar structures. Consequently, many
algorithms include a clustering step to reduce redundancy. In the last
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step, docking algorithms re-rank the remaining candidates or clusters of
conformations using a more sophisticated energy or scoring function and
return the best conformations.

The above scheme is only a broad outline of a typical docking algorithm.
Individual algorithms can lack some of these components or differ in the
underlying techniques. Key differences often are the structure generation, the
scoring functions and the models of flexibility employed.

When comparing different algorithms, the two most obvious performance
measures are “quality of the result” and “computational speed”. However,
the evaluation of the quality of docking results is almost as challenging as
the docking problem itself. Typically, docking approaches are validated using
X-ray or nuclear magnetic resonance structures of protein complexes. The al-
gorithms usually output large lists of putative complex conformations sorted
with respect to some scoring function. Successful algorithms will place true
positives at the top of the list.

One widely used quality measure is the rank of the first true positive found
in the candidate list (the lower the rank, the better the performance). Whether
a structure is a true positive can be decided via structural similarity measures,
e.g. the root-mean-square deviation (RMSD), or the fraction of native contacts
formed in the protein–protein interface. A second important measure is the
similarity of the best true positive contained in the list.

The performance of docking algorithms can be evaluated based on the
bound structures of the proteins A and B or on their native structures. Both
types of tests use protein complexes whose structures have been elucidated
experimentally. In the first kind of tests, which we will call bound tests or
redocking, the docking problem is simplified by ignoring all conformational
changes that take place during the docking process. Here, the bound struc-
tures of A and B are taken from the protein complex AB, a random rigid
transformation t is applied to one of the two proteins, e.g. to B, and the
docking algorithm to be tested is then run on the structures A and t(B). Bound
tests are the simplest of all tests. Algorithms performing poorly in these tests
will clearly fail in real-life examples as well. The RBD techniques presented in
Section 2.2 that treat the proteins A and B as entirely rigid 3-D objects usually
show excellent performance in bound tests.

In the second, more realistic kind of tests, which we will call native test,
the algorithms are applied to native structures of A and B that may differ
considerably from the bound structures. Since even small conformational
changes can lead to the failure of RBD approaches, numerous techniques for
realizing protein flexibility have been developed. A selection of sophisticated
approaches for modeling protein flexibility will be presented in Section 2.3.



606 17 Modeling Protein–Protein and Protein–DNA Docking

A series of “blind” prediction experiments with the goal to identify the
strengths and weaknesses of existing docking approaches was initiated in
2001/2002. In these blind tests, docking algorithms have been applied to pro-
tein complexes whose structures have been elucidated, but not yet published.
The results of the so-called CAPRI (Critical Assessment of PRediction of
Interactions) competitions will be discussed in Section 2.6. These experiments
have revealed that one of the key problems of the docking algorithms is the
choice of an appropriate scoring function. A spectrum of widely used scoring
functions will be discussed in Section 2.4. The integration of experimental
data into docking algorithms is a way to improve the quality and reliability
of docking results. In Section 2.5, we will present data-driven approaches to
protein docking.

2.2 Rigid Body Docking

RBD approaches are based on Emil Fischer’s lock-and-key principle, which
implies local shape complementarity of the proteins at the binding site. In the
case of RBD, it is assumed that the two proteins A and B show only a limited
conformational change during the docking process. They can thus be treated
as rigid 3-D objects.

Typically, RBD algorithms try to identify conformations with large contact
areas between the surfaces of A and B that exhibit no or only small overlaps
between the interiors. In order to test this condition for given candidates, we
have to define and calculate artificial protein surfaces that allow for differen-
tiation between the interior, the surface and the exterior of the proteins.

Almost any kind of established surface definition has been used for this
purpose. In particular, van der Waals, solvent-excluded and solvent-accessible
surfaces have been employed in different representations. Typically, RBD
approaches try to identify putative complex conformations by keeping one
protein fixed in space while moving the second around. The resulting can-
didates can then be uniquely represented by six parameters describing the
relative translation and rotation of the mobile protein from the reference
position. In the following, we will generally denote the static protein by A
and the mobile protein by B.

2.2.1 Correlation Techniques

An important type of RBD docking techniques, so-called correlation docking,
was introduced by Katchalski-Katzir and coworkers [58]. In their classical
formulation, correlation-based docking algorithms use a purely geometric
score to generate conformations featuring a large number of surface contacts
and no significant overlap.
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In order to identify candidates with this property, the molecular geometries
are represented by piecewise constant functions on a 3-D grid (Figure 2). Let
�rijk ∈ R3, i, j, k ∈ {1, . . . , N} denote a set of evenly spaced points in a box
containing the molecules A and B, where�r111 corresponds to the “lower left
front” corner of the box and�rNNN to the “upper right back” corner.

The structures of A and B can be represented by two grids A and B with
values aijk and bijk that depend on whether the point�rijk is on the inside, the
surface (to achieve a certain softness of the molecules, the surface is repre-
sented by a surface layer of finite thickness) or the outside of the respective
molecule:

aijk =

⎧⎪⎨
⎪⎩

1 on the surface of molecule A

ρ inside molecule A

0 outside molecule A

(1)

bijk =

⎧⎪⎨
⎪⎩

1 on the surface of molecule B

δ inside molecule B

0 outside molecule B.

(2)

At each point�rijk, the local fit of A and B in their current relative orientation
can then be assessed by computing the score:

cijk := aijkbijk

and the geometric fitness value (Score) for a conformation represented by the
grids A and B is computed as:

Score :=
N

∑
i,j,k=1

cijk

Depending on the shape, location and relative orientation of A and B, cijk
can assume the values given in Table 1. Thus, each point on the surfaces of
both molecules contributes with a value of 1 to the total score. To penalize
overlap between A and B, ρ is set to a large negative value and δ to a small
positive one, such that δρ results in a negative contribution to the geometric
fitness for each point of overlap. Tuning the values of δ and ρ allows to adjust

Table 1

Surface point of A Interior point of A Outside A

Surface point of B 1 ρ� 0 0
Interior point of B δ > 0 ρ δ� 0 0

Outside B 0 0 0
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Figure 2 Schematic illustration of the grids
used for correlation-based docking. First,
each protein is mapped onto a grid describing
its inside, outside, and surface. Afterwards,

the two grids are correlated to determine the
geometric fit between the two proteins in their
current relative orientation.

for the degree of penetration that will be tolerated. This choice also strongly
discourages the contact of the surface points of B and interior points of A with
a contribution of ρ � 0, while penetration of A’s surface into the interior
of B is allowed. This can be considered as an additional “softening” of the
molecular surfaces.

To determine the complex structure leading to the largest geometric score,
the larger of the two molecules, A, is kept fixed in its position while the
smaller one, B, is rotated and translated to sample the configuration space.
Correlation-based approaches only consider a discrete subset of the possible
rotations of molecule B. For each of these possible rotations of B, the algo-
rithms try to identify the optimal translations. Since the molecules themselves
are represented by discrete grids, it is natural to restrict the translational
degree of freedom to integral multiples of the grid spacing, i.e. given a certain
rotation of molecule B, instead of scanning the whole translational space for
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the optimal conformation, we only test N3 translations of molecule B, which
are of the form tαβγ := (αΔx, βΔy, γΔz), where Δx, Δy, Δz denote the grid
spacing of aijk and bijk in the x, y, and z directions. To simplify the notation,
we will assume that Δ := Δx = Δy = Δz.

Translating the molecule B by a transformation tαβγ, with α, β, γ ∈ Z,
corresponds to shifting the grid indices of B. This implies that it is not
necessary to introduce a different grid for each translation of molecule B.
Instead, it suffices to read off the values from the non-translated grid B at
the shifted position as follows:

tαβγ(bijk) = bi+α,j+β,k+γ

Thus, for each rotated conformation of molecule B, we can compute a grid
of geometric scores for each of its translations tαβγ from:

cαβγ =
N

∑
i,j,k=1

aijkbi+α,j+β,k+γ

The values cαβγ for all translations of B build a grid of scores which we denote
by C .

LetR be the set of all possible rotations of molecule B. The general scheme
of correlation-based docking algorithms then looks as follows [33]:

• Compute the grid A for molecule A

• For each rotation r ∈ R:

– apply r to molecule B

– compute the grid B corresponding to the current rotation state of B

– compute the grid C
– store the m largest values of C , corresponding to the m translations of

the current rotation state of B with the largest geometric scores

• Sort the resulting m|R| conformations with respect to their scores and
return them.

A direct naive implementation of this algorithm would result in O(N3) time
for each value cαβγ, leading to a total of O(N6) time for the computation of C
and a total of O(|R|N6) for the complete algorithm.

Fortunately, the runtime can be drastically decreased by noting that the grid
cαβγ is the discrete correlation of the grids A and B. It can thus be computed
efficiently using the fast Fourier transform (FFT) due to the correlation theorem:

FT
(

N

∑
i,j,k=1

aijkbi+α,j+β,k+γ

)
= FT ∗(aijk)FT (bijk)
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Here,FT denotes the Fourier transform andFT ∗ its complex conjugate. This
yields

cαβγ = FT −1(FT ∗(aijk)FT (bijk))

where FT −1 denotes the inverse Fourier transform.

Since the Fourier transform of a discrete grid of size N3 can be computed
inO(N3 log(N)) time using the FFT, we can thus compute C inO(N3 log(N))
time, leading to the total runtime of O(|R|N3 log(N)).

Even though this algorithm generates candidate structures based on geo-
metric matching alone and thus neglects energetic aspects like electrostatic
compatibility, it works quite well in bound docking experiments. A variety of
improvements to this scheme has been proposed in the literature. In principle,
two different techniques can be used to improve the scoring of the candidate
structures. The first option is the re-evaluation of the candidate structures
using more sophisticated scoring functions. In this case it is important to
ensure that the initial geometry-based docking algorithm produces a sufficient
number of near-native structures. A typical example of this approach is the
docking programm BiGGER by Palma and coworkers [95], where electrostatic
energy and desolvation are used as post-scan filters.

The second option is the modification of the filtering process to include
energetic contributions in addition to geometric complementarity. A straight-
forward approach to this problem introduces additional grids. Gabb and
coworkers [40] employ one grid for the electrostatic potential of protein A and
one grid for the partial charges of B to obtain an estimate of the electrostatic
energy of the complex, and use the result to filter out conformations with
unfavorable interaction energies. Mandell and coworkers [81] propose a sim-
ilar technique, but compute the potential of A using continuum electrostatics.
The resulting interaction energy estimates are then added to the geometric fit
of the candidate. An elegant alternative to introducing additional grids was
pointed out by Heifetz and coworkers [48], who use grids of complex numbers
and store the non-geometric information in the imaginary part. Rather than
correlating electrostatic potentials and charges to obtain an estimate of the
electrostatic interaction energies, they make use of the observed anticorrela-
tion of the electrostatic potentials of docking partners at the binding site [82].
Similarly, hydrophobic interactions can be accounted for, e.g. in the imaginary
part of C . For a recent review on correlation-based docking techniques, see
Ref. [33].

2.2.2 Graph-based Structure Generation Methods

In contrast to grid-based correlation techniques, graph-based approaches al-
low for accurate but compact representations of the protein structures or
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Figure 3 DOCK represents the binding pockets of protein A and
the interior of protein B by sets of spheres and searches for good
superpositions of these sets.

their surfaces. Kuntz and coworkers [66, 105, 106] developed DOCK (see also
Chapter 16), a method that describes the geometry of the putative binding
sites of A and the shape of B by sets of spheres. The union of spheres that
belong to a pocket of A represents the empty volume of this putative binding
site and builds a negative image of A at that site. The DOCK approach tries to
identify the best superposition of B and the negative images of A by searching
for cliques in a graph representing all possible matchings of spheres.

DOCK starts by computing discrete sets of points on the molecular surfaces
of A and B. In the second step, the algorithm computes sets of spheres for A
and B with the following properties (Figure 3):

(i) Each sphere touches the molecular surface at two points (i, j) and has its
center on the surface normal of point i.

(ii) Each sphere of protein A lies on the outside of the surface of A.

(iii) Each sphere of protein B lies on the inside of the surface of B.

This procedure usually generates a large number of spheres, which can
be reduced by applying additional constraints. The remaining spheres are
clustered into “small” sets. Ideally, the sphere sets of A should represent the
different pockets and tentative binding sites on the surface of A, while the
clusters of B should form the set of possible docking interfaces of B.

The actual structure generation can be formulated as a clique (a completely
connected subgraph) search problem in a graph that represents the putative
pairwise matchings of spheres of A and B as nodes. For each pair (i, j), where
i is a sphere of A and j is a sphere of B, a node vij is added to the graph.
Two nodes vij and vkl are connected by an edge if and only if the Euclidean
distance d(i, k) of the sphere centers i and k belonging to A is almost equal to
the Euclidean distance d(j, l) of the sphere centers j and l of B, i.e.:

‖d(i, k)− d(j, l)‖ ≤ ε (3)
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where ε is a user-defined parameter. Hence, edges connect pairs of spheres
whose centers have almost the same distances and hence can be mapped
onto each other by a suitable rigid transformation. Each clique of size four
in the graph defines a possible transformation. Therefore, the algorithm
calculates the tentative complex conformations by carrying out a straightfor-
ward incremental search for cliques of size four, by computing the respective
transformations, and by applying the transformations to all atoms of protein
B.

Kasinos and coworkers [57] presented another graph-based approach that
applies graph-matching techniques to identify tentative complex conforma-
tions. They calculate points on the surfaces of A and B and two graphs that
represent the surfaces. The points on the surfaces build the vertex sets of the
respective graphs. Pairs of points are connected by edges that are labeled with
the Euclidean distances between the points. The algorithm calculates maximal
matchings of the two graphs and the transformations that map the respective
point sets onto each other.

2.2.3 Slice Decomposition and Polygon Descriptors

A few docking algorithms use slice decompositions of the protein surfaces
to identify complementary surface regions. The first such algorithm was
published by Walls and Sternberg [112] in 1992. In this section, we will
summarize an approach by Helmer-Citterich and coworkers [9, 49], which
decomposes the proteins into parallel slices whose boundaries are represented
by polygons. The approach determines conformations that exhibit a good
match between the polygonal chains of the slices of A and B.

The structure generation procedure, called SHAPES, freezes the conforma-
tion of protein A and cuts its solvent accessible surface into parallel slices 1.5
Å thick, orthogonal to the z-axis. Each slice is represented by a 2-D polygon
(defined by the intersection of the molecular surface with a plane parallel to
the x–y plane) that approximates the protein surface. This is illustrated in
Figure 4.

The algorithm considers a discrete set of orientations of protein B that are
generated by rotations (Rx, Ry) of B around the x- and y-axes. Each such
orientation (rx, ry) ∈ (Rx, Ry) of B is tested in the following way:

(i) For each orientation of protein B, SHAPES calculates the slice decomposi-
tion of the solvent accessible surface of protein B, orthogonal to the z-axis,
and the respective polygon representations of the slices.

(ii) The algorithm scans a set of possible translations of B along the z-axis.
Only translations Tz that map the z-plane of at least one slice polygon of
B onto the plane of a slice polygon of A are evaluated using polygon-
matching techniques. The algorithm starts with the translation that maps
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Figure 4 Slice decomposition approaches consider parallel
equidistant planes cutting the protein surface. The contour of a surface
cut is approximated by a polygon. The algorithm then searches for
pairs of compatible polygons of A and B.

the z-plane of the top polygon of B onto the z-plane of the bottom polygon
of A. Repeated shifts of 1.5 Å along the z-axis generate the other possible
z-translations of B. For each such translation tz ∈ Tz of B, the pairs of slice
polygons on all different matching z-planes are tested by the polygon-
matching technique described below.

(iii) Given a polygon PA of A and a polygon PB of B on the same z-plane/slice,
the algorithm superimposes each of the m polygon sides of PB with each
of the n polygon sides of PA by calculating a translation tx, ty and a
rotation rz around the z-axis that maps the side of PB onto the side of
PA. For each such transformation (tx, ty, rz), a complementarity value is
calculated.

(iv) The protein–protein interface is a sufficiently large region of complemen-
tarity spread across several z-planes. It can thus be found by searching
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for a set of compatible transformations, both within a single z-plane or
across multiple z-planes. This search can be done efficiently by clustering
the calculated transformations (tx, ty, rz) of all planes using a 3-D grid
with cell size of 3 Å for the translations along the x- and y-axes and
12◦ for the rotations around the z-axis. The “complementarity values”
of all transformations that belong to one cell of the transformation grid
are added up. Thus, the cells with the highest complementarity values
represent the best partial transformations. The combination of each of
these partial transformations (tx, ty, rz) with the current transformation
(rx, ry, tz) of B defines a rigid transformation generating a candidate.

The conformation of protein A is fixed during the whole procedure de-
scribed above. Since protein A is decomposed into slices orthogonal to the
z-axis, the poles of A with respect to the z-axis are poorly described. To
solve this problem, Helmer-Citterich and coworkers propose to repeat the
above procedure with a slice decomposition of A along either the x- or y-axis,
orthogonal to the first slice decomposition along the z-axis.

2.2.4 Critical Surface Points and Geometric Hashing

Many docking algorithms determine putative complex conformations by in-
vestigating the topological properties of the surfaces of the proteins and by
identifying geometrically complementary surface regions. Some of these al-
gorithms apply the following docking strategy: based on their curvature
properties, the surfaces are decomposed into patches which are classified as
either convex (knob), concave (hole) or flat (saddle). Each surface domain is
represented by a central point located on the respective domain or face. These
sets of so-called critical points or interest points are sparse representations of
the molecular surface. The algorithms determine candidates by searching for
matching complementary point sets.

In 1986, Connolly [22] presented the first docking approach matching knobs
and holes on the so-called molecular surfaces (solvent excluded surface) [21,
23] of the proteins A and B. Connolly‘s algorithm generates tentative com-
plex conformations by searching for a rigid transformation that maps four
knobs/holes on the surface of A onto four complementary holes/knobs with
similar distances on the surface of B.

Wang [113] modified the definition of critical points slightly and matched
only one knob/hole on surface A with a complementary hole/knob on the
surface of B. The matching of two critical points defines the required trans-
lation. Two vectors pointing towards the respective centroids of the local
volumes of the hole and the knob are used to fix two rotational degrees of
freedom. Furthermore, the approach considers a discrete set of rotations
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around the axis passing through the centroids to fix the last rotational degree
of freedom.

Nussinov and coworkers [38,76] presented a docking algorithm that matches
pairs of critical points along with their surface normals. They introduced an
elegant and efficient technique for identifying matching pairs of critical points,
the geometric hashing technique, developed originally for computer vision
applications. The hashing technique is based on a transformation invariant
representation of the surface descriptors. Lenhof [73] also applied geometric
hashing techniques to generate tentative complex conformations by matching
similar triangles of surface points. Geometric hashing is described in more
detail in Chapter 16.

2.2.5 Other Approaches

Numerous sophisticated geometric-matching methods have been published
in the last two decades. Since a detailed discussion of these methods would
go beyond the scope of this work, we will briefly summarize the main ideas
behind the matching techniques.

Ackermann and coworkers [2] use geometric and chemical features to de-
compose the surfaces into domains. An approach based on semantic nets is
applied to study the sizes and shapes of the surface domains and to match
complementary surface regions. Exner and Brickmann [14, 36] compare topo-
graphical properties of surface domains using fuzzy logics strategies. Levine
and coworkers [74] combine techniques from genetic algorithms, parallel and
distributed computing, and virtual reality in the docking program STALK.
Gardiner and coworkers [41] propose a genetic algorithm for identifying
the areas of greatest surface complementarity. The soft docking approach
developed by Jiang and Kim [56] integrates dot and cube representation
of the molecular surfaces. Cherfils and coworkers [20] calculate putative
conformations using a simulated annealing method. In 1992, Bacon and
Moult [10] published an approach for protein–protein and protein–ligand
docking that uses surface complementarity and electrostatic energy to assess
candidate conformations. The algorithm generates candidate conformations
by matching patterns of points on the surfaces using McLachlan’s [83] least-
squares best-fit algorithm.

2.3 Realizing Protein Flexibility

RBD approaches usually succeed in predicting the complex conformations if
the bound structures of A and B are sufficiently close to the native, unbound
structures. However, even small changes in the conformation of a few side-
chains may cause RBD approaches to fail. Although the algorithms will
usually still generate approximations of the complex structure, these will be
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assigned poor scores as they contain physically impossible overlaps between
the two proteins. The challenge is now to identify the true positives among
the candidates.

The general strategy for realizing protein flexibility is to reconstruct a phys-
ically meaningful complex structure. All conformations in the candidate list
have to be perturbed and optimized to remove overlaps and to re-establish
native contacts in the docking interface. This process requires both an efficient
optimization method and a reliable scoring function. As a result of this
structural optimization and a subsequent re-scoring, the rank of the true
positives will improve.

Studies of the differences between bound and unbound structures indi-
cate that in many cases the protein backbones change only slightly [13, 94].
However, significant conformational changes of side-chains at the docking
interface may accompany complex formation. Many docking algorithms thus
consider the protein backbones as rigid and simply optimize (demangle) the
side-chains of the protein–protein interface.

In contrast to side-chain rearrangements, hinge-bending is the result of
conformational changes in the protein backbone. This frequently occurs for
multidomain proteins. In these cases, domains of the protein are connected by
flexible loop regions. These regions serve as hinges around which the domains
may swivel. In some cases, this results in quite complex movements. In the
case shown in Figure 6 the two domains of calmodulin can perform a gripper-
like movement and close around a possible ligand.

Even more challenging cases of protein flexibility have been described in
the literature. In 2000, Shoemaker and coworkers [104] presented a pos-
sible answer to the question of why so many proteins in the cell seem to
be unfolded most of the time. They proposed a new binding mechanism,
the so-called “fly-casting”, where binding and folding occur simultaneously.
Furthermore, Shoemaker and coworkers argue that a relatively unstructured
protein molecule can have a greater capture radius for a specific binding site
than the folded state with its restricted conformational freedom. This binding
mechanism defines a new grand challenge with respect to the development of
structure prediction methods because binding and folding occur more or less
simultaneously. While force field-based molecular dynamics methods should
in principle be able to handle these cases of full flexibility, these techniques are
prohibitively expensive in terms of CPU time.

In the following, we will first discuss approaches for side-chain place-
ment (SCP), then an algorithm for handling hinge-bending by Sandak and
coworkers [102], and finally a technique that allows for realizing backbone
and side-chain flexibility simultaneously developed by Abagyan and Totrov
[1, 109].
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2.3.1 Side Chain Placement

The main goal of SCP algorithms is to find the global minimum-energy con-
formation of the side-chains at the protein–protein interface with respect to a
given energy function E. For each given conformation in the candidate list,
the placement algorithms determine the side-chains near the contact site and
optimize the side-chain conformations. Finally, the optimized conformations
are re-ranked with respect to their energy values.

Since side-chain optimization techniques can also be applied to modeling
and predicting protein structures, a wide range of methods is available today.
Simulated annealing [51, 53, 72], Monte Carlo methods [24, 25, 52, 75, 118],
mean-field optimization [62, 71, 84, 85], artificial neural networks [53, 62] and
local homology modeling [68] have been applied to this problem.

A large number of techniques for SCP are based on a discretization of
conformational space. Ponder and Richards [97] observed that the side-chain
conformations occurring in proteins can be adequately described by a rather
small, discrete set of rotamers for each residue (for a detailed discussion of
rotamers, see also Chapter 10). This discretization results in a combinatorial
optimization problem: identify the set of rotamers with the minimal energy,
the so-called global minimum-energy conformation (GMEC). We will now discuss
some of the techniques that have been proposed for identifying the GMEC.

Given a putative complex conformation, SCP methods start by identifying
all residues in the protein interface. A residue is considered to be part of the
interface, if any of its atoms is within a cutoff distance, e.g. 6.0 Å, from any of
the atoms of the other protein.

Let R denote the set of residues that belong to the interface. Note that we do
not distinguish between residues of A and B because it is not required for the
presentation of the algorithmic techniques. For each residue i, we determine
its set Ri of possible rotameric states ir from a given rotamer library, e.g. the
rotamer library of Dunbrack and coworkers [31] (see also Chapter 10). The
remaining residues and the backbone of the proteins A and B, which will be
kept rigid, are called the template t.

Each possible conformation of the side-chains in R can be described by a
binary incidence vector:

X = (x1
1, x1

2, · · · , xi
r, · · · ), (4)

where xi
r equals 1 if residue i is in state r and 0 otherwise. Since “allowed”

conformations assign exactly one rotameric state to each residue, the follow-
ing equations must hold for all possible binary solution vectors X:

∑
r

xi
r = 1 for all residues i. (5)

The GMEC is the combination X of rotamers that fulfills constraint (5) and
yields the lowest total energy with respect to a potential energy function
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E (note that we restrict ourselves to the typical case of energy functions
containing at most pairwise interaction terms):

E(X) = Et + ∑
i,r

xi
rE(ir) + ∑

i,r
∑

j<i,s
xi

rxj
sE(ir , js), (6)

where Et is the potential energy of the template, E(ir) is the potential energy of
side-chain i in state r interacting with the atoms of the template and E(ir , js) is
the pairwise potential energy of side-chain i in state r with side-chain j in state
s. The GMEC problem is not only NP-complete [96], but also inapproximable
[18].

Note that the potential energy of the template Et is a constant that does not
depend on the side-chain rotamers chosen. In a first preprocessing step, the
algorithms calculate and store the template energy Et and the rotamer energies
E(ir). Similarly, all pairwise interaction energies E(ir, js) are calculated.

Typical protein interfaces consist of 40–60 side-chains, yielding up to 1060

rotamer combinations. Hence, exhaustive search [16,114,115] is only tractable
for very small examples with few side-chains. In the following we will discuss
several important techniques for solving the GMEC problem: the dead-end
elimination (DEE) technique introduced by Desmet and coworkers [27], an
A∗ algorithm developed by Leach and Lemon [69, 70], and integer linear
programming (ILP) techniques.

2.3.1.1 Dead End Elimination The DEE method developed by Desmet and
coworkers [27] reduces the size of the search space by eliminating side-chain
rotamers that are incompatible with the GMEC. A rotamer ir can be safely
ignored in the search for the GMEC, if a second rotamer iu of side-chain i
exists such that the following inequality is fulfilled:

E(ir) + ∑
j �=i

min
s

E(ir , js) > E(iu) + ∑
j �=i

max
s

E(iu, js). (7)

This so-called DEE theorem states that the rotamer ir cannot be part of the
GMEC if its “best” (i.e. lowest) energy is still larger than the “worst” (i.e. high-
est) energy of iu. Desmet and coworkers proved an analogous theorem for
rotamer pairs and successively applied the two theorems in an iterative fash-
ion as long as the number of rotamers could be reduced. Applying DEE will
usually not result in a single solution for the GMEC, but it drastically reduces
the search space. The remaining search space can then be more effectively
searched using one of the techniques described below.
A more effective variant of the DEE theorem has been formulated by Goldstein
[44]: a rotamer ir cannot be part of the GMEC, if a second rotamer iu of side-
chain i exists such that the following inequality holds:

E(ir)− E(iu) + ∑
j �=i

min
s
{E(ir , js)− E(iu, js)} > 0. (8)
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In the last decade, a series of papers on variants of the DEE theorem has
been published [28, 29, 44–46, 67, 78]. Desmet and coworkers [29] discuss
further variants of the DEE theorem and summarize algorithms for imple-
menting these inequalities efficiently.

2.3.1.2 “Branch & Bound” and the A∗ Algorithm In principle, all possible
solutions to the GMEC can be represented by an enumeration tree. Each path
from the root to a leaf of the tree describes a feasible rotamer combination.
The i-th layer of the tree represents the rotamers of the i-th side-chain and
each node is labeled with a rotameric state ir of i. Hence, the number of layers
equals the number of side-chains (Figure 5). A path P(v) from the root to a
node v in layer m visits exactly one node in each layer. If the node in layer
i is labeled ir , then P(v) assigns rotameric state ir to residue i. Hence, P(v)
fixes the rotameric states of the first m side-chains. The subtree T(v) of node v
represents all possible rotamer combinations of the remaining side-chains.
During the construction of the tree, the potential energies of the different paths
are calculated and stored in the tree nodes where the paths end. Hence, the
root of the tree stores the template energy Et while the other nodes v store the
total potential energy of all rotamers that lie on the path P(v) from v to the
root:

E(v) = Et + ∑
ir∈P(v)

E(ir) + ∑
ir∈P(v)

∑
js∈P(v)

j<i

E(ir, js) (9)

The GMEC can then be determined by constructing the whole tree and by
searching for the leaf with the lowest energy. The path from this leaf to the
root describes the rotamer combination with minimal potential energy. Since
the number of rotamer combinations grows exponentially with the number
of side-chains, building the whole enumeration tree is not feasible for typical

Figure 5 A rotamer enumeration tree for three side-chains.
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problem sizes. “Branch & bound” approaches are widely used methods for
solving high-dimensional optimization problems. These algorithms try to
avoid the exploration of subtrees that cannot contain a minimal conformation.

Let U be an upper bound for the energy value of the GMEC and EL(v) a
lower bound for the energetic contribution of the best path from a node v to
any of the leaves in the subtree T(v) of v, then the subtree T(v) can be safely
ignored if the following inequality holds:

E(v) + EL(v) > U (10)

The upper bound U can be obtained using a greedy or multi-greedy heuristic
(see, e.g. Refs. [89, 98]) that usually generate good approximations of the
optimal solution. A reasonable lower bound EL(v) for the potential energy
of the optimal path in T(v) can be calculated as follows. We have to add up
lower bounds L(j) for the energetic contribution of the side-chains j that have
not yet been assigned a rotameric state, i.e. the side-chains not represented by
the nodes in P(v):

EL(v) = ∑
j/∈P(v)

L(j) (11)

Suitable lower bounds L(j) can be determined as follows:

L(j) = min
s

⎧⎨
⎩E(js) + ∑

ir∈P(v)
E(js, ir) + ∑

k/∈(P(v)∪j)
min

l
E(js, kl)

⎫⎬
⎭ (12)

The first sum in the above definition describes the pairwise interaction ener-
gies of rotamer js with the side-chains on the path P(v) that have already been
assigned a rotameric state, whereas the last sum in Eq. (12) is a lower bound
for the pairwise interaction energies of js with the other side-chains that have
not yet been assigned a rotameric state.

“Branch & bound” approaches usually build the tree layer by layer in a
breadth-first search manner. Before adding the children of node v and starting
the construction of the subtree of node v, the algorithm calculates EL(v) and
applies inequality (10) to test if the subtree T(v) can be safely ignored.

An alternative to “Branch & bound” is the A∗ algorithm introduced by Hart
and coworkers [47]. It has been applied to SCP for protein–ligand docking
by Leach and Lemon [69, 70]. The A∗ algorithm is a heuristic procedure for
searching an optimal path in a graph or tree that allows to explore deeper
layers of the tree before completing upper layers, if promising paths have been
detected. The algorithm first visits the children v of the root, and calculates the
potential energies E(v) and the lower bounds EL(v) for the best possible path
in the corresponding subtrees T(v). For each child v of the root, the sum of



2 Protein–Protein Interactions 621

E(v) and EL(v) serves as an estimator:

BP(v) := E(v) + EL(v) (13)

for the best possible energy. These estimators are stored in a priority queue
together with their nodes such that the first element v is the most promising
node with the smallest estimator BP(v).

In the next step, the A∗ algorithm further explores the tree by adding new
nodes representing the children w of the node v with the best estimator BP(v).
Then, the estimator BP(v) is removed and the estimators BP(w) of the new
nodes are computed and added to the priority queue. The algorithm stops if
an optimal solution has been found. An optimal solution is one that assigns a
rotameric state to each of the side-chains and has an energy that is lower than
the best estimator stored.

2.3.1.3 Integer Linear Programming ILP techniques have been very success-
fully applied to many high-dimensional optimization problems. We will now
derive an ILP formulation for the GMEC problem.
If we combine Eqs. (5) and (6) for the GMEC problem, we arrive at:

min
X

E(X) = min
X

{
Et + ∑

i,r
xi

rE(ir) + ∑
i,r

∑
j<i,s

xi
rxj

sE(ir , js)

}
(14)

s.t. ∑
r

xi
r = 1 for all i ∈ R (15)

xi
r ∈ {0, 1} for all i ∈ R and r ∈ Ri (16)

This is an integer quadratic programming problem, since the solutions are
integer and since the energy function contains products of the form xi

rxj
s. It

can be transformed into an ILP problem using the following procedure:

(i) We determine the largest pairwise interaction energy Emax of any pair of
rotamers.

(ii) We substitute the pairwise interaction energy E(ir , js) of each rotamer pair
by E(ir, js)− (Emax + ε) where ε is a small positive constant.

(iii) For each pair of variables xi
rxj

s, we introduce a new binary variable yij
rs

that takes the value 1 if and only if xi
r and xj

s are 1.

The first two steps are necessary to ensure that all pairwise interaction ener-
gies are negative. The above transformation shifts the solutions of the GMEC
problem only by a constant. Hence, the minima of the transformed problem
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are identical to the minima of the untransformed problem:

min
X

E(X) = min
X

{
Et + ∑

i,r
xi

rE(ir) + ∑
i,r

∑
j<i,s

yij
rsE(ir , js)

}
(17)

s.t. ∑
r

xi
r = 1 for all i ∈ R (18)

yij
rs ≤ xi

r for all i, j �= i ∈ R, r ∈ Ri, s ∈ Rj (19)

yij
rs ≤ xj

s for all i, j �= i ∈ R, r ∈ Ri, s ∈ Rj (20)

xi
r ∈ {0, 1} for all i ∈ R, r ∈ Ri (21)

yij
rs ∈ {0, 1} for all i, j �= i ∈ R, r ∈ Ri, s ∈ Rj (22)

The linear constraints (19) and (20) guarantee that the variable yij
rs can take

the value 1 only if xi
r and xj

s are 1. If, in addition, xi
r = xj

s = 1, then the fact
that E(ir , js) is negative forces the variable yij

rs to take the value 1 because we
are dealing with a minimization problem. In other words, if yij

rs = 0 held
for a minimal conformation, setting yij

rs = 1 would not violate any of the
above constraints. However, it would generate a new solution whose energy
is smaller than the energy of the supposed minimal conformation by a factor
of E(ir , js), thus contradicting the above assumption.

Althaus and coworkers [5, 6] presented the first ILP formulation of the
GMEC problem and a “Branch & cut” algorithm. “Branch & cut” is the most
common technique for solving ILP problems. For details on “Branch & cut”
and integer linear programming, we refer to the book by Wolsey [117]. The
scheme of standard “Branch & cut” approaches can be summarized as follows.
We relax the ILP by dropping the integer condition – we allow the variables xi

r
to take any real value in the interval [0, 1] – and solve the resulting linear pro-
gram (LP). If the solution X̄ is integral we have found the GMEC. Otherwise,
we search for a valid linear inequality f (X) ≤ f0 that cuts off the solution X̄,
i.e. f (X) ≤ f0 for all feasible solutions X of the ILP problem and f (X̄) > f0.
The set {X| f (X) = f0} is called a cutting plane. Any cutting plane found is
added to the LP and the resulting LP is solved again. The generation of cutting
planes is repeated until either an optimal solution is found or the search for a
cutting plane fails. In the second case a branch step follows, i.e. we generate
two subproblems by setting one fractional variable xi

r of the last solution to 0
in the first subproblem and to 1 in the second subproblem. We then start the
“Branch & cut” algorithm for the two subproblems recursively. This recursion
gives rise to an enumeration tree of subproblems, where the minimum of the
solutions of the two subtrees represents the optimal solution of our primal ILP
problem.



2 Protein–Protein Interactions 623

The search for cutting planes is called the separation problem. The most
promising cutting planes are the facets of the convex hull of all feasible solu-
tions. In order to find good cutting planes, Althaus and coworkers [5] studied
the convex hull of the feasible solutions, the so-called GMEC polyhedron, and
identified a few classes of facet-defining inequalities.

Other ILP formulations of the GMEC problem have been presented by
Eriksson and coworkers [34] and by Kingsford and coworkers [59]. The
compact graph-theoretic ILP formulation of Kingsford and coworkers can be
summarized as follows:

Let G be an undirected |R|-partite graph with node set:

V := V1 ∪V2 ∪ · · · ∪V|R|, (23)

where Vi contains a node u for each rotamer ir of side-chain i. The potential
energy Euu := E(ir) is assigned to the node u ∈ Vi that represents the rotamer
ir. Each pair (u, v) = (ir, js) of rotamers with i �= j is connected by an edge
with weight Euv = E(ir, js). A feasible solution of the GMEC problem has to
pick exactly one node per node set Vi. The energy of the feasible solution is
the sum of the template energy Et, the node weights and the weights of the
edges that connect the selected nodes. We introduce binary decision variables
xuu and xuv for each node u ∈ V and for each edge (u, v) of the graph:

min
X

E(X) = min
X

⎧⎨
⎩Et + ∑

u∈V
xuuEuu + ∑

(u,v)∈G
xuvEuv

⎫⎬
⎭ (24)

s.t. ∑
u∈Vi

xuu = 1 for all i ∈ R (25)

∑
u∈Vi

xuv = xvv for all i ∈ R and v /∈ Vi (26)

xuu, xuv ∈ {0, 1} for all u, v ∈ V. (27)

The constraints (26) ensure that exactly those edge weights Euv are added to
the energy function for which both end nodes u and v are selected, i.e. xuu = 1
and xvv = 1.

Kingsford and coworkers [59] show that their ILP formulation allows for
solving large problem instances. They propose to relax the ILP to an LP.
If the solution of the LP is integral, the SCP problem has been solved in
polynomial time. Otherwise, they start the computationally more expensive
ILP procedure. Surprisingly, they show that optimal solutions can almost
always be obtained directly by solving the respective LP when placing side-
chains on native or homologous backbones, whereas the design problem often
cannot be solved using LP. These results have been obtained with an energy
function based on van der Waals interactions and a statistical rotamer self-
energy term. Kingsford and coworkers also found that small modifications of
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Figure 6 Hinge-bending accompanies the binding of calmodulin and
to a peptide. The two terminal domains of calmodulin “wrap” around
the peptide by a movement around the hinge region marked by the
arrow (PDB IDs 1CFF and 1BBM).

the energy function may lead to an increase of examples for which the more
expensive ILP procedure is required.

2.3.2 Hinge-bending

Sandak and coworkers [101, 102] published the first algorithm for handling
hinge-bending. To accurately predict the structure of protein–protein and
protein–ligand complexes, they adapted a technique developed in computer
vision and robotics for the efficient recognition of partially articulated objects.
These objects consist of rigid parts connected by rotary joints. The approach
is based on an extension and generalisation of the Hough transform and the
geometric hashing paradigm for rigid objects.

Since a detailed description of this sophisticated algorithm would go be-
yond the scope of this work, we focus on the core ideas of the method. To
simplify matters, we assume that

(i) The ligand B is built of two “rigid” domains B1 and B2 connected by a
short flexible hinge.

(ii) The position of the hinge in protein B is known and can be described by
a point H.

(iii) Apart from the six degrees of motional freedom of B as a whole, indepen-
dent rotations of B1 and B2 around the hinge are allowed as additional
conformational changes.

The algorithm starts by applying a slightly modified version of the RBD
scheme based on geometric hashing as described in Refs. [38, 76] (see also
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Chapter 16). Triplets of points on the surfaces of A and B are used to calculate
all rigid transformations T of B that result in interesting contacts between the
surfaces of A and B. If a transformation t is generated by a surface matching
between B1 and A, t is associated with the domain B1 and with B2 otherwise.

The hinge-bending algorithm is based on the following concept (see Figure
7): hopefully, the set T of possible transformations contains a transformation
t1 placing B1 close to the correct position, but not necessarily B2, and a trans-
formation t2 placing B2 correctly, but not necessarily B1. Both transformations
share a common feature: when applied to their respective domains, they will
place the hinge at the same position. The algorithm thus tries to identify pairs
of transformations associated with both domains that would place the hinge
at approximately the same position using a grid-based technique.

Sandak and coworkers apply all transformations in T to H resulting in a
set T(H) of possible locations of the hinge. These putative hinge locations are
clustered using a 3-D grid. For each grid cell, a vote accumulator counts the
number of transformations that map H into this cell. The algorithm considers
a cell as interesting if it receives a large number of votes from transformations
associated with both domains. The high-scoring cells and the associated
transformations are selected, while the other transformations are removed.
Each of the remaining transformations is applied to its domain and checked
for collisions with A. Transformations that yield large overlaps are removed
from the candidate list, similarly those yielding an insufficient number of

Figure 7 Schematic illustration of protein-docking with hinge-bending:
the two domains B1 and B2 have to swivel around their joint hinge H to
fit into the binding site of A.
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favorable van der Waals contacts with A. In a following self-collision test,
the remaining possible pairs (t1, t2) of transformations belonging to high-
scoring cells where t1 is associated with B1 and t2 with B2 are applied to
their respective domains. If the transformed domains t1(B1) and t2(B2) do not
show a forbidden self-collision, the pair of transformations (t1, t2) is added to
the set of possible solutions together with a geometric score, the sum of the
van der Waals contacts of t1(B1) with A and t2(B2) with A.

2.3.3 Biased Probability Monte Carlo (BPMC) Conformational Search

Abagyan and Totrov [1, 109] suggested an efficient and effective method for
optimizing the backbone conformation and the side-chain positions simul-
taneously. The modified Monte Carlo method, called the BPMC approach,
operates in torsion angle space. To simplify matters, we will sketch the BPMC
algorithm using structure prediction of peptides as an application example.

In torsion angle space, the conformation of a peptide can be described by
the backbone torsion angles φ, ψ and the torsion angles χα, χβ, · · · of the side-
chains. Abagyan and Totrov combine the two torsion angles φ, ψ of each
residue to one “subspace” or internal variable of the optimization problem
such that the number of internal variables representing the backbone is equal
to the number of residues. The torsion angles of individual residues can also
be combined to one subspace or internal variable.

The BPMC approach is based on the idea “to sample with larger probability
those regions of the conformational space which we know a priori are, on the
average, highly populated and to sample with less probability regions known
to be less populated” [1]. Abagyan and Totrov prove that random steps
chosen according to the expected probability distribution of the “subspace”
parameters should be preferred over any other way to make a random move.
Therefore, they carry out a statistical analysis of the local conformational
preferences of a representative set of protein structures to identify preferred
zones in φ–ψ and χ subspaces. The calculated φ–ψ and χ maps are divided into
regions by visual inspection or according to the maxima of the torsion poten-
tial. Each region defines a preferred zone z that is approximately described by
an ellipse. These zones are also associated with probabililties P(z), which are
derived from the number of points contained in the zones.

The BPMC iteration scheme can be summarized as follows:

(i) The BPMC procedure randomly selects a subspace or internal variable,
i.e. it chooses a backbone or side-chain torsion angle belonging to one
residue and the respective subspace.

(ii) It randomly selects one zone zk according to the probability P(zk) out of
the set of all high-probability zones z1, z2, · · · , zm of the selected internal
variable or subspace.
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(iii) It makes a normally distributed step in the vicinity of the zk-th zone.

(iv) A local minimization of the new conformation is carried out using the
ECEPP/2 energy function [37, 92].

(v) The total energy of the optimized conformation is calculated by adding
additional energy terms for solvation energy, electrostatic free energy and
entropy.

(vi) The conformation is accepted if the Metropolis criterion [86], which is
the normal acceptance criterion for a move in the simulated-annealing
procedure, is fulfilled.

The BPMC approach has been successfully applied to a number of different
optimization and structure prediction problems, ranging from ab initio predic-
tion of peptide structures to protein–protein docking.

2.4 Scoring Functions

To distinguish the native structure from decoys, the generated candidates
are usually evaluated using some kind of scoring function. The number of
different scoring functions that have been used in protein–protein docking is
very large. Therefore, we will discuss some general requirements for these
functions first and then describe selected scoring functions in more detail.
(For a discussion of scoring functions in the context of protein–ligand docking,
please refer to Chapter 16.)

The ideal scoring function is (i) highly accurate, (ii) computationally effi-
cient and (iii) robust with respect to small deviations from the native structure.
Such an ideal function would allow us to easily compute the interaction free
energies of all candidates and then pick the one with the lowest score/energy,
which is hopefully close to the native structure.

Unfortunately, the prediction of binding free energies is a challenging prob-
lem. While the biophysical effects contributing to the binding free energy
ΔGbind are well known, they are not yet understood to the extent necessary to
construct an accurate scoring function. It is thus difficult to model these effects
adequately. This is particularly true for entropic contributions and solvation
effects. However, even for the well-understood contributions like hydrogen
bonds or van der Waals interactions it is hard to find sufficiently accurate,
albeit computationally efficient, models.

Over the years, different classes of scoring functions have been devel-
oped, each with its own strengths and weaknesses. All these approaches
share one major simplification: while the thermodynamic properties we try
to predict (free energies in particular) are defined as ensemble properties,
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all scoring functions try to deduce this property based on a single structure
only. There has been some effort to predict binding free energies for small
molecule ligands using ensemble techniques (free energy perturbation and
thermodynamic integration), however these methods are not applicable to
large protein–protein complexes.

Most scoring functions fall into one of three categories: (i) ab initio models,
(ii) empirical models and (iii) knowledge-based models. The first category
is based on first principles, i.e. on solid physical theories like quantum
mechanics. These models require no additional parameterization besides
physical constants. While they are theoretically elegant, they are often com-
putationally intractable for the large systems considered in protein–protein
docking. Current scoring functions thus mostly fall into the latter two cat-
egories (empirical and knowledge-based), which we will discuss below. A
comprehensive review of the different types of scoring functions in the context
of protein–ligand docking can be found in [15].

2.4.1 Empirical Potentials

Empirical potentials decompose the overall binding free energy into indi-
vidual independent contributions, which are then approximated by separate
models. Many simple scoring functions described for RBD approaches fall
into this category. Empirical models are often, but not always, based on solid
theoretical models. In particular, some of these potentials are derived from or
inspired by molecular mechanics force fields (AMBER or CHARMM in most
cases). These force fields are also empirical scoring functions in a broader
sense and have been used for scoring in protein–protein docking as well.

Empirical scoring functions use varying decompositions of the total binding
free energy into individual contributions. The decompositions aim at being
sufficiently complete, accurate and orthogonal. Sufficient completeness implies
that all major effects governing protein association are covered. If this is not
the case, then sufficient accuracy cannot be achieved. Orthogonality implies
that each effect is covered by one contribution of the decomposition only, thus
simplifying the validation of the scoring function and yielding a minimal and
concise decomposition.

Obviously, there are numerous possible contributions to the total binding
free energy. A reasonably complete decomposition of the binding free energy
ΔGbind could, for example, include the following contributions:

ΔGbind = ΔGvdW + ΔGes + ΔGhp + ΔGhb

+ ΔGsolv + ΔGint + ΔGcon f − TΔStr/rot (28)

where ΔGvdW are the van der Waals contributions, ΔGes is the change in
electrostatic free energy, ΔGhp accounts for the hydrophobic interaction,
ΔGhb accounts for the hydrogen bond energy, ΔGsolv accounts for the change
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in solvation free energy, ΔGint accounts for the change in the internal energy of
the two proteins (e.g. conformational changes), ΔGconf accounts for the loss of
side-chain torsional degrees of freedom, and TΔStr/rot accounts for the loss of
translational and rotational degrees of freedom upon association. Clearly, this
decomposition is neither entirely orthogonal nor entirely complete. Hydrogen
bonds and solvation effects also have an electrostatic contribution, and the
hydrophobic effect is not completely separable from van der Waals and
solvation effects. Nevertheless, this decomposition accounts for the major
interactions occuring between proteins. The art of constructing an empirical
scoring function lies in the choice of good approximations for each of these
effects and in knowing which of these contributions can be neglected for the
problem at hand.

In the simplest case, an empirical scoring function accounts for a single
effect only, e.g., for hydrophobic interactions or electrostatic contributions.
Surface overlaps used as score in correlation-based approaches can be re-
garded as simple empirical scoring functions accounting for the hydrophobic
effect and van der Waals interactions only. While these trivial scoring func-
tions will work readily for certain types of protein–protein interactions (e.g.
large hydrophobic interfaces for correlation approaches), they will fail as soon
as the total binding free energy is dominated by other effects. Sophisticated
scoring functions thus aim at modeling as many of the effects as accurately as
possible.

The scoring function used by Jackson and Sternberg [54] in their RBD
approach is an example of a more sophisticated empirical scoring function.
The approach relies on a subset of the above decomposition:

ΔGbind = ΔGes + ΔGsolv + ΔGhp. (29)

Solvation and electrostatics are handled by the same approach – continuum
electrostatics. This approach models the solutes (the proteins) as regions of
low dielectric constant immersed in a continuum of high dielectric constant
– the solvent (water). The overall electrostatics of this system can be readily
solved using the Poisson or Poisson–Boltzmann equation by standard numer-
ical techniques (e.g. finite difference methods, e.g. Ref. [43]). Solving the
(linearized) Poisson–Boltzmann equation on a sufficiently fine 3-D grid yields
the electrostatic potential for each grid point. Using a quite elaborate scheme,
Jackson and Sternberg compute the change in solvation free energies of the
two proteins upon association (ΔΔGA

solv and ΔΔGB
solv) and their electrostatic

interaction energy (ΔGAB
es ) from these potentials.

The hydrophobic effect is estimated as the cavitation free energy, i.e. the
energy required to form a protein-shaped cavity in the surrounding water.
This energy is thought to be roughly proportional to the molecular surface
area. Binding of the two proteins obviously reduces surface area, as the
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protein binding interface is no longer exposed to the solvent. This results in a
negative cavitation-free energy. The hydrophobic effect is thus estimated as:

ΔGhp = γΔA = γ (AAB − AA − AB), (30)

where AAB, AA and AB are the molecular surface areas of the complex and
the proteins, respectively, and γ is a constant.

The full model thus looks as follows:

ΔGbind = ΔΔGA
solv + ΔΔGB

solv + ΔGAB
es + γ(AAB − AA − AB). (31)

While the model turned out to be successful for scoring protein–protein com-
plexes, the use of the finite-difference Poisson–Boltzmann equation results in
quite long running times. This scoring function is thus viable for the final
re-ranking stage of the docking algorithm only.

It should be remarked that the energies predicted by most empirical scoring
functions are not able to reproduce the absolute value of the binding free
energy with reasonable accuracy. The reason is often to be found in the
nonorthogonality of the overall decomposition, in the insufficient accuracy of
the individual contributions, but also in the overall balance of these contribu-
tions. However, this does not impede the usefulness of these scoring functions
for protein–protein docking, where a proper separation of the native structure
from the decoys (i.e. a correct relative ranking of the energies) is sufficient.

2.4.2 Knowledge-based Potentials

In contrast to empirical scoring functions, knowledge-based scoring functions
do not explicitly model individual contributions to the binding free energy.
Instead, they are based on the frequencies of residue–residue or atom–atom
contacts observed in X-ray structures of protein–protein complexes. Those in-
teractions occuring frequently are counted as energetically favorable, whereas
interactions observed rarely in complexes are considered less favorable. The
frequencies observed can be converted to pseudo-energies assuming a Boltz-
mann distribution (the so-called inverse Boltzmann law [107]). In this case, the
potentials are often called potentials of mean force (PMFs).

Knowledge-based potentials can be constructed for different model resolu-
tions. The potentials initially developed for protein structure prediction are
typically residue-based potentials, i.e. two amino acids are considered to be
in contact and thus to contribute to the total energy, if they are within a given
threshold distance. In its simplest form, the computation of the interaction
free energy reduces to a summation over all pairs in contact across the protein
interface:

ΔGbind = ∑
(i,j)

et(i)t(j) for all i ∈ A, j ∈ B

with rij := |�ri −�rj| ≤ rcutoff,
(32)
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where t(i) denotes the atom/residue type of i, et(i)t(j) are the statistically
derived interaction energies, �ri and�rj are the positions of i and j, and rcutoff
is the cutoff distance, i.e. the maximum distance for which the pair (i, j) is still
considered to be in contact (usually 6 − 7 Å). Less coarse scoring functions
compute these et(i)t(j) as a function of the distance. The above equation then
becomes:

ΔGbind = ∑
(i,j)

et(i)t(j)(rij). (33)

Deriving these et(i)t(j) from a structural database typically involves counting
of the individual pairs. The different knowledge-based potentials differ in the
way this counting is done (e.g. the assignment of atom/residue types) and,
more importantly, they differ in the choice of a reference state. The issue of
reference states is beyond the scope of this paper. A recent discussion of the
problem can be found in Refs. [77, 122].

The key step in all these approaches is relating the eab to the number of
observed contacts between atoms/residues of type a and b in the database for
a given distance. The inverse Boltzmann law yields:

eab(r) = −kBT ln
gab(r)
g(r)

, (34)

where gab(r) is the probability of finding a pair of types a and b in distance
r, and g(r) is some normalized reference probability. These probabilities are
approximated by counting contacts in the structural database.

Both, atom contact potentials (ACPs) and residue contact potentials (RCPs)
have been used extensively in protein–protein docking with significant suc-
cess. In theory, knowledge-based potentials account for all effects contributing
to the binding affinity; however, some of these effects tend to be underesti-
mated. In particular, the repulsive part of the van der Waals contribution and
solvation effects are often added to yield a more reliable scoring function.

The atomic contact energy (ACE) proposed by Zhang and coworkers [121]
is one of these potentials. It is based on a classification into 18 distinct
atom types. For each of these types, the number of contacts was determined
from a database of 89 homology-reduced protein structures with a single
cutoff radius of 6 Å. Interaction scores can thus be readily computed using
Eq. (32). ACE is typically augmented with additional Coulomb electrostatics
and entropic contributions to predict protein binding free energies [119].

An example for a residue-based contact potential is RPScore, developed by
Moont and coworkers [90]. RPScore considers two residues to be in contact
if their Cβ atoms are within 6 Å of each other. Counting these contacts
across the interface of a set of protein complexes and applying the inverse
Boltzmann law to these counts, normalized with the expected number of
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contacts, results in relative preferences for amino acid contacts. Moont and
coworkers used this type of potential and similar atom-based potentials for re-
scoring docking candidates obtained through correlation docking and yielded
very good results.

Murphy and coworkers [91] used RCPs (RPScore) and ACPs (ACE) in sub-
sequent filtering and scoring steps. They found that both types of potentials
are good for discriminating native structures from decoys. The performance
increases if both methods are combined, i.e. if RPScore is used for an initial
filtering and ACE for a final scoring or vice versa. In order to account for
overlaps, both potentials had to be augmented by an additional van der Waals
energy term.

2.5 Data-driven Docking

Today, protein complexes are studied with a wide variety of experimental
techniques. Not all of these experiments yield enough information to al-
low a direct structure elucidation, but nonetheless they often allow to draw
useful conclusions about the properties of the complex. Indeed, integrating
such experimental data into protein-docking procedures has been consistently
reported to improve prediction accuracy. This approach of integrating exper-
imental results into the docking process is commonly known as constrained or
data-driven docking.

A large number of different experimental techniques has been used in the
context of data-driven docking. Here, we will focus on select approaches and
refer the interested reader to the recent review of the field by van Dijk and
coworkers [111]. At this point we would like to emphasize that for many data-
driven docking approaches, the experimental origin of the constraints is of no
importance. If the docking algorithm is able to use “generic” distance or angle
constraints, it can utilize information from the most diverse experimental
techniques in a unified framework.

2.5.1 Experimental Techniques

Site-directed mutagenesis of individual amino acids in the complex provides in-
formation on the involvement of the mutated residue in the binding interface.
If a certain point mutation influences the binding in any way, the residue is
considered part of the complex interface. If, on the other hand, replacing a
residue does not influence the binding, this can at least be taken as a hint that
it is not part of the interface. This information can be exploited in data-driven
docking. In the structure generation stage, e.g., we restrict the search to those
candidates where the experimentally identified residues are indeed part of the
binding interface.
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Mass Spectrometry (MS) techniques have become a popular tool for many
biological applications, particularly in proteomics. Even though it might
not be obvious at first glance, MS experiments can also be used to provide
constraints for the protein-docking problem. This can be achieved in two
different ways. The first technique is the measurement of H/D exchange
rates, where the proteins are immersed in heavy water (D2O). In this situation,
hydrogen atoms on the surface of the protein can be exchanged by deuterium
atoms from the heavy water, perturbing the mass of the protein. Measuring
these mass differences yields information about the exchange rates. Residues
in the protein–protein interface are shielded from H/D exchange and thus
experience lower exchange rates in the complex. A second type of constraint
can be derived from MS experiments on cross-linked proteins. A reactive
bifunctional cross-linker covalently binds to two residues. The chemistry of
the functional groups determines at which sites the cross-linking occurs. The
protein complexes are then fragmented (e.g. through tryptic digest) and the
resulting peptides are investigated using MS techniques. If this reveals a
fragment with a mass equal to the sum of the masses of two peptides occuring
in the complex plus the mass of the cross-linker, one can derive a simple
distance constraint: in the complex, the two peptides occuring in the cross-
linked fragment cannot be farther away than the distance of the two functional
groups of the cross-linker. Thus, cross-linked pairs of peptides from A and B
yield an upper bound on the distance of pairs of residues in the complex.

NMR spectroscopy measures the electromagnetic absorption properties of
nuclear spins subjected to a strong magnetic field. These effects sensitively
depend on the chemical environment of the absorbing atom and can be used to
derive distance and orientational constraints between atom pairs in the com-
plex. The most commonly used constraints are distance constraints based on
nuclear Overhauser enhancements (NOE) and orientational constraints based
on residual dipolar coupling (RDC). In addition, NMR can be used to deter-
mine which residues undergo conformational changes during complex for-
mation by H/D exchange measurements, cross-saturation transfer or chem-
ical shift perturbation. Using NMR to derive distance or angle constraints
has become a popular technique for protein docking. Unfortunately, most
techniques require time-consuming manual annotation of the NMR spectra
(resonance assignment).

2.5.2 Algorithmic Approaches

In principle, experimental information can be introduced into the docking
process at three different stages: the structure generation stage, the filtering
stage or the scoring stage. If experimental data is used in the filtering stage,
it is often used in the form of geometric constraints. Candidate structures
violating too many of these constraints are removed and the search space
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is thus reduced. In the scoring stage, the candidate structures can be used
to predict an experimental property. The similarity between predicted and
experimental data can then serve as a scoring function. Since most of the
algorithmic techniques are very similar to the techniques already described
above, we will only discuss a few select examples.

In general, the structure generation itself is driven by some kind of energy
or scoring function. To integrate experimental data, additional scoring terms
can be introduced to penalize deviation from the measured values. A typ-
ical example for such an approach is implemented in the docking program
HADDOCK [30], which integrates information about interfacial residues by
adding distance penalties. Since not all interface residues may be detected,
neighboring residues on the protein surface will be added to those validated
experimentally. Given a candidate structure, effective distances are calculated
for each interface residues. The effective distance measures a residue’s prox-
imity to the interface. Candidates where the interface largely coincides with
the experimentally determined interface will have low effective distances,
resulting in good scores.

Experimental information can also be used for correlation-based docking
techniques by weighting different parts of the protein differently, according
to the experimental data at hand [11, 12]. For example, the contribution of
residues known to be part of the binding site can be increased by assigning
their surface regions a larger value. Anand and coworkers [7] used MS H/D
data to filter candidates generated with the docking program DOT [81]. NMR
data was used as a post-scan filter [95] in the correlation-based program
FTDOCK [40].

Integrating experimental data in the scoring phase can be achieved in nu-
merous ways. Kohlbacher and coworkers [63] used unassigned 1H-NMR
spectra of complexes to re-score the candidates. In an initial phase, they
generate candidates by RBD based on geometric hashing [73]. With an em-
pirical model, they predict the chemical shift of every proton in the candidate
structure. The sum of these shifts yields a theoretical spectrum for each
candidate. These spectra are then compared to the NMR spectrum of the
native structure and the resulting similarities are used to score the candidates.
Based on this score alone they achieved very good rankings of several protein–
protein complexes.

2.6 Assessment of Docking Predictions

At first glance, assessing the quality of protein-docking algorithms seems
straightforward. In principle, it would suffice to apply the docking algorithm
to a number of test cases for which the complex structure has been determined
experimentally and compare the generated conformations with the known
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Figure 8 RMSD is not a well-suited measure for the similarity of
protein–protein complexes. Small rotations of one of the proteins about
a point close to the interface can lead to large changes in RMSD,
although most of the interface contacts are conserved.

complex structures. Unfortunately, two problems arise. First, the choice of the
test complexes has an enormous influence on the quality of the result. Some
protein complexes are inherently “simple” and others inherently “hard”, typi-
cally due to the degree of flexibility. Second, there is no canonical measure for
the deviation of the generated structures from the native ones [110]. The most
popular method is the computation of the RMSD of a certain set of atoms,
e.g. the Cα atoms of the backbone. The usefulness of the RMSD for docking
evaluation has been questioned in the literature [119]. One of the problems
associated with RMSD is illustrated in Figure 8. While a small rotation of
one of the proteins about a point close to the interface preserves most of the
interface contacts, it results in a large change in RMSD. Alternative quality
measures thus often focus in some way on the interface region. The interfacial
RMSD, for example, computes the RMSD only for binding site residues. A
conceptually different measure is the fraction of native contacts, which tends
to be more stable for partially correct predictions [119]. It counts the number
of native contacts present in the candidate structure.

Assessing the quality of docking predictions is further complicated by the
relatively low number of protein complexes with known bound and unbound
structures. Since a considerable number of docking examples is typically
needed to tune the docking algorithm and fit its parameters, the real test set is
usually quite small. It is thus often unclear how well the predictions of a given
algorithm generalize to completely unknown complexes. Apart from the
above-mentioned more technical aspects, comparing the results of different
docking algorithms and assessing their quality is severely complicated by a
further, more subtle difficulty: typically, during the development and testing
of protein-docking algorithms, no clear distinction is made between test and
training sets. This means that in many cases, the structures that are used to
evaluate the quality of a given docking algorithm were also employed during
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its development. Hence, it cannot be ruled out that the algorithm has been
overtrained, i.e. that it shows good performance on the training set only.

To overcome these difficulties, the protein-docking community has estab-
lished a regular blind prediction challenge called CAPRI which is similar in
spirit to the CASP competition in protein structure prediction. CAPRI is orga-
nized in so-called rounds. For each round, crystallographers provide possible
docking targets, the structures of which they have already determined, but
not published. The organizers choose an interesting subset of these targets
and forward the structures of the individual proteins – either in their bound
or unbound (for some cases, only a homologous unbound structure is used as
input, further complicating the prediction) conformation, depending on the
target – to the participating groups. Each group may then submit a certain
number of predictions for each target. Finally, the predictions are evaluated
by the organizers and the results are published.

Detailed evaluations of the different CAPRI rounds can be found in the
corresponding papers and on the CAPRI website [35]. Here, we will exem-
plarily discuss the evaluation of round three as taken from [116]. CAPRI
round three presented only two different targets: an epidermal growth factor-
like domain of laminin and nidogen-G3 and a wild-type homodimer of the
phosphoenolpyruvate:sugar phosphotransferase system (PTS) regulation do-
main from LicT [55]. Of these two targets, the first one was considered the
easier problem: nidogen was used in its bound form (but randomly oriented)
and laminin, even though used in the unbound form, was very similar in
structure to the bound conformation. Out of the 179 submitted predictions
for this target, 27 were of acceptable or better quality. Only two models out
of these 27 were considered high quality, i.e. they had more than 50% of the
native contacts correctly predicted. The second target was considerably more
difficult. Here, the challenge consisted in predicting the wild-type homodimer
from the structure of the subunit of a double mutant, which produces an
activated form of the homodimer with widely different backbone (RMSD of
around 12 Å). This large degree of flexibility posed severe difficulties to the
docking algorithms and, indeed, the prediction score in general was quite
poor [116], with only one acceptable prediction.

These results already indicate that for certain complex structures, protein–
protein docking is still a major challenge. In fact, the level of difficulty
depends mostly on the type of structure considered. Vajda and Camacho
[110] analyzed strengths and weaknesses of current docking techniques on
a benchmark set of 52 different complexes [19] (this benchmark set has since
been extended in Ref. [87]). Interestingly, it turned out that the complexes
in the test set can be assigned a degree of difficulty that is independent of
the docking algorithm applied. The whole test set decomposes into five
categories of increasing difficulty based on three structural properties: the
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degree of flexibility, the area of the complex interface (ΔSASA, the change in
solvent accessible surface area during complex separation) and the magnitude
of the desolvation effect upon complex formation. The simplest class of
docking examples, the so-called type I complexes, is composed of protein–
protein complexes with low degree of flexibility, a relatively large interface
area of 1400 < ΔSASA < 2000 Å2 and a strong desolvation effect below
−4 kcal mol−1. This class consists almost completely of enzyme-inhibitor
complexes. If the hydrophobic effect is weaker than for the complexes of
type I, protein–protein docking can still be expected to work successfully as
long as the interface area is large, ΔSASA > 2000 Å2, and the conformational
changes during docking are only moderate. These complexes form class II,
which consists mainly of protein pairs with strong functional coupling and of
enzyme–inhibitor complexes.

The docking problem becomes more difficult if neither the hydrophobic
effect nor the interface area are particularly large. In this case, which is called
type III, the docking results often depend sensitively on the coordinates of the
input structures. An important type of complexes that often falls into this class
is antibody–antigen pairs. If in addition the interface area is particularly small,
ΔSASA < 1400 Å2, docking can no longer be expected to work successfully.
Indeed, the results of all docking algorithms for this type IV complexes are
generally poor. Interestingly, Vajda and Camacho noticed that many docking
algorithms still produce several true positives in the structure generation stage
for type IV complexes. However, these are usually lost in the filtering or
scoring steps of the algorithm.

The hardest problem for all current docking algorithms, though, is those
complexes which undergo large conformational changes during docking. This
effect often occurs if the interface area is larger than ΔSASA > 2000 Å2: large
contact areas give rise to a large number of interactions and these interactions
are able to induce massive conformational changes. Thus, it is sometimes
hard to distinguish between the relatively easy type II complexes and the
extremely hard type V complexes. Transient protein complexes involved in
signal transduction typically fall into this class.

Having defined these five classes of increasing difficulty, Vajda and Ca-
macho evaluated whether the results of the CAPRI competition fit into this
scheme. Indeed, it turned out that the decomposition of the CAPRI targets
into classes I–V explained the performance of the different algorithms very
well. In general, all algorithms predict the correct structure for type I and II
complexes. The results for type III complexes varied, but were consistently
better for those with negative desolvation energy, hence for complexes closer
to class I. Type IV complexes lead to poor docking results, while docking
seems to fail for type V. This study shows an important difference in the
source of error for the different types of complexes: while for class III and
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Figure 9 As can be seen from this crystal structure of the TATA box-
binding protein bound to double-stranded DNA (PDB ID 1CDW [93]),
proteins can induce massive conformational changes of the DNA. In
this case, the DNA is nearly bent to a right angle.

IV, we can expect major improvements by changing scoring functions and
SCP algorithms, type V complexes will need new techniques for handling
flexibility. Since in these cases a rigid structure generation phase will typically
not produce approximations to the native structure, improved re-ranking
methods in the later stages will come too late. The only possible remedy to this
shortcoming would be the flexibilization of the structure generation phase.

3 Protein–DNA Interactions

3.1 Peculiarities of Protein–DNA Binding

Interactions of proteins with nucleic acids differ in some fundamental aspects
from protein–protein interactions. The most prominent structural peculiarity
is the negatively charged phosphodiester backbone of nucleic acids. Proteins
binding to DNA have to compensate this charge, which typically results in
a large number of positively charged lysine and arginine residues in the
protein–DNA interface. Hence, electrostatics, solvent effects and counterions
play a much more important role in modeling protein–DNA interactions than
they do in protein–protein interactions.

The second key difference lies in the flexibility of nucleic acids. DNA and, in
particular, RNA have quite flexible backbones, which often undergo bending
or unwinding upon binding (Figure 9). Apart from changes in the backbone
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conformation, individual bases or base pairs can flip out of the double helix
and interact directly with the protein. To date, no algorithm is truly able
to handle this degree of flexibility. However, there are some proteins, e.g.
zinc finger proteins, that bind to DNA without inducing significant changes
in DNA structure. In these cases, complex structures can be successfully
predicted with approaches quite similar to those applicable to protein–protein
docking. However, scoring functions used in protein–protein docking have to
be adapted to the different types of interactions present in the protein–DNA
case. The construction of knowledge-based potentials for protein–DNA inter-
actions is further complicated by the comparatively small number of crystal
structures available; only a minor fraction of the complex structures found in
the Protein Data Bank (PDB) contains nucleic acids (about 900 structures as of
early 2006).

While the electrostatic interaction of the protein with the DNA backbone is
the major contributing factor towards protein–DNA complex stability, speci-
ficity is mostly conveyed through hydrogen bonds between protein side-
chains and bases. This makes the prediction of the exact binding position, i.e.
the sequence motif a specific protein binds to, much harder than the prediction
of the binding site of the protein. This difficulty is based on two facts. (i) The
relative differences in binding free energy between two DNA sequences are
often quite low with differences in the range of a few kcal mol−1. Hence,
very accurate scoring functions are required. (ii) The hydrogen bond patterns
conveying specificity often include water-mediated hydrogen bonds, which
are difficult to predict and to model.

The ability to accurately predict relative binding affinities for different se-
quences (i.e. the specificity) is an important goal in protein–DNA docking.
This allows the development of rapid sequence-based prediction methods
based on structural data and is also an essential tool for the design of tailor-
made transcription factors [50].

3.2 Algorithmic Techniques

As protein–DNA docking is currently restricted to complexes with little con-
formational flexibility, it basically employs the same techniques used in rigid-
body protein–protein docking. We will now describe some of these docking
techniques together with the scoring functions.

3.2.1 Correlation Techniques

Several approaches have been proposed that use correlation techniques for
protein–DNA docking [3, 99]. These approaches use established tools from
protein–protein docking to perform a RBD, and then filter and refine the
results. We will discuss the work by Aloy and coworkers [3] in more detail.
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Their docking algorithm applies a standard correlation-based RBD method
(FTDOCK) used with slightly different parameters and electrostatics. As
has been mentioned above, the binding specificity for many protein–DNA
complexes is only marginally influenced by the DNA backbone charges. Aloy
and coworkers account for this by dampening the backbone charges. The
correlation docking results in a set of initial candidate structures, which are
then filtered with respect to geometric constraints. These constraints are de-
rived from experimentally determined DNA–protein contacts. The remaining
candidates are finally re-scored using a knowledge-based potential. Although
the docking does not account for flexibility, it turns out to be quite successful
even when used with unbound protein structures. Of a test set of eight com-
plexes, two complexes were indeed predicted correctly (below 4 Å RMSD for
the structure on rank one) and for five out of the eight a good approximation
was at least among the top ten structures.

3.2.2 Monte Carlo Techniques

Knegtel and coworkers [60] proposed a Monte Carlo algorithm for protein–
DNA docking. MONTY uses a simple scoring function considering hydrogen
bonds, salt bridges, van der Waals contacts and steric collisions. This scoring
function is used in a Monte Carlo framework to identify minimum energy
conformations. MONTY considers the six degrees of freedom arising from
protein rotation and translation, and additional degrees of freedom represent-
ing flexible side-chains. Repeated runs of the Monte Carlo simulation yield
different candidate structures. The approach was tested on the complex of 434
Cro and double-stranded DNA. For three different X-ray structures, MONTY
was able to identify a good approximation of the true complex structure
(below 4 Å RMSD). However, the algorithm started from the bound structures
and did not account for DNA flexibility.

In a second study, Knegtel and coworkers [61] extended MONTY to include
DNA backbone flexibility as well. They describe the DNA backbone through a
parametric equation and allow for unwinding or tightening of the helix during
the simulation. Helix flexibility is achieved by changing the parameters of
the parametric equation in small steps. Base pairs are then relaxed to adjust
to the new backbone conformation. It turns out that adding DNA backbone
flexibility indeed increases the number of correctly retrieved hydrogen bonds.
It was also shown that inclusion of experimental data improves the predic-
tions. To this end, Knegtel and coworkers included harmonic potentials for
NOE pairs or energy bonuses for correctly retrieved experimentally confirmed
contacts. These contacts can be obtained from arbitrary experiments, e.g. from
mutagenesis.

A hybrid geometric hashing, minimization, and Monte Carlo approach was
proposed by Deng and coworkers [17, 26]. Their algorithm is based on the
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assumption that the hydrogen bonding is the key factor in protein–DNA
interaction. Hence, they designed an interaction potential accounting for
hydrogen bonding and van der Waals interactions only. The piecewise de-
fined function resembles a Lennard–Jones potential, but also includes angular
contributions for hydrogen bonds. The different phases of the algorithm use
different levels of approximation for this potential. In the initial geometric
hashing phase of the algorithm, the potential is approximated as a square-
well potential, which in fact just counts hydrogen bonds between DNA and
protein. Matching quadruples of interaction points between protein and
DNA creates a list of transformations ensuring at least four hydrogen bond
matches between protein and DNA. The second phase of the algorithm refines
the square-well approximation to a harmonic potential. For this quadratic
approximation one can easily derive a closed-form solution for the optimal
transformation minimizing the interaction energy. The optimal solution for
the quadratic scoring function is then used as the starting point for a Monte
Carlo minimization using the full Lennard–Jones potential in the third phase.
For a number of well-known DNA-binding proteins they could predict the
correct (i.e. highest binding) sequence motif.

3.3 Scoring Functions

Mandel-Gutfreund and coworkers [79, 80] proposed a simple residue-based
contact potential based on a set of 53 protein–DNA structures. They applied
this potential to sequence variants of a DNA–zinc finger complex. To identify
binding motifs, they scanned the upstream regions of a number of genes. The
sequence of the DNA was changed to all potential motifs occuring in these
upstream regions and these motifs were then scored with the contact potential.
Although the potential is quite simple, it allows structure-based predictions of
the binding sites with reasonable chance of success.

Zhang and coworkers [120] proposed a knowledge-based energy function
for protein–DNA and protein–ligand complexes. The potential differs from
other knowledge-based approaches through the choice of the reference state.
The distance-scaled, finite, ideal-gas references state (DFIRE [122,123]) avoids
some the problems related to other commonly used reference states. As
in similar knowledge-based potentials, the DFIRE potential is derived from
binned contact frequencies in a database of 200 protein–ligand complexes. The
potential was validated on 45 protein–DNA complexes from the PDB with
known binding free energies. On this data set the scoring function yielded an
excellent agreement of predicted and experimental binding free energies, al-
though no protein–protein and protein–DNA complexes were used to derive
the potential. The potential is thus very robust and generalizes well to other
types of structures.
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Several authors have suggested that the directionality of the hydrogen
bonds is an essential feature, which is not properly captured by these sim-
ple potentials. They thus extend the idea of knowledge-based potentials to
include angular contributions besides the radial contributions as well. Kono
and Sarai [64] proposed a potential based on the spatial distribution of amino
acid atoms around the base pair. They analyzed 52 protein–DNA complex
structures and counted the frequency of occurence of hydrogen bond donors
and acceptors in defined spatial positions (relative to the fixed base) by sum-
ming up observations on a 3-D cubic grid. This type of potential contains an
angular contribution through the relative position of a grid point with respect
to the base. The potential was shown to successfully predict the DNA target
sequences for the MATα1/α2 transcription factor.

Another knowledge-based potential was proposed by Ge and coworkers
[42]. It is specific for the interaction with base pairs in the DNA major and
minor grooves. Following a similar idea as Kono & Sarai, they superimpose
DNA base pairs from high-quality crystallographic data. From this data, they
compile a set of observed positions for water molecules and amino acid atoms
relative to the base pairs. This set of points is then approximated by 3-D
ellipsoids, which represent areas of favorable interaction with the base pair.
Interaction energies with the base pairs are estimated as simple harmonic
potentials between protein atoms and DNA ellipsoids. This energy function
is complemented by a simple steric clash test (overlapping conformations are
excluded) and performed quite well for a number of ligand–DNA complexes.

4 Conclusion

Protein–protein docking has seen many improvements over the last decade,
which are highlighted by the results of blind predictions in the CAPRI com-
petition. At the same time, the blind prediction experiments proved that
protein–protein docking is still a largely unsolved problem. A careful review
of the failings and problems of the numerous techniques and applications de-
scribed above reveals some fundamental problems that need to be addressed
in the future.

The first key problem still is protein flexibility. There are now several tech-
niques available for handling flexible side-chains and domain movements
in protein docking. Despite the progress made, none of these approaches
addresses protein flexibility in its entirety. Except for a few stochastic ap-
proaches, e.g. Monte Carlo approaches, we have not yet managed to fuse the
two first steps of the docking – structure generation and realizing flexibility –
into a single combined step.
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Scoring functions are the second key problem in protein–protein docking.
In particular, solvent effects and entropic contributions remain challenging
problems. We have seen many improvements in this area, but successful
scoring functions are still computationally quite demanding. Over recent
years, scoring functions have continually improved. Nevertheless, we are far
from the point where one single scoring function can reliably distinguish the
native complex structure from decoys.

If protein–protein docking is a difficult problem, then DNA–protein dock-
ing is much more difficult by far. While the fundamental problem is nearly
identical, the development in this area is still a few years behind in every
aspect. Fewer crystal structures are available, therefore our understanding of
the protein–DNA interaction is not yet as far advanced as our understanding
of the protein–protein interaction. The two key problems of protein–protein
docking, i.e. flexibility and accurate scoring, occur in protein–DNA docking as
well. In fact, both problems are more severe in this case. The huge conforma-
tional changes induced to DNA upon protein binding are still beyond what
any docking algorithm is able to handle. The same is true for the accurate
scoring, where the peculiar effects of DNA backbone charges and the effect of
counterions are still major problems.

Protein–protein and protein–DNA docking will clearly remain exciting and
important topics in the future. The rising interest in a structure-based under-
standing of protein interaction networks has given the field new impulses.
Structure-based systems biology tries to understand large, complex systems
based on molecular interactions [4, 100]. While the new data obtained from
structural genomics initiatives has taught us a lot about interactions, this way
of thinking opened up new application areas for protein–protein docking.
For example, protein–protein docking can help to validate or predict protein
interaction networks. Protein–DNA docking might play a similar role for
GRNs, however, we are still a long way from being able to predict these
networks based on structure alone.

The key challenges of the next years lie in the development of improved
scoring functions and full flexibility for both proteins and DNA. Better scoring
functions would not only yield an accurate ranking of the candidate struc-
tures, but also a good prediction of the absolute value of the binding free
energy. This is a challenging task indeed. It remains to be seen whether
it can be reached through any of the current methods. All thermodynamic
quantities, including the binding free energy, are defined for an ensemble
of structures. It would thus seem obvious that simulation-based methods
are more approriate for predicting these quantities than the current methods
based on a single structure only. However, this implies massive investments in
terms of compute power. An interesting alternative to more accurate scoring
is “data-driven docking”. Here, we can expect numerous new techniques
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to be integrated into docking over the next years. Basically any technique
producing structure-based information of some kind can be integrated into
docking approaches. Hopefully, these different efforts will converge into
one consistent framework for data-driven docking in the future. Future al-
gorithms will also have to account for side-chain and backbone flexibility
simultaneously. For the case of protein–DNA docking we will probably need
entirely different approaches to account for full flexiblity. These challenges
will clearly keep the docking community busy for the next years and keep the
CAPRI competitions exciting.
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Lead Identification by Virtual Screening
Andreas Kämper, Didier Rognan and Thomas Lengauer

1 Introduction

The identification of new drugs is a research topic of outstanding interest.
Due to recent progress in the determination of several complete genome
sequences, including the human genome, the structural genomics projects
aiming for structure determination of all naturally occurring protein folds,
new techniques for target validation and the advances in bioinformatics, our
understanding of the nature of many diseases and their causative facts is
constantly increasing. These efforts help to achieve the goal to identify novel
small molecules interacting with proteins and in this way find new drug
targets. In 2000 it was anticipated that the number of potential drug targets
would increase 10-fold [47], which was too optimistic from todays view [177].
The number of druggable proteins is more likely to be around 2200–3000
[81, 174]. Of them, around 600–1500 are disease-related and thus are putative
drug targets for small-molecule drugs [81].

The availability of new targets calls for effective systematic procedures for
finding putative drugs that bind to these targets. The process of searching
through a collection of compounds for molecules showing biological activity
against a given target is called lead identification. This lead identification is
a screening procedure (Section 1.1) and part of the overall drug discovery
process. It can be subdivided into several individual steps (Section 1.2). As
a prerequisite for screening, the molecules which are tested against the target,
the screening compounds (Section 1.3), have to be preprocessed (Section 2).
The actual screening can be performed with a variety of methods outlined
in Section 3. The results obtained from these methods need to be analyzed
and interpreted (Section 4). The final Sections 5 and 6 of this chapter provide
recent case studies and critical evaluations of structure-based and ligand-
based virtual screening techniques.



652 18 Lead Identification by Virtual Screening

1.1 Screening Techniques

Until a few decades ago, the search for drugs was a trial-end-error procedure,
with the target proteins being mostly unknown. In the last few decades of
the 20th century, two different systematic techniques for searching for drugs
have become accessible. Both of them are based on the fact that, increasingly,
the target proteins for drugs or putative drugs have been identified. The two
approaches are:

• High-throughput screening (HTS) is an experimental technique, where in a
fully automated fashion a robot tests all molecules from a library against a
molecular test system [78].

• Virtual screening (VS), on the other hand, is a pure computational tech-
nique. Here, the computer is used to estimate biological activities, e.g.
binding affinities. This includes one or more computational techniques.

These techniques can complement each other in the sense that VS guides the
experimental setup of HTS, but recently VS is more and more being seen as an
alternative to HTS [101]. There are many concepts for the integration of both
approaches [7, 69], showing the benefit of including experimental and in silico
methods in drug discovery. As an example, VS methods can be used to select
a subset of compounds for HTS or to analyze the results of a HTS experiment.

Due to their different nature, VS and HTS techniques have different ad-
vantages and disadvantages. For HTS, the major drawback is the cost of the
experiments. The cost is mainly determined by the purchase of compounds of
about US$1.00 per compound [198]. This has to be multiplied by the number
of compounds used per HTS run, typically on the order of a few hundred
thousands. In addition, supplies and an assay are needed. For both, the
cost is highly dependent on the type of target. On the other hand, the major
limitation for VS is the need for prerequisite knowledge about the binding
process. If there are neither known actives which can serve as templates nor
a three-dimensional (3-D) structure of the target protein, VS cannot be used.
If the 3-D structure of the target is known, then methods of structure-based
design can be used (see Chapter 16). The other possibility is that at least
one ligand is known that binds to the target, such as the natural substrate or
another inhibitor. In the latter case, methods of ligand-based design can be ap-
plied. A substantial advantage of VS is its applicability to not yet synthesized,
virtual compounds. This facilitates screening of virtual combinatorial libraries
with up to billions of molecules. It is obvious that VS methods must be very
efficient to deal with such large numbers of compounds. Thus, often not only
a single technique is used for VS. Instead, screening proceeds in a sequence of
steps, each of which reduces the number of considered compounds, starting
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with very fast techniques, followed by more advanced, computationally more
expensive techniques.

Within this chapter we will cover all computational aspects of VS. The
sections on preprocessing of libraries (Section 2) and postprocessing of hit
lists (Section 4) are also valid for HTS. However, we will exclude the more
technical aspects of data handling and information storage of HTS. Further-
more, the structure-based design techniques covered in detail in Chapter 16
will not be included here.

1.2 Drug Discovery Process

Drug discovery is a time-consuming and expensive process [44] which in-
volves a number of steps. Although the process is not linear – several of the
steps have to be repeated iteratively – it is often represented as a pipeline
(Figure 1). Within the pipeline, screening is performed during hit identifi-
cation after a suitable drug target has been identified and validated. A hit
can be defined as a compound which exhibits a strong binding affinity to the
target. In order to perform a screening run, first a collection of compounds
(Section 1.3) is submitted to the pipeline. This collection has to be prepared
for screening using a number of preprocessing steps (Section 2.1). Specifically,
unsuitable compounds are discarded by filtering steps. Next, within the
pipeline a structure- or ligand-based technique is applied to further restrict the
number of compounds (for ligand-based methods, see Section 3; for structure-
based methods, see Chapter 16). This is not necessarily performed in a single
step. It is quite common to use several cascading techniques, starting with a
fast but inaccurate method to exclude many compounds, ending with a slow,
but better method to screen the most promising compounds (see Sections 5

Figure 1 The drug development process.
Screening is applied for reducing the number
of initial compounds to a hitlist of molecules
with a high binding affinity. Compounds from
the hitlist are subsequently optimized to

leads. The final steps (not shown) are then
the finding of candidate structures, clinical
trials and, finally, the approval of the new
chemical entity (NCE) by the authorities.
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and 6 for recent examples). Finally, a number of molecules exhibiting a strong
binding affinity to the target are obtained – the hits. The crude hitlist obtained
by these methods needs to be analyzed and compounds need to be sorted
to prioritize subsequent lead selection (Section 4). In further steps of drug
development, top-ranking compounds of the hitlist are refined and a small
number of lead structures exhibiting promising properties are obtained (hit-
to-lead) which may be optimized further to finally become candidates used in
clinical trials. The respective drug optimization techniques are described in
Chapter 19 of this volume.

1.3 Compound Collections

The number of all possible drug-sized molecules, the virtual chemistry space,
is huge. A systematic exploration of a small part of this space with molecules
up to 11 heavy atoms was recently performed [57]. After exclusion of unsuit-
able chemicals with many small rings, over 13 million different compounds
remained. A typical drug molecule can be up to twice as large as the com-
pounds investigated in this study (average mass of 340 Da [55], about 24
heavy atoms). Estimates of the number of “drug-like” molecules accessible to
current synthesis procedures are of the order of 1060 [18] to 10100 [200]. These
numbers indicate that even when combining all compounds ever synthesized
(estimated 108 molecules), we cover an almost negligible fraction of the virtual
chemical space.

Compounds for screening can be obtained from databases of known struc-
tures, from combinatorial libraries or from de novo design programs. Due to
problems with synthesizability, often only known structures are considered.
Typical databases with organic laboratory compounds [e.g. MDL Available
Chemicals Directory (ACD, http://www.mdli.com/products/experiment/
available_chem_dir) or SPRESI (http://www.spresi.com)] are not suitable
sources for screening compounds due to the nondrug-like properties of most
of the entries. (In fact, these databases are used as references for nondrugs,
see below.) Much better sources are collections available in-house to phar-
maceutical companies or offered by screening compound vendors, containing
historical compounds and combinatorial libraries. Within the MDL Screening
Compounds Directory (SCD, http://www.mdli.com/products/experiment/
screening_compounds) database, over 3 million screening compounds are
listed together with supplier information. Unfortunately, all these compound
databases need extensive cleanup to be suitable for drug screening. Very
recently, ZINC, a curated large screening library of purchasable compounds
has become available [85], in which all the necessary preprocessing steps
(Section 2.1) have been performed.
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Reference data on pharmaceutical compounds at various stages of devel-
opment can be taken from the MDL Drug Data Report (MDDR, http://www.
mdli.com/products/knowledge/drug_data_report), the World Drug Index
(WDI, http://scientific.thomson.com/products/wdi), or the MDL Com-
prehensive Medicinal Chemistry (CMC, http://www.mdli.com/products/
knowledge/medicinal_chem) database.

2 Filtering and Preparation of Ligands

The data from screening compound collections are usually not suitable for VS
off the shelf. On the one hand, this is due to incomplete information (often
missing 3-D coordinates, stereochemistry, hydrogen atoms). On the other
hand, chemical libraries tend to contain a number of undesired compounds
and a lot of duplicates. Thus, before a library of compounds can be used
in VS, a number of preparatory and filtering steps (Section 2.1) have to be
applied. Among these filters, bioavailability (Section 2.2) and drug-likeness
(Section 2.3) of the compounds are of special relevance. The overall prepara-
tion process is summarized in Figure 2.

Figure 2 Example preprocessing workflow for chemical libraries (see
text for details).
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2.1 Library Preprocessing

An initial preprocessing step comprises the separation of entries with more
than a single molecule (e.g. containing a charged species and its counterions)
into their constituent entries. Next, all nonorganic molecules (e.g. chloride
ions, water) must be removed. The most obvious and easiest method is the
removal of all molecules without any carbon atom. Alternatively, as almost
all drugs contain a bond between carbon and a hetero-atom, another strategy
is to remove molecules without any of these bonds.

Then the library is subjected to a functional group filter. Here substructure
search is performed in order to identify and discard compounds with known
undesired groups in the library. This technique can be applied to reactive
functional groups [170], groups unlikely to be leads, promiscuous binders and
even functional groups classified as toxic [201]. Strategic pooling, a technique
proposed by Hann and coworkers [75], can also be applied by using functional
group filters. For instance, if the ligand is required to contain an acidic group,
only compounds with this function are integrated into the final library.

A common problem of HTS and VS consists of small molecules binding to
many different proteins, resulting in false-positive results (so called “frequent
hitters” or “promiscuous binders”) [135, 172]. By statistical methods based
on substructures, Roche and coworkers [172] developed a scoring scheme
based on a neural network to classify molecules as frequent hitters. Merkwirth
and coworkers [141] use an ensemble model for this classification. Molecules
covalently binding to proteins can be filtered out using reactive functional
group filters (see above).

Finding duplicates in screening libraries significantly reduces the number
of compounds to be tested. A one-by-one subgraph matching of connection
tables for all pairs of compounds is too expensive for collections with more
than a few thousand molecules. Instead, a representation of the molecular
structure which can be compared easily is generated. Often chemical hash
codes like those provided by Ihlenfeldt and Gasteiger [84] are used. Here,
the molecular topology is encoded in a single number – the hash value. If two
hash values are different, the molecules are different. If the hash values are
identical, the two compounds are most likely identical. Only in extremely
rare cases do two different compounds exhibit the same hash code. To be
sure, a substructure matching has to be performed if two identical hash codes
have been found. An alternative to hash codes is the generation of a unique
string for every molecule. This can be done by using the SMILES (Simplified
Molecular Input Line Entry System) representation after Weininger [210].
An enhancement of the SMILES representation can generate unique strings
[209] by using an atom-ordering scheme, which is suitable for molecular
comparison.
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The methods described so far need the 2-D representation of the molecule
in form of a connection table only. If 3-D information is needed further in
the screening pipeline then, as a next step, this information must be gen-
erated from either 2-D coordinates [e.g. most structure data files (SDFs)] or
connection tables [e.g. structures in 1-D string representations, like SMILES
or Sybyl Line Notation (SLN)]. Due to the still large amount of data this can
only be done efficiently by structure generation programs. These convert the
connection table into a single low-energy conformation. The two most widely
applied tools of this kind are CONCORD [157] and CORINA [176]. CON-
CORD uses rule sets based on literature values of bond lengths and torsion
angles to construct the molecule. Based on these values, acyclic parts of the
molecule are constructed. For cyclic parts special rules pertaining to ring
geometries are applied. Ring systems are obtained by merging conformations
of the individual rings and optimizing the geometry such as to minimize the
strain. CORINA works similarly, but includes more literature data and has a
backtracking algorithm for generation of strained ring systems.

While the 3-D structure is generated, information on the stereochemistry
of the compound has to be included. The often incomplete annotation of
the stereocenters is a pervasive problem with current compound collections.
Each stereocenter offers a choice of two stereoisomers (for the relevant cases
asymmetrical carbons and cis–trans isomerism). Which of these alternatives
are explored is up to the user. An exhaustive generation of all possible
stereoisomers of the compounds is one extreme, discarding the molecule
due to incomplete information is the other. Typically, only a small number
of stereoisomers are generated at this stage. Some programs even allow to
handle stereocenters as variable during the calculation [62].

Next step in preprocessing, although often combined with structure gen-
eration, is the addition of missing hydrogens. This includes the assign-
ment of a protonation state and an assessment of the tautomerism of the
molecule. Depending on the application, either the most likely or all pro-
tonation states/tautomers are generated. A typical approach for assign-
ment is the use of empirical rules. For example, carbonic acids are usually
kept deprotonated and primary aliphatic amines are protonated. A pro-
gram for generation of protonated forms is LigPrep from Schrödinger LLC
(http://www.schroedinger.com). Tautomers can be generated with TAU-
TOMER (http://www.mol-net.de/software/tautomer) by Molecular Net-
works.

Depending on the methods used for screening, often the conformational
space of a molecule needs to be explored by a VS program. While the
structure generation programs (see above) produce a single structure only,
the conformational analysis programs produce a set of alternative low-
energy conformations for a molecule. Leach has reviewed the available
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techniques [119] and several available programs have been compared [20]
whether they predict bioactive conformations correctly. The OMEGA pro-
gram (http://www.eyesopen.com/products/applications/omega.html) by
OpenEye, using a rule-based algorithm, currently seems to provide the best
trade-off between accuracy and speed [19, 20].

During all the steps of the screening procedure the identity of the molecules
(e.g. their registry numbers, order information) has to be maintained and
stored, typically in a relational database system.

2.2 Bioavailability

It is highly desirable for a drug to be administered by oral ingestion in order
to be easily utilized by the patient. Thus, the molecule must have reason-
able aqueous solubility and has to pass the intestinal membrane in order to
enter blood circulation. Bioavailability – a transport phenomenon – is often
confused with drug-likeness. Here we keep these two entirely different sub-
jects separate. We discuss bioavailability in this section and drug-likeness in
Section 2.3.

By analysis of molecules that have entered clinical trials (and, thus, are
bioavailable), Lipinski and coworkers established the “Rule of Five”, which
provides a simple heuristic rule for oral bioavailability [128]. It is likely that a
molecule exhibits poor absorption, if two or more of the following criteria are
fulfilled:

• Number of hydrogen bond donors (counted as number of O–H and N–H
groups) > 5

• Number of hydrogen bond acceptors (counted as number of any O or N
atom) > 10

• Molecular weight > 500

• Calculated log P > 5 (if C log P is used, see below)

Here, log P represents the logarithm base 10 of the octanol–water parti-
tioning coefficient, a property which can easily be calculated by property
estimation techniques [143]. Among the estimation techniques for log P,
C log P introduced by Hansch and Leo [76] and available from BioByte
(http://www.biobyte.com) is widely accepted. The idea of simple property-
based rules as rejection criteria for bioavailability was extended by Ghose and
coworkers [64]. Here, ranges were calculated for log P, molar refractivity,
molecular weight and number of atoms.

After development of fast estimation methods for the polar surface area
(PSA) by Clark [31] and Ertl and coworkers [50], rejection of molecules with
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a PSA > 140 Å was proposed as the only rejection criterion. Veber and
coworkers [193] analyzed a database with drug candidates. They classified
compounds as bioavailable, if the PSA <140 Å and the number of rotatable
bonds less than 12. More detail on bioavailability and, more generally, on
absorption, dissipation, metabolism and excretion (ADME) properties is pro-
vided in Chapter 19.

2.3 Drug-likeness

With the filtering methods described above, the knowledge of medicinal
chemists of whether a compound might be a good drug or not is not taken
into account. It is desirable that the compounds in a screening library have the
typical properties of drugs. Thus, a binary classification, whether a compound
is “drug-like” or not, must be performed on all compounds. The challenge
regarding this problem is that “drug-likeness” is a property which is not easily
evaluated and not related in a simple fashion to other chemical, physical or
biological properties. In order to solve the decision problem, the knowledge
of medicinal chemists for assessment of “drug-likeness” is used. The implicit
knowledge on drug-likeness is inherent in the databases of known drugs and
can be extracted by comparison with databases of nondrugs [5, 65, 175].

Implicit information on drugs is contained in the MDDR, WDI and CMC
databases (see Section 1.3). Within these databases, not all entries are existing
drugs, but the majority of entries were designed by medicinal chemists with
the intention of developing a drug. In contrast, databases like the ACD
or SPRESI of general organic compounds are supposed to contain very few
drugs. A statistical classification technique can be used to extract the knowl-
edge from the databases to decide whether a given compound is a drug or
nondrug.

Gillet and Bradshaw [65] used structural features (including number of
hydrogen-bond donors and acceptors, number of rotatable bonds, number
of aromatic rings, molecular weight) and a shape descriptor. Compounds
of the WDI and SPRESI databases were analyzed with a genetic algorithm
to derive a weighting scheme, which calculates the drug-likeness of a given
compound. Ajay and coworkers [5] used MDL keys (see Section 3.2), in
addition. They applied both decision trees and an artificial neural network
(ANN) for classification, trained on the MDDR and ACD databases. Sadowski
and Kubinyi [175] also used a feed-forward neural network. The classification
scheme was trained on atom type descriptors of compounds from the WDI
and ACD databases.

Support vector machines (SVM) can also be applied to the drug/nondrug
classification problem. In a comparison of SVM to neural networks, Byvatov
and coworkers could obtain slightly more accurate classifications on the same



660 18 Lead Identification by Virtual Screening

data as used in Ref. [175]. Overall, the predictive power of the methods
presented so far reaches a typical 80% correctly classified test molecules.
Recently, Müller and coworkers [144] were able to reduce the error rate to
7% in a blind-test using SVMs. This performance was achieved by careful
model selection after comparison of several learning methods. In summary,
the results show that accurate drug-likeness filters can be constructed which
use the knowledge on drug-likeness obtained by medicinal chemists over
decades.

The technique presented can be tailored to specific screening problems.
Thus, it is not the phenomenon of drug-likeness that is assessed, but the
likelihood of a drug belonging to a certain class of compounds. Ajay and
coworkers [4] used neural networks to classify ligands regarding their CNS ac-
tivity while Manallack and coworkers [130] used them to screen for candidates
binding to kinase and G-protein-coupled receptors. More recently, Briem and
Günter [23] presented a SVM method for “kinase-inhibitor likeness”. All
these target-specific drug-likeness classification techniques have a prediction
accuracy of about 80%. Thus, if there is a sufficient number (several hundred)
of compounds of a certain class available as training set, machine learning
techniques can be trained to predict the likeness to be a certain inhibitor with
high accuracy.

2.4 Molecular Diversity

Compound collections, especially those in pharmaceutical companies, contain
many series of analogous compounds. It is desirable to screen for only a
subset of “maximally diverse” compounds, reducing redundant structural
information. This diverse subset is hoped to cover the range of chemical
structures and physical properties to a sufficient extent. Unfortunately, there
is no generally accepted single definition of similarity or dissimilarity for this
purpose [114]. Thus, selecting a set of diverse compounds can be performed
in a number of ways. These differ not only in the method, but also in the
selection criteria used. These techniques have been reviewed on several
occasions [1, 39, 126].

Among the methods for selecting diverse compounds, clustering methods
can be considered as the standard technique. For clustering, descriptors
(see Section 3.1) are calculated for each compound. Then a cluster analysis
algorithm divides a group of compounds into clusters. Compounds within a
cluster are similar and compounds from different clusters are dissimilar. After
clustering of a library, a representative molecule is taken from each cluster
to belong to the diverse compound collection. For clustering of chemical
libraries, typically methods generating disjoint clusters are used in which
each molecule belongs to a single cluster only. Both, hierarchical [9, 211]
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and nonhierarchical [213] methods, have been applied. Evaluations of differ-
ent clustering algorithms demonstrate the better performance of hierarchical
clustering methods for several test cases [12, 24, 46]. Naive implementations
of hierarchical clustering need an initial N · N similarity matrix, and have
space and time complexities of O(N2) and O(N3), respectively. By use of the
minimum variance method (also called Ward’s method) [206] which aims on
minimizing the total variance of a cluster, however, a computationally more
efficient implementation is possible [146], having space and time complex-
ities of O(N) and O(N2), respectively. For large numbers of compounds
(N > 106) hierarchical clustering is not applicable. Instead nonhierarchical
clustering (e.g. K-means clustering [139]) is used. For these algorithms the
time complexity for K generated clusters is O(KN) per iteration for efficient
implementations. For descriptions of clustering algorithms, see also Chapters
24 and 27.

A different approach to select diverse compounds is provided by partition-
ing methods. These use a low-dimensional property space, each property
represented by a continuous number that is categorized into a discrete set of
value ranges, forming a set of cells in property space [37, 125]. Compounds
from a library are then partitioned into these precomputed cells. Two special
kinds of descriptors – BCUT descriptors by Pearlman and Smith [155] and
pharmacophore keys by Davies [38] – can be used for partitioning chemical
property space. BCUT comprises molecular descriptors based on the eigen-
values of a matrix representation of the molecules. These descriptors are
designed specifically to define a low-dimensional property space. For the
description of the properties, axes are chosen that span property space in
such a way that the compounds exhibit maximal variance along the axes and
compounds are evenly distributed in property space [155, 156].

Davies [38] developed ChemDiverse, a program using pharmacophore keys
for the selection of diverse compound sets. The basic idea is to calculate the
pharmacophore key for the first molecule, add the molecule to the diverse
compound selection and store the pharmacophore in a list. Subsequently, for
the next molecule in the library, the pharmacophore keys are calculated. If
this molecule has a pharmacophore key not yet represented in the list, the
molecule is added to the selection.

A completely different attempt to find diverse compounds is by dissimilari-
ty-based compound selection. Among them, maxmin by Lajiness [118] is
most used. The maxmin algorithm first selects a compound randomly and
adds it to the selection. Iteratively, the compound most dissimilar to the
already selected set is identified and added to the selection, until a desired
number of compounds has been found. A stochastic variant, OptiSim, has
been proposed by Clark [32]. The initial random compound is compared
to a set of K other randomly chosen compounds. Here, only compounds
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with a dissimilarity greater than a defined threshold to the already selected
compounds are considered. The most dissimilar compound among the K
compounds is added to the selection. In the next iteration a new set of K
candidates is generated and the process continues.

Taylor [187] proposed a method based on the stepwise elimination of the
most similar molecule from the collection. Initially the similarity matrix
between all molecules is calculated. In a stepwise fashion, the two currently
most similar compounds are identified, as long as there is more than a single
compound left.

While diversity is desired in initial screening runs for identification of hits,
once a lead is found, compounds should be similar to the lead, i.e. the library
should be “focused”. The clustering and partitioning methods can be used
directly for generation of focused libraries by switching the selection criteria
from one of each kind to all of one kind.

3 Ligand-based VS

The methods of ligand-based VS can be divided into two classes. One class of
methods tries to match compounds with identical parts (substructure or phar-
macophore) as the active molecule. For these methods, initially, a number of
active molecules are analyzed for a common substructure or pharmacophore,
which is then used for searching exact matches. The other class tries to find
molecules which are “similar” to a known active molecule. The underlying
assumption is that if a molecule is structurally similar, it has similar properties,
binds in a similar binding mode and exhibits similar activity. This assump-
tion is known as the “similar property principle” [40, 87] or “neighborhood
behavior” [153]. Methods for similarity search are applicable if only a single
active compound is known. In contrast to substructure and pharmacophore
searches, the compounds are not only partitioned with regard to whether they
are matching the query or not. Instead, a complete ranking of compounds
according to their similarity scores is obtained. Similarity, like dissimilarity,
is not clearly defined [114] and there are some remarkable exceptions from
the similar property principle [114, 131]. Nevertheless, similarity search is
the most widely used method in VS and numerous similarity measures have
been developed [181]. Figure 3 illustrates the most common similarity search
techniques, detailed below.

The actual methods for defining molecular similarity in this context are
quite diverse. Often these methods are classified as 1-, 2- or 3-D, depending
on the type of molecular representation used. In this section first we focus on
those methods that use the information of a single reference molecule. Then
techniques that need a set of input molecules are discussed. The latter are also
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Figure 3 Comparison of common ligand-
based screening techniques (see text for
details). (A) Example molecules: flavonoid
molecule (1, test molecule) and a known
binder (CGS-9896, 2, reference molecule)
for the benzodiazepine site of the GABAA
receptor [89]. (B) Bitstring generation and

comparison. (C) Generation and comparison
of feature trees. (D) Comparison by molecular
superimposition using FlexS (center top:
molecular interaction surfaces, center bottom:
molecular volume represented by Gaussian
functions. (E) Comparison of both molecules
to a pharmacophore model (center).
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often used for the selection of compounds from hitlists. These techniques are
described in Section 4.

3.1 Descriptor-based Similarity Measures

Similarity search methods have been used for a long time. The field started
with counting the numbers of substructures common to a pair of molecules
[27,212]. This figure provides an initial effective way of quantifying similarity
between molecules with very low computational cost. Since then, it has
become a standard retrieval technique for chemical databases.

Methods for calculating quantitative measures for the similarity between a
reference molecule and a set of molecules have been studied in detail (see
Ref. [211] and references therein). Common to all these techniques is the
requirement to provide a set of attributes of the molecules being compared
and a similarity coefficient, to provide a quantitative numerical measure for
similarity between the molecules. The individual importance of different
attributes (e.g. log P, molecular mass, presence of functional groups, etc.) has
to be accounted for by definition of a weighting scheme.

Many different similarity coefficients have been proposed in the literature.
Some are measures of dissimilarity, while others measure similarity directly.
In this chapter, we focus on the most widely used similarity and distance
coefficients only, more details can be found in another review [8]. One of the
most frequently used distance measures is the Euclidean distance DEuclidean

A,B
between two molecules A and B described by properties x1...xn. For continu-
ous property variables, the distance is defined by:

DEuclidean
A,B =

√
n

∑
i=1

(
xiA − xiB

)2. (1)

The most often used similarity measure is the Tanimoto coefficient STanimoto
A,B .

This coefficient can be interpreted as the fraction of the number of features
present in both molecules divided by the number of features present in at
least one of the compounds. For continuous variables it is defined by:

STanimoto
A,B =

∑n
i=1 xiA xiB

∑n
i=1 x2

iA
+ ∑n

i=1 x2
iB
−∑n

i=1 xiA xiB

. (2)

Willett and coworkers [212] assessed the performance of several distance
and similarity coefficients for predicting a measured activity value. The Tani-
moto coefficient performed best and, since then, it has become the “standard”
coefficient for chemical similarity comparison. Furthermore, this coefficient
was shown to be the most appropriate for similarity searches in 2-D databases
[212].
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In order to compare two molecules in a quantitative fashion, numerical val-
ues of attributes of the molecules are needed. The term “molecular descriptor”
subsummarizes all numerical representations of chemical information about
molecules obtained by a defined mathematical procedure. As example, the
molecular descriptor “molecular weight” (MW) is defined exactly as the sum
of all atomic weights of a molecule:

MW =
natoms

∑
i=1

mi. (3)

The number of different chemical descriptors which have been proposed
for the field of quantitative structure–activity relationships (QSARs) and VS is
large (several thousands are described in detail in the handbook by Todeschini
and Consonni [189]) and an extensive discussion is out of the scope of this
chapter. However, some descriptors have become very important in VS.
Among them, log P, MW and molar refractivity are typically used in the
preprocessing of libraries (see Section 2.2). BCUT descriptors are useful in
diversity analysis (see Section 2.4). A second important class of descriptors are
bit strings, used in molecular similarity search, as detailed in the next section.

3.2 Bit String Descriptors

For VS the most popular descriptors are based on binary vectors (also called
bit strings). The idea of using binary vector representations has its origin in
chemical database systems. Bit strings are used in substructure queries to
efficiently discard large fractions of the database, before subsequently a much
slower subgraph isomorphism algorithm is used. The length of the bit strings
varies from roughly 100 bits [218–220] to several million bits [136], depending
on the type of information stored. The two most widely used approaches are
substructure keys and hashed fingerprints.

Substructure keys [MDL keys available from Elsevier MDL (http://www.
mdli.com) and BCI structure fingerprints available from Barnard Chemical In-
formation Ltd. (http://www.bci.gb.com)] represent a description of the sub-
structures present in a molecule (Figure 3B). Within the binary vector, each of
the positions is 1, if the corresponding substructure is present in the molecule,
0 otherwise. All substructures for the bit string are predefined in a fragment
dictionary. Entries can encode the presence of certain atoms (e.g. there is at
least one N present in the molecule) or common functional groups (e.g. ester
function). Furthermore, electronic (e.g. O with double-bond) and structural
features (e.g. six-membered ring) are described by bits.

In hashed fingerprints [Daylight Chemical Information Systems (http://
www.daylight.com)], substructure information is encoded by an algorithm.
All possible paths of atoms and bonds through the 2-D formula of the
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molecule, up to a certain certain path length are generated by systematic
search, e.g. for a path length of 3 the path C=C–N–C. These patterns are then
converted to integer numbers and hashed. The hash code is generated using
these numbers as seeds for a pseudo-random number generator, resulting in
the fingerprint of this path. The advantage of hashed fingerprints is their
applicability to any type of structure without the need of a precomputed
fragment dictionary. A disadvantage is the possibility of the same bit string
being calculated from different atom paths which may result in false positives,
since these hash conflicts are not solved. Unity available from Tripos (http://
www.tripos.com) uses a combined approach of substructure keys and hashed
fingerprints.

For the use with binary variables, the two similarity coefficients from above
can be reformulated. If a denotes the number of bits set (to 1) in molecule A,
b for molecule B and c the number of bits set in both molecules, the Euclidean
distance becomes:

DEuclidean
A,B =

√
a + b− 2c , (4)

and the Tanimoto coefficient is given by:

STanimoto
A,B =

c
a + b− c

. (5)

The substantial advantage of linear descriptions for chemical structures
is their speed. The counting of numbers of bits set (a, b, c) can be done
computationally very fast, resulting in several hundred thousand molecule
comparisons per minute. This allows for fast comparison of millions of com-
pounds in minutes to hours. A disadvantage of the methods described so far
is that they cannot detect the similarity between two compounds that behave
similar with respect to binding to the target protein, but are structurally quite
different [35]. Thus, the techniques cannot find a scaffold different from the
scaffold of the reference molecule (scaffold-hopping).

3.3 Feature Trees

Feature trees [166] comprise a class of descriptors in between the classical
linear descriptors described in Section 3.1 and molecular superimposition
techniques (Section 3.4). In this technique (Figure 3C), a molecule is described
as a tree that represents its overall topology. Nodes of the tree represent
fragments of the molecule. The nodes are connected by edges if the fragments
are also connected by covalent bonds or sharing of atoms. A set of features
is assigned to each of the nodes, representing physicochemical properties of
the respective fragment. Steric features comprise the number of atoms in the
fragment and the approximated van der Waals volume. Chemical features
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include the interaction profile of the fragment, i.e. whether it acts as hydrogen
donor or acceptor, is an aromatic ring, and also represent the hydrophobicity
of the fragment.

Similarity between molecules is calculated by matching the two correspond-
ing trees, while preserving their topology. A similarity score quantifies the
quality of the fit. The advantage of feature trees provides a more accurate
description of chemical properties than by linear descriptors. However, the
tree-matching procedure is slower, due to the higher computational complex-
ity of the tree comparison. Typically, thousands of molecules can be compared
per minute.

3.4 Molecular Superimposition Approaches

Molecular superimposition techniques structurally align a compound to a
reference ligand in 3-D space. During the alignment, matching parts of both
molecules are placed on top of each other. The large variety of algorithms
for molecular superimposition has been reviewed by Lemmen and cowork-
ers [123]. The application of superposition techniques for VS has also been
reported [121].

In general, the molecular superimposition can be achieved in two ways.
Either a field-based approach is used, in which properties of the molecules
are projected onto a common surface or into three-space. The other method
aligns pairs of atoms directly. Early approaches achieved this goal by rigid-
body superimposition. Newer programs can handle one or both molecules
as flexible on the fly. Nevertheless, the rigid-body techniques are much
faster and are thus often preferred. An intermediate technique is to address
molecular flexibility by considering a set of alternative conformations of the
molecule.

A rigid-body superimposition program reads a reference ligand and a test
ligand, then performs an optimization of the position and orientation of the
test ligand in space. Early attempts using combinatorial approaches to enu-
merate efficiently possible matches (correspondences) of chemical features
of the two molecules [91, 133] are too computationally intensive. With the
program SEAL (Steric and Electrostatic ALignment) [92] and later enhance-
ments [98], for the first time Gaussian functions were used for describing the
physicochemical properties of the molecules and a new algorithm was applied
to tackle the rigid superpositioning problem efficiently. The description of
chemical features by Gaussian functions has several advantages [68]. First,
a Fourier transform of a Gaussian is again a Gaussian. Second, there is no
boundary which helps in the initial steps of alignment. Furthermore, deriva-
tives can be calculated easily (even symbolically) and, finally, the overlap
between two Gaussians increases when their maxima approach each other.
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An improvement of the search algorithm was proposed by Lemmen and
coworkers [120] in their program RigFit. The optimization is split into two
independent optimizations for rotation and translation. Thus, one 6-D search
is separated into a sequence of two 3-D searches.

Current state of the art are programs for flexible superpositioning of two
molecules. Sheridan and coworkers [180] use distance geometry for superpo-
sition, while Itai and coworkers [86] proposed a technique, in which all possi-
ble matchings between pharmacophoric points are evaluated in a combinato-
rial matching. For both techniques, the definition of the pharmacophore is still
needed as prerequisite. The combined Monte Carlo and energy-minimization-
based technique by McMartin and Bohacek [137] also needs manual interven-
tion. The program GASP [88] was the first method available that was able
to handle the structural flexibility of both molecules involved and was not
constrained by predefined relationships between functional groups assumed
to be similar. GASP is based on a genetic algorithm which mimics the process
of evolution. The conformations of each molecule and the correspondences
between intramolecular features are coded via so-called chromosomes. In
order to modify the superimposition, the chromosomes are subjected to the
operations of mutation (local changes) and crossover (splitting and merging
of two chromosomes). A population of chromosomes is repeatedly subjected
to these modifications and then evaluated with a fitness function. Only the
fittest chromosomes survive to the next round. The fitness function used in
the selection process of each superposition is calculated by volume overlay,
intermolecular matching energy and the conformational energy.

A different technique for superposition, FlexS, uses incremental construc-
tion [122]. Here the reference molecule is handled as rigid and the test
molecule is flexible. The test molecule is partitioned into fragments which
are connected by rotatable bonds. A number of relatively rigid fragments
is selected and aligned to the reference molecule. Then the next fragment
is attached to the previously placed fragment in all allowed torsion angles.
The list of admissible torsion angles is derived by statistical analysis [100]
of the Cambridge Structural Database (CSD) [6]. All generated placements
are scored by paired intermolecular interactions and overlap, the latter being
described by Gaussian functions (see Figure 3D). The best partial solutions
are subjected to the next incremental construction cycle until the complete test
molecule is build up. The mean computing time is in the order of 30 s per
superpositioning for typical test cases.

Krämer and coworkers [107] developed fFLASH, using a fragmentation-
reassembly approach. The tool is based on earlier work on FLASHFLOOD
[164]. fFLASH describes the query molecule as rigid and the test molecules are
handled flexibly. All test molecules are partitioned into fragments by severing
rotatable bonds, expanded to a set of conformations, and all conformers
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stored in a database. Pairs of adjacent fragments are joined and a set of
conformations of the fragment pair is generated by varying the dihedral angle
at the connecting bond. Molecular interaction features are then calculated and
stored in a lookup table. By use of a clique detection algorithm, patterns of
features of fragment pairs of the test molecule are geometrically matched on
the reference molecule. These matches are subsequently joined, based on the
pairwise compatibility of two matches, by a graph algorithm.

3.5 Pharmacophore Searches

A pharmacophore is usually defined as a set of molecular features and their
rigid spatial arrangement, which is necessary for ligand–receptor binding [73].
A pharmacophore is typically composed by three to four pharmacophoric
centers and their respective distances (Figure 3E). Pharmacophores are ap-
plied in 3-D database searches after they have been determined from a set
of active ligands. In VS, pharmacophores can also be used as constraints
in structure-based screening. Pharmacophores can also act as 3-D descrip-
tors. Often pharmacophores are encoded in the form of bitstrings, known as
pharmacophore fingerprints, which are directly applicable for screening (see
Section 3.2).

In ligand-based VS, the true pharmacophore is unknown and must be
determined first. Pharmacophore perception is closely related to molecu-
lar superpositioning, e.g. the program GASP [88] can perform both tasks.
Nevertheless, since the programs of both groups are tailored to their specific
research areas they are described separately. For automatic determination
of a pharmacophore hypothesis a set of active ligands as a training set is
needed. The pharmacophore perception is then performed in a number of
steps: First, 3-D structures of the molecules must be generated with one of
the methods described in Section 2.1. Then the molecules are analyzed in
order to identify atoms that can interact with a protein in a characteristic
way. Commonly, these pharmacophoric features are acidic and basic groups,
hydrogen acceptor and donor sites, aromatic, and hydrophobic groups. In the
next step, conformations of the molecules are passed to the pharmacophore
perception algorithm. Here, conformations of the molecules are compared
in order to identify pharmacophoric features common to all molecules. A
number of programs have been developed for pharmacophore identification
[73], among them the commercially available tools Catalyst/HipHop [33],
DISCO [132] and GASP [88]. For a recent review and a comparison of these
three, see Ref. [152]. These programs differ with respect to how the con-
formations are handled and how the molecules are aligned and compared.
GASP uses a genetic algorithm (see Section 3.4) to describe the molecules
as flexible. DISCO uses a set of low-energy conformations which are kept
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rigid throughout the calculation and a clique-detection algorithm is used for
rigid-body alignment. Catalyst/HipHop also uses a set of rigid low-energy
conformations of the molecules, but then performs a pruned exhaustive search
to identify configurations common to all molecules. Once the pharmacophore
is identified, it can be used to screen a 3-D database.

An extension of the ligand-based pharmacophores described so far is the
use of structural information of the receptor for pharmacophore generation.
Two recent examples of these structure-based pharmacophores are the works
of Wolber and Langer [214] and Griffith and coworkers [72].

3.6 QSARs

The structure and the physicochemical properties of a molecule can be used
to model its biological activity. The mathematical description of this rela-
tionship in a quantitative way is the aim of QSAR techniques. In order to
model structure–activity relationships, first, for each compound in the library
a number of molecular descriptors have to be calculated. In a second step, a
quantitative relationship between these descriptors and the activity is derived.
This section covers only some selected techniques from the field of QSAR,
which has grown in terms of using more and more sophisticated descriptors,
and also more sophisticated statistical tools for finding correlations between
structure and activity.

The classical technique is Hansch analysis which correlates activity with
physicochemical properties by use of regression analysis. Hansch and cowork-
ers [77] described the dependency of the concentration C needed for a certain
biological response in terms of the hydrophobicity (expressed by the log P
value) and electronic effects (using the Hammett constant σ) by the equation:

log
1
C

= k1 · log P + k2 · σ + k3. (6)

Here, the ki are the coefficients to be fitted by the regression. Using this
type of QSAR analysis, today, several thousand successful applications have
been reported and a database of QSAR equations is electronically available
(http://www.cqsar.com/medchem/chem/qsar-db). The descriptors applied
include steric, electronic and hydrophobic effects as well as indicator vari-
ables. These values are obtained either by computer prediction techniques
or experimentally. Due to the large number of descriptors available, the
dependency between them has to be studied in order to find the relevant
ones. This "feature selection" is usually done based on principal components
analysis (PCA) [61] or its extension partial least squares analysis (PLS) [82].

An extension of the classic approach was the introduction of 3-D infor-
mation of the ligands to reflect the geometry of their binding to receptors,
including their chirality. The first of this 3-D-QSAR techniques was the Com-
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parative Molecular Field Analysis (CoMFA) [34] which turned out to be very
successful (many examples can be found in Refs. [111–113]). In CoMFA a
set of molecules is selected which have an identical binding mode, i.e., they
bind to the same site in the same relative geometry. To derive the CoMFA
model, for all training set molecules, first, partial charges are assigned and
low-energy conformations are generated. Then the molecules are aligned by
use of a pharmacophore hypothesis and positioned inside a 3-D grid. For
each grid point and for each molecule separately, “field” values (interaction
energies) are calculated for charged and uncharged probe atoms. Finally, PLS
analysis is used to correlate the fields with biological activity data. The result
of this analysis is typically represented as a set of contour maps showing
favorable and unfavorable regions for certain substituents. Several techniques
have been proposed to obtain better fields. By calculating fields with GRID
[71] or HINT [94] more different probes can be used which allows model-
ing of a wider range of interactions. By replacing CoMFA potentials with
SEAL (see Section 3.4) similarity fields (Comparative Molecular Similarity
Indices Analysis, CoMSIA [99]) the results become more stable. A frequent
problem for PLS can be the high number of noise variables not contributing
to the description. With GOLPE (Generating Optimal Linear PLS Estima-
tions) [10] the meaningful variables can be selected and the predictive ability
of the model is checked by cross-validation. A cause of error for CoMFA,
CoMSIA, GRID/GOLPE and related techniques is the mutual alignment of
all molecules. There are methods available that retain the 3-D information,
but are independent of the alignment. Examples for these techniques are
WHIM (Weighted Holistic Invariant Molecular indices) [188], which uses the
moments of atomic properties as descriptors, and the related technique MS-
WHIM [21], which uses molecular surface points instead of the atoms as
descriptors.

In the classical 3-D-QSAR methods described above, only information on
the geometry of the ligands is used. In 4-D techniques multiple confor-
mations or orientations of the ligands are considered simultaneously. It is
even possible to include information on the protein structure to which the
ligands are bound in the QSAR model. The program Quasar by Vedani and
coworkers [195] is a method which constructs a receptor-surface model and
bridges between 3-D-QSAR and receptor modeling, taking induced fit into
account. Currently, multidimensional QSAR studies are extended up to six
dimensions to allow for the simultaneous consideration of different solvation
models [194].



672 18 Lead Identification by Virtual Screening

3.7 Other Techniques

The interaction of a ligand with a target molecule can be described in terms of
the respective molecular surfaces, that have to be complementary with respect
to both physicochemical properties and shape. Finding optimal surface com-
plementarity is the main aim of docking procedures (see Chapter 16). Thus,
the comparison of different ligands in terms of their molecular surfaces and
the properties mapped to them is a valuable similarity criterion.

Among the many techniques of molecular surface comparison, we focus on
the recent graph-based method SURFCOMP of Hofbauer and coworkers [79]
and the gnomonic projection method [17] as examples. The comparison of
two surfaces, each described by a point set in three-space is not an easy task.
The problem can only be solved efficiently if the surface model is simplified.
In SUFRCOMP, first a representation of the surface via overlapping circular
patches is calculated. Then the centers of these patches, representing critical
points, are reduced in number using a number of filters and matched via
maximal common subgraph comparison.

Blaney and coworkers [17] use gnomonic projection of the molecular surface
properties onto equispaced points on the surface of an enclosing sphere. To
do so, the points in space at which vectors from the sphere’s surface to
the “center” of the molecule cut the molecular surface are calculated. The
physicochemical properties on the cutpoint farthest from the “center” are then
projected onto the sphere. The comparison of the projections of two molecules
is then performed after mapping of the property values on two dimensions.

A different type of measuring similarity between molecules is the use of
“virtual affinity fingerprints” [124, 208]. In the Flexsim-X method by Lessel
and Briem [124] ligands are flexibly docked into a carefully selected reference
set of protein-binding sites using the FlexX docking program [165]. The
highest-ranking solution of each docking run is selected. The virtual affinity
fingerprint of a ligand is then defined as the vector of docking scores obtained
for the different binding pockets. Molecules are compared by the Euclidean
distance between their affinity fingerprints. The technique was shown to
detect molecules with similar biological affinity without prior knowledge of
the target protein structure. An extension of this work to calculate similarities
of functional groups is Flexsim-R [208].

4 Postprocessing of Hitlists

HTS or VS runs of a compound collection with up to millions of entries results
in a huge volume of data. The obtained list of hits is rather crude and needs
substantial clean-up. There are a number of computational methods for the
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postprocessing and analysis of screening data. First, the output is simplified
by removing data points where the screening failed (e.g. no docking solution,
failure during experiment). Here, also data not needed in postprocessing (e.g.
intermediate results, log files) are discarded. Second, the most promising hits
have to be selected mostly on the basis of their rank in the hitlists or by criteria
based on the scores, in order to reduce the data set to manageable size. To
identify leads among the screening data is a challenging problem, addressed
by a number of different computational methods. The often concealed infor-
mation can be extracted by data-mining procedures (Section 4.1). A general
problem of screening data consists of false-positive results. Especially for
results of structure-based VS runs, some techniques have been developed to
identify and discard false positives (Section 4.2). Whenever a combination
of different techniques is used in screening, each technique results in a dif-
ferent hitlist. Here, consensus techniques help in picking hits (Section 4.3).
Nevertheless, the most important method is still the visual inspection of the
results by an experienced medicinal chemist, assisted by visualization tools
(Section 4.4).

4.1 Data Mining

A common approach for mining hitlists is the search for families with similar
chemical structure among the active compounds. Here active compounds
(actives) are those with high affinity, high scores or high similarity after screen-
ing. Chemical families can be identified by grouping the compounds with
similar chemical structure. A chemical family is characterized by a com-
mon scaffold. Substructure search among the results can be applied to iden-
tify these families. Roberts and coworkers developed LeadScope [171], a
structural classification technique. The method classifies compounds into
a collection of predefined chemical families. The predefined families are
arranged hierarchically, starting with a major structural class on top, which
is subdivided further. For example, a 3-methoxy-pyridine derivative is found
in the pyridine → pyridine, 3-R → pyridine, 3-alkoxy class of the hierarchy.
For each structural class, activity data and frequency in the data set is depicted
in an intuitive bar plot.

As an alternative, techniques for similarity search (Section 3) can be applied
to identify families. In this case, the families are defined by a high degree of
similarity. For grouping the families, clustering techniques are often used (as
described in Section 2.4). Due to the importance of hitlist mining, a number of
dedicated clustering techniques have been developed [49, 185].

Another approach to data mining using classification techniques is recur-
sive partitioning (RP) [173,221]. RP is a nonparametric classification technique
(as opposed to the many parameters in QSAR models), in which the whole set
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of compounds is recursively classified into disjoint subsets using statistically
determined rules. In this manner, a tree is constructed, in which some terminal
nodes (leaves) are enriched with actives, while other leaves contain mostly
inactive molecules. If the path from a leaf with actives is traced back to the
root node, the molecular descriptors used for partitioning at the inner nodes
can be used to characterize or to search for actives.

Nicolaou and coworkers developed a classification method using a phylo-
genetic-like tree (PGLT) [147]. This tree is constructed using a combination of
techniques. Each node has bins for active and inactive compounds. First, all
active molecules are stored in the active bin of the tree’s root node. Then,
in an iterative fashion, a clustering of the molecules of the current leaf is
performed, using a criterion based on chemical descriptors. In a next step,
cluster level selection is performed to select a set of “natural” clusters. Each
of the “natural” clusters is then subjected to a maximum common subgraph
(MCS) search. Common substructures are evaluated by a set of rules to
evaluate each and to discard all those not providing new knowledge. The
rules, for example, discard substructures already found in other nodes, or
those identical or subsets of the parent node. Then, for each of the remaining
substructures, all molecules from the parent node containing the respective
MCS are added to a newly created tree node. Finally, a node is selected at
which the iteration proceeds. After the actives have been used to construct the
tree, a postprocessing procedure is performed in order to prune the tree and
reduce it to contain only nodes with structurally homogeneous families. This
is done by adding inactive compounds to the inactive bins of the PGLT using
the substructure rules derived with the actives. For each node, the similarity
between actives and inactives is calculated and nodes with dissimilarities are
eliminated. The technique described has been implemented in the program
ClassPharmer [Bioreason (http://www.bioreason.com)].

4.2 Analysis of the Protein–Ligand Interface

A particularly interesting type of strategy that can be applied to results of
structure-based screening is the analysis of structural properties of the bound
protein–ligand complex. Although this method also belongs to docking tech-
niques (see Chapter 16), we describe it here as a representative example for
an important class of postprocessing techniques. Current scoring functions
favor the formation of many protein–ligand hydrogen bonds and salt bridges,
even if the structures exhibit only limited steric complementarity overall due
to holes along the interface or larger parts of the ligand being exposed to
the solvent. Stahl and Böhm [184] propose a postprocessing procedure of
docking results. For a set of generated docking poses, first, all poses with close
contacts between polar atoms that do not take part in hydrogen bonds are
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discarded. Then the fraction of ligand volume located inside the cavity is cal-
culated. Poses with less than average buried volume are discarded. The size
of lipophilic cavities at the protein–ligand interface also acts as filter criterion:
poses exceeding the minimum value by more than 25 Å are discarded. Finally,
the solvent-accessible surface of nonpolar parts of the ligand is calculated and
used for rescoring.

Giordanetto and coworkers [67] also propose the use of solvent-accessible
surface areas. These authors perform a classification of all receptor and
ligand atoms into classes, depending on the physicochemical properties of
hydrophilicity, charge and hybridization. Then descriptors are calculated that
describe the energetic cost of burying the atoms. In addition, conformational
entropy differences between holo and apo form of the protein are calculated.
Here, an amino acid-based conformational entropy contribution of the protein
after Murphy and Freire [145] to the binding affinity is used. By use of these
techniques, affinity predictions could be improved on the cost of less accurate
binding mode prediction.

Results from docking studies can also be analyzed by structural interaction
fingerprints as proposed by Deng and coworkers [41]. These interaction
fingerprints are a translation of the structural information of a protein–ligand
complex into a binary vector. The technique can be applied for identification
and clustering of similar docking poses.

4.3 Consensus Techniques

The combination of several different computational methods is another ap-
proach to reducing the number of false positives and prioritizing molecules
for further study. Some of these methods are only applicable to structure-
based techniques, while some use mixtures of different computational meth-
ods, including ligand-based techniques. The prototype of the structure-based
methods in this field is consensus scoring [28]. Here, one docking program
is used to generate a docking pose. Then the highest ranking structure is re-
evaluated with different scoring functions. If the compound is not among the
top-scoring compounds for all scoring functions applied it is discarded. In a
computer experiment by Wang and Wang [205] it has been shown that hit rates
improve significantly after consensus scoring if three or four scoring functions
are used.

Methods using not only different scoring functions, but different docking
techniques go a step further [154]. In the ConsDock approach, docking is
performed with three different docking programs and a set of 30 top-ranking
poses is stored obtained with each of them. Then a hierarchical clustering
is performed on each set and the highest-ranking pose within each cluster is
defined as its “leader”. Consensus pairs are defined, where two of the docking
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programs result in similar leaders. Each of these pairs is then described by its
mean and clustered again into classes. Finally, the mean pose of the clusters is
subjected to re-ranking according to the number of entries in each class.

The use of entirely different computational techniques for investigation of
hitlists has been proposed by some groups. Klon and coworkers [102,103] use
a combination of docking and machine learning. First, docking of a library
is performed with three different docking programs. Then a naive Bayesian
classifier is trained on the docking scores of the top-scoring compounds,
which are labeled as “good”, if their score is better than a threshold. The
compounds themselves are described by an extended-connectivity finger-
print as structural descriptor [Pipeline Pilot program available from SciTegic
(http://www.scitegic.com)]. Application of the Bayesian classifier for re-
ranking the hitlists improved the enrichment in most of the test cases, without
any a priori knowledge of the activity of the compounds.

Especially in docking, the high-dimensional search space can be explored a
bit further to re-rank hitlists. On the one hand, a multiconformer description
of the protein can be used [199]. On the other hand, not only the top-ranking
pose, but several poses can be used for calculating the score [104].

Ginn and coworkers [66] proposed the use of data fusion for combining
molecular similarity measures. In this procedure, a similarity search is per-
formed with at least two different similarity measures i. The rank positions ri
of each individual structure in the hit lists are then combined to a new score.
With the fusion rule ∑n

i=1 ri the performance is at least as good as the best
individual measure.

4.4 Visualization

For the simultaneous display of screening-result data in several dimen-
sions, a number of techniques are available [3, 63, 116]. The techniques
have been implemented in several tools for display of screening data using
highly sophisticated graphical data representations for visual data mining
[DecisionSite (Spotfire; http://www.spotfire.com), ClassPharmer (Biorea-
son; http://www.bioreason.com), LeadNavigator (LION Bioscience; http://
www.lionbioscience.com)]. Results are plotted in multiple dimensions, com-
bining data from different databases. The data points in the plots are linked
to the corresponding chemical structures and vice versa. This enables the
medicinal chemists to identify patterns within the results. A technique
for visualization of the multidimensional screening data is the nonlinear
mapping of the data to a lower-dimensional space with just two or three
dimensions. The usual technique for nonlinear mapping is multidimensional
scaling [110]. This technique aims at keeping points close together in low-
dimensional space if they are also close together in the original data-space.
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With recent enhancements [2, 216], multidimensional scaling is applicable to
large-screening data sets. Despite all the efforts in visualization techniques,
it has been pointed out that visual data-mining tools are not applicable to
extremely large and complex data sets [147]. Furthermore, due to their
“interactive” approach, these tools cannot readily be integrated into fully
automated screening procedures.

5 Critical Evaluation of Structure-based VS

Nowadays a large collection of docking/scoring tools is available for high-
throughput virtual screening. Out of the flow of information generated over
the last 5 years, a computational chemist entering into a VS project will have to
make a few decisions about the screening strategy and the tools which are the
most suited to their project. Section 5.1 is aimed at pinpointing some good
practices in order to avoid classical failures. Section 5.2 will review some
recent success stories which could inspire the reader for future work.

5.1 Influence of Parameter Settings

Several input parameters may affect the effectiveness of a VS run. Depending
on the computational tool that has been chosen, the number of parameters
may vary from around a dozen to over 100. It is therefore crucial to select
the best possible input settings, which unfortunately are not always known in
advance. However, a few robust guides based on current knowledge can be
derived.

5.1.1 Which Library?

As reported above (Section 1.3), several commercially available compound
collections are available. There is usually no reason to favor one particular
compound collection over another. As most of them are easily accessible
[11, 182], the best possible approach for an academic user is to start from a
unified and filtered data set [85]. Of course, corporate and focussed/targeted
libraries may also be used. They are particularly interesting for screening
targets belonging to heavily investigated families (e.g. kinases, GPCRs) and
containing a high percentage of true positives.

Whatever the database selected, it is generally advisable to downsize the
number of molecules which will be submitted to 3-D docking. Apart from
some important filters [chemical reactivity (see Section 2.1), drug-likeness
(see Section 2.3), etc.], it is important to remove molecules which do not fulfill
simple 2- or/and 3-D pharmacophoric features. This simple strategy aids
in dramatically reducing the number of potentially interesting compounds
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without losing many true positives [51, 129]. If one is simply interested
in setting-up optimal screening conditions (e.g. discriminating a few true
actives from randomly chosen decoys), it remains important to carefully set-
up the test data set in order to avoid artificial enrichments in true actives by
making sure that chemical spaces covered by actives and inactives/random
compounds largely overlap [197].

5.1.2 Which Ligand Conformation(s)?

Most docking programs only require a single low-energy conformation for
each ligand of the data set, provided by automated 3-D converting utilities
[157, 176]. For docking tools requiring a multi conformer ligand library, it is
important to start from biologically relevant conformations. Several studies
agree to conclude that the most reliable conformations are not necessarily
produced by the most accurate and CPU-demanding methods. A safe start
is to use fast conformer generators like Omega (http://www.eyesopen.com/
products/applications/omega.html) or Catalyst [33], which accurately sam-
ple the biologically relevant conformational space for a wide array of chemo-
types [19, 70, 93, 96].

5.1.3 Which Protein Coordinates?

When screening a high-resolution X-ray structure, several input coordinates
might be available describing either ligand-bound (holo) or a ligand-free
(apo) structures. A systematic survey over nine enzymes unambiguously
demonstrates that the holo form, if it exists, should be the first choice [19].
Furthermore, X-ray structures appear to clearly outperform the corresponding
homology models in discriminating known inhibitors from random decoys
[134, 150]. However, if the sequence identity (on binding site-lining residues)
to the X-ray template is higher than 50%, comparable enrichment rates in
true inhibitors can be found [150]. This encouraging result suggests that
genomic-scale VS might be feasible, provided that an accurate description of
the binding sites can be drawn from existing X-ray templates.

5.1.4 Which Docking Tool?

Starting from the pioneering work of Kuntz and coworkers [115], numerous
docking programs based on very different physicochemical approximations
have been reported (see Chapter 16). All docking tools combine a dock-
ing engine with a fast scoring function and the recent literature is full of
benchmarks addressing the accuracy of one or few docking/scoring scenarios.
The three following issues are usually investigated: (i) the capability of a
docking algorithm to reproduce the X-ray pose of selected small-molecular-
weight ligands [93, 105, 159], (ii) the propensity of fast scoring functions to



5 Critical Evaluation of Structure-based VS 679

recognize near-native poses among a set of decoys [56, 203] and to predict
absolute binding free energies [56], and (iii) the discrimination of known
binders from randomly chosen molecules in VS experiments [36, 93, 159].
However, analyzing all these data for a comparative analysis of available
docking tools is very difficult. First, many tools are not easily available.
Second, independent studies assessing the relative performance of docking al-
gorithms/scoring functions are still rare and focus on the use of few methods.
Third, the quality judgment may vary depending on the examined properties
(quality of the top-ranked pose, quality of all plausible poses, binding free
energy prediction, virtual screening utility). Fourth, most docking programs
assume approximation levels that can vary considerably [74] and lead, for
example, to very inhomogeneous docking paces ranging from few seconds to
few hours. Last, many docking programs have been calibrated and validated
on small protein–ligand data sets. Hence, detailed benchmarks (above 100
Protein Data Bank–ligand complexes) are only reported for few docking tools
[28, 43, 108, 149, 151, 196]. The most recent validation studies on different data
sets agree to conclude that the accuracy of a docking tool is largely target
dependent [74, 96, 159, 203] and should be examined on a case-by-case basis.
Glide and Gold seem to be the most robust programs for their propensity to
generate near-native poses in around 75–80% [96, 159], provided that several
solutions are stored. A major problem is that the scoring function does not
always predict the correct solution as the most probable one (only in around
40–50 % of the cases). This considerably complicates the analysis of docking
results. Numerous reasons explain this limited accuracy [93]. Some are easy
to correct (e.g. incorrect atom type for either the ligand or the protein), some
are more difficult (e.g. accuracy of the protein 3-D structure, flexibility of
the ligand, accuracy of the scoring function) and some are really tricky to
overcome (protein flexibility, role of bound water). The accuracy of a docking
program to predict the protein-bound ligand pose is reflected in its VS efficacy,
i.e. the ability to discriminate true binders from inactives and/or randomly
chosen compounds [36,93,159]. However, predicting which docking program
will be the most suited for a research project is still problematic. If known
ligands are available, a pragmatic approach is to try a systematic combination
of docking/scoring parameters and select for productive screening the one
that best segregates true actives from true inactives. If no or very few ligands
are available, some guides may be followed to choose the tool that seems
the most appropriate regarding the physicochemical properties of the protein
cavity [93].

5.1.5 Which Scoring Function?

The scoring function still remains the Achilles’ heel of structure-based VS.
Several recent and independent studies conclude that many fast scoring func-
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tions can indeed distinguish near-native poses (RMSD < 2.0 Å from the
X-ray pose) from decoys for around 70% of high-resolution protein–ligand
X-ray structures [56, 203]. However, when docking is applied to a large
database, the corresponding scoring function should be robust enough to rank
putative hits by increasing binding free energy values [97]. Unfortunately,
an accurate prediction of absolute binding free energies is still impossible
whatever the method [36, 56, 204]. Predicting binding free energy changes
is possible at the condition that a customized scoring function is applied to
a series of congeneric ligands. However, for a database containing a large
diversity of compounds, and for targets which have not been traditionally
used for calibrating scoring functions, the obtained accuracy is usually limited
(around 7 kJ mol−1 or 1.5 pK units) [75]. From this observation, two sources of
improvement are possible: (i) design more accurate scoring functions [204] or
(ii) design smarter strategies to postprocess docking outputs (see next section).
Many computational chemists actually favor the second option. The accuracy
of scoring functions has leveled off several years ago, for the simple reason
that some unknown parameters (e.g. role of bound water, protein flexibility)
remain extremely difficult to predict whatever the physical principles used to
derive a scoring function.

5.1.6 Which Postprocessing?

Acknowledging that scoring functions are far from being perfect, the easiest
way to retrieve true positives from a VS is to first detect false positives.
Many strategies are possible. The simplest consists in rescoring poses with
additional scoring functions; hoping that a consensus scoring [15, 28] will
better identify true hits (top-ranked by several scoring functions) from decoys
(see Section 4.3). Comparing hit rates between simple and consensus scoring
should, however, be realized on hit lists of comparative size [217]. More-
over, customizing a consensus scoring scheme requires first the knowledge
of several and chemically diverse true hits. Such data are not always avail-
able. Therefore, for less well-investigated targets, other strategies have to be
designed. Topological filters can be used to filter out poses exhibiting steric or
electrostatic mismatches between the ligand and its target [184]. Poses can also
be minimized by a more accurate force field [90, 186], hierarchically clustered
[154] or analyzed by Bayesian statistics [103]. In any case, the postprocessing
treatment should be simple enough to be reproducible for a wide array of
targets. The influence of different postprocessing strategies on the hit rate and
the percentage of true hits recovered is shown in Figure 4 (the top-right corner
with a hit rate of 100% and all true hits recovered would be the optimum).

An alternative strategy for postprocessing is to look at enrichment among
true hits in pre-computed substructures/scaffolds [147]. This presents the
advantage of focusing more on scaffolds and the distribution of docking
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Figure 4 Influence of postprocessing
strategies in retrieving true vasopressin
V1a receptor antagonists by structure-
based screening of a database of 990
randomly chosen “drug-like” compounds
seeded with 10 true actives [16]. (1) Top
5% ligands as scored by FlexX; (2) top
5% ligands as scored by Gold; (3) hits
common to (1) and (2); (4) ClassPharmer
[Bioreason (http://www.bioreason.com)]

prioritization of scaffolds for which 60%
of the representatives have a FlexXscore
lower than −22 kJ mol−1; (5) ClassPharmer
prioritization of scaffolds for which 60%
of the representatives have a Goldscore
higher than 37.5; (6) ClassPharmer
prioritization of scaffolds for which 60% of
the representatives have a FlexX score lower
than −22 kJ mol−1 and a Goldscore higher
than 37.5.

scores among them, and less on individual molecules. The effect is evident
from Figure 4, where the results of such a postprocessing are closer to the
optimal corner. Therefore, false negatives may be recovered if they share
a scaffold with true positives. Last, but not least, selected hits should be
browsed in 3-D target space for the ultimate selection: no algorithms yet
outperform the brain of an experienced modeler for such a task!

5.2 Recent Success Stories

Only recent reports from the literature (2003–2005) will be reviewed herein.
Most of them still make use of high-resolution X-ray structures. (Sections 5.2.1
–5.2.3). However, encouraging data begin to emerge from homology models
(Section 5.2.5) and thus broaden the application of structure-based screening
methods to a wider array of pharmaceutically-interesting targets.

5.2.1 Some Privileged Targets

Macromolecular targets presenting a well-defined hydrophilic pocket for
which the directionality of intermolecular interactions play a key role in



682 18 Lead Identification by Virtual Screening

ligand recognition are particularly well suited for VS for the simple reason
that most docking tools and scoring functions have been calibrated for such
situations [56]. Thus, it is no surprise that some protein families (e.g. kinases)
are overrepresented in targets for which true inhibitors have been discovered
by database docking (Table 1).

Protein kinases have been heavily investigated by structure-based VS [59,
83, 129, 158, 190, 191] to identify novel inhibitors for three major reasons: (i)
kinases are among the most relevant target families for the pharmaceutical
industry, (ii) a wide array of high-resolution protein–ligand X-ray structures
is available for validation purposes and (iii) a canonical hydrogen-bonding
to the so-called “hinge region” of the kinase is a typical hallmark of ATP-
competitive inhibitors. Two recent studies [129, 191] are representative of the
results which might be expected for kinase inhibitors. Vangrevelinghe and
coworkers reported a knowledge-based VS protocol for identifying casein ki-
nase II (CK2) inhibitors, in which post-docking filters were designed to down-
size the hitlist [191]. Starting from around 400 000 compounds which were
docked using Dock4.01 to the 3-D structure of human CK2, 12 000 molecules
were first retrieved by score. This primary hitlist was then reduced to 1,592
molecules by selecting only hits which were hydrogen-bonded to the “hinge
segment” of the protein and well scored by a consensus scoring function.
Visual check of the remaining hits afforded a hit list of only 12 compounds
out of which three molecules inhibited the enzyme with an IC50 lower than
10 μM.

Pre-docking filters may be useful as well in selecting the most interesting
compounds by similarity to known chemotypes present in kinase inhibitors.
A good illustration of this strategy has recently been reported by Lyne and
coworkers in the discovery of checkpoint kinase-1 inhibitors [129]. A hier-
archical screening protocol involving filters of increasing complexity (simple
molecular descriptors, 3-D pharmacophore search, FlexX-Pharm constrained
docking, knowledge-based consensus scoring) decreases the number of vir-
tual hits from 400 000 to 103, and allowed to identify novel inhibitors in
four chemical series. Interestingly, most true inhibitors were not recovered
among the top-ranked poses, but by rescoring at least the top 50 poses by
a consensus scoring protocol designed from a surrogate kinase (Cdk-2) and
a test data set. Post-docking filtering by similarity to well-defined inter-
molecular interactions may also be a reliable option as it was recently shown
to outperform consensus scoring in identifying protein kinase B inhibitors
[59]. In the above-cited cases, a precise knowledge-based selection of the
most reliable compounds has been achieved thanks to the large information
available for related compounds.

The same remark applies to three recent studies aimed at discovering in-
hibitors of two reductases (dihydrofolate reductase, aldose reductase) [106,
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Table 1 Successful structure-based screening data from the recent literature (2003–2005).

Target Docking Library Size Hit rate[a] Reference

Chk-1 kinase FlexX AstraZeneca 550000 36% @ 68μM [197]
Casein kinase II Dock Novartis 450000 33% @ 10μM [191]
BCR–ABL Dock Chemdiv 200000 13% @ 30μM [158]
p56Lck Dock NA[b] 2000000 17% @100μM [83]
EphB 2 Gold Chemdiv 50452 5% @ 10μM [190]
Protein kinase B FlexX Chembridge 50000 10% @ 20μM [59]
DHFR (Staphylococcus FlexX Roche 9448 21% @ 25μM [215]
aureus)
DHFR Dock ACD[c] NA 33% @ 20μM [167]
Aldose reductase FlexX ACD 260000 55% @ 20μM [106]
XIAP Dock TCM[d] 8000 3% @ 5μM [148]
Stat3β Dock four collections 429000 1% @ 20μM [183]
Ribosomal A-site RiboDock Vernalis 1000000 26% @500μM [58]

collection
IMPDH FlexX Roche 3425 8% @100μM [162]
L-xylose reductase Dock NCI[e] 249071 5% @100μM [26]
PDE4D FlexX combinatorial 320 55% @100nM [109]

library
Thymidine Dock NCI 250000 7% @ 20μM [138]
phosphorylase
t-RNA guanine- FlexX seven collections 827000 55% @ 10μM [22]
transglycosylase
P450 2D6 Gold NCI subset 111 39% @ 10μM [95]
SHBG Glide natural 23836 7% @ 25μM [29]

compounds
TMPKmt FlexX CMC[f] + KEGG [g] 7986 10% @ 20μM [45]
AICAR- AutoDock NCI 1990 51% @ 20μM [127]
transformylase
5-HT1A receptor Dock > 20 suppliers 1600000 21% @ 5μM [13]
NK1 receptor Dock > 20 suppliers 1600000 15% @ 5μM [13]
D2 receptor Dock > 20 suppliers 1600000 17% @ 5μM [13]
CCR3 receptor Dock > 20 suppliers 1600000 12% @ 5μM [13]
5-HT4 receptor Dock > 20 suppliers 1600000 21% @ 5μM [13]
α1a receptor Gold Aventis NA 30% @ 1μM [54]
NK1 receptor FlexX seven collections 827000 14% @ 1μM [53]
D3 receptor LigandFit NCI 250000 40% @ 1μM [192]

[a] Hit rate at a concentration threshold. The hit rate is the ratio of the number of active
compounds to the total number of compounds tested. [b] Not available. [c] Available Chemicals
Directory (http://www.mdli.com/products/experiment/available_chem_dir).
[d] Traditional Chinese Medicine Database (http://www.tcm3d.com). [e] National Cancer
Institute (http://129.43.27.140/ncidb2). [f] Comprehensive Medicinal Chemistry Database
(http://www.mdli.com/products/knowledge/medicinal_chem). [g] KEGG database
(http://www.genome.jp/kegg/ligand.html).

167, 215], extensively studied in the past. Wyss and coworkers [215] docked
a library of 2,4-diaminopyrimidines to the X-ray structure of DHFR from
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S. aureus complexed with an in-house inhibitor. In total, 252 out of the 300
top-ranked compounds could be synthesized and tested for DHFR inhibition;
21 % of the proposed compounds inhibited DHFR from either S. aureus or
S. pneumoniae with IC50 values lower 10 μM. Remarkably, a structure-based
screening protocol was found to be much superior to a ligand-based diversity
selection in enriching a hit list in true inhibitors.

Rastelli and coworkers [167] screened a subset of the ACD for inhibitors of
the DHFR from Plasmodium falciparum which would be insensitive to specific
active site mutations. The full data set was first filtered by Catalyst [Ac-
celrys Software (http://www.accelrys.com/products/catalyst)] to retrieve
molecules satisfying a set of 3-D pharmacophores generated from known
protein-inhibitor X-ray structures and potentially able to bind to some enzyme
mutants. Docking the focussed data set using Dock, then selecting the top-
ranked molecules interacting with a key residue and clustering by chemotypes
afforded a final list of 24 molecules. Twelve compounds truly inhibited DHFR
wild-type as well as active-site mutants at micromolar concentrations.

Krämer and coworkers [106] identified, from the ACD, aldose reductase
inhibitors by a series of hierarchical filters implying substructure similarity
search to known inhibitors, 2-D pharmacophore filtering, FlexX docking and
DrugScore scoring. Compounds able to bind to the anionic pocket of the
enzyme were prioritized for purchase and experimental evaluation. Out of
the nine compounds tested, six exhibited micromolar inhibition of the target.
Interestingly, DrugScore values were weighted according to the molecular
weight and number of rotatable bonds of the corresponding molecules to
favor the selection of lead-like compounds.

5.2.2 First-in-class Compounds

Not all targets are suited for experimental HTS. However, if 3-D coordinates
are available, VS is still a cheap alternative to HTS. Two recent studies [148,
183] demonstrate the power of VS for quasi-orphan targets (XIAP, Stat3) of
interest for discovering new antitumoral drugs. The X-ray structure of XIAP
complexed to a peptidic inhibitor was used to identify, within a database of
8000 compounds derived from traditional Chinese medicinal herbs, a non-
peptidic micromolar XIAP inhibitor [148]. Likewise, 429 000 compounds from
various screening collections were docked to the X-ray structure of Stat3 – a
signal transducer and activator of transcription. Rescoring the top 10% scored
compounds from each data set with X-score [202] yielded 200 compounds, out
of which 100 could be purchased and tested for Stat3 inhibition [183]. As in the
previous study, obtained hit rates at micromolar concentrations were rather
low (a single hit out of 100 compounds tested), but a totally novel compound
could be discovered and used as a basis for further improvement.
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Nucleic acids have not been widely investigated in structure-based screen-
ing approaches mainly because of the lack of accurate scoring functions.
Foloppe and coworkers [58] recently reported the successful discovery of bac-
terial ribosomal A-site ligands by using a docking tool (RiboDock) specifically
designed for that purpose [142]. An electronic catalogue of 1 million commer-
cially available compounds was first filtered to select lead-like compounds
and further docked to the crystal structure of the Escherichia coli ribosomal
A-site. Visual inspection of the top 2000 best-scoring compounds yielded a
list of 129 molecules which were evaluated by a FRET binding assay. Five
compounds, unrelated to the aminoglycoside series, exhibited an apparent
inhibition constant lower than 50 μM. This study is promising by widening
the scope of application of high-throughput docking to nonprotein targets and
more successful applications are expected in the near future thanks to a better
parameterization of common docking tools for predicting ligand binding to
nucleic acids [42].

5.2.3 Fragment Screening

Fragment screening by X-ray or nuclear magnetic resonance (NMR) [197]
is becoming an increasingly popular method for identifying low-molecular-
weight leads, which usually show a greater optimization potential than drug-
like compounds [80]. Due to the difficulty in correctly ranking docking poses
of small fragments, computational screening of low-molecular weight com-
pounds is still in its infancy. Two recent reports [26, 162], however, indicate
that this approach might be promising.

Pickett and coworkers reported the discovery of low-molecular inhibitors of
inosine 5′-monophosphate dehydrogenase (IMPDH) by virtual needle screen-
ing [162]. A test set of 21 true IMPDH inhibitors and two in-house X-ray
structures was first used to select the most adequate docking/scoring com-
bination (FlexX docking/ScreenScore scoring). A corporate database of 3425
low-molecular-weight reagents was then docked to both X-ray structures to
retrieve, among top-ranked compounds, 100 virtual hits satisfying a visual
check. Out of the 74 compounds evaluated for IMPDH inhibition, three
molecules exhibited an IC50 lower than 35 μM.

Carbone and coworkers [26], although not explicitly looking for frag-
ments, also discover low-molecular-weight inhibitors of L-xylose reductase
by structure-based screening. Hence, this enzyme is characterized by a very
shallow active site and most known xylose reductase (XR) inhibitors are
short-chain fatty acids. By screening with the Dock program around 240 000
compounds from the NCI data set [National Cancer Institute, Enhanced NCI
Database browser (http://129.43.27.140/ncidb2)] against the X-ray structure
of XR, a limited number of putative hits (around 1000) could be prioritized by
score and known interactions to key catalytic residues. Out of 39 molecules
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that were purchased and evaluated for XR inhibition, two carboxylic acids
(nicotinic acid, benzoic acid) inhibited the target with IC50 values under
100 μM.

Chapter 16 discusses methodical aspects of fragment-based drug design.

5.2.4 Lead Optimization

A large majority of structure-based screening projects are aimed at identifying
hits. However, lead optimization might be possible under the condition
that the binding mode of the starting lead can be unambiguously recovered,
and that a rationale exists for selecting the next compounds to synthesize
and test. Krier and coworkers [109] recently proposed a straightforward
approach for exploring a lead series by enumerating small-sized libraries (a
few hundred compounds) in which all combinatorial assemblies of a few
linkers and pharmacophoric moieties to a given scaffold are probed. The
selection of the best analogs was based on FlexX docking to the X-ray structure
of the phosphodiesterase target and topological filtering. A single-round
screening campaign on nine synthesized analogs yielded to a subnanomolar
inhibitor and a 900-fold improvement in affinity over the starting lead. Lead
optimization is discussed in detail in Chapter 19.

5.2.5 Homology Models as VS Targets

All the above-reported applications have used high-resolution X-ray struc-
tures to represent the 3-D coordinates of the target under study. However,
enzymes for which a crystal or an NMR structure are still missing, but which
show enough sequence homology (around 50%) in the active site to a X-ray
template, can also be used for database docking approaches with reasonable
success [138]. However, there is still a debate whether targets ranging in a
much lower homology range (below 30%) might be reliable starting points.
This observation is particularly relevant for GPCRs, a target family of utmost
pharmaceutical interest for which a single X-ray structure (bovine rhodopsin)
might be used for comparative modelling. Several recent reports [13,16,53,54,
192] demonstrated that GPCRs might be suitable indeed for structure-based
screening. In all the above-cited successful cases, preliminary knowledge
about known ligands was necessary to fine tune the receptor model. More-
over, the choice of a relevant pharmacophore hypothesis was a key factor
to downsize the number of molecules for docking. Last, a visual inspection
was necessary to ensure that key intermolecular interactions were established
with selected hits. Although the derived homology models remain crude
with respect to high-resolution X-ray structures, drug-like submicromolar
antagonists for rhodopsin-like receptors [13, 16, 53, 54, 192] have already been
discovered by VS.
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5.3 Concluding Remarks

VS of compound libraries by high-throughput docking is nowadays a rou-
tinely used computational technique for identifying bioactive ligands with
numerous proofs of record. One should, however, keep in mind that the
method is highly sensitive to the 3-D coordinates of the target and is likely to
generate numerous false positives. As important as the docking itself are the
pre- and postprocessing steps, which are key factors to optimize the hit rate.
The number of new validated chemotypes amenable to optimization is there-
fore a better descriptor than the simple hit rate, which varies considerably
with regard to the current knowledge on a particular target. VS is a natural
complement to traditional medicinal chemistry and particularly well suited
for proposing new molecular scaffolds that can be easily converted into fo-
cussed ligand libraries of higher values. Both methodological improvements
(scoring, hit triage, prediction of ADMET properties) and better screening
collections (focussed and targeted libraries) should contribute to improve the
value of this powerful tool in a near future.

6 Critical Evaluation of Ligand-based VS

The choice of tools for ligand-based VS is at least as complicated as for
structure-based techniques. While for structure-based techniques mainly
the “right” docking program has to be chosen, for ligand-based VS also
the method itself, e.g. similarity search or pharmacophore search, has to
be chosen. The first part of this section will evaluate and compare several
methods and give guidance for selecting appropriate methods and/or tools
for the screening. The second part will then, as in Section 5, review some
recent success stories and, finally, will draw some conclusions on which
methods to apply.

6.1 Influence of Parameter Settings

For ligand-based VS the considerations about the choice of the library and
its preprocessing are identical to those for structure-based screening (see Sec-
tion 5). The main selection process is then, which method among those of
Section 3 is chosen. This depends mainly on the number of known active
ligands available. If at least some (more than five, better more than 20)
ligands are known, a ligand-based pharmacophore model can be derived.
If additionally their activity is known, QSAR techniques are possible. If,
however, less actives are known, only similarity searches can be performed
at this stage.
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6.2 Recent Success Stories

Here, we review recent studies from the literature (2003–2005) covering the
entire field of ligand-based techniques (Table 2), ranging from pharmacophore
searching over similarity searching to QSAR studies.

Table 2 Successful ligand-based screening data from the recent literature (2003–2005).

Target Method Library Size Hit rate[a] Reference

ERG2 pharmacophore WDI[b] 48405 55% @ 1 μM [117]
σ1 receptor pharmacophore WDI 48405 63% @ 1 μM [117]
Emopamil pharmacophore WDI 48405 73% @ 1 μM [117]
binding protein
Kv1.5 pharmacophore Aventis NA[c] 6% @ 6 μM [161]
A2A purinergic pharmacophore combinatorial 192 53% @ 10nM [179]
receptor similarity library
mGluR5 pharmacophore Asinex 194563 33% @ 70μM [168]

similarity
Tat-TAR RNA pharmacophore SPECS library 229659 11% @500μM [169]
interaction similarity
H1 receptor QSAR combinatorial 9000 87% Watanabe[d] [48]

library
Trichomonas QSAR in-house 100 25% in vitro[e] [140]
vaginalis
Kv1.5 similarity Aventis NA 1% @ 10μM [160]
MCH-1R similarity[f] 24 collections 650000 2% @ 30μM [30]
D3 receptor pharmacophore two collections 255286 40% @100nM [25]

fingerprints
COX-2 pharmacophore commercial 2700000 15% @ 10μM [60]

fingerprints collections

[a] Hit rate at a concentration threshold. The hit rate is the ratio of the number of active
compounds to the total number of compounds tested.
[b] World Drug Index (http://scientific.thomson.com/products/wdi).
[c] not available
[d] Antihistaminic activity according to the protocol of Watanabe and coworkers [207].
[e] Cytocidal activity of 100% after 48 h at a concentration of 100 μg ml−1.
[f] A combination of 2- and 3-D substructure search 2- and 3-D similarity as well as clustering was
used.

The studies of Laggner and coworkers [117] and Peukert and coworkers
[161] demonstrate the application of ligand-based pharmacophore models in
VS. Laggner and coworkers [117] built pharmacophore models for ERG2, the
emopamil binding protein (EBP) and the σ1 receptor using Catalyst. The
training set comprised 23 structurally diverse ligands with a broad activity
range from picomolar to micromolar affinity. The pharmacophore models
were assessed using cost analysis and randomization tests. Furthermore,
on a test set of nine molecules with binding affinities from subnanomolar to
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micromolar, from 26 measured affinities, 14 were predicted within 1 order of
magnitude. The pharmacophore models were then used for VS of the WDI.
From the WDI, previously known binders were found as expected, but also
a number of new hits. Among them, 11 were experimentally tested and hit
rates between 55 and 75% were obtained for the three targets. Subsequently,
the pharmacophore models were altered to perform a search in a subset of the
KEGG database of 3525 metabolites. Peukert and coworkers [161] described
the discovery of novel blockers of the Kv1.5 potassium ion channel based
on pharmacophore search. The authors used DISCO for pharmacophore
elucidation using a training set of seven known Kv1.5 blockers. The phar-
macophore model obtained was consistent with published SAR data and was
able to retrieve 58% of a testset of 423 known Kv1.5 blockers. A 3-D search
was performed on the Aventis compound collection resulting in 1975 hits
after filtering. In a subsequent clustering, 27 clusters were obtained and
representatives of 18 clusters were screened in vitro. One active compound
was found with an IC50 of 5.6 μM belonging to a new class exhibiting a
favorable pharmacokinetic profile.

Schneider and Nettekoven [179] demonstrated the use of a topological
pharmacophore similarity model named CATS [178]. This approach was
applied to the prediction of selective purinergic receptor (A2A) antagonists
from a virtual combinatorial library. From a preliminary SAR model an ANN
[self-organizing map (SOM)] was trained. Molecules were encoded by the
CATS descriptor and the features were mapped from 150-D space onto the
plane of a SOM. Each field of the SOM has thus certain pharmacophore
features in common. With this technique, the library was reduced from 192 to
17 combinatorial products. These 17 molecules exhibit 3-fold higher binding
affinities and 3.5-fold higher selectivities than the initial library. The most
selective antagonist displays 121-fold selectivity and an affinity of 2.4 nM.
The CATS3D descriptor, a 3-D extension of the CATS approach, was used
by Renner and coworkers [168] to identify metabotropic glutamate receptor 5
(mGluR5) modulators. From the original library of 194 563 molecules, first, the
20 000 most “drug-like” compounds were selected and screened by similarity
of the CATS3D vectors with each of seven active molecules. Of the obtained
27 top-scoring molecules, nine exhibited an activity below 70 μM. The authors
validate that the method used allows for pharmacophore-based similarity
searching with “scaffold-hopping”. This descriptor was also reported to be
successful for identification of new inhibitors of the Tat–TAR RNA interaction
[169]. In addition, a “fuzzy” pharmacophore approach (SQUID) was also
used. Again, the 20 000 most “drug-like” compounds of an initial library of
229 658 compounds were screened. In the VS the similarities were calculated
by the Manhattan distance for the CATS3D and a similarity score for the
SQUID, respectively. Both techniques revealed 10 hits, with one molecule
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overlap. Two molecules among them had IC50 values of 500 and 46 μM,
respectively.

A screening for antihistaminic compounds blocking the H1 receptor was
performed by Duart and coworkers [48] using a QSAR model based on
molecular topology descriptors. From the initial virtual library of 9000
compounds, 236 molecules were predicted as active. Of the selected seven
most promising compounds, experimental testing exhibited antihistaminic
activity in 87%. The discovery of trichomonacidal compounds was reported
by Meneses-Marcel and coworkers [140]. A linear discrimination analysis
(LDA) QSAR model was trained to classify molecules using atom-based
quadratic indices as descriptors. Since validation of the model revealed 88%
good classification, a virtual screening was performed. Biological assays
of eight compounds selected by screening gave good classification. Two
molecules maintained their efficacy against T. vaginalis even at 10 μg ml−1

and one of them did not show cytotoxic effects in macrophage cultivations.
A 2-D similarity search with Unity was performed by Peukert and cowork-

ers [160] for blockers of the Kv1.5 ion channel. Using a compound with an
IC50 of 0.1 μM as reference molecule, 75 compounds with a similarity value
of 0.8 or greater were found in the Aventis compound library and experimen-
tally tested. In this step a moderately active compound (IC50 = 9.5 μM) was
discovered. Although this compound was rejected due to problems with its
stability and properties, a compound with similar side-chains, but a different
scaffold (naphthene spacer replaced by a biphenyl group), was identified as
lead (IC50 = 4.8 μM).

Clark and coworkers performed substructure and similarity searches, both
in 2- and 3-D, among other techniques, for discovering MCH-1R antagonists.
As query compounds 11 known MCH-1R antagonists were selected. The com-
bined hits from all searches were selected (3015 molecules) and assessed for
drug-likeness, synthetic tractability and molecular properties. After duplicate
removal, 1490 compounds remained which were clustered using Daylight
fingerprints. After final visual inspection, 795 compounds were purchased
and biochemically screened, resulting in 19 compounds with IC50 values
below 1 μM and the best having an IC50 of 50 nM. Clark and coworkers
analyzed, which of the searches revealed which of the 19 compounds. Six
compounds were found by 3-D similarity search with FlexS only, also six
were found by 3-D substructure search only, two were found by a clustering
approach only and one was revealed only by 2-D similarity search. Just four
compounds were discovered by more than a single technique. The hit rates
were in the range of 0.0 (2-D substructure) to 5.6% (2-D similarity).
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6.3 Comparison of Structure- and Ligand-based Techniques

Recently groups at Roche [14], Aventis [52] and Argenta Discovery [30]
compared structure- and ligand-based techniques for VS for GPCR targets.
Bissantz and coworkers [14] performed a comparative evaluation of the
techniques for searching 5-HT2C agonists, while Evers and coworkers [52]
performed the comparison on four different biogenic amine-binding GPCRs
(α1A, 5-HT2A, D2 and M1 receptors), and Clark and coworkers [30] used
a number of ligand-based techniques (see above) and compared them to
structure-directed pharmacophores.

In the work of Bissantz and coworkers, the results of docking into homology
models with FRED were compared with results from Daylight fingerprints,
feature trees and the program Phacir. The performance was assessed by
hit rate, enrichment factor and the diversity of the structure retrieved. The
test database was a collection of actives and inactives from the Roche com-
pound depository, with high similarity between actives and inactives. Four
molecules were used as reference for the three similarity search programs (so
in total 12 similarity searches were performed) and the top 20% of the ranking
lists were analyzed. Each of the 207 actives was retrieved with at least one
of the methods by combining the results for each of the reference molecules.
When looking at the 12 screening runs, in each individual search many com-
pounds were not retrieved or, even worse, not a single compound with some
of the scaffolds was found. Furthermore, the results show that the success of
the methods depends strongly on the choice of the reference ligand. While all
three similarity measures obtained hit rates of at least 4.8% and enrichment
factors of 2.3 or greater for one of the ligands, for another reference ligand
the best hit rate was only 2.8%. Some combinations of method and reference
ligand did not perform better than random selection. For comparison, the
docking program FRED was applied using different scoring functions. The
hit rate was between 3.0 and 4.5% and the enrichment factor between 1.5
and 2.2. Thus, while the top-performing ligand-based techniques reached
better hit rates than docking, docking always performed better than half of
the ligand-based screening runs. Furthermore, the compounds retrieved by
structure-based techniques were more diverse on average than those from
ligand-based screening. The authors conclude that the results of structure-
based screening are more stable than those of ligand-based screening. The
latter can yield higher hit rates, but only for some of the reference ligands.
Based on these results, the authors propose to combine at least one similarity
search with a docking technique.

Evers and coworkers [52] also compared docking into homology models to
ligand-based protocols. For the latter, ligand-based pharmacophores, multiple
feature trees (MTrees) as well as 3-D similarity by FlexS and QSAR models
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were applied. Pharmacophore and MTree models were compared on two
different reference ligands (one for each class of ligand molecules) for each
GPCR. In this study, ligand-based pharmacophore, MTrees and 2-D-QSAR
techniques received higher enrichment factors than docking into the homol-
ogy model with GOLD and FlexX-Pharm. However, the results with GOLD
were still satisfying. The authors conclude that docking into GPCR homology
models can be useful if no or only a few active ligands are known. In this study
the hit rates obtained with FlexS are worse than those obtained from the other
virtual screening techniques applied. This is in contrast to results of other
studies (e.g. Ref. [30], see above and below) where FlexS gives respectable
results. Evers and coworkers conclude that a “fair” comparison can be made
only by using several reference structures for the queries.

Clark and coworkers [30] compared a set of different ligand-based methods
(see above) to searches using structure-directed pharmacophores. The phar-
macophores were generated by docking one ligand into a homology model,
then aligning nine other molecules with GASP on the docked conformation
and refining the complexes by simulated annealing. Based on this alignment,
three different pharmacophore hypotheses were derived and used as queries,
but none of them gave rise to a hit.

Ligand- and structure-based VS has not only been compared for GPCR tar-
gets. Another group at Aventis used a number of techniques for the search for
Kv1.5 ion channel blockers. Apart from the ligand-based work (ligand-based
pharmacophore and 2-D similarity, see above) a structure-based screening
was also performed in which a protein-derived pharmacophore based on a
homology model was used [163]. The structure-based VS gave a higher hit
rate (7.8%) than the screenings based on ligand-based pharmacophore (5.5%)
and similarity searches (2.7%). Furthermore, the structure-based technique
yielded more active compounds and more chemotypes. Even more important
is the result that there was no overlap between the hit lists obtained by ligand-
and structure-based approaches.

6.4 Concluding Remarks

From the large number of successful applications of ligand-based VS, two
general and simple rules can be derived. These rules help to reduce the false-
negative rate (ligands being active but not found) of the screening.

(i) Use as many query ligands as possible. Several authors have reported that
some ligands perform very poorly, not giving any hits at all, while with
other reference ligands many hits were found. Unfortunately, it cannot
be determined in advance, which of the ligands will be successful.
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(ii) Use as many different techniques as possible. While some of the hits are
“easy” to find by many different techniques, often valuable compounds
(e.g. unique scaffolds) are found only by one of the techniques. Again,
it cannot be predicted which of the techniques will be successful. It is
important to note that not necessarily the most sophisticated techniques
yield the most hits. In some cases a very simple search technique can find
an interesting compound.

Comparing ligand- and structure-based techniques is difficult since the
effectiveness of ligand- and structure-based techniques depends strongly on
the screening project. For some targets the ligand-based techniques perform
better than structure-based methods, while for other targets they perform
worse. From this finding, a third rule can be derived:

(iii) Use both ligand- and structure-based techniques if possible. In this combined
scenario the maximal benefit of the different starting points can be ob-
tained, and the best compromise between the strengths and limitations
of the various methods can be obtained. In other words, make use of the
complementarity between ligand- and structure-based techniques [14].
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Efficient Strategies for Lead Optimization
by Simultaneously Addressing Affinity, Selectivity
and Pharmacokinetic Parameters
Karl-Heinz Baringhaus and Hans Matter

1 Introduction

The increasing pressure on efficiency and cost of research in the pharma-
ceutical industry has caused a technological paradigm shift [1, 2] in order to
bring promising candidate molecules earlier to the market [3, 4]. The total
research and development costs for a novel compound to enter this market
have recently been estimated as US$600–800 million [5,6], while continuously
increasing expenses are mainly attributed to the high attrition rate in later
development phases. The major reason for failure in phase II and III of clinical
trials is inadequate understanding of pharmacokinetic behavior of drugs [7–9]
and what constitutes a pharmacokinetic profile for candidate drugs. This
again underscores the necessity to improve on the success rates in order to
maintain economic viability of the pharmaceutical drug discovery process on
longer terms.

Several technological advances [10] along the drug discovery value chain
have entered the field and become indispensable tools for identifying novel
lead compounds. However, the advent of technologies like combinatorial
chemistry [11, 12], automated synthesis technologies and high-throughput
screening (HTS) [13] also caused an exponential increase in the number of
single data points for analysis, while it is debatable to what extent these
technologies contributed to the launch of new chemical entities (NCEs) to
the market [2, 3, 14, 15]. The current challenges in drug discovery are related
to increased regulatory hurdles, more effective integration of technological
advances, the extraction of relevant information and knowledge from primary
data to support data-driven decisions, and – at the same time – the cost
pressure, prompting for increased efficiency and lower attrition rates.

Improving on the low success rates requires a balanced compound pro-
gression driven by clearly defined knowledge-based decisions to advance or
discontinue particular lead series as early as possible. Any failure to identify
promising lead series has severe implications on time and resources within
a disease-related program in a pharmaceutical company. A clear process,
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and rigorous and relevant metrics for compound progression are essential
here [2, 16]. This requires early attention to stringent quality criteria for
compound series, reflecting the complex multitude of biological, pharma-
cological, pharmacokinetic and physicochemical parameters that a project
team has identified as key drivers for the chemical optimization and for
candidate selection.

Although, at first glance, the stage of lead optimization is not very spectac-
ular, the efficient conversion of molecules with promising biological activity
into viable drug candidates fulfilling a multitude of requirements appears
to be one of the most challenging steps [17, 18] with a very high impact on
the successful continuation of efficient drug discovery programs [2]. Con-
version of a biologically active chemical compound into an effective and safe
drug adds substantial value in the drug discovery process. Consequently,
the improvement of a compound profile toward a clinical candidate is one
of the essential skills in integrated drug discovery teams. Those candidate
requirements include not only desirable selectivity against related or diverse
“antitargets”, but also favorable physicochemical and pharmacokinetic prop-
erties, leading to oral administration and an acceptable half-life of the final
candidate. Hence, to arrive at candidates with suitable pharmacodynamic and
pharmacokinetic properties requires a simultaneous optimization of multiple
parameters in carefully planned iterations. Here, it is interesting to note that
recent comparisons of molecular properties of launched drugs revealed only
limited differences compared to the original lead compound as starting point
[19].

The necessity to shorten the discovery process has prompted for an early
integration of pharmacokinetic and drug development efforts to rapidly iden-
tify those molecules that are unlikely to become drugs and those lead series
with significantly lower chemical optimization potential. It is of great im-
portance to initiate lead optimization programs only for those molecules that
intrinsically have the potential to be converted into drugs. Hence, this lead
optimization stage has entered into a new phase of complexity caused by ad-
vances in modern technologies like protein crystallography, assay technology,
absorption, distribution, metabolism and excretion (ADME) assays, medicinal
chemistry automation, etc. Although rational approaches during this phase to
manipulate molecules are typically guided by quantitative structure–activity
relationships (QSARs) and structure-based design, it now becomes a tight in-
terplay between various disciplines: medicinal chemistry, structural biology,
pharmacology and pharmacokinetics. It is vital for success to conceive lead
optimization as simultaneous multidimensional optimization rather than to
address one parameter at a time (Figure 1).

This chapter focuses on a discussion of novel strategies, processes and
computational tools with an impact on improving the poor industry success
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Figure 1 Drug discovery value chain, and selected key technologies
and activities [2]

rates during the chemical optimization phase of lead series. The ultimate goal
of any chemical optimization program is to convert quality lead structures
into high-value drug candidate molecules prior to clinical development (Fig-
ure 1). First, the starting point for lead optimization is analyzed, i.e. the origin
of lead and current selection criteria for the promising series. Knowledge-
based decisions are essential at this stage to circumvent time and resource
investments for later stages. The emphasis of subsequent sections is to discuss
several components in this lead optimization process toward refinement of
series with improved drug-like properties. This includes a summary of the
understanding and predictive models for biological affinity, selectivity versus
closely related targets as well as clearly defined antitargets and pharmacoki-
netic problems.

Traditionally, in this optimization process, the affinity is optimized first,
while pharmacokinetic and ADME issues are investigated later in this process
[20, 21]. This approach, however, showed only limited success, as optimizing
for affinity only can result in chemical classes, where subsequent optimization
for ADME properties becomes difficult, if not impossible. The efficiency of
the drug discovery process is expected to improve if both aspects are consid-
ered simultaneously (Figure 2). Hence, we discuss different approaches and
case studies on lead optimization using such a tight integration of different
parameters by means of simultaneous optimization of a variety of relevant
molecular properties, sometimes referred to as multidimensional optimization
(MDO) [2, 16, 22]. Consequently, we will use this term throughout the fol-
lowing discussion. This multidimensional optimization requires a clear risk
assessment prior to initialization of a resource-intensive research program to
optimize compounds toward a balance of such a multitude of properties [23].
General considerations for multidimensional lead optimization are discussed
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Figure 2 Different drug discovery strategies: (A) Sequential
optimization (historic approach) – first optimization of affinity, while
ADME properties are treated at a later stage. (B) Multidimensional
scenario – combined optimization of affinity and ADME properties,
simultaneously monitor changes in relevant properties [20]

with an emphasis on computational approaches to assist in this simultaneous
task. Data integration is mandatory for extraction of knowledge and reuse
in following iterations in the design cycle, while in silico approaches to esti-
mate ADME parameters are crucial to focus only on promising molecules to
address the increased complexity in lead optimization. These concepts will be
illustrated using literature and in-house examples (Figure 2).

2 The Origin of Lead Structures

This section summarizes strategies to identify lead structures with a particular
emphasis on modern technologies complementing HTS in the pharmaceutical
industry, while Bleicher and coworkers discuss some aspects in detail [22],
and provide a summary of the individual processes and interfaces between
disciplines involved within a pharmaceutical setting [16].

The success of many drug development projects seems to be fundamen-
tally limited by the nature of the target. Experience in medicinal chemistry
and historic drug discovery programs suggests that small-molecule organic
compounds can modulate more readily some privileged protein target classes.
Hence, the selection of tractable targets in addition to careful selection follow-
ing therapeutic requirements is essential to guide drug discovery at an early
stage. All drugs that are currently on the market are estimated to modulate
less than 500 targets, like nucleic acids, enzymes, G-protein-coupled receptors
(GPCRs) or ion channels [9]. Consequently, the “druggability” of protein tar-
gets including small-molecule binding sites has been discussed [24] following
the completion of the Human Genome Project, with an attempt to estimate a
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reasonable number of targets that indeed provide an opportunity for future
therapeutic intervention. While earlier estimations discuss a total of 5000–
10 000 potential targets according to the number of disease-related genes [9], a
focus on properties of orally bioavailable, small drug molecules that could
potentially interact with those targets results in a lower number of targets
(600–1500) [24]. Those physicochemical properties of “drug-like” molecules
include the well-established “Rule of Five” [25] or related knowledge-derived
guidelines [26]. Those summarize simple, intuitive parameters for medicinal
chemists to give a warning for compounds that are unlikely to be orally
absorbed via the passive intestinal route. Hence, the increasing understanding
of drug-like properties might additionally refine our understanding of com-
plementary properties for drug targets.

Hit finding for a selected target typically starts with a collection of actives
from HTS [13, 27, 28], which today is the most widely applicable technology,
while quality of results is critically dependent on assay type and quality [16].
In addition, recent years have witnessed an emerging number of comple-
mentary biophysical and in silico hit-finding approaches like fragment-based
SAR-by-nuclear magnetic resonance [29–31], surface plasmon resonance bind-
ing [32], high-throughput X-ray crystallography [33, 34], protein structure-
directed de novo design [35], and structure- and ligand-based library design
and virtual screening [36, 37].

The costs associated with hit identification using diverse assay systems and
technologies as well as, alternatively, biophysical methods and approaches,
are regarded as minor compared to the finally required clinical development
of novel candidate molecules [38]. The validation and exploration around
lead series is significantly more resource-intensive and dependent upon the
selection criteria to progress on promising series. Hence, the series of hits
are thoroughly evaluated and validated as early as possible for collecting as
much information on individual structures and entire structure classes. Any
systematic method to evaluate and validate results from hit finding requires a
clear understanding of which terms and criteria to monitor in order to decide
upon the fate of a series [2, 16].

Several criteria for selecting promising lead structures and tailoring focused
libraries have been proposed in the literature. The early awareness of liabil-
ities within a lead series with respect to the desirable compound profile in
terms of selectivity, physicochemical and ADME properties is important for
choosing the series with potential for starting a successful lead optimization
program; however, none of these knowledge-driven decisions can prevent
unpredictable problems like animal toxicity and others. Generally speaking,
it is the overall characteristics of a particular compound class, considering a
multitude of properties including synthetic feasibility and patentability, which
make it attractive for starting a lead optimization program. This potential,
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however, has to be systematically explored within the frame of a limited syn-
thetic program dedicated to exploring the SAR as well as obtaining as much
information on key drivers in order to identify those series with improved
drug-like properties.

Recent comparisons of physicochemical properties of lead structures to
drug molecules also enhanced the understanding of which criteria to apply
for selecting a promising series. Those studies were reported by Oprea and
coworkers [39–41] based on a data set of 96 lead-drug pairs and a variety
of calculated physicochemical properties. Lead structures tend to exhibit
lower molecular weight, lower number of rings and rotatable bonds and
lower log P, suggesting that the subsequent process of lead optimization
in medicinal chemistry tends to add complexity, mainly by means of less
directional hydrophobic interactions.

The impact of molecular complexity on the probability to detect hits was
studied by Hann and coworkers [42] on the basis of statistical arguments.
Using simple models of ligand–receptor interactions, the probability of useful
binding events of increasing complexities (number of potential protein–ligand
interactions) was estimated. Low-complexity compounds have an increased
probability of being detected as hits in screening and thus might offer better
starting points for drug discovery. If systems become more complex, the
chance of observing a useful interaction for a randomly picked ligand falls
dramatically, based on statistical reasons.

One possible route to increase binding affinity of low-complexity fragments
is to link two fragments binding to different subpockets. From an anal-
ysis of high-resolution X-ray data for fragments and corresponding larger
molecules, the loss of rigid-body translational and rotational entropy, which
forms a significant barrier of protein–ligand recognition, was estimated as 15–
20 kJ mol−1, i.e. 3 orders of magnitude in affinity at 298 K [43].

These studies consistently suggest that less-complex lead structures are
better to detect and exhibit a favorable optimization potential, which might
influence attempts to design more “lead-like” [44] compound libraries for
screening. They have also lead to alternative lead-finding strategies directed
toward the initial discovery of small fragments as starting points for optimiza-
tion [45]. Recent examples include the discovery of DNA gyrase inhibitors by
means of three-dimensional (3-D) structure-based fragment screening com-
bined with biophysical assays and protein structure-based optimization [46]
and the discovery of inosine 5′-monophosphate dehydrogenase (IMPDH) in-
hibitors [47] from a virtual screening protocol tailored to discover small,
alternative warheads to known phenyloxazole anilines.

The combination of alternative screening approaches, virtual screening
and parallel medicinal chemistry in combination with an early profiling on
the multitude of relevant compound properties will hopefully generate an



3 Optimization for Affinity and Selectivity 711

improved basis for proper decisions about which promising lead series to
take forward.

3 Optimization for Affinity and Selectivity

3.1 Lead Optimization as a Challenge in Drug Discovery

This section summarizes several approaches with and without knowledge of
the target protein 3-D structure to optimize lead structures for affinity and
selectivity as one prerequisite for multidimensional optimization. The lead
optimization phase to efficiently convert the lead structures with promis-
ing biological properties into clean drug candidates fulfilling a multitude of
criteria is a challenging task [17, 18] with a high impact on the successful
continuation of efficient drug discovery programs [2]. Consequently, the
improvement of a compound profile toward a clinical candidate is one of
the essential skills in integrated project teams. Those candidate requirements
include not only desirable selectivity against related or diverse “antitargets”,
but also favorable physicochemical and pharmacokinetic properties, leading
to oral administration and an acceptable half-life of the final candidate. To
arrive at candidates with suitable pharmacodynamic and pharmacokinetic
properties thus requires a simultaneous optimization of multiple parameters
in carefully planned iterations.

Due to the lower dimensionality of the ADME space, ADME properties
should be easier to predict than biological receptor affinity [48], although
in practice this is more difficult, as many experimental screens for ADME
properties are multi-mechanism rather than single mechanism systems. In
contrast, biological assays for the majority of pharmacological targets are typ-
ical single-mechanism systems, for which computational models to correlate
structural descriptors are easier to develop and resulting predictions tend
to be more robust. Many experimental screens for these ADME properties
include multiple-mechanism systems, however. Computational models, on
the other hand, for data with multiple underlying mechanisms tend to get
worse if more data for structurally more diverse compounds are experimen-
tally obtained and included into the training set. This is mainly due to
the fact that the increase of assay data relates to an increase of underlying
mechanisms on which those data have been obtained and the noise level
rises for each individual mechanistic component [48]. For smaller, struc-
turally and, thus probably, mechanistically homogeneous data sets, acceptable
correlations are obtained, while the ability of descriptors to capture a more
diverse experimental data set is limited. Although the same descriptors might
still have some statistical significance and thus explain global trends for less
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homogeneous data, their predictivity is often too low for a valid in silico
prediction. This only offers the possibility to construct statistically significant
rules or filters based on descriptors and property distributions and ranges.
Hence, it is mandatory to carry out high-quality single-mechanism ADME
experimental data and use them to derive single-mechanism models [48]. In
contrast, assays and models to correlate structural properties to biological
activity for a biomolecular target are mainly based on a single mechanism, i.e.
favorable protein–ligand interactions upon the molecular recognition event.

Although the present chapter does not summarize the pharmacophore [49,
50] and 2-D/3-D-QSAR [51–55] approaches toward ligand-based optimization
in the absence of any 3-D receptor structure, these methods are extremely
important in today’s lead optimization settings, as for the majority of targets
it might be difficult to obtain relevant X-ray structures of protein–ligand
complexes. This is true for membrane-bound proteins, like ion channels,
GPCRs and others. Hence, validated methods in ligand-based design to
extract knowledge from molecules in a series, build statistical models and
use them for further design are useful. The focus here is on the use of 3-D
protein structure information per se and of the tight integration of ligand- and
structure-based design approaches toward a more reliable affinity prediction
and understanding of selectivity. However, both ligand- and structure-based
design approaches require the close monitoring of ADME and physicochemi-
cal properties of ligand series for successful optimization.

3.2 Use and Limitation of Structure-based Design Approaches

Over the past few years, there has been an exponential increase in the number
of available 3-D structures in the public domain [56,57], which is increasingly
being used within the drug discovery process in the lead-finding and lead
optimization phase. However, there are still other factors that add up to the
complexity of guided lead optimization by structure-based design [58–62].
The reality of protein–ligand interactions at the molecular level is still far too
complex to provide a correct in silico approach for accurate affinity prediction,
either based on the knowledge of the target protein 3-D structure or even
without that information. The effect of entropy and the dielectric constant
are only two examples that are controversially discussed within the literature.
Other challenging factors in structure-based design are the existence of mul-
tiple ligand-binding modes [63, 64], the accessibility of conformational states
for both ligand and receptors [65, 66], the influence of structurally conserved
water [67], pH [68], and others. One important point to address is the well-
documented protein flexibility [65] as a direct consequence of the chemical
properties of amino acids. Furthermore, it is of critical importance in the
structure-based design process to reflect the limitations of the use of X-ray
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protein structures [69], which also is partially due to significant errors in some
reported structures [70, 71] and experimental limitations that are difficult to
overcome. These complicating influences turn the reality of lead optimization
for affinity into a difficult task.

Some important reviews summarized the current status of our understand-
ing of protein–ligand interactions [72, 73]. This knowledge prompted some
groups to derive scoring functions for guiding flexible docking algorithms
and rank-ordering series of docked molecules. Several publications indicate
the substantial progress made in both fields of docking and scoring, respec-
tively. A variety of methods exist to estimate how strongly a ligand interacts
with a protein-binding site, while today’s existing functions belong to three
main categories: force field-based methods, empirical scoring functions and
knowledge-based methods [62, 73–77]. In an intersection-based consensus
scoring approach, Charifson and coworkers [78] and Clark and coworkers [79]
combined a range of different functions to rank protein–ligand geometries,
which resulted in an increased performance with respect to hit rates. The
first paper [78] also discusses one of the possible limitations for earlier scoring
functions, i.e. that those are derived from X-ray structures of extremely potent
ligands, while information about less-active analogs is often not available.

3.3 Integration of Ligand- and Structure-based Design Concepts

The global scoring functions described above are derived from a more or
less balanced collection of protein–ligand complexes from the public domain,
leading to empirical functions that might be able to globally provide some
guidelines on whether a compound could potentially bind to a particular
binding site. However, their accuracy in ranking compounds on the basis
of experimental binding affinities is typically limited. This caused studies to
tailor scoring functions in lead optimization stages using a narrow training set
for only the protein target of interest. In addition, this need in lead optimiza-
tion prompted others toward a tight integration of ligand- and structure-based
design approaches to model and understand biological affinities by means
of 3-D-QSAR methods, which are based on an alignment rule derived from
reliable docking modes.

Gohlke and coworkers developed the AFMoC procedure [80] to derive
tailored scoring functions for protein–ligand complexes based on DrugScore
[81] knowledge-based pair-potentials, which are adapted to a single protein-
binding site by incorporating ligand information (Figure 3). The formalism
is similar to comparative molecular field analysis (CoMFA) [82, 83], while
the fields in their approach originate from the protein environment and not
from the ligands alone. A regular-spaced grid is placed into the binding
site and knowledge-based pair-potentials between protein atoms and ligand
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Figure 3 (A) Deriving a tailored scoring
function using AFMoC [80], which integrates
protein- and ligand-derived descriptors and
produces a statistical model on protein–
ligand interactions relevant for affinity. On a
predefined grid, favorable protein interactions
with ligand atom types are computed.
These are adapted by incorporating actual
information from a series of docked or
crystallized ligands. A statistical analysis

led to a model with favorable and unfavorable
contributions. (B) AFMoC interpretation for 86
substituted purines as CDK-2 inhibitors. The
underlying PLS model (q2: 0.521, r2: 0.800,
5 PLS components) indicates favorable
and unfavorable regions for atom types,
as shown for C.3, C.ar and O.3, and the
CDK-2/purvalanol A complex (PDB 1CKP).
The CDK-2 binding site is represented as a
MOLCAD solvent-accessible surface.

atom probes are mapped onto the grid intersections resulting in “potential
fields”. In a partial least square (PLS) [84] analysis, these atom-type specific
interaction fields are correlated to the actual binding affinities of the docked or
experimentally known ligands, resulting in individual weighting factors for
each field value. They described significant improvements of the predictive
power for affinity prediction compared to global knowledge-based potentials
by considering a sample set of only 15 known training ligands.

The conceptually similar COMBINE approach was developed by Wade and
coworkers [85] on the basis of the analysis of force-field energy contributions
per amino acid to describe interaction differences to a congeneric set of lig-
ands. The resulting predictive regression equations were also reported for
applications in structure-based design projects [86–88].

Other approaches are based on tailor-made empirical functions, consisting
of additional descriptors and weights for these, plus the known terms using
appropriate statistical methods based on a training set of several ligands ex-
hibiting a range of biological affinities to only one protein cavity. Approaches
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to understand the SAR in chemotypes by a determination of the importance
of weights of different coefficients of individual terms in scoring functions
are described by Rognan and coworkers [89] and Murray and coworkers [90],
both using the ChemScore global scoring function [91] as a start.

Structure-based design is focused on understanding protein–ligand inter-
actions but does not always lead to predictive models for ligand series. In
contrast, 3-D-QSAR with acceptable statistics does not always reflect topo-
logical features of the protein structure, as those are not necessarily built
using alignment rules that reflect the bioactive conformation. Hence, several
groups have successfully combined both approaches. On the basis of the
protein X-ray structure and a series of analogs with a potentially similar bind-
ing mode, consistent and highly predictive 3-D-QSAR models were derived,
which could be mapped back to the protein topology. This leads to a better
understanding of important protein–ligand interactions, and provides guide-
lines for ligand design and a predictive model for scoring novel synthetic
candidates. Docking calculations based on already available 3-D structures
often might result in an alignment for all other compounds by superimposing
them onto the template and relaxing them within the cavity for consistent 3-
D-QSAR models.

These receptor-based 3-D-QSAR models represent a strategy to integrate
ligand- and structure-based design approaches. CoMFA [51, 82, 83] and com-
parative molecular similarity index analysis (CoMSIA) [92] are used to derive
relationships between molecular property fields and biological activities. Elec-
trostatic and steric interaction energies are computed between each ligand
and a probe atom located on predefined grid points for CoMFA, while for
CoMSIA those interaction fields are replaced by fields based on similarity
indices between probe atoms and each molecule. The PLS [84] method is used
to derive a linear relationship, while cross-validation [93] is used to check for
consistency and predictiveness. The resulting contour maps from 3-D-QSAR
models enhance the understanding of electrostatic, hydrophobic and steric
requirements for ligand binding, guiding the design of novel inhibitors to
those regions where structural variations altering steric or electrostatic fields
reveal a significant correlation to biological properties. The 3-D-QSAR results
then allow focusing on those regions where steric, electronic or hydrophobic
effects play a dominant role in ligand–receptor interactions.

One of the earlier and most influential applications of receptor-based
CoMFA studies was carried out by Marshall and coworkers on a series
of HIV protease inhibitors [94, 95]. The bound conformation of several
ligands was known from X-ray crystallographic studies, and was shown to
provide the most consistent and predictive QSAR models, while the authors
also pointed out that conformational energy and entropic effects are not
adequately included within these data sets. Hydrophobic field types used
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within CoMSIA [92] or HINT [96] might be partially useful to overcome the
second limitation. Other successful applications include estrogen receptor
ligands [97], acetyl cholinesterase inhibitors [98], and (from the authors’ own
work) receptor-based QSAR models for matrix metalloproteinase [99, 100],
CDK-2 [101] and factor Xa inhibitors [102]. These models collectively found
applications in lead optimization projects, as they provide an enhanced
understanding of important effects in protein–ligand interactions and reliable
affinity predictions.

3.4 The Selectivity Challenge from the Ligand’s Perspective

Protein target families are the fundamentals to build a framework for match-
ing biological motifs with chemical scaffolds. Many structurally related tar-
gets find implications in different therapeutic areas, while exhibiting similar
protein–ligand interactions. A key issue for this interdisciplinary field is how
to generate and efficiently use this information to guide drug design across
targets [2]. The knowledge of structurally related proteins for a particular
target is of interest in early drug discovery stages to identify leads by analogy
within a target family [2, 22] from focused libraries enriched with privileged
motifs of importance for that family [103] or by annotation-based similarity
searching across target families [104, 105]. This latter approach allows us to
perform similarity searching to identify appropriate ligands for new targets
within the same target family by linking chemical structure databases, biolog-
ical target sequences and structure activity data (screening results).

However, selectivity toward only a single biological target is an essential
requirement for drug candidates to minimize side-effects. Hence, it is manda-
tory to involve selectivity considerations early in the drug discovery process,
and to monitor experimentally and by in silico approaches closely related or
structurally unrelated “antitargets” for the potential drug candidate. The
following section will briefly summarize methods to take this requirement
into account from both the perspective of the ligand and the protein 3-D target
structures, if available.

While most chemistry-driven approaches rely on trial and error, often 2-
and 3-D-QSAR approaches have been used to correlate biological affinities
against both target proteins in order to identify those structural determinants
or favorable spatial regions around the ligands gaining selectivity on the
target enzymes. This approach requires a series of biologically characterized
chemical analogs, which are typically available at this stage within the drug
discovery value chain.

Some earlier examples on the use of 3-D-QSAR to understand selectivity
differences include the work of Wong and coworkers to unveil structural
requirements for selective binding of ligands to the diazepam-insensitive (DI)
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benzodiazepine receptor [106]. The chemical interpretation of the result-
ing CoMFA model on a larger series of 1,4-benzodiazepines highlighted the
marked influence of particular substitutions in only a few scaffold positions
on the ratio of affinities against the DI and diazepam-sensitive (DS) benzo-
diazepin receptor-binding site. Interestingly, individual 3-D-QSAR models
have been derived for binding affinities against both individual sites as well
as against the ratio, defined as Ki(DI)/Ki(DS), as an additional dependent
variable for statistical analysis. The use of Ki values for this mathematical
transformation is preferable due to their independence on concentration ef-
fects, while IC50 values for closely related targets or sites at one receptor are
often practically determined at very similar conditions, thus also allowing the
use of similar ratios as dependent variables for statistics. However, PLS can
also be used for two (or more) dependent Y-variables in only one model [84].

A similar approach has been taken to explain selectivity differences between
the matrix metalloproteinases MMP-8 and MMP-3 [100] and the serine pro-
teases factor Xa and thrombin [107]. However, in both cases, the availability of
experimental 3-D protein structures also allowed the interpretation of selectiv-
ity differences by careful inspection of protein-binding site requirements and
additional statistical models tailored to highlight key differences in potential
protein–ligand interactions from binding sites only [100, 101, 107, 108]. In
both cases, the selectivity differences from the analysis of ligand series nicely
correspond to binding site requirements. Furthermore, the availability of 3-
D structures for both the target and the closely related “antitarget” might
lead to the use of structure-based design approaches to qualitatively identify
amino acid differences, which might allow for a more focused interaction
toward only one target. The combined use of both types of information greatly
enhanced the understanding of selectivity requirements for these series of
target enzymes.

Other quantitative approaches to address selectivity rely on generating
and consistently interpreting individual statistical models, which again pro-
vide very detailed information on desirable scaffold substitution patterns and
spatial areas around superimposed ligands, which allow them to selectively
interact only with one binding site. There are multiple interesting applications
of this concept in the literature (e.g. Refs. [109–112]).

3.5 Selectivity Approaches Considering Binding Site Topologies

The availability of protein 3-D structures considerably simplifies the search for
selective ligands, as these structures allow the comparative analysis of favor-
able protein–ligand interactions with a particular focus on those that are only
possible in one member of a protein family. There are several computational
tools that assist in an unbiased characterization of protein–ligand interac-
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tions, e.g. the force field-based approach GRID [113], and the knowledge-
based approaches SuperStar [114, 115] and DrugScore [81, 116]. In the recent
consensus principal component analysis (GRID/CPCA) approach [108], the
GRID descriptors derived for multiple protein binding sites are analyzed
using CPCA [117] as a statistical method, which allows the identification
of possible modifications in potential ligands in a straightforward way to
improve their selectivity toward a chosen target. This statistical analysis
evaluates the relative importance of individual molecular interaction fields
from particular probe atoms for the final PCA model. As the input data matrix
is structured in chemically meaningful blocks, hierarchical and consensus
multivariate analysis tools like CPCA provide information about the relative
importance of individual blocks on the stage of an intermediate level of the
analysis, while the final model is identical to a regular PCA. Plotting of the
individual PCA and CPCA scores then allows visualization of selectivities
between different members of the protein family, while the structural reason
in terms of potential protein–ligand interactions that allows discrimination
can be deduced from CPCA loadings plots and interactive variations thereof.
Those “active plots” help to focus ligand designs toward binding site residues,
which are essential for discriminating between subfamilies.

This approach was first applied toward an understanding of discriminating
interactions in the serine proteases factor Xa, thrombin and trypsin [108], and
provided selectivity information for all important serine protease subpockets,
which are in agreement with experimental selectivities of typical protease
inhibitors. This approach was complemented by a 3-D-QSAR selectivity anal-
ysis on a series of 3-amidinobenzyl-1H-indole-2-carboxamides [107], which
points, from the viewpoint of the ligands, to similar main interactions driving
selectivity between key enzymes in the blood coagulation cascade: factor Xa
and thrombin. Other applications of GRID/CPCA include the interpretation
of structural differences in human cytochromes P450, 2C8, 2C9, 2C18 and
2C19 [118] from homology models using the mammalian CYP2C5 X-ray struc-
ture [119], matrix metalloproteinases from X-ray and homology modeling
[120], the classification of Eph Kinases [121], and a comparison of the binding
characteristics of the family of lipid-binding proteins [122]. For these cases,
the selectivity regions were in good agreement to available experimental in-
formation and inhibitor structure–activity relationships. Recent extensions
include FLOGTV toward a simplified visualization of differences between
related receptor sites based on a trend vector analysis [123].

Many structurally related protein targets find implications in different ther-
apeutic areas, while exhibiting similar protein–ligand interactions. It is es-
sential to efficiently use this information to guide drug design across targets.
This encompasses both the knowledge about selectivity regions in binding
sites, while, on the other hand, a general entrance by less-specific interactions
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into such target family is of particular interest for shaping a compound library
at the lead-finding stage. To this end, GRID/CPCA was successfully applied
to arrive at the “target family landscape” concept [101] to study features for
general interactions to an entire target family and to identify determinants for
interactions to only one member, which was of particular interest for broader
sets of kinases [101] and serine proteases [107] with experimentally known 3-D
crystal structures. The applications to major protein target families produced
models in agreement with in-house ligand SAR models and thus provide
guidelines toward rapid optimization in a library format for family-specific
scaffolds.

To use a set of consistent descriptors for docking and selectivity studies,
the replacement of the force field GRID by DrugScore-derived [81, 116]
knowledge-based potentials was successfully investigated on the factor
Xa/thrombin/trypsin problem [124] as well as for matrix metalloproteinases.
It was shown that this change produces models of qualitatively similar
interpretation. Predictive submodels for all protein pockets (S1, S2, S4) were
obtained. Here, CPCA scores discriminate factor Xa from thrombin and
trypsin on PC1 in Figure 4 (Cl probe for S2 submodel). Differential plots
reveal the structural reason for this discrimination: the piperidinyl moiety in
the thrombin selective inhibitor NAPAP can only favorably interact with this
subsite in thrombin. The detailed interpretation for other pockets is consistent
and in agreement with internal series.

Lapinsh and coworkers [125] developed the proteochemometrical strategy
combining ligand and protein information for a comparative analysis of series
of receptors and ligands. Proteochemometrics exploits affinity data for series
of diverse organic ligands binding to different receptor subtypes, correlating
it to descriptors and cross terms derived from the amino acid sequences
of the receptors and the structures of the small ligands. Statistically valid
models resulted in all cases with good external predictive ability, while eval-
uation of these models gave important insight into the mode of interactions
of the GCPRs with their ligands. This method was successfully applied to
other GPCR receptor subtype analyses without experimental knowledge of
binding site topologies, i.e. melanocortin receptor subtypes [126], serotonin,
dopamine, histamine, adrenergic receptor subtypes [127], and α1a-, α1b- and
α1d -adrenoceptors [125]. This approach combining information from ligands
and receptors provided more detailed information about receptor–ligand in-
teractions and determinants for receptor subtype selectivity than ligand-based
QSAR studies on individual ligand series alone.

These presented examples of quantitative descriptions of protein–ligand
interactions remain to be a very promising area to address affinity and the
selectivity challenge in the future. Those approaches are collectively seen
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as interesting for a more integrated lead optimization on a simultaneous
consideration of numerous balanced descriptors and models for optimization.

4 Addressing Pharmacokinetic Problems

4.1 Prediction of Physicochemical Properties

Pharmacokinetics and toxicity have been identified as important causes of
costly late-stage failures in drug development. Hence, physicochemical as
well as ADMET properties need to be fine-tuned even in the lead optimization
phase. Recently developed in silico approaches will further increase model
predictivity in this area to improve compound design and to focus on the most
promising compounds only. A recent overview on ADME in silico models is
given in Ref. [128].

The physical properties of a compound also determine its pharmacokinetic
and metabolic behavior in the body. Poor biopharmaceutical properties are
often linked to poor aqueous solubility, as summarized by Lipinski [129].
Thermodynamic solubility measurements consider the crystal packing energy
of the solute as also its cavitation and solvation energy. The crystal packing
energy accounts for disruption of the crystal to bring isolated molecules into
the gas phase. The cavitation energy is the energy required to disrupt water
for the creation of a cavity in which the solute is to be hosted. Finally, the
solvation energy is the sum of favorable interactions between solvent and
solute. Solubilization is largely kinetically driven, and the effects of crystal
packing energy and polymorphic crystal forms are lost.

Currently available solubility models based on turbidimetry as well as
nephelometry are not very predictive and are limited in their broad appli-
cability, because they make use of training data from different laboratories
determined under varying experimental conditions [130]. However, access
to many aqueous solubilities measured under standardized conditions is ex-
pected to greatly improve currently available models.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4 DrugScore/CPCA for ligand
selectivity in structure-based design. The
binding sites of serine protease X-ray
structures (factor Xa/thrombin/trypsin)
are profiled using DrugScore for favorable
interactions of six atom types (C.3, O.2,
N.am, C.ar, O.3 and Cl). Individual CPCA
models are derived for each subsite, allowing

the identification of regions for discrimination.
The interpretation for the S2 pocket and
NAPAP as thrombin-selective inhibitor (PDB
1ETS) highlights yellow regions, where
hydrophobic groups increase thrombin
selectivity, while blue regions should favorable
effect factor Xa selectivity. The interpretation
is in good agreement with internal SAR data.
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4.2 Prediction of ADME Properties

Poor intestinal absorption of a potential drug molecule can be related to
poor physicochemical properties and/or poor membrane permeation. Poor
membrane permeation could be due to low paracellular or transcellular per-
meability or the net result of efflux from transporter proteins including MDR1
[P-glycoprotein (P-gp)] or MRP proteins situated in the intestinal membrane.
Cell lines with only one single efflux transporter are currently engineered for
in vitro permeability assays to obtain suitable data for reliable QS models. In
addition, efforts to gain deeper insight into P-gp and the ABC transporter on
a structural basis are ongoing [131, 132].

Discrimination of efflux, active or passive transport is already feasible by
suitable in vitro experiments. For instance, the PAMPA assay detects passive
transport only, while Caco-2 cells include transporters. A comparison between
transport in PAMPA and Caco-2 cells by a calibration plot reveals compounds
with greater or lesser transport in Caco-2 cells than in PAMPA. These com-
pounds should be tested in uptake and efflux transport assays in order to gain
a deeper insight into absorption fate.

Several in silico models for prediction of oral absorption are available [133–
136]. Simple models are based on only few descriptors like log P, log D or
polar surface area (PSA), while they are only applicable if the compounds are
passively absorbed. In case of absorption via active transporters or if efflux is
involved, prediction of absorption is still not successful.

GastroPlus [137] and iDEA [138] are absorption-simulation models based
on in vitro input data like solubility, Caco-2 permeability and others. They
are based on advanced compartmental absorption and transit (ACAT) models
in which physicochemical concepts are incorporated. Both approaches were
compared, and shown to be suitable to predict the rate and extent of human
absorption [139].

Problems related to poor systemic exposure are also tied to volume of
distribution, which is indirectly related to plasma protein binding. Human
plasma contains more than 60 different proteins of which the major com-
ponents are serum albumin (HSA, 60%) and glycosylated proteins (AGP).
Eighteen different variants arising from single amino acid mutations have
been identified, accounting for different protein binding. Allelic variation
makes data consistency difficult and hence modeling of the resultant data less
reliable [140].

Prediction of bioavailability from molecular structure is quite difficult, since
bioavailability depends on absorption and first-pass clearance [141]. By ap-
plying “fuzzy adaptive least squares”, Yoshida and Topliss generated a QSAR
model using log D at pH 7.4 and 6.5 as input for physicochemical properties
and the presence/absence of certain functional groups as structural input.
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They achieved a classification of drugs into one of four bioavailability cate-
gories with an overall accuracy of 60% [142].

First-pass clearance can be tracked to gut stability or metabolism by phase
I and then either direct clearance or clearance of the metabolite by phase
II enzymes or biliary, renal or plasma clearance. Metabolite stability by
phase I enzymes includes inhibition, induction, regiospecificity, lability or
affinity toward several cytochrome P450 enzymes or flavin monooxygenase
(FMO). Inhibition might cause drug–drug interactions and can be related to
competitive, noncompetitive, uncompetitive or mechanistic inhibition [143].
Metabolite-based inhibition of the P450 enzymes also needs to be considered
if toxicity aspects are related to these enzymes. Assays for differentiating
these various types of mechanisms of inhibition are necessary and need to
be applied for a reasonable number of compounds in a series in order to
apply molecular modeling techniques to help in designing proper molecules
with the preferred inhibition properties. Typical fluorimetric assays do not
differentiate substrates that can be competitively bound or those that can
covalently modify and inactivate the P450 enzymes. Only by different ex-
perimental approaches (time, substrate concentration, inhibitor concentration,
NADPH-dependent inhibition) can these types of compounds be identified.
Sometimes, the identification of metabolites helps to decipher the binding
modes in the cytochrome P450 responsible [144]. Despite these problems,
some successful applications of modeling to reduce drug–drug interactions,
especially for CYP2D6 and CYP2C9, have been reported (see below).

Assays for FMO and most phase II enzymes are typically not included
as part of a standard eADMET profile and, therefore, modeling related to
clearance by phase II enzymes has not been attempted, although structural
information for some sulfotransferases is available [145].

In silico methods to predict metabolism are based on QSAR, 3-D-QSAR or
protein and pharmacophore models [146]. Early predictions of metabolism
within a particular compound are now feasible. One approach by Kor-
zekwa and coworkers uses, for example, reaction energetics to develop
a predictive model for CYP3A4-mediated metabolization [147]. Sheridan
and coworkers [148] described a model to predict likely sites of CYP3A4-
mediated metabolism based on the energy necessary to remove a hydrogen
radical from each site, as estimated by AM1 semiempirical molecular orbital
calculations and the surface area exposure of the hydrogen atom. The
development and validation of a general quantitative structure–property
model of metabolic turnover rates in human S9 homogenate based on uniform
biological data of 631 diverse compounds proprietary to GlaxoSmithKline
has also been described [149]. This model was able to classify 83% of test
compounds correctly for their metabolic stability. Other approaches are based
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on databases to predict metabolism, e.g. MetabolExpert (Compudrug), META
(MultiCASE), Meteor (Lhasa) and the MDL database Metabolite [150].

4.3 Prediction of Toxicity

Approximately 20–40% of drug failures are attributed to toxicity problems.
Hence, in silico predictive toxicology tools are necessary to reduce attrition.
Most of the current software packages available deal with carcinogenicity and
mutagenicity [151], and are based on available public domain toxicological
data. In silico tools for other important end-points such as hepatotoxicity, QT
prolongation [152] and phospholipidosis are emerging, and are expected to
improve the design and optimization of novel compounds.

4.4 Physicochemical and ADMET Property-based Design

Property-based design supplements successful activity-based strategies to
produce drug candidates [153]. Property screening in parallel with activity
screening allows medicinal chemists to simultaneously optimize both bio-
logical activity and drug-like properties, which is a widely accepted and
implemented approach within the pharmaceutical industry. ADMET filters
are now applied even at very early stages of drug design, e.g. in virtual
screening. The first generation of predictive ADMET tools allows focusing
on compounds with a high potential of the required pharmacokinetic and
safety criteria, and should reduce compound attrition. However, all currently
available models are based on a limited set of data and are therefore restricted
in their applicability. Hence, a continuous improvement and refinement of
these models is required by taking into account more data that is also of high
quality. Thereby, ADME might be considered as “automated decision-making
engine” in the early discovery paradigm and as ADME in the regulatory
phase [154].

5 ADME/Antitarget Models for Lead Optimization

5.1 Global ADME Models for Intestinal Absorption and Protein Binding

This section will provide an overview of ADME models from our group
to illustrate our approach to building predictive models on structurally di-
verse training sets. Data sets for intestinal human absorption and human
serum albumin binding are discussed, while models for other relevant ADME
properties have also been obtained. Those models, however, do not stand
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alone, but are used in combination with those models tailored for affinity and
selectivity in the frame of multidimensional lead optimization.

Recently, a set of alignment-free 3-D descriptors named VolSurf was de-
veloped by Cruciani and coworkers [155], referring to molecular properties
extracted from 3-D molecular interaction fields of various probe atoms. Vol-
Surf transforms the information present in GRID-derived [113] 3-D fields
for particular probes into quantitative descriptors (Figure 5), which carry
information related to pharmacokinetic properties like polarity, hydrogen
bonding, lipophilicity, size, polarizability and others. The descriptors are
easy to understand and to interpret, thus providing guidelines for chemical
optimization after a linear model has been established. In most cases, the
GRID water, hydrophobic (DRY) and carbonyl oxygen probes were utilized,

Figure 5 Computation of VolSurf descriptors [155, 156] derived
from GRID molecular interaction fields. Interactions of the example
molecule with a water and dry probe at different contour levels are
used to compute a vector of 72 volume-, size- and surface-based
descriptors.
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Figure 6 Correlation of VolSurf descriptors
with human intestinal absorption for 169
drug molecules. (A) Predicted versus
experimental percent HIA (human intestinal
absorption) from the final PLS model with

q2: 0.662, r2: 0.709 and 4 PLS components.
(B) PLS loadings for a four-component
model showing the importance of individual
VolSurf descriptors to the prediction of human
intestinal absorption.

as interaction of molecules with biological membranes is mediated by surface
properties like shape, electrostatic forces, hydrogen bonding and hydropho-
bicity.

These descriptors have been reported in the literature to correlate with
bioavailability, blood–brain partitioning, membrane transport and other prop-
erties [156–159]. They are also correlated to relevant physicochemical prop-
erties, and were successfully applied to many internal and public data. For
example, we derived PLS models [160] using 72 VolSurf descriptors for HSA
binding using 95 drugs on a data set from Colmenarejo and coworkers [161]
(r2 = 0.76, q2 = 0.67, 6 PLS components) and for human intestinal absorption
using data of 169 drugs compiled by Zhao and coworkers [133] (r2 = 0.71,
q2 = 0.66, 4 PLS components). Those models were obtained using a canonical
3-D structure of neutral molecules.

As an example, the correlation of VolSurf descriptors to the human in-
testinal absorption for 169 drugs is shown in Figure 6. The conclusions for
factors influencing permeability and absorption are in agreement with earlier
findings, pointing to the positive impact of hydrophobicity, integy moment,
shape and hydrogen bonding, while polarity derived using the GRID water
and carbonyl O probes as well as the capacity factors from polar interactions
on the entire surface are detrimental for intestinal absorption. However,
because of the nature of these descriptors, this approach led to an enhanced
understanding of the physicochemical requirements for a pharmacokinetic
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Figure 7 Correlation of VolSurf descriptors
with HSA binding affinity. Two submodels
indicate their predictive ability to external
test sets. Ten compounds were removed
by either experimental design on PCA

scores (A) or literature proposals (B). Model
A: q2: 0.668, r2: 0.763, 6 PLS components,
SDEP for prediction 0.223 for 10 cpds. Model
B: q2: 0.646, r2: 0.745, 6 PLS components,
SDEP for prediction 0.274 for 10 cpd.

effect. For example, the balance between lipophilic and hydrophilic parts in
combination with size, volume and other effects guides the design of new
compounds.

The interpretation for HSA binding affinity is also in accord with literature
findings and X-ray information on warfarin binding to the first drug binding
site in HSA [162]. For instance, hydrophobicity, volume, shape and molecular
weight increase HSA binding, while factors like polarity, integy moment, hy-
drogen bonding and favorable interactions to water are detrimental. Typically,
hydrophobicity and geometrical factors like shape are reported as essential
in the literature [161]. These models are always validated by external test
data sets, as is schematically shown in Figure 7, where 10 compounds have
been removed from the HSA training data set by two different approaches
and predicted using two only slightly differing models. In both cases, the
agreement between experiment and prediction was very good.

Alifrangis and coworkers [158] reported a structure–property model for
membrane partitioning for 20 peptides with data from two chromatographic
systems with phospholipides as the stationary phase, immobilized artificial
membranes (IAM) and immobilized membrane chromatography (ILC). The
relationship between these measures and three different sets of calculated de-
scriptors (molecular surface area, MolSurf and VolSurf) were analyzed using
PLS, showing that VolSurf-derived models are superior to both others [158].
In particular, the VolSurf critical packing descriptor to describe interactions
of amphiphilic molecules with membranes is important to explain the mem-
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brane partitioning ability. This agrees with internal VolSurf models derived
for PAMPA membrane transport [163] to understand passive transcellular
transport across membranes. One of our internal models based on 29 com-
pounds characterized by immobilized artificial membrane chromatography
by Salminen and coworkers [164] shows r2 = 0.81 and q2 = 0.70 for two
PLS components derived using VolSurf descriptors. This is one of the rare
examples where ionized starting molecules led to slightly better PLS statistics,
while the general chemical interpretation was not affected.

VolSurf was also successfully applied in the literature to predict absorption
properties [156] from experimental drug permeability data of 55 compounds
[165] in Caco-2 cells (a human intestinal epithelial cell line derived from a
colorectal carcinoma) and Madin-Darby canine kidney (MDCK) cell monolay-
ers. In this interesting case, it was shown that models including counterions
for charged molecules clearly show significantly better quality and overall
performance. The final model was also able to correctly predict, to a great
extent, the relative ranking of molecules from another Caco-2 permeability
study by Yazdanian and coworkers [166].

5.2 Selected Examples to Address ADME/Toxicology Antitargets

For ADME and toxicology properties, which are related to a particular target
protein, approaches similar to those for affinity and selectivity are used in our
group, while most of the ligand-based studies have recently been augmented
by X-ray structures and/or validated homology models. Again, both ap-
proaches led to significant results in combination, when applied in the context
of lead optimization in internal projects.

The K+ channel encoded by the human ether-à-go-go-related gene (hERG)
is one of the many ion channels that are crucial for normal action potential
repolarization in cardiac myocytes [152]. This hERG channel is connected
to drug-induced long QT syndrome causing cardiac toxicity of a wide range
of pharmaceutical agents. This undesirable side-effect for noncardiac drugs
has caused recent withdrawals of drugs from the market and stimulated
many studies to establish a structural hypothesis for hERG and a structure–
activity relationship of hERG channel blockers. Given the wide range of
chemical structures that act as hERG inhibitors and the observation that dif-
ferent compounds are reported to bind to different states (open or closed)
of the channel, multiple binding sites have been proposed [152]. On the
basis of a homology model of the closed form of the tetrameric pore derived
from the X-ray structure of the bacterial K+ channel KcsA [167] combined
with site-directed mutagenesis studies, several amino acids were identified as
important for high-affinity binding of the methansulfonanilide MK-499 and
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thus provided a structural basis for drug-induced long QT syndrome [168].
Interestingly, two aromatic residues, Tyr652 and Phe656, lining the inner pore
as a unique structural motif in hERG compared to other K+ channels (except
EAG) are proposed to interact with aromatic groups in ligands.

Perlstein and coworkers [169] describe the status of previously developed
hERG structure–activity in silico models. While some of the models are in-
tended to be used as early filters in compound design [170], only the 3-D-
QSAR studies of Cavalli and coworkers [171] and the combination [172, 173]
of 3-D-QSAR from consistent biological data with homology models of the
closed and open form of hERG built from the low-resolution crystal structure
of the MthK K+ channel [174] allow us to understand structural reasons for
hERG blocking, and thus provide sufficient details to apply them during the
multidimensional lead optimization of a candidate molecule. These models
have been internally derived from consistent biological data on literature
compounds and close analogs, while they are constantly updated using novel
molecules and biological data from lead optimization programs. Many inter-
nal applications have proven the value in using such a combined approach.
The essential elements of the hERG pharmacophore, the 3-D-QSAR and the
homology model are as follows. (i) The hydrophobic feature optimally con-
sists of an aromatic group that is capable of engaging in π-stacking with
Phe656. Optionally, a second aromatic or hydrophobic group may contact
an additional Phe656 side-chain. (ii) The basic nitrogen appears to undergo
a π-cation interaction with Tyr652. (iii) The pore diameter and depth of the
selectivity loop relative to the intracellular opening, act as constraints on the
conformation-dependent inhibitor dimensions [172]. However, undesirable
structural features for hERG are not sufficient in the context of a lead optimiza-
tion project. It is important to understand which variations influence hERG
binding, but are still tolerated by the desired biological target. Both properties
were used as lead optimization parameters by Friesen and coworkers [175] for
PDE-4 inhibitors in a systematic approach to identify structural features that
only affect hERG binding.

Toxicity caused by drug–drug interaction also resulted in withdrawal of
several drugs from the market. Compounds that are potent inhibitors of
the major metabolizing enzymes can potentially affect the metabolism of
other molecules and thus lead to toxicity. Early information on cytochrome
P450 inhibition thus is useful to develop structure–activity relationships and
minimize the potential toxicity of development candidates. Inhibition of CYPs
can be substrate dependent, which especially is reported for CYP3A4 with
a very large active site that is able to bind multiple substrates in different
orientations [176]. The growing knowledge about CYP substrates has in-
creased the understanding of active-site requirements either by protein- or
ligand-oriented studies [177]. However, understanding the nature of substrate
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specificity of each CYP requires knowledge of the interaction of drugs with
each CYP active site. A detailed analysis of substrate-binding affinities and
selectivities for the CYP2 family is given elsewhere [118, 178].

Pharmacophore-based models for many cytochrome P450 isoforms have
been reported for CYP2B6 substrates [179], CYP3A4 substrates [180] and
inhibitors [181], CYP2C9 inhibitors [182], and CYP2D6 inhibitors [183]. A 3-D-
QSAR model for CYP2C9 inhibitors for prediction of drug–drug interactions
was reported by Rao and coworkers [184] and compared with appropriate ho-
mology models. Afzelius and coworkers [185] used alignment-independent
GRIND descriptors implemented in the program Almond [186] to obtain
qualitative and quantitative predictions of CYP2C9 inhibitors for a series of
structurally very diverse molecules. De Groot and coworkers reported a
combined protein and pharmacophore model approach to understand and
predict CYP2D6-mediated drug metabolism [187, 188]. A model for 40 dif-
ferent CYP2D6 substrates (hydroxylation, O-demethylation) was obtained by
combination of pharmacophores, protein models and molecular orbital calcu-
lations. This model was extended by a second pharmacophore explaining 14
less-common N-dealkylation transformations. The final model was in agree-
ment with additional substrate and site-directed mutagenesis data. Zamora
and coworkers developed an interesting novel approach named MetaSite to
predict the metabolization site of substrates in CYP2C9 on the basis of a
combined application of alignment-independent descriptors to describe the
protein binding site taken from a CYP2C9 homology model and a distance-
based representation of individual substrates [189].

The recently solved X-ray structures of rabbit microsomal CYP2C5 in com-
plex with diclofenac [190] and a sulfaphanazole derivative [191] provided
additional evidence on how the molecular recognition of structurally diverse
substrates takes place. Comparisons of the complex with apo CYP2C5 [119]
indicates that the protein closes around the substrate and prevents open access
of water from bulk solvent to heme Fe. Multiple substrate-binding models
of the sulfaphenazole derivative are in agreement with the experimentally
derived ligand electron density maps and the finding that the substrate is
not tightly constrained in the active site. For diclofenac, a single binding
mode is consistent with the observation of a highly regiospecific hydroxy-
lation at the distal ring in 4′ position. This large active site and the striking
enzyme flexibility upon binding of both ligands underlines the ability of
the drug-metabolizing enzymes to work on structurally diverse substrates of
different sizes.

This work was complemented by the X-ray structure of human CYP2C9
in complex with warfarin by Williams and coworkers [192] (Figure 8). This
report provides the first human CYP protein structure, while the warfarin-
binding mode reveals previously unanticipated interactions in a new binding
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Figure 8 Experimental ligand interactions
with the cytochrome P450 2C family. (A) X-
ray structure of the sulfaphenazole derivate
DMZ in rabbit CYP2C5 at 2.3-Å resolution
(PDB 1N6B) from Wester and coworkers
[191]. Only one of the two ligand orientations
for DMZ in accord with electron density is
shown placing the benzylic methyl group

4.4 Å from the heme Fe. (B) X-ray structure
of S-warfarin in human CYP2C9 at 2.55-Å
resolution (PDB 1OG5) from Williams and
coworkers [192]. The substrate is situated
in a predominantly hydrophobic pocket.
This binding mode places the 6- and 7-
hydroxylation sites 10 Å from the iron (arrow).

pocket. From the binding mode, the authors conclude that CYP2C9 may
undergo an allosteric mechanism during its function and that two molecules
for warfarin could be accommodated in the very large CYP active site. Col-
lectively, these X-ray structures provide insights into relevant protein–ligand
interactions for particular human CYP subfamilies, and thus can be used for
docking studies and building scaffold-specific 3-D-QSAR models driven by a
protein-derived alignment rule. Those models provide guidelines on where to
optimize a molecule with a CYP liability. Hence, a higher-resolution picture
of drug–CYP interactions begins to emerge for some subfamilies, allowing the
use of this information as one optimization parameter in multidimensional
optimization projects.
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6 Integrated Approach

6.1 Strategy and Risk Assessment

While previous sections discussed computational approaches towards the
understanding and analysis of individual properties like affinity, selectivity
and ADME parameters, here we show how those tools should be combined
to arrive at a lead optimization strategy that is able to manage and design
for multiple properties in lead optimization cycles. While in early phases of
discovery without knowledge of multiple analogs for a particular hit, “global”
models for ADME properties are applied for library design and selection of
promising hits, this focus is shifted toward “local” models based on informa-
tion about analogs during the subsequent optimization phase. The lack of
consistent publicly available data on properties like oral absorption prompted
us to optimize pharmacokinetic properties based on consistent biological data
for one series.

Any significant improvement of the lead optimization process requires pre-
dictive in vitro assays, models and computations for ADME and toxicological
properties to be incorporated into the iterative cycle of compound design
and synthesis. In this manner, compounds can be optimized in parallel by
a multidimensional optimization strategy, which integrates the evaluation
and optimization for affinity, selectivity, physicochemical and ADME prop-
erties. This approach, however, requires a proper experimental design of
compounds related to a specific chemotype prior to any synthesis. Such a
design should take into account a broad coverage of the chemotype-specific
chemical space. The reliability of any subsequent statistical model strongly
depends on the information content of the training set data. If experiments
are planned inefficiently, resulting in higher numbers of experiments, less
information and sometimes misleading data are generated. The systematic
variation of one factor at a time is only appropriate if the response surface is
not influenced by interactions between factors, while cooperative effects may
require advanced design approaches [193]. Thereby, appropriate chemotype-
specific local models can be built and subsequently applied in the design of
new compounds.

Needless to say that reliable experimental data based on a single mechanism
should be preferred. Such single-mechanism data provide not only a deeper
understanding of the underlying molecular mechanisms, but also allow us
to derive better, less noisy and thus more predictive in silico models with
information on directions to be taken for further design. Furthermore, this
approach allows early identification of properties to be improved in lead
optimization and, in addition, whether two, three or more variables can be
optimized in parallel. For example, if the optimization of the biological
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properties Y1 and Y2 requires increasing hydrophobicity for better activity,
while this descriptor is detrimental for the improvement of a third property
Y3, a detailed statistical assessment is necessary whether it is possible at the
end to optimize all three dependent variables in parallel to derive a compound
with a suitable target product profile.

In particular, parallel optimization of affinity/selectivity and pharmacoki-
netic properties are difficult to achieve, especially if several pharmacokinetic
parameters need to be optimized (e.g. absorption and volume of distribu-
tion). The number of variables to be optimized as well as their optimization
potential should always be assessed in order to deal with a minimal set of
properties to work with. It is our experience in multiple lead optimization
projects that as more variables need to be addressed in parallel, the more
difficult, time consuming and exhaustive a particular lead optimization will
be. In general, the probability of a successful lead optimization of a certain
chemotype resulting in a development candidate decreases substantially with

Figure 9 Individual components of
multidimensional optimization. This approach
requires experimental compound profiling
against key properties, which should be
performed on a designed compound subset
to maximize information with a minimum
number of molecules. These data are used

to derive models for key properties, which
are applied during the next design cycle.
The results then led to augmented models.
The process is characterized by a tight
integration of in vitro and in silico tools for
profiling compound series to guide chemical
optimization.
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Figure 10 Example for multidimensional optimization on relevant
properties during the lead optimization phase from leads to a
development candidate. After some iteration, compound properties
are either improved or show no further optimization potential.

the need to improve more than three properties in order to fulfill the target
property profile.

This requires risk estimation by an early assessment of the optimization
potential for any novel chemistry series in order to obtain early information
on ADME and antitarget properties as well as potential toxicity issues, which
are known to become increasingly important for drug failures. Unfortunately,
only a few ADME antitargets have been addressed already (e.g. hERG activity,
see above), while others need to be improved. Toxicity, however, is quite
often not related to a single mechanism and therefore very difficult to address
[194]. Certainly, more reliable and more predictive SARs for target affinity
as well as for antitarget and pharmacokinetic properties will strengthen the
multidimensional optimization of compounds. The integration of these tools
into connected processes will certainly raise modern drug discovery to a
new level (Figure 9).

6.2 Integration

The ideal case during lead optimization is to use a consistent set of descrip-
tors for multiple biological variables. This concept is followed wherever
applicable, although this is not always possible from a practical point of
view. If such a single set of informative descriptors, e.g. VolSurf, to model
binding affinity in structure- or ligand-based design and ADMET properties
at the same time [21] is used to build appropriate models for all dependent
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(Y) variables, an early assessment of the optimization potential is feasible.
The approach described by Zamora and coworkers [21] is the promising
integration of both binding affinity and passive pharmacokinetic properties
on the descriptor level.

However, if different models and descriptors are used and applied, certain
criteria, decision trees or scoring functions need to be used to deal with the
multidimensional optimization. Decision trees refer to approaches similar in
spirit to the well-established “Rule of Five” and are often project-specific vari-
ations and improvements thereof. The chemical meaning and interpretability
of the descriptors is essential here. Scoring models, as a slightly different
approach, condense each in silico estimated compound property into a range
between 0 and 1 based on project team-specific thresholds. Some degree
of uncertainty could be considered by introducing a linear increase in this
score contribution from 0 (undesirable) to 1 (desirable) within a narrow area
around the threshold. Those individual scores are compiled into a weighted
sum and used to evaluate novel synthesis proposals, often biased by the
knowledge of the protein 3-D structure (Figure 10). Step-by-step application
of decision trees or a set of single models, however, might ultimately sort
out almost all compounds depending on the sequence used and are therefore
less valuable. Scoring functions, however, offer the opportunity to fine-tune
the function in terms of the most important variables without neglecting
any of the other properties. The thoughtful integration of in silico tools in
this multidimensional optimization process will certainly improve candidate
quality in the next decade.

6.3 Literature and Aventis Examples on Aspects of Multidimensional
Optimization

Although the optimization of promising lead compounds toward clinical can-
didates is one of the essential skills within the pharmaceutical industry, there
are not many reports on the entire multidimensional optimization strategy
or selected aspects. Here, we discuss examples from the medicinal chemistry
literature and projects at Aventis in which either the chosen optimization strat-
egy or the computational tools are interesting and agree with the proposed
multidimensional optimization strategy and its requirements. Important pre-
requisites for lead optimization that are essential to successfully manage a
drug discovery program include the early assessment of the optimization
potential for a lead series, the risk assessment of how many parameters have
to be optimized in a multidimensional context while all the others should
remain in the positive range, where they have been from the beginning.
The literature reports address one or only a few additional parameters in
addition to biological affinity at the target enzyme to progress a series. This
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could be seen as typical examples for one single optimization cycle within
multidimensional lead optimization.

Linusson and coworkers at AstraZeneca described the application of sta-
tistical molecular design for planning and analysis of a parallel synthesis
lead optimization library of thrombin inhibitors [195]. This structurally well-
characterized serine protease is involved in the blood coagulation cascade
and was targeted by many industrial drug discovery projects. The report
described how building blocks were selected for a central scaffold with three
vectors directed toward individual thrombin subpockets S1, S2 and S4. This
was done on the basis of a quantitative statistical analysis of known experi-
mental information such as biological affinities for related thrombin inhibitors
at AstraZeneca. The focus of the planned library was to replace benzami-
dine, which provides important polar interactions within the protease S1
pocket, while it has been recognized for a while that benzamidine substituents
are detrimental for oral bioavailability, mainly due to their low intestinal
membrane permeability, which could be attributed to their high pKa value.
Hence, parameters like pKa and membrane permeability are seen as equally
important in the planning phase for multidimensional optimization. There
are many reports on benzamidine-based thrombin inhibitors, which are all
end-points in lead optimization, and lead to potent inhibitors in terms of
affinity, selectivity and anticoagulation effect, while significant oral bioavail-
ability could not be demonstrated, except for prodrugs like ximelagatran
[196]. Considering this property for a development candidate very late in
the discovery phase, however, often results in a significant loss of affinity
when replacing the S1 benzamidine. These considerations led the authors
to include topologically similar S1 directed substituents with a potential for
lower pKa into their statistical selection procedure of appropriate building
blocks. The resulting parallel synthesis library was analyzed with respect to
affinity, membrane permeability, pKa and trypsin selectivity. To this end, the
authors derived multivariate QSAR models for all key biological data (affinity,
selectivity, pKa, permeability). As the library has been carefully designed,
the final models, although only based on a limited series of molecules, are
significant and predictive, and might guide the direction for further opti-
mization. The SAR information for key properties, which was only found
using statistical molecular design in combination with multivariate analysis,
could now be applied to focus a second follow-up library. This interesting
study combines the concepts of multidimensional optimization and suggests
statistical approaches to obtain informative models. As this study presents
only one cycle in lead optimization, it is only a “snapshot” in the search for a
development candidate.

Sugano and coworkers studied the membrane permeation of 51 benzamidine-
based thrombin inhibitors in a rat everted sac permeability model [197]. They
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reported significant membrane permeabilities in this in vitro model, which
they attributed to passive paracellular transport – a different absorption
mechanism to transcellular permeability. On the basis of their evaluation and
our internal predictive VolSurf model [160] for this series (r2: 0.81, q2: 0.60,
4 PLS components), it can be concluded that factors like size and shape,
which had previously been reported to affect paracellular permeability, are
indeed important in the VolSurf PLS model to explain the local structure–
permeability relationship of one particular scaffold. Hence, local statistical
models provide a qualitative ranking of candidates and thus are valuable for
optimization of pharmaceutically relevant compounds, especially if combined
with additional models to understand affinity, selectivity or any particular
pharmacokinetic behavior.

Burgey and coworkers at Merck described their approach toward metabolism-
directed optimization of 3-aminopyrazinone-based thrombin inhibitors [198]
to result in an orally bioavailable series. Several research groups have now
successfully replaced the benzamidine moiety in S1 by less-basic or non-
basic substituents with different protein–ligand interactions to overcome
the specific benzamidine problems described above, resulting in series with
increased oral bioavailability and pharmacokinetics. Starting from an amino-
pyrazinone–acetamide scaffold with moderately basic 2-aminopyridine as an
S1-directed benzamidine mimetic (Figure 11), they discovered three main sites
of metabolism, which they related to the observed insufficient pharmacoki-
netic behavior. The optimization was dictated by metabolic considerations in
concert with required target affinity. On the basis of the available experimental
information on binding modes for this chemotype and the detailed drug
metabolism and pharmacokinetic studies to unravel the mechanistic origin of
metabolic instability, they were able to design a series of metabolically more
stable variations of the original lead structure with similar enzyme affinity and
selectivity. The introduction of metabolically more stable substituents at this
scaffold led to a final compound with improved pharmacokinetic properties.
Two key observations are essential in this and other successful studies: (i) the
careful balance of decreasing thrombin affinity by metabolically more stable
substitutions in one subpocket by compensation within another pocket, which
could have been achieved only using the wealth of structural knowledge and
understanding of thrombin protein–ligand interactions, and (ii) the careful
correlation of in vivo pharmacokinetic observations to their in vitro origin and
the subsequent monitoring of each metabolically less labile substituent in
appropriate in vivo dog pharmacokinetic studies.

In a second contribution from the same group, a subsequent optimiza-
tion cycle for the previous scaffold was directed toward improving solubility
while reducing the number of chemical steps in the overall synthesis of S1
replacements. The readily available S1 directed building blocks then led to
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Figure 11 Selected examples for lead optimization under
consideration of multiple parameters simultaneously: (A) thrombin
inhibitors, (B) p38 mitogen-activated protein (MAP) kinase inhibitors
and (C) MMP-8 inhibitors.

establish the structure–activity relationships of three key parameters besides
thrombin affinity, i.e. oral bioavailability, half-life and human liver microsome
stability. Hence, the optimization strategy of the S1 subpocket was again
guided by pharmacokinetic considerations, which were related by in vitro
solubility assays. Finally, the introduction of S4 pyridine N-oxides with
increased solubility led to a new orally bioavailable series. An expedited
investigation of the P1 SAR incorporating several S1 N-benzylamides with
respect to oral bioavailability, plasma half-life and human liver microsome
stability subsequently revealed an interesting candidate for advanced phar-
macological evaluation after careful monitoring and optimization of a variety
of affinity, selectivity, physicochemical and pharmacokinetic parameters.

Hasegawa and coworkers from Roche [199] described a local model to
understand structure–pharmacokinetic relationships for 107 benzofurans as
N-myristoyltransferase inhibitors, based on cassette-dosing pharmacokinetic
studies and rat elimination half-lifes as dependent variables. They obtained a
relatively simple, yet effective, statistical model, which they describe as useful
and which gives a direction for designing new inhibitors having good phar-
macokinetic profiles. Similar local QSAR models for relevant pharmacokinetic
properties could be used in combination with affinity prediction models or
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docking and scoring calculations, if applicable, to select novel synthesis can-
didates from a series of feasible proposals in a multidimensional fashion.

McKenna and coworkers at Aventis described the design and synthesis of
a solid-phase library to optimize a pyridine-imidazole-based p38 MAP kinase
inhibitor toward target affinity and rat oral bioavailability [200]. The authors
describe a computational approach toward the design of a library with 570
analogs on two attachment points. Those are selected using a Monte Carlo
monomer selection (MCMS) strategy on the basis of combinatorial synthetic
efficiency on one hand, while maximizing the estimated bioavailability, as
considered by in silico descriptors like PSA and a modified “Rule of Five”
definition. MCMS applies a scoring function controlled by a series of weights
for individual components to drive monomer selection toward solutions that
satisfy the design constraints [201]. From this focused lead-optimization
library, 10 relatively structurally diverse compounds with improved potency
and acceptable bioavailability and pharmacokinetic parameters were rapidly
identified as follow-up to the previous candidate.

In their search for nonbenzamidine-based inhibitors of the serine protease
factor Xa, Choi-Sledeski and coworkers [202] described the discovery of an
orally efficacious inhibitor that incorporates a neutral substituent directed
toward the protease S1 pocket as a result of an optimization strategy guided
by structure-based rational design and a qualitative consideration of bioavail-
ability. The conflicting and nonconclusive SARs of initial derivatives on
that scaffold could only be resolved by X-ray structure analysis of a rele-
vant protein–ligand complex [64]. The X-ray structure revealed a strong
preference for a neutral substituent directed toward this S1 pocket for the
explored ketopiperazine scaffold, which offered a new perspective on de-
signing nonbasic novel factor Xa inhibitors with increased potential for oral
bioavailability. This striking preference for neutral S1 substituents was earlier
reported for bioavailable thrombin inhibitors as well [203]. By minimizing
the size and lipophilicity of the S4-directed substituents and by incorporating
hydrogen-bonding groups on the N-terminus or on the 2-position of the
S1-directed ring system, a series of active thrombin inhibitors with good
bioavailability profiles was reported that showed a unique binding mode after
X-ray structure analysis in thrombin. Both optimizations on serine protease
inhibitors were supported by structure-based design techniques, while the
latter, including favorable protein–ligand interactions, alone is not sufficient
to arrive at bioavailable inhibitors. Here, the careful analysis of available
X-ray structures helps to identify substituent positions that will not affect
enzyme activity, but will modulate other properties favorably. Replacing a
high-affinity substituent requires, on the other hand, a careful monitoring of
the loss of affinity, possible substituents in other areas that might compensate
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for this loss and the favorable change in the desired ADME or pharmacoki-
netic property.

A similar situation was experienced in the search for potent and bioavail-
able inhibitors of the matrix metalloproteinase MMP-8 [99, 204]. For the
explored tetrahydroisoquinoline scaffold, hydroxamic acids for zinc bind-
ing in 3-position are essential for matrix metalloproteinase affinity in early
inhibitors, while those showed insufficient pharmacokinetic properties and
low oral bioavailability. Driven by X-ray and 3-D-QSAR, alternative zinc-
binding groups like carboxylates were investigated, while the expected loss
in binding affinity could be compensated by optimally filling the proteinase
S1′ pocket close to the catalytic zinc. The design and SAR for this series is in
good agreement with those protein requirements and, moreover, monitored
multiple properties including selectivity against the undesirable MMP-1 [204].
For several MMP-8 inhibitors, the oral bioavailability from rabbit per os studies
could be correlated again to VolSurf descriptors (r2: 0.65, q2: 0.42, 4 PLS
components), which led to a semiquantitative model [160], used in conjunc-
tion with structure-based docking and scoring, 3-D-QSAR-based affinity and
selectivity predictions, and in silico ADME models to estimate membrane per-
meability, solubility and other key properties for the optimization process in
this series (Figure 12). Hence, in this as well as in other series, multiple models
are collectively utilized to rank and prioritize novel synthesis candidates, and
focus virtual libraries.

In the search for bile-acid resorption inhibitors (BARI), a predictive 3-D-
QSAR pharmacophore model for the ileal Na+/bile acid cotransporter was
derived, which enhanced the understanding of binding and transport prop-
erties [205]. This model was then also successfully explored to search for
potential substitution sites, which are not relevant for the SAR of this series,
while they allow the addition of additional substituents to minimize the oral
uptake of inhibitors.

The approach discussed to use VolSurf derived in silico models to under-
stand structure–pharmacokinetic relationships for pharmacokinetic proper-
ties was also applied to one series of selective cardiac KATP channel block-
ers [160]. It was found that compounds fulfilling the predefined selectiv-
ity profile exhibit only less-optimal pharmacokinetic properties because of
a short plasma mean residential time (MRT). Consequently, the MRT for 28
compounds from rabbit intravenous studies for one series was used as the
dependent variable to derive a VolSurf PLS model in addition to ligand-
affinity SAR data. The chemical interpretation of the VolSurf model (r2 = 0.89,
q2 = 0.76, 3 PLS components) reveals hydrophobic interactions and the
hydrophobic integy moment to be strongly correlated to MRT. This model
was then used to prioritize a novel set of promising synthesis candidates from
a virtual library of potential products accessible via parallel synthesis.
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Figure 12 VolSurf model to correlate 49
matrix metalloproteinase inhibitors with
different zinc-binding functionalities to rabbit
oral bioavailability for metabolically stable
compounds. (A) Semiquantitative PLS model
(q2: 0.424, r2: 0.646, 4 PLS components)
to rank novel synthesis candidates. Main
factors influencing absorption, i.e. lower

polarity, capacity factors and increased
hydrophobicity, are in agreement with global
models for human intestinal absorption.
(B) Distribution of polar and hydrophobic
surfaces for two molecules with low
(0981) and higher (2290) rabbit AUC from
oral pharmacokinetic studies.
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Those examples illustrate typical workflows, i.e. the use of a few predictive
models in parallel to rank order very focused synthesis proposals that have
been derived on the basis of chemical feasibility and ligand SAR data. Each
iteration and biological testing of a well-defined, information-rich set of com-
pounds enriches our knowledge about the problem and is, of course, used
to update the statistical models in order to guide the next optimization cycle.
On the other hand, it might also happen that models for different properties
reveal that key parameters influence different properties in opposite direc-
tions. This indicates that optimization might be extremely difficult, if not
impossible, because of the very narrow balance and possibilities in the design
of novel analogs.

7 Conclusions

Optimization of early lead compounds into promising drug candidates for
pharmaceutical development is one of the key technologies in today’s drug
discovery efforts. Several medicinal chemistry approaches have been suc-
cessfully applied to this problem, while the flexible integration of approaches
to form an adaptive project team strategy is essential. The high complexity
of this task prompts for an early identification of critical success factors and
a risk assessment before individual series are progressed. High throughput
alone, in this phase, does not provide a solution, as only the scientific under-
standing of critical success factors will enable a project team to focus on the
most promising series. Therefore, a clear understanding of factors controlling
affinity, selectivity, ADME and physicochemical compound properties of lead
structures is essential to direct the medicinal chemistry strategies.

This chapter discussed approaches to simultaneously consider multiple
aspects in optimization with the challenging goal to improve the efficiency of
the drug discovery process. Some literature case studies on lead optimization
illustrate the value of tight integration of parameters by means of simultane-
ous optimization. Data integration is mandatory for reusing the knowledge
in subsequent design cycles toward an enhanced lead optimization and drug
candidate selection process. Typical problems are, in particular, the improve-
ment of affinity at the desired target, sufficient selectivity against closely
related proteins, and ADME and toxicology antitargets (e.g. hERG). Fur-
thermore, a parallel optimization of compound properties toward favorable
physicochemical and related ADME/pharmacokinetic properties is essential.
In the end, it is important to realize that no single approach will solve all
problems for a series, but the challenge lies in the effective integration of
these concepts depending on the individual problem. Only flexible and data-
driven integration of those tools will enable drug discovery project teams to
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process interesting lead series and cancel less promising ones early and less
cost-intensively.

The paradigm shift from critical activities from later drug development to
earlier discovery phases some years ago has effectively led to a change in lead
optimization and added a new dimension of complexity, while it is envisioned
that from a multidimensional, data-driven process more suitable candidates
in accord with the therapeutic target product profiles may emerge for the
treatment of currently unmet medical needs.
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Modeling and Simulating Metabolic Networks
Stefan Schuster and David Fell

1 Introduction

This chapter gives an overview of various modeling and simulation tech-
niques in the theoretical description of metabolic (biochemical) networks.
While the term “modeling” refers to the establishment of a formal represen-
tation of the system or process under study, “simulation” stands for the nu-
merical calculations performed with the model. As most biochemical systems
subsist in stable stationary states, the modeling of such states is central to the
field. However, oscillatory and other dynamics can also be modeled. First, the
fundamentals are outlined: stoichiometry, balance equations and enzyme ki-
netics. Thereafter, the principles of metabolic pathway analysis are presented.
Basic concepts such as conservation relations, nullspace, elementary modes
and extreme pathways are explained. The added value of elementary-modes
analysis by avoiding incorrect interpretations from graphic representations
and by deducing novel interpretations of metabolism is illustrated by ex-
amples from carbon metabolism, e.g. in Crassulacean plants. Methods for
constructing and using dynamic models of metabolic networks are outlined.
Such models can often be simplified by the quasi-equilibrium and quasi-
steady-state approximations. As an example of medium-scale analysis, we
discuss the modeling of red blood cell metabolism. An outlook on current
trends in the field concludes the chapter.
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2 Fundamentals

2.1 Motivation

The phenomenon of life is tightly coupled to chemical reactions – autotrophic
organisms fix CO2 and convert it to organic compounds, while heterotrophic
organisms degrade some of the organic compounds of their food to obtain
energy and convert other constituents of the food into organism-specific com-
pounds. At the level of living cells, this chemical transformation of substances
is called metabolism (from the Greek: meta = within and bole = throwing).
Most biochemical reactions are catalyzed by specific proteins – enzymes. Tech-
nologically relevant metabolic processes include the synthesis of antibiotics,
dyes and perfumes, and the production of ethanol by yeast and of amino acids
(in large quantities for food supplements) by bacteria. The understanding
of these processes is, hence, of great economic importance. Moreover, it
has medical relevance because many inherited single-gene diseases result
from complete or partial enzyme deficiencies. For example, the complete
lack of the enzyme phenylalanine 4-monooxygenase prevents formation of
the amino acid tyrosine from the amino acid phenylalanine. This causes
the disease phenylketonuria implying mental retardation, due to excessive
accumulation of phenylalanine (e.g. Ref. [138]). The disease can be treated by
a life-long, nearly phenylalanine-free diet. Partial lack of one or more enzymes
causes the complex group of diseases known as mitochondrial cytopathies,
one of which, for example, leads to progressive weakness and degeneration
of skeletal muscles (ragged red muscle fiber disease). There are only palliative
treatments for these disorders (e.g. Ref. [75]).

The metabolism in living cells is a very complex system due to the large
number of reactions most of which convert more than one reactant (or sub-
strate) into more than one product. Therefore, a graphical representation in
which each reaction is an edge and each substance is a node leads to a
network that is more complex than a graph in graph theory, where each
edge would only connect two nodes (see also Chapter 43). Importantly, the
metabolism of each cell forms a single, interconnected network. For plants
and many microbes, the reason is obvious – they can create all their cell
contents from one source of carbon. Although many metabolites have only
one producing reaction and one consuming reaction, a significant minority are
involved in large numbers of reactions. In fact, there appears to be a power-
law distribution of connectivities of metabolites [60, 148], so even though
the reason for this distribution remains controversial, metabolism forms a
highly interconnected network. In addition to the conversion reactions, there
are regulatory interactions superimposed on this network, where metabolites
activate or inhibit the rates of reactions other than the ones in which they
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directly participate. As will be explained below, the velocities of biochemical
reactions are usually nonlinear functions of the concentrations of substances
(substrates, products and effectors – the general term for both activators and
inhibitors).

For all these reasons, the dynamic behavior of metabolic systems cannot
normally be understood intuitively – a mathematical description is needed,
often called a model. In fact, nonintuitive behavior can arise in small net-
works with linear kinetics, as demonstrated by Braess’ paradox [9], originally
formulated in the context of traffic flows although it also arises in computer
networks. In essence, the paradox demonstrates that the addition of a new
link in the network in order to increase its capacity can actually lead to a
decrease in the average transit velocity.

A model is a simplified representation of some observed system, process
or feature. While the term modeling refers to the establishment of a formal
representation of the system or process under study, simulation stands for
the numerical calculations performed with the model. For a more detailed
discussion of modeling and theory in biochemistry, see Ref. [51].

Mathematical modeling in biochemistry has traditionally focused on the
description of stationary states and time courses by using kinetic models (e.g.
Refs. [19, 32, 51]. Such models are aimed at predicting the system’s dynamics
on the basis of the knowledge of the structure in terms of reactions (see
Section 2.2) of the network and the kinetic parameters of enzymes (see Sec-
tion 2.4). Within the last 15 years, however, the focus has somewhat shifted,
at least for large-scale models of metabolism, towards network modeling (e.g.
Refs. [51, 57, 79, 92, 100, 129]), sometimes called constraint-based modeling. The
main idea is to leave aside the many kinetic details, which are often unknown,
and consider some basic constraints arising from the network structure and
thermodynamic principles.

2.2 Stoichiometry

The stoichiometry of a reaction expresses the proportions of changes in
mole numbers of the substances involved. For example, in the reaction
2H2O2 → 2H2O + O2 (catalyzed by the enzyme catalase) the proportion
between consumption of hydrogen peroxide and production of oxygen is
2:1. This is expressed by the stoichiometric coefficients 2 and 1. To make a
distinction between the substances on the left-hand side of the equation (in
chemistry called reactants, in biochemistry often called substrates) and the
substances on the right-hand side (products), the stoichiometric coefficients
are taken to be negative for substrates and positive for products. Formally,
one can write the reaction equation as 2H2O + O2 – 2H2O2 = 0.
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Of course, most metabolic models comprise more than one biochemical
reaction. A concise way of representing the stoichiometric coefficients is
to compile them in a matrix. In this matrix, usually rows correspond to
metabolites and columns correspond to reactions. The matrix entries signify
the multiplicities with which the respective metabolites occur in the respective
reactions. The signs indicate the side of the reaction on which the metabolites
occur. Consider, for example, the phosphorylation and subsequent isomeriza-
tion of glucose:

glucose + ATP↔ glucose-6-phosphate + ADP (1a)

glucose-6-phosphate↔ fructose-6-phosphate (1b)

catalyzed by the enzymes hexokinase and phosphoglucoisomerase, respec-
tively. These two reactions are part of the reaction system shown in Figure 1.
The stoichiometry matrix corresponding to the above two reactions reads:

N =

⎛
⎜⎜⎜⎜⎝
−1 0
−1 0

1 −1
1 0
0 1

⎞
⎟⎟⎟⎟⎠ . (2)

with the first and second column corresponding to hexokinase and phospho-
glucoisomerase, respectively, and the rows (from top to bottom) correspond-

Figure 1 Part of sugar metabolism
in various cell types. Abbreviations of
metabolite names used in the text: F6P,
fructose-6-phosphate; Gluc, glucose;
G6P, glucose-6-phosphate, GSH/GSSG,
reduced and oxidized forms of glutathione,

respectively; Pyr, pyruvate. Red, hexokinase;
green, phosphoglucoisomerase; orange,
phosphofructokinase; blue (brown), reactions
of oxidative (nonoxidative) pentose phosphate
pathway.
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ing to glucose, ATP, glucose-6-phosphate, ADP and fructose-6-phosphate.
Since most substances are involved in only a few reactions, stoichiometric
matrices are normally sparse, i.e. they involve a large number of zero entries.

2.3 Balance Equations

Metabolic systems are amenable to mathematical modeling because the law
of mass conservation imposes some restrictions that can be expressed in very
useful equations. In other processes, this law is also valid, but it does not play
such a major role, e.g. in signal transduction systems, the flow of information
(which is the focus of interest and which is not subject to conservation laws)
is not coupled to the flow of mass (see Chapter 22).

Intuitively speaking, mass conservation implies that the temporal change
in the concentration of each metabolite equals the sum of all reaction rates
producing that metabolite minus all reaction rates consuming it. Using the
stoichiometric coefficients, this can be written as:

dSi
dt

=
r

∑
j=1

nijvj , (3)

where nij are the entries in the i-th row and j-th column of matrix N. The
symbols Si and vj stand for the concentration of the i-th metabolite, Si, and
the rate of the j-th reaction, respectively. r denotes the number of reactions. By
gathering the Si and vj into vectors S and v, respectively, Eq. (3) can concisely
be written as:

dS
dt

= Nv . (4)

In order to apply this equation in a meaningful way, a distinction should
be made between two types of metabolites. Internal metabolites are those
substances for which the dynamics of their concentrations can be described
by Eq. (4) because they are internal to the model. As each model needs
to be delimited somehow, some metabolites should form its boundaries, i.e.
they participate both in reactions involved in the model and in additional
(external) reactions. This, however, implies that these substances, which are
usually called external metabolites, are not properly described by the respective
component equations in Eq. (4). Therefore, the rows corresponding to external
metabolites should be deleted from the stoichiometry matrix. The distinction
between external and internal metabolites is meaningful to properly describe
that biochemical networks are open systems, which exhibit a throughput of
mass. In the glucose example given above (Eq. 1), all substances except
glucose-6-phosphate take part in only one reaction of the model. In the living
cell, however, they also participate in other reactions. Therefore, for this small
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didactic example, it is sensible to consider only glucose-6-phosphate as an
internal metabolite. Thus, the stoichiometry matrix reduces to:

N = (1 − 1). (5)

This allows one to make assertions about the steady state of the system (see
Section 3.2).

2.4 Enzyme Kinetics

To be able to solve the differential equation system (4) analytically or, in most
cases, numerically, the right-hand sides should also be expressed in terms of
concentrations. This is feasible because the reaction rates do depend on the
concentrations, v = v(S). It is intuitively clear that the number of molecules
converted in a reaction per time depends on the number of molecules present.
This dependence is called the rate law or reaction kinetics. If the reaction is
catalyzed by an enzyme, the term enzyme kinetics can be used (this term is
also used for the entire discipline dealing with such rate laws.) The best
known enzyme kinetics is a rate law called after the biochemists Michaelis
and Menten [82]:

v =
VmaxS
Km + S

, (6)

where Vmax is the limiting rate (formerly maximal activity) and Km is the
Michaelis–Menten constant. It describes a unidirectional, monomolecular
reaction, i.e. the conversion of one substance, S, into one other substance, P,
without a reverse reaction. The italic symbol S denotes the concentration of S.
This rate law can be understood very easily: for low substrate concentrations,
it simplifies to a linear rate law, v = Vmax/Km × S, which coincides with
the usual mass action kinetics known from chemistry. For larger substrate
concentrations, the reaction rate increases, but less than linearly, and for
very high substrate levels, the reaction rate tends to an asymptotic value,
the limiting rate, Vmax. This is because the rate of formation of the product
is proportional to the concentration of the enzyme-substrate complex (ES),
which cannot exceed the total amount of the enzyme. This phenomenon is
called saturation.

For bidirectional, monomolecular reactions, the Michaelis–Menten kinetics
can be generalized to give (e.g. Refs. [19, 124]):

v =
V+

maxS/KmS −V−maxP/KmP

1 + S/KmS + P/KmP
(7)

where V+
max and V−max are the limiting rates of the substrate and product,

respectively, and KmS and KmP are the Michaelis–Menten constants of the for-
ward and backward rates, respectively. Bidirectionality means that a forward
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Figure 2 A 3-D plot of the reaction rate of an
irreversible, bimolecular enzyme reaction
versus the two substrate concentrations,
A and B, according to the rate law Eq. (8).
Note that any cross-section parallel to the A-

axis (or B-axis) yields the plot of a standard
Michaelis–Menten rate law (6) with respect
to A (respectively B). Parameter values:
Vmax = 2, KiA = 1, KmB = 0.5, KmA = 0.

reaction and a backward reaction proceed simultaneously. In enzyme kinet-
ics, unidirectionality and bidirectionality of reactions are often equated with
irreversibility and reversibility, respectively. However, in other applications,
such as in network analysis (see Section 3), a reaction is called irreversible if it
has a fixed net direction while it is allowed to have a backward reaction “un-
derneath”. A reaction is called reversible if the direction of the net flux can be
reversed by changing substrate and/or product concentrations appropriately,
although the boundary between irreversible and reversible is arbitrary (see
Ref. [32] for a discussion).

Most biochemical reactions are not, however, monomolecular. Also, for
these cases, Michaelis–Menten-type rate laws have been derived. Here, we
give the rate law for an irreversible reaction with two substrates, A and B (e.g.
Refs. [19, 124]):

v =
Vmax · A · B

KiA · KmB + KmB · A + KmA · B + A · B . (8)

The symbol K with different subscripts stands for phenomenological param-
eters depending on the rate constants of the elementary steps of enzyme
catalysis. If Eq. (8) is derived by the quasi-equilibrium approximation, these
parameters are dissociation constants of the enzyme–substrate complexes.
For example, KmB is the constant of dissociation of the complex EAB into
EA and B. If Eq. (8) is derived by the quasi-steady-state approximation, the
dependence is more complicated. In Figure 2, the dependence of the reaction
rate on substrate concentrations according to Eq. (8) is plotted.

The various enzyme kinetic rate laws can be derived from the mass-action
kinetic equations describing the elementary steps (such as the binding of
substrate to the free enzyme). For the monomolecular reaction S → P, the
scheme can be written as:

E + S→ ES→ E + P. (9)

In the derivation, approximations need to be used, the most common being
the quasi-steady-state approximation saying that the concentration of the
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enzyme–substrate complex is nearly constant in time. A plethora of enzyme
kinetic rate laws have been derived, describing, among others, cooperativity,
competitive, allosteric and uncompetitive inhibition, various forms of acti-
vation, etc. For monographs on enzyme kinetics, the reader is referred to
Refs. [19, 124]. Cooperativity means that two or more substrate molecules
have to bind to initiate the reaction. This leads to a sigmoidal curve of the rate
law (e.g. Hill kinetics and Monod–Wyman–Changeux kinetics), i.e. the curve
goes up sharply near an inflection point.

Interestingly, the various versions of Michaelis–Menten kinetics describe
the respective enzyme reactions over the entire range of possible substrate
concentrations (from zero through infinity) fairly well, provided the equa-
tion has been derived for a mechanism appropriate to the enzyme under
consideration. In fact, the main motivation for deriving such equations was
to diagnose enzyme mechanisms, not so much to describe the enzyme rate
function. Such mechanistically derived equations contain many parameters
whose values are rarely experimentally known. On the other hand, it is known
from sensitivity analysis of model behavior that uncertainty about their exact
value is unlikely to have much impact on simulations, so the equations are
“over-specified” for use in modeling of cellular situations where the variation
in concentration of metabolites is much less than in in vitro enzyme kinetics
experiments. For this reason, it has been common to use simplified versions
of the equations with fewer parameters [14, 156]. There is even a kinetic
equation that copes with substrate, product and effector cooperativity, for
which there is no satisfactory mechanistically derived justification [53]. In
the same vein, simplified rate laws have been proposed [86, 107, 157], which
render the differential equation system easier to handle analytically, but do
not describe the reaction rate properly at very low or very high substrate
concentrations.

3 Network Analysis

3.1 Conservation Relations

From physics, it is known that many systems exhibit so-called conservation
quantities, such as energy, momentum and angular momentum. Conservation
quantities occur also in many metabolic systems. For example, in Eq. (9)
describing the elementary reactions of a monomolecular enzyme reaction,
it can be seen that the sum of the concentrations of E and ES is constant
in time because this is the total enzyme, which is neither consumed nor
produced by the overall catalytic reaction. Of course, in the living cell, the
total amount of an enzyme does change, due to gene expression and protein
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degradation. However, these processes are separate from, and much slower
than, the catalytic steps given above and can, therefore, often be neglected.
Mathematically, we can describe reaction (9) by the stoichiometry matrix:

N =

⎛
⎜⎜⎝
−1 1
−1 0

1 −1
0 1

⎞
⎟⎟⎠ (10)

with the rows corresponding to E, S, ES and P (in this order). The sum of the
first and third rows (corresponding to E and ES) is the null vector (and so is
the sum of the second, third and fourth rows). This implies dE/dt =−dES/dt,
which means that d(E + ES)/dt = 0, showing that the reaction scheme can
never change the total enzyme concentration.

Hence, more generally, conservation relations can be derived from the
stoichiometry matrix by analyzing the linear dependencies among its rows.
Let G denote a matrix the rows of which express these linear dependencies.
That is, G satisfies the matrix equation:

G N = 0. (11)

In mathematical terms, the rows of G span the left-hand side nullspace of
N (i.e. the nullspace of the transpose of N). The nullspace of a matrix is
the space of all vectors that give the null vector when multiplied by that
matrix. Standard methods exist [72] and are usually included in computer
mathematics packages, for computing the nullspace of a matrix such as N.
Multiplying Eq. (4) by G from the left yields:

G
dS
dt

= 0. (12)

Integration over time gives:

G S(t) = G S(0). (13)

S(0) is the concentration vector at time zero and, thus, a vector of constants.
For the enzyme reaction (9), matrix G can be chosen to be:

G =
(

1 0 1 0
0 1 1 1

)
, (14)

which, given that the columns of G correspond to the rows of N, yields the
conservation relations E + ES = const. and S + ES + P = const. The second
relationship expresses the fact that the system is modeled as closed, i.e. both
S and P are considered to be internal, and there is no mass flow into or out of
the system via external metabolites.
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The search for conservation relations is an example of a structural anal-
ysis, which does not require the knowledge of kinetic parameters such as
Michaelis–Menten constants. It is helpful because, if the system involves
conservation quantities, it allows one to reduce the dimension of the system
equation (4). In fact, only a set of linearly independent differential equations
needs to be considered since any dependent concentrations can be calculated
from Eq. (13). Each conservation relationship allows for the removal of one
dependent variable, though whether it is E or ES that is considered to be de-
pendent in the above example is a matter of choice. [In principle it should not
make any difference which is chosen, but there may be problems of numerical
accuracy if the solution of Eq. (13) involves small differences between large
concentrations.] Knowledge of conservation relations is also of importance
in stability analysis [51] and for the quasi-equilibrium approximation (see
Section 4.1).

Most conservation relations reflect the conservation of chemical entities
such as the phosphate group and can thus be chosen to involve non-negative
coefficients only. A method for calculating the coefficients in this case was
given [117]. However, conservation relations may occur due to other rea-
sons. These may not have this non-negativity property [117] or may even be
nonlinear [110]. Biological implications of conservation relations have been
discussed in Ref. [29].

3.2 Stationary States and Stability Analysis

Many synthesis or degradation processes in metabolism subsist (approxi-
mately) at a stationary state. This is not to be confused with a thermodynamic
equilibrium state, in which all net reaction rates are zero and no entropy is
produced. Cellular metabolism is an open system, so that there is a permanent
throughput of mass. Very often, the input and output are balanced in such a
way that the concentrations of metabolites do not change. This is in fact due
to stability properties because a steady state can only be observed when it is
stable, i.e. when small fluctuations are damped. Examples of stable steady
states from everyday life are provided by a calmly flowing river and a light
bulb converting electricity into light. Examples of unstable steady states are
provided by a vibrating violin string and waves induced by the wind blowing
over the ocean.

Examples of stable steady states in metabolism are glycolysis (degrada-
tion of glucose to give pyruvate or lactate and concomitant ATP production,
see Figure 1) in many cells, amino acid synthesis and, at a lower level, the
turnover of the enzyme–substrate complex in almost any enzymatic reaction.

At steady state, Eq. (4) simplifies to the algebraic equation system:

N v = 0. (15)
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For example, for the glucose phosphorylation system (1) in Section 2.2 with
the stoichiometry matrix (5), this reads v1 – v2 = 0, which correctly describes
the steady state for this system if only glucose-6-phosphate is considered to
be an internal metabolite.

A large part of the theory underlying the modeling of metabolic networks
is based on the steady-state equation (15). This equation is very attractive
due to its simplicity. Moreover, it has a rather wide range of applicability
because so many biochemical systems subsist in steady state. In the case
of small fluctuations, it can still be used as an approximation; even when
the system behaves in an oscillatory manner with constant amplitude, the
averaged fluxes obey that equation because the internal metabolites must not
accumulate nor run down in the long term. The difference between the terms
reaction rate and flux is worth mentioning. The former term is used for reaction
velocities at any state, e.g. at any time point of an oscillation, whereas the latter
term is normally used for a reaction rate at a steady state.

To check whether a steady state is stable, stability analysis can be applied.
This analysis is, strictly speaking, beyond structural (network) analysis be-
cause it requires some knowledge of kinetic parameters. Nevertheless, we
treat it in this section because it is closely related to the study of steady states.
A stability analysis is called local if the idealized situation of infinitesimally
small fluctuations is considered.

To explain the basic idea of local stability analysis, we consider the simple
case of two sequential monomolecular reactions, A → S → B, with S being
considered to be an internal metabolite. Thus, we deal with a system that is
one-dimensional (1-D) in terms of concentrations. Let the first reaction have
a constant rate, vin (input), while the second reaction follows the Michaelis–
Menten kinetics given in Eq. (6). The steady-state equation v1 – v2 = 0 then
reads:

vin =
VmaxS
Km + S

= 0 , (16)

Solving this for S gives:

S =
vinKm

Vmax − vin
. (17)

This term is positive if Vmax > vin. In the opposite case, the limiting rate of
the second enzyme is not sufficient to convert S with the same rate as it is fed
into the system. Checking stability in this system can be done in a graphical
manner, by plotting dS/dt (Ṡ for short) versus S (Figure 3). The intersection
of this curve with the S-axis gives the steady state. Assume there is a small
fluctuation of the concentration, S, decreasing it. This leads to a positive value
of Ṡ, such that S increases. In contrast, a positive deviation leads to a negative
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Figure 3 Plot illustrating the stability analysis of a simple system
consisting of two sequential monomolecular reactions. S∗ denotes the
steady-state concentration. A negative deviation leads to a positive
value of Ṡ, such that S increases, while a positive deviation leads to
the opposite effect. In either case, the system is running back to the
steady state, so that this state is stable.

value of Ṡ, such that S decreases. In either case, the system is running back to
the steady state and, hence, this state is stable. For any 1-D system, a steady
state is stable if the curve Ṡ versus S intercepts the S-axis with a negative slope.

In systems of dimension greater than one, stability analysis is more compli-
cated. It is usually performed by using the so-called Jacobian matrix. As this
is beyond the scope of this chapter, the reader is referred to Refs. [51, 70].

3.3 Constraints on Steady-state Fluxes

If the fluxes in the steady-state equation (15) are regarded as variables rather
than functions, then the equation is usually underdetermined, meaning that
there is no unique solution for them. However, the steady-state requirement
places constraints on their values, e.g. in a simple linear pathway of single-
substrate, single-product reactions, the steady state would require that the
fluxes were all identical, without specifying what their value would be. Just
as the conservation relations between metabolites correspond to the left-hand
side nullspace of matrix N, it turns out that the relationships between fluxes
are given by the right-hand side nullspace. This can be represented by the
column vectors of a matrix K with maximum rank fulfilling an equation
similar to Eq. (15) (e.g. Ref. [72]):

N K = 0 . (18)

Thus, the nullspace to the stoichiometry matrix is the region of all flux vectors
that are, in principle, possible at steady state.

For identifying metabolic pathways, it is of interest to find very simple flux
distributions. As an example, consider the simple network in Figure 4(A)
consisting of a short linear pathway with a substrate cycle (e.g. Ref. [31]). The
cycle would have to be driven by, for example, ATP hydrolysis, but ATP and
ADP are not shown because they are being considered external metabolites in
this case. Eq. (15) for this system is:
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Figure 4 (A) Simple reaction scheme involving a substrate cycle.
External metabolites are not shown. Pathways corresponding to the
nullspace vectors (1 1 0 1)T and (0 1 1 0)T are depicted in (B) and (C),
respectively.

(
1 −1 1 0
0 1 −1 −1

)⎛⎜⎜⎝
v1
v2
v3
v4

⎞
⎟⎟⎠ =

(
0
0

)
. (19)

A possible basis for the nullspace of the stoichiometry matrix is:

K =

⎛
⎜⎜⎝

1 0
1 1
0 1
1 0

⎞
⎟⎟⎠ , (20)

where the two vectors correspond to two component pathways shown in
Figure 4(B and C). The vectors do not contain the actual fluxes, but any
observable flux vector can be expressed as a scaled combination of these two
vectors, i.e.:⎛
⎜⎜⎝

v1
v2
v3
v4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0
1 1
0 1
1 0

⎞
⎟⎟⎠ ·

(
λ1
λ2

)
=

⎛
⎜⎜⎝

λ1
λ1 + λ2

λ2
λ1

⎞
⎟⎟⎠ , (21)

where λ1 and λ2 are scaling factors. Apart from substrate cycles [31], biochem-
ical pathways of amino acid synthesis, for example, have been analyzed using
the nullspace approach [131, 136].

For many biochemical reactions, it is known whether they are reversible
or irreversible. As mentioned in Section 2.4, in metabolic network analysis,
irreversibility is not meant to exclude that the reaction involves a reverse step;
rather, the reverse step is supposed to always have a lower rate than (or at
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most the same rate as) the forward step. Thus, the net flux is always non-nega-
tive for irreversible reactions. For example, most phosphatases (EC num-
bers 3.1.3.x) are irreversible, while all isomerase reactions (EC 5.x.y.z) are
reversible. Information on the directionality of reactions is available much
more often than kinetic data. It can be obtained from the original biochemical
literature, textbooks and databases such as the authoritative NIST database
of thermodynamics of enzyme-catalyzed reactions (http://xpdb.nist.gov/en-
zyme_thermodynamics/enzyme_thermodynamics_data.html) or somewhat
indirectly and not always correctly from KEGG (http://www.genome.ad.jp/
kegg) and BRENDA (http://brenda.uni-koeln.de). For example, the hexo-
kinase reaction mentioned in Section 2.2 has such a high equilibrium constant
that it is usually written as an irreversible reaction:

glucose + ATP→ glucose-6-phosphate + ADP.

Without loss of generality, the sign definition of reaction rates can be chosen in
such a way that the subvector in v corresponding to the irreversible reactions
satisfies the inequality:

virr ≥ 0 . (22)

The admissible region determined by relations (15) and (22) in flux space is
a convex polyhedral cone (Figure 5). For instance, [−1 −1 0 −1]T is a math-
ematically valid nullspace vector for our example substrate cycle (Figure 4),
but uses the three reactions in the “wrong” direction and so is physically
invalid. Of course, in this case the problem can be easily fixed by multiplying
the vector by −1, thus reversing all the reactions. However, [1 0 −1 1]T

Figure 5 Schematic representation of a flux
cone. The coordinates are the reaction rates
of enzymes. The flux cone shown here is
3-D. Usually, the dimension of the space of
rates (in which the cone is embedded) is then
higher than three; only three axes are shown.

Each generating vector (edge), e(i), of the
cone represents an elementary mode. Note
that here the number of generating vectors
is larger than the cone’s dimension. The thin
lines indicate a normalization by Eq. (27) and
help to visualize the shape of the cone.
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is also a valid nullspace vector, but this cannot be simply resolved, since
reversing it merely changes which reactions are being used in the wrong
direction. Moreover, a full set of linearly independent basis vectors often does
not involve all biochemically meaningful pathways.

3.4 Defining Component Pathways of a Network

Based on early attempts in chemistry [17], methods for defining biochemical
pathways in a formal way were developed [79, 116, 129]. Note that it is
unnecessary to split the reversible reactions into forward and reverse steps,
although this is sometimes done. Relations (15) and (22) constitute a linear
equation/inequality system where, as in the example above, the solutions v
of this system are indeterminate with respect to scaling. Thus, it is sensible to
consider relative flux distributions, called flux modes.

A flux mode, M, is defined as the set:

M = {v ∈ Rr |v = λv∗, λ > 0} , (23)

where r and λ are the number of reactions and an arbitrary real positive
number, respectively, Rr denotes the r-dimensional Euclidean space, and v∗
stands for a vector (different from the null vector) fulfilling the following two
conditions:

(C1) Steady-state condition: v∗ fulfills Eq. (15).

(C2) Sign restriction for irreversible reactions: if the system involves irre-
versible reactions, then the corresponding subvector virr of v∗ satisfies
inequality (22).

According to this definition, a flux mode can be characterized by one rep-
resentative vector. A transformation route in metabolism can be formalized
as a simple flux vector satisfying Eq. (15) and inequality (22) because along
such a route, all intermediates must be balanced with respect to production
and consumption and the irreversible enzymes must operate in the appropri-
ate direction. The rationale for looking for a simple flux distribution rather
than an arbitrary distribution fulfilling relations (15) and (22) arises from
the general scientific paradigm of decomposing a system under study into
its simplest components. Examples of this paradigm are Fourier analysis or
the decomposition of gene expression patterns into principal components [1].
Decomposition under the side constraint of non-negativity plays a role also in
pattern recognition, where the method of non-negative matrix factorization is
used [73]. Dealing with simple routes (i.e. enzyme sets involving only a few
enzymes) is particularly interesting in functional genomics, because the set of
identified metabolic genes is often incomplete, so that it is meaningful to test
whether at least one functional route can be realized by this set [20].
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The crux of a proper pathway definition is to define what we mean by
simplicity of the flux vector. An appropriate definition is the following: a flux
mode, v∗, is called elementary if there is no other flux distribution involving
only a subset of the enzymes involved in v∗. More exactly, this can be written
in the following way [121]: a flux mode M with a representative v∗ is called
an elementary flux mode if, and only if, v∗ fulfils the condition:

(C3) Simplicity (nondecomposability). There is no vector v′ (different from
the null vector) with the following properties: (i) v′ obeys restrictions
(C1) and (C2), and (ii) v′ contains zero components wherever v∗ does
and includes at least one additional zero component.

Note that, upon testing whether a vector v∗ is elementary, the test vector v′
need not have the same values of the nonzero components as v∗. Elementary
modes can be visualized as follows. It can be shown that if all reactions are
irreversible, each elementary mode corresponds to one edge of the cone (see
Figure 5) determined by relations (15) and (22) and vice versa [116]. If some
reactions in the system are reversible, there may be additional elementary
modes in the interior of the cone [97].

In the case where all reactions are irreversible, the elementary modes can be
computed by enumerating the edges of the cone. This enumeration can be per-
formed by tableau methods starting from the stoichiometry matrix augmented
with the identity matrix [88] or from the nullspace matrix [149]. These algo-
rithms have been adapted to the case where some elementary modes lie inside
the cone [120, 121, 144]. The extended algorithms have been implemented in
METATOOL (http://pinguin.biologie.uni-jena.de/bioinformatik/networks)
[97, 146] and several of the simulation packages mentioned in Section 4.1.

Whereas the choice of nullspace vectors to form a basis, as previously
described in Section 2, was not unique, the elementary modes are uniquely
determined (up to multiplication by a non-negative factor). Moreover, each
flux mode possible in the living cell can be written alternatively as a linear
combination of basis vectors or of elementary flux modes. If the combination
in terms of elementary modes is used, all coefficients, αk, must be non-
negative [121]:

v = ∑
k

αke(k) , αk ≥ 0 , (24)

where e(k) denotes vectors representing elementary modes. This non-negativi-
ty condition needs to be included because the sign restriction for irreversible
reactions must be satisfied. Importantly, enzyme deficiencies and gene
knockouts can properly be described by elementary-mode analysis, but not
with the nullspace approach. Upon deletion of an enzyme, all elementary
modes not involving this enzyme remain unchanged, while the basis vectors
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of the nullspace need to be recalculated in some cases. Consider, for example,
the system depicted in Figure 4. Deletion of enzyme 2 in that system would
imply that both nullspace vectors given in Eq. (20) drop out, although the
remaining system still has a 1-D nullspace [represented by the vector (1 0 −1
1)T, which may be relevant if reaction 3 is reversible].

One inconvenience of the larger number of elementary modes than null-
space vectors is that there may be multiple solutions for the values of the
αk in equation (24) that relate the elementary modes to an observed flux
vector [152]. However, a least-squares solution (which minimizes the norm of
the α vector) is uniquely defined and has advantages as a practical solution
that facilitates the interpretation of changes in the utilization of different
elementary modes by an organism as environmental conditions change [102].

3.5 Examples of Elementary-modes Analysis

The elementary modes of a list of reactions of carbohydrate metabolism in-
clude familiar metabolic pathways such as glycolysis, and various functionali-
ties of the oxidative and nonoxidative pentose phosphate pathways (Figure 1),
as well as other pathways catabolizing glucose that are not generally named
[120]. It is worth noting that, although the term “pentose phosphate pathway”
is firmly established in biochemistry, there is not just one pathway deserving
this name. Rather, it occurs in several functionalities [138], as confirmed by
elementary-modes analysis [120]. This demonstrates that elementary modes
have every right to be regarded as biochemical pathways. In this section,
we will show the “added value” of elementary modes in avoiding incorrect
interpretations and in deducing novel interpretations of metabolism.

Several authors have used graph-theoretical concepts to define metabolic
pathways [60,76,128]. However, paths traced on graphs may not be competent
metabolic pathways. An illustration of this point recapitulates a contro-
versy from the history of biochemistry. Figure 6 shows the pathways of
the tricarboxylic acid (TCA) cycle and gluconeogenesis to glucose. It has
long been considered that, given an input of acetyl-CoA from the break-
down of fatty acids or ketogenic amino acids, it is not possible for animals
to achieve net synthesis of glucose from this precursor. However, it is ev-
idently possible to trace a route from acetyl-CoA, around the TCA cycle to
oxaloacetate, from oxaloacetate to phosphoenol pyruvate (PEP) and from
there to glucose (Figure 6A). Indeed, with the introduction of 14C isotopic
labeling in the 1950s, it was established that isotope could pass along this
apparent pathway. Nevertheless, animals cannot make glucose from two-
carbon precursors in a sustained steady state. All organisms that can (e.g.
green plants and many bacteria) contain the glyoxylate cycle, yielding the
metabolic network illustrated in Figure 6(B). The potential flows of carbon
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in this network can be investigated by regarding all cosubstrates (ATP, NAD,
etc.) as external and computing the elementary modes (e.g. by METATOOL).
This results in two modes that completely oxidize acetyl-CoA to CO2 and the
only mode that generates glucose from acetyl-CoA does so via the glyoxylate
cycle enzymes. The reason is that the TCA cycle alone cannot cause a net
synthesis of oxaloacetate; for every acetyl-CoA that enters the cycle, two
carbons are lost as CO2, so none is available to form glucose.

This example illustrates that if only the connectedness of the graph is con-
sidered and the stoichiometric constraints are neglected, then it is likely that
nonfunctional pathways will be postulated. Moreover, this is not an iso-
lated case: significant problems about our understanding of plant plastid
metabolism have been revealed by elementary-modes analysis [100, 101].

Figure 6(C) indicates how elementary modes can identify previously unrec-
ognized pathways. The elementary modes computed for the network include
two different modes for complete oxidation of glucose to CO2. One of the
modes corresponds to oxidation via the TCA cycle as normally described
in textbooks. The alternative pathway uses the glyoxylate cycle in catabolic
mode; the oxaloacetate produced by the glyoxylate cycle is converted to
PEP, with loss of one CO2, and then to pyruvate before decarboxylation
to acetyl-CoA with loss of a second CO2. The oxaloacetate produced by
malate dehydrogenase is used in equal proportions by the enzymes leading
to citrate and PEP. The ATP yield of this pathway per mole of glucose is
smaller than that of the usual TCA cycle (1 instead of 2). We originally
noted this pathway [119], which is part of a larger pathway predicted for
Escherichia coli earlier [74]. This theoretical prediction has been confirmed
experimentally, as the occurrence of this pathway in E. coli growing slowly
at low glucose concentrations has recently been shown by Fischer and Sauer
[34] (preliminary observations have been presented in Ref. [153]). Since the
enzymes involved in the pathway are present in many microorganisms, it can
be supposed that it operates also in other microbes.

An example of how elementary-modes analysis can shed new light on plant
metabolism is provided by a special form of photosynthesis. Crassulacean
acid metabolism (CAM) is a variant of photosynthesis employed by a range
of plants (e.g. cacti) as an adaptation to arid conditions [22, 141]. In order
to reduce water loss, the stomata are closed during the daylight hours, so
CO2 cannot be obtained directly from the atmosphere. Instead, the plants
fix CO2 during the night by breaking down stored carbohydrate to give PEP,
which is then carboxylated to oxaloacetate and reduced to malate, which is
stored in the vacuoles. In the daytime, malate is released from the vacuoles
and decarboxylated in the cytoplasm; the CO2 released then diffuses into the
chloroplast where it is fixed by ribulose bisphosphate carboxylase (rubisco)
and the rest of the Calvin cycle. CAM plants vary with respect to the enzyme
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Figure 6 Scheme of the TCA cycle and
gluconeogenesis. Thick arrows represent
fluxes that are double as high as through
the other reactions. Dashed arrows
represent unused enzymes. Abbreviations
of metabolites: AcCoA, acetyl-coenzyme A;
Cit, citrate; Fum, fumarate; Gly, glyoxylate;
IsoCit, isocitrate; OG, oxoglutarate; Oxac,
oxaloacetate; PEP, phosphoenolpyruvate;
Mal, malate; Pyr, pyruvate; Succ, succinate;
SucCoA, succinyl coenzyme A. (A) Situation
in mammals. A pathway from acetyl-CoA

to glucose seems to exist (solid arrows).
However, Oxac is not stoichiometrically
balanced at steady state. (B) Situation in
plants and many bacteria, where the TCA
cycle involves the glyoxylate shunt, consisting
of isocitrate lyase (Icl) and malate synthase
(Mas). This allows conversion of acetyl-CoA
into glucose at steady state (pathway in blue).
(C) Classical TCA cycle (red); pathway of
glucose catabolism alternative to the classical
TCA cycle (green).

used to break down the malate, which is either PEP carboxykinase (PEPCK)
or malic enzyme [23]. They also vary in whether the primary product of
photosynthesis is chloroplastic starch or cytosolic hexoses. On this basis,
Christopher and Holtum [16] proposed there were potentially four distinct
groups of CAM plants described by these two criteria, and they classified a
range of plants to show that each of the four categories had members.
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Figure 7 Reaction scheme of CO2 fixation in
CAM plants. Reactions: 1, malic enzyme;
2, malate dehydrogenase; 3, PEPCK; 4,
enolase and phosphoglyceromutase; 5,
gluconeogenesis; 6, pyruvate, phosphate

dikinase; 7, starch synthesis; 8, rubisco;
9, Calvin cycle; 10, pyruvate translocater;
11, PEP translocator; 12, phosphate/triose
phosphate translocator.

This is an interesting problem to examine with elementary modes, since we
already knew that the metabolic exchanges between chloroplast and cytosol
allowed (or not) by the chloroplast membrane metabolite transporters were
a significant constraint on feasible plant metabolism [100]. A scheme of the
metabolism under study is shown in Figure 7 and the stoichiometries of the
reactions are given in Table 1. The model has been drawn up to represent
carbon and phosphate balancing in the reactions, but redox balance is not
represented. Figure 8 shows the six elementary modes of this scheme that
convert malate to hexose and/or starch. There are three modes each using
malic enzyme and PEPCK, respectively, to release CO2 from malate. For
each of the modes leading to one product only, Christopher and Holtum
[16] gave examples (Figure 8). For example, in pineapple (Ananus comosus),
sugar is produced via PEPCK. The reason that, in addition to the modes
producing hexose only and starch only, there is a third mode coproducing
hexose and starch is that the latter involves no net flux through the triose
phosphate translocator and is, hence, no superposition of the former two.
In the coproduction modes, the carbon in the hexose comes from the triose,
whereas the starch comes from the CO2 derived from malate breakdown; the
hexose to starch stoichiometry is 3:1.

The question then arises whether coproduction of starch and hexose de-
fines a subset of CAM plants. In fact, Christopher and Holtum [16] noted
that the PEPCK-containing plant Aloe vera produced both hexoses and starch
during the day, in the ratio of about 2:1 from their figures, although they
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Table 1 Reactions of the CAM plant metabolism model

No. Step Reaction
1 ME mal + NAD→ pyr_cyt + NADH + CO2
2 MDH mal + NAD→ oxac + NADH
3 PEPCK oxac + ATP_cyt→ PEP_cyt + ADP_cyt + CO2
4 glc1 PEP_cyt↔ tp_cyt
5 glc2 2tp_cyt→ hex_cyt + 2Pi_cyt
6 PPDK pyr_chl + Pi_chl + ATP_chl→ PEP_chl + PPi + AMP_chl
7 StSyn 2tp_chl→ starch + 2Pi_chl
8 RbCo RBP + CO2 → 2tp_chl
9 CC 5tp_chl + Pi_chl→ 3RBP
10 PyrTr pyr_cyt↔ pyr_chl
11 PEPT Pi_cyt + PEP_chl↔ Pi_chl + PEP_cyt
12 TPT tp_cyt + Pi_chl↔ tp_chl + Pi_cyt
13 OP ADP_cyt + Pi_cyt→ ATP_cyt
14 AK AMP_chl + ATP_chl↔ 2ADP_chl
15 LR ADP_chl + Pi_chl→ ATP_chl
16 PPase PPi → 2Pi_chl

The full names for steps 1–12 are given in the legend to Figure 7. Malic enzyme is shown as the
NAD version, but since nicotinamide nucleotides (NADP, etc.) are treated as external in the model
(and are not shown in the grouped reactions), the NADP-linked enzyme is implied as well. The
reactions 13–16 not shown in Figure 7 are added to represent recycling of adenine nucleotides
and pyrophosphate in the appropriate compartments: OP, oxidative phosphorylation; AK,
chloroplast adenylate kinase; LR, light reactions, i.e. photophosphorylation; PPase chloroplast
pyrophosphatase. Irreversible reactions are designated by “→” and reversible ones by “↔”.
Except for CO2, metabolites occurring both in cytosol and chloroplast are represented twice
with designations “cyt” and “chl”, respectively, and are treated as separate entities for modeling
purposes. Other abbreviations are: mal, malate; pyr, pyruvate; oxac, oxaloacetate; tp, triose
phosphate; RBP, ribulose 1, 5-bisphosphate; hex, hexose sugars; PPi , pyrophosphate.

classed it as a hexose producer. This leaves hexose and starch-producing malic
enzyme plants as the category to be filled. Christopher and Holtum charac-
terized CAM-induced Mesembryanthemum crystallinum as a starch-producing
malic enzyme plant. However, it seems that it can produce both hexose
and starch [6]. Furthermore, even when starch is a major product, study of
diurnal variation in the transporter transcripts and activities [49] shows that
the triosephosphate transporter activity does not increase in the day, whereas
the glucose-6-phosphate transporter does, suggesting that cytosolic hexose
rather than triose phosphate is used as a substrate for starch synthesis. This
is more like the pattern in Figure 8(C) than Figure 8(B). A better example of
a malic enzyme plant producing both starch and hexose, however, is Clusia
minor [7]. The experiments reported a ratio of formation of hexose to glucans
and starch of 2:1; although this is lower than the hexose to starch ratio of
the elementary mode, the glucan component is likely to be cytosolic. In all,
there is an arguable case that there are six modes of operation of CAM, as
revealed by elementary modes, with plants that predominantly use each of
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 8 The six elementary modes
occurring in the system shown in Figure 7.
(A) Hexose synthesis via malic enzyme
as occurring, for example, in Agavaceae
and Dracaenacea. (B) Starch synthesis via
malic enzyme as occurring, for example,
in Cactaceae and Crassulacea. (C)
Simultaneous starch and hexose synthesis
via malic enzyme as occurring, for example,

in Clusia minor. (D) Hexose synthesis
via PEPCK as occurring, for example, in
Clusia rosea and Ananus comosus. (E)
Starch synthesis via PEPCK as occurring,
for example, in Asclepadiaceae. (F)
Simultaneous starch and hexose synthesis
via PEPCK as occurring, for example, in Aloe
vera.

them. Whereas, in general, metabolic flux distributions are a superposition
of several elementary modes, the considered part of the metabolism in CAM
plants is a case where virtually “pure” elementary modes occur. Another such
case is glycolysis in mature yeast cells.

3.6 Extreme Pathways

In many applications, e.g. in the analysis of robustness [91, 103] (see Sec-
tion 3.8), the concept of extreme pathways [108] is used. This differs only
slightly from that of elementary modes. One of the goals is a reduction in
the number of pathways to cope with the problem of combinatorial explosion
of the number of pathways in large networks. As mentioned above, the
admissible flux region determined by relations (15) and (22) is a convex cone
(Figure 5), and there may be some elementary modes lying in the interior of
the cone. It has been argued that for a minimal description of the system, the
edges of the cone (sometimes called the convex basis) are sufficient; each ad-
missible flux distribution can be written as a non-negative linear combination
of the convex basis vectors [89, 97]. However, the elementary modes in the
interior of the cone often represent biochemically meaningful pathways, such
that it is not really justified to drop them.

Schilling and coworkers [108] have tackled this issue in the following way.
They make a distinction between exchange reactions and internal reactions.
The former connect to external metabolites, while the latter do not. Then, all
reversible internal reactions are decomposed into forward and reverse steps.
The convex basis vectors of the resulting flux cone are defined to be the set of
extreme pathways. They have the advantage of a one-to-one correspondence
to the edges of the flux cone. Note, however, that the respective flux cone
is of higher dimension than the original one because the decomposition of
reversible internal reactions adds dimensions to the flux space. In effect, many
of the internal elementary modes are brought to the surface of the flux cone.

As shown in Ref. [67], elementary modes and extreme pathways are equiv-
alent if all exchange reactions are irreversible. This is the case in several
simulations [91,103]. If there are reversible exchange reactions, the number of
extreme pathways may be considerably smaller than the number of elemen-
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tary modes [92], which is favorable in view of the problem of combinatorial
explosion. However, care must be taken that no external metabolite takes part
in more than one reversible exchange reaction. Otherwise, there would be a
reversible extreme pathway, because that metabolite can be produced by one
reaction and consumed by the other, and the opposite process is possible as
well. This would be in contradiction to the desired property that extreme
pathways are edges of a pointed cone. Therefore, for this case, Schilling
and coworkers [108] suggested making the external metabolites connecting to
these exchange reactions internal and extending the system by adding formal
exchange fluxes connecting to these metabolites. They called this, together
with the decomposition of reversible internal reactions, the reconfiguration
of the system. This, however, generates an extended system in which extreme
pathways and elementary modes are again equivalent [115]. For a comparison
of the two concepts, see also Refs. [67, 92].

3.7 Optimization of Molar Yields and Flux Balance Analysis (FBA)

In biotechnology, one is often interested in increasing the molar yield of a
given biotransformation, i.e. the molar ratio indicating how many molecules
of product are formed per mole of substrate. Some product of interest may
be synthesized on several routes with different yields, as in lysine synthesis
[21] or tryptophan synthesis [119]. Thus, one may try to overexpress the
enzymes along the route allowing maximum yield and possibly suppress
other enzymes. A flux mode using only the optimal route is certainly not
feasible alone since other products (e.g. other amino acids) must also be
synthesized. Nevertheless, it is of interest to calculate upper bounds on the
molar yield, to learn what can at best be expected, especially as many products
of interest are formed in the stationary phase where there is little biosynthetic
activity, and the cell’s remaining requirements are largely for “maintenance
energy”.

The molar yield of a biochemical transformation can be expressed as:

η =
rate of product synthesis

rate of substrate consumption
. (25)

Let S and P stand for the substrate and product of interest, respectively.
[Note that we here allow for a larger number of reactions between S and P
than in Eq. (9).] We denote their stoichiometric coefficients by mSk and mPk,
respectively, with k being the reaction index. Then the optimization criterion
can be written as:

maximize η = −∑k mPkvk

∑k mSkvk
, (26)
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where the minus sign enters because the coefficients mSk are negative. Note
that the objective function is nonlinear, with the variables being the fluxes vk.
As Eq. (26) is invariant to a scaling of the vk by a common factor, and the
side constraints (15) and (22) are linear and homogeneous, the solution to the
maximization problem is indeterminate with respect to scaling. Thus, usually
the substrate consumption rate is written in a normalized form:

−∑
k

mSkvk = 1 . (27)

Substituting this into Eq. (26) yields a linear objective function. Sometimes,
Eq. (27) is phrased as an inequality imposing an upper bound on the input
flux. Yet, in most cases, maximization of the numerator in Eq. (26) implies
that the upper bound is attained by the system, such that an inequality side
constraint is equivalent to Eq. (27).

Since any flux mode is a superposition of elementary modes with non-
negative coefficients (see Eq. 24), the molar yield of a flux distribution is a
weighted average of the yields of the elementary modes involved:

η = ∑k αkηk

∑k αk
, (28)

where the αk are the weighting coefficients as appearing in Eq. (24). There-
fore, η cannot exceed the maximum value of all ηk. Consequently, the optimal
flux distribution with respect to maximizing the molar yield always coincides
with an elementary mode. When two or more elementary modes realize the
same, maximum yield, any linear combination of these implies that maximum
yield.

Elementary-modes analysis was successfully applied in Ref. [74] for pre-
dicting maximum yields in the synthesis of precursors for aromatic amino
acids in E. coli. Carlson and coworkers [13] studied a metabolic pathway
model of a Saccharomyces cerevisiae strain that had been engineered genetically
to produce poly-β-hydroxybutyrate (PHB). Adding the natively absent ATP
citrate-lyase to the network, the maximum theoretical PHB-to-carbon yield
was increased from 0.67 to 0.83. Recently, Schwender and coworkers [123]
conducted a combined experimental and theoretical study (using elementary
modes) on oilseed rape, and found a previously undescribed metabolic route
with high carbon efficiency.

As the objective function of maximizing molar yields and the side con-
straints [relations (15) and (22)] are linear, the maximization problem can
alternatively be solved by linear programming [26, 27, 33, 93, 145, 150]. That
method finds the pathway with the highest yield. In the event that there
are multiple solutions giving the same yield, care has to be taken that all
of them are detected [78] since linear programming returns a single solu-
tion by default. In contrast, elementary-modes analysis provides a set of
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candidate solutions, from which the best for a given substrate–product pair,
and consecutively for different substrate–product pairs, can be selected easily.
This allows for detecting not only (possibly multiple) optimal solutions, but
also suboptimal, equally simple situations. These might be realized more
readily (at least approximately) in biotechnological setups than the optimal
situation. Accordingly, this analysis gives more output information than
linear programming.

One method in the framework of stoichiometric network analysis is FBA.
While metabolic pathway analysis is about computing the simplest flux distribu-
tions (elementary modes or extreme pathways), which need not necessarily
occur in living cells in pure form, FBA is about computing optimal flux
distributions, with a stronger focus on predicting real situations in living
cells. The main idea is that the molar yield of some important product has
been maximized during evolution. This is a principle of economy – cells that
use the resource as efficiently as possible are assumed to have a selective
advantage. This approach can be traced back to the linear programming
approaches mentioned above [33, 93, 150]. Later, the method was refined,
extended and applied to various systems of increasing complexity, and the
term FBA was coined [24–27, 57, 145]. In most cases, biomass has been taken
as the product of interest. The method is attractive because it allows the
computation of flux distributions in living cells based on very little data: the
reaction stoichiometries, information about irreversibility and the weighting
coefficients mPk in the objective function (Eq. 26). However, the question arises
whether maximization of output yield is really an outcome of evolution for
all cells under all circumstances. If this were so, why does baker’s yeast (S.
cerevisiae) use the respiro-fermentation pathway (leading mainly to ethanol
and implying an ATP per glucose yield of slightly more than 2) even under
aerobic conditions if sufficient glucose is available? In order to maximize the
ATP per glucose ratio it should use pure respiration, which allows a yield
of more than 30. An answer was given from the viewpoint of evolution
[98]. Fermentation allows a very high ATP production rate, although yield
is low. Due to the high rate, yeast can grow fast and outcompete other
species, withdrawing their nutrients. However, other yeast genera such as
Kluyveromyces do use respiration [44]. It is hard to explain this diversity in
sugar degradation among yeast species by a single optimization principle.

Maximization of yield and maximization of rate are not necessarily equiv-
alent principles [2, 98, 147]. For instance, the bacterium Holophaga foetida
growing on methoxylated aromatic compounds switches from a high-rate
regime to a high-yield regime when the substrate level becomes very low [64].
The pathway active in hungry E. coli mentioned in Section 3.5, however, has a
lower ATP yield than the usual TCA cycle. Other examples are provided by
dimorphic fungi, i.e. fungi that switch between unicellular and multicellular
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stages. Mucor racemosus, for example, mainly relies on fermentation in the
unicellular stage and on respiration in the multicellular stage [58]. Interest-
ingly, it is the other way round in Candida albicans [71]. In any case, the
main hypothesis underlying FBA cannot apply to both forms of dimorphic
fungi. Recent experimental data on Bacillus subtilis [35], and theoretical and
computational results [54] cast doubt on the principle of maximizing yield as
well. Thus, it may be questioned whether maximization of (biomass, ATP
or any other) yield is an over-riding goal in biology. Nevertheless, FBA is a
helpful tool in many situations, such as adaptive evolution of E. coli after a
change in substrate [57] or after a knockout [36].

3.8 Analyzing the Robustness of Metabolism

A striking feature of living cells is their homoeostasis, i.e. they are robust to
external and internal perturbations within some range. For example, many
knockout mutants of microorganisms are able to grow, some showing almost
the same growth rate as the wild-type. This has been demonstrated by a
systematic study on single-knockout mutants of virtually all genes in S. cere-
visiae [42, 155]. Although an analogous systematic study on double mutants
is not yet feasible due to the large number of combinations, first attempts in
this direction have been made [130, 143]. As mentioned in Section 3.7, many
cells harbor parallel and, thus, redundant metabolic pathways. For example,
the pentose phosphate pathway circumvents the upper part of glycolysis
(Figure 1). However, this bypass implies a loss in ATP production. Often,
redundancy in metabolism cannot be seen as easily as in this example. Theo-
retical tools are needed [66, 83, 135, 154] to understand robustness in complex
systems such as metabolic networks.

Elementary-modes analysis (see Section 3.4) is well suited for analyzing the
structural robustness of metabolic networks because each elementary mode is
nonredundant, with redundancy meaning that an enzyme could be deleted
without interrupting the transformation of a substrate into a product. There-
fore, redundancy can be quantified by the number of such modes [135].
The concept of extreme pathways has also been used for analyzing redun-
dancy [91, 103]. Simulations for amino acid metabolism of Haemophilus in-
fluenzae showed that there was an average of about 40 extreme pathways
corresponding to the same input/output regime (the exact number depending
on conditions), when its metabolic network was used to produce a single
amino acid [91]. Similar calculations for Helicobacter pylori gave the result
that the synthesis of amino acids and ribonucleotides in this bacterium is less
redundant than in H. influenzae, with only about two extreme pathways per
input/output regime [103]. In these studies, the number of extreme pathways
with the same overall stoichiometry (in terms of initial substrates and final
products) is used as a measure of redundancy.
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A somewhat different approach was suggested in Ref. [12]. The importance
of each enzyme was assessed by the number of elementary modes in which
it is involved, i.e. by the number of modes disrupted when the enzyme in
question is deficient. Along these lines, it has been argued that robustness is
not perfectly identical to redundancy [154]. In defining structural robustness,
the intact system should be compared with a mutated system. To characterize
the structural robustness against the knockout (deficiency) of one enzyme, Ei,
the ratio between the number of elementary modes remaining after knockout,
z(i), and the number in the wild-type network, z, can be used. This gives a
normalized value between zero and unity. The extreme values are reached
when no elementary mode is left and when all elementary modes remain. To
quantify the global robustness of the network, the arithmetic mean of all these
numbers can be taken:

R1 = ∑r
i=1 z(i)

r · z . (29)

Apart from this general measure of robustness, we defined measures for the
robustness of the synthesis of specific products [154]. For a model of the
metabolism of human erythrocytes proposed in Ref. [151], the quantity R1
was computed to be 0.3834, while for various subsystems of the amino acid
metabolism in E. coli (e.g. Ref. [135]) this measure was computed to be in
the range 0.5112–0.5479. This is in agreement with the well-known fact that
erythrocyte metabolism is very susceptible to enzyme deficiencies while the
metabolism of E. coli is rather robust.

4 Dynamic Simulation

4.1 How is a Dynamic Model Constructed?

Before constructing a dynamic model, one should decide what type of model
is needed. There is a basic distinction between deterministic and stochastic
models. The latter is needed if the molecule numbers are so low that fluctua-
tions play an essential role. Indeed the concentrations of many intermediates
are rather low, often much lower than the resolution of nuclear magnetic
resonance measurements, which is of the order of 10 μM in vitro and 100 μM in
vivo. For example, in the analysis of calcium oscillations, stochastic simulation
is sometimes used due to the low cytosolic concentration of calcium [28]. An-
other distinction is made between spatially homogeneous and heterogeneous
models. Spatial gradients inside living cells may play a role due to the highly
organized structure of cell organelles, the cytoskeleton and multienzyme com-
plexes. Still another distinction can be made between models that are discrete
or continuous in concentrations (with most stochastic models being discrete).
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Most metabolic models, however, are deterministic, spatially homogeneous
and continuous [5, 14, 15, 39, 51, 59, 61, 70, 84, 124, 156]. This is because, in
that way, they are much simpler and because the numerical computational
techniques are better developed, so simulation using them is more rapid and
accurate.

The basis for deterministic, spatially homogeneous and continuous models
is Eq. (4) together with the rate laws v = v(S). This gives a system of n
ordinary differential equations in the variables Si. The differential equations
are generally nonlinear because some, if not most or all of, the rate laws are
nonlinear in concentrations. Therefore, solving the system equation (4) in time
is not normally feasible by analytical methods, so that numerical methods are
employed.

Many general purpose computer mathematics packages will solve sets of
nonlinear differential equations given that the user has prepared a set of
equations in the required format [corresponding to the system equation (4)].
However, this is a tedious and error-prone task that needs to be repeated
whenever the model is altered, since changing a rate function means finding
all its occurrences in the differential equations (one for each substrate and
product involved in the reaction concerned) and changing them. Therefore
many authors have devised computer software that generates and solves the
appropriate differential equations from a set of reaction definitions and rate
equations, using either a set of predefined rate equations or others defined by
the user or both. Such software also usually checks for linear dependencies
and conservation equations (as explained in Section 3.1) and reduces the set
of equations to be solved appropriately. Two different types of solution to the
differential equations can be computed: integration of the equations to pro-
duce time courses of metabolite concentrations and fluxes, and solution of the
equations for the substrate concentrations (and hence fluxes) giving a steady
state [when all derivatives in system equation (4) equal zero]. Techniques for
the former are much more dependable than those for the latter, which usually
work by successive approximation from an initial estimate of the solution and
are prone to failure if the initial estimates are not good enough. One way
of generating appropriate initial estimates to improve the success rate is to
simulate a time course as far as a close approach to a steady state and then to
pass the substrate concentrations to the steady-state solver. It is unreliable to
compute a time-course to an apparent steady state alone, since even when the
differential equations are all near-zero, it is impossible to tell how far away
the steady state is if there are slow processes in the system being studied.

In developing special software packages for both simulation and steady-
state solution of metabolic systems, two different approaches have been
adopted (e.g. Ref. [94]). GEPASI (http://www.gepasi.org) [80, 81] and DB-
Solve [46] are examples of packages that are operated through a graphical
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user interface. The other approach is the command-line driven program,
originally operating on pre-written scripts, but more recently working inter-
actively. Examples include SCAMP [105], Jarnac [106], ScrumPy [100,102] and
PySCeS [90] (see Table 2). The distinction is breaking down as more of the
packages can inter-operate through the Systems Biology Workbench (SBW;
http://sbw.kgi.edu) [106] and by model exchange through a common model
definition language, Systems Biology Markup Language (SBML) [56]. They
not only serve for numerical integration of differential equation systems, but
also for computing steady states and checking their stability, and comput-
ing elementary modes, control coefficients (e.g. Refs. [32, 51, 70]) and other
quantities. Table 2 gives an overview of widely used software packages for
simulating metabolic networks. Many more packages have been developed,
such as PLAS (http://www.dqb.fc.ul.pt/docentes/aferreira/plas), DBSolve
[46] and the JJJ web simulator (http://jjj.biochem.sun.ac.za).

Table 2 Software for simulating metabolic networks

Software
package

Analyses
performed

Reference URL

FluxAnalyzer MFA, MPA 68 http://www.mpi-magdeburg.mpg.de/-
projects/fluxanalyzer

METATOOL MPA 97, 146 http://pinguin.biologie.uni-jena.de/-
bioinformatik/networks/index.html

GEPASI/COPASI CSS, DS,
MCA, MPA,
optimization,
PE, in COPASI
also stochastic
simulation

80, 81 http://www.gepasi.org

JARNAC CSS, DS, MCA,
MPA

106 http://www.sys-bio.org

SBW (Systems Bi-
ology Workbench)

CSS, DS, MCA,
MPA

106 http://sbw.kgi.edu

ScrumPy CSS, DS,
MCA, MPA,
optimization,
PE

100, 102 http://mudshark.brookes.ac.uk/ScrumPy

PySCeS bifurcation
analysis, CSS,
DS MCA, MPA

90 http://pysces.sourceforge.net

ProMoT/Diva DS, algebro-
differential
equations

43 http://www.mpi-
magdeburg.mpg.de/en/research/projects/-
1002/comp_bio/promot

E-Cell DS, stochastic
simulation

139 http://www.e-
cell.org/software/ecellsystem

CSS, calculation of steady states; DS, dynamic simulation; LSA, local stability analysis; MCA,
metabolic control analysis; MFA, metabolic flux analysis; MPA, metabolic pathway analysis; PE,
parameter estimation.
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When choosing the appropriate method for numerical integration, one
should keep in mind that most biological systems show the phenomenon
of timescale separation (time hierarchy). They involve slow and fast pro-
cesses. Metabolic systems, for instance, are characterized by the presence
of slow and fast enzymes. Isomerases, for example, are usually present in
high concentrations so that they catalyze the corresponding reactions very
fast. Time hierarchy makes biological systems simpler with respect to their
dynamics. Nonlinear systems with more than two dimensions can potentially
exhibit behaviors more complex than steady states or regular oscillations.
For example, they may allow deterministic chaotic behavior, in which the
system never returns to the initial state exactly and in which small deviations
in the initial conditions lead to large deviations later [137]. However, most
biological systems at the cellular level do not exhibit chaos. This is probably
due to a reduction in the effective dimension by time hierarchy [50]. In
mathematical terms, the differential equations describing systems showing
time hierarchy are called stiff. Special numerical integration routines have
been developed for dealing with stiff systems, such as the Gear procedure
[41], but the development that brought metabolic modeling easily within
the scope of the desktop computer was the routine LSODA [95], which was
incorporated into GEPASI, SCAMP and ScrumPy amongst others. This is an
adaptive routine that only switches into the more computationally demanding
Gear-like algorithm when the solution is judged to be stiff. More recently, a
successor to LSODA, CVODE [18], is being exploited in, for example, Jarnac.

The time hierarchy in biochemical systems can be usefully exploited in
modeling. Any modeling is done for a certain timescale of interest. All
processes slower than this timescale can be considered to be constant. As for
the processes faster than this timescale, a simplifying method can be applied
that is based on the reasoning that these processes have relaxed to a quasi-
steady state after a very short transient time. There are two main types of
simplification: the quasi-steady-state and quasi-equilibrium approximations
(e.g. Refs. [19, 51, 70]). These two types are sometimes confused in the liter-
ature. In the former method, the assumption is made that some metabolite
concentrations reach a quasi-steady state while others do not. That is, only
some component equations within the equation system (4) are set equal to
zero, in the sense of Eq. (15):

∑
i∈I

nijvj(Sslow, Sfast) = 0 , (30)

where I is the set of fast variables, and Sslow and Sfast are the subvectors of
the concentration vector that involve the slow and fast variables, respectively.
This has to be interpreted correctly. It does not mean that the quasi-steady
state variables are constant in time; they do change slowly, following the slow
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Figure 9 Simple reaction system with two internal metabolites
and a positive feedback of S2 on reaction 2. Reactions 1 and 3
are irreversible, while reaction 2 is reversible. The dashed arrow
represents the activating regulatory interaction.

variables. They are linked with the slow variables by Eq. (30). Therefore the
word “quasi” is used.

Equation (4) with part of it fulfilling Eq. (30) is called an algebro-differential
equation system. There are various options for solving such equations sys-
tems numerically. If Eq. (30) can be transformed analytically so that Sfast
can be written as a function of Sslow, then this can be inserted into Eq. (4),
so that this can be written as a differential equation system for Sslow and be
integrated by any solver. Another option is to integrate the equations for the
slow variables using the current values of the fast variables, then recompute
the fast variables by solving Eq. (30). This needs to be either implemented
individually or a hybrid algebraic-differential equation solver (such as DASSL
by L. R. Petzold, e.g. Ref. [10]) can be used. A simulation package for cellular
systems that is able to cope with algebro-differential equation systems is
ProMoT/Diva [43].

The quasi-equilibrium approximation, in contrast, starts from the assump-
tion that the fast enzyme reactions reach, after a short transient, a near-
equilibrium state. That is, the mass-action ratio involving the concentrations
of the metabolites participating in the fast reactions are approximately equal
to the equilibrium constant:

n

∏
i=1

S
nij
i = qj . (31)

For numerical solution, similar methods as in the case of the quasi-steady-
state approximation can be used.

Consider, for example, the simple reaction system in Figure 9, in which
the second reaction is activated by its product. Such a positive feedback
occurs in several biochemical reactions. For example, phosphofructokinase
(see Figure 1) in yeast is activated by ADP [4], in many species also by AMP.
(However, the mechanism underlying oscillations in glycolysis appears to be
more complicated, see Section 4.4.) Let us assume that the reactions in the
system in Figure 9 obey the rate laws:

v1 = const. (32a)

v2 = (k2S1 − k2S2/q2)

(
1 +

S2
2

KA

)
(32b)

v3 = k3S2 , (32c)
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Figure 10 Dynamics of the reaction system
shown in Figure 9 plotted in the phase plane
of the two concentration variables. a) Case
of oscillation; the trajectory tends to a stable

limit cycle. b) Case of stable steady state
(filled circle). Parameter values: v1 = 1;
q2 = 100, KA = 0.1; k3 = 1 (A and B),
k2 = 0.065 (A), k2 = 100 (B).

where k2 and q2 denote the rate constant and equilibrium constant, respec-
tively, of reaction 2. KA is called activation constant. The rate law for v2
involves two factors. The first factor is an approximation of the reversible
Michaelis–Menten rate law (7) (with S = S1, P = S2) for low concentrations.
The second term describes the positive feedback. A term of the form (1 + con-
centration/parameter) is typical for enzyme kinetic rate laws describing ac-
tivation (then this term is in the numerator) or inhibition (then it is in the
denominator). Note that, when the concentration of the activator or inhibitor
is zero, the original, unaffected rate law results. An oscillating system with a
simpler version of the rate law for reaction 2, notably v2 = k2S1S2

2 has been
proposed by Higgins [52] and Selkov [125] and is, therefore, nowadays called
Higgins–Selkov oscillator. However, this rate law is less realistic then Eq. (32b)
because it implies v2 = 0 when S2 = 0.

For a certain range of parameters, the system under study shows self-
sustained oscillations (Figure 10A, see also Section 4.4). For other parameter
values, the system runs to a stable steady state (Figure 10B). To show the
usefulness of the quasi-equilibrium approximation, consider the case where
the rate constant k2 is large. The dynamics of relaxation to the steady state then
shows two relatively distinct regions (Figure 10B). First, the curve (usually
called the trajectory) representing the system dynamics in the space of vari-
ables goes from the initial conditions towards a straight line given by Eq. (31),
which here reads:

S2

S1
= q2 . (33)

In the second phase, the trajectory moves very close to this straight line. This
can be explained as follows. When k2 is large enough, i.e. when reaction 2 is
fast enough, this reaction is, after a short transient, nearly at equilibrium even
if it carries a nonzero flux. Accordingly, the concentration ratio approximately
fulfils Eq. (33). When the quasi-equilibrium approximation is applied, it is
often suitable to define combined (“pool”) variables, such as S1 + S2 in our
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example [51]. Interestingly, they are the conservation quantities of the fast
subsystem (see Section 3.1).

By the quasi-equilibrium and quasi-steady-state approximations, the di-
mension of the differential equation system is reduced. One might argue that
with modern computers available, the size of equation systems is not an issue
for numerical computation. However, these approximations also reduce the
number of kinetic parameters. Since these parameters are often imperfectly
known, this is a major advantage.

An intuitive way of implicitly using the quasi-steady-state or quasi-equilib-
rium approximations is the formulation of so-called skeleton models [50,126].
In writing down such models, one only considers the most essential variables,
where the decision on what is essential is left to intuition or empirical knowl-
edge. For example, Selkov [126] established a model of glycolysis with only
two independent concentration variables (ATP and pool of trioses), while the
skeleton model of [156] for the same system involves five variables.

4.2 Metabolic Databases

One of the major achievements of bioinformatics is the availability of large
online databases. The fast access to genome-scale biological data of various
types is of invaluable help in the modeling and simulation of processes in
living cells, as stressed repeatedly in this book. As for the modeling of
metabolic processes, especially enzyme and metabolic databases are used.
Prominent examples are:

• ExPASy Enzyme (http://www.expasy.org/enzyme) [40]. This is a reposi-
tory of various data on enzymes organized according to the EC (enzyme
catalogue). Entries can be searched online, in a variety of ways, such as
entering the EC number, official or alternative names, names of chemical
compounds, or by browsing through the enzyme catalogue. The stored data
comprise the reaction equation, protein sequence, alternative substrates,
bibliographic links, etc., of the enzyme. Links to other databases and to
biochemical pathway charts are included. The intention of the enzyme
catalogue was to give a unique reference, and recommended name, to
a distinct enzyme activity. Unfortunately, it does not use a controlled
vocabulary for metabolite names, so that the name for the product of one
reaction may not be the same as that used as the name for the substrate of
the reaction that consumes it in the cell [55]. However, the data is curated,
and there are mechanisms for submitting new entries and reporting errors.

• KEGG (http://www.genome.jp/kegg) [63]. Its full name being Kyoto En-
cyclopedia of Genes and Genomes, this database includes gene sequence in-
formation. It is, moreover, one of the most widely used metabolic databases
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because it also includes a plethora of enzyme and metabolic pathway data.
Interactive pathway charts allow the user to highlight all enzymes found
so far in a specific species and click on specific enzymes to get information
on these (such as reaction equations). KEGG also contains ample formation
on diseases caused by enzyme deficiencies. Enzymes are distinguished by
their EC number, where available, and metabolites participating in enzyme
reactions. The reactions themselves are given supposedly unique identifiers
and their own database entries. However, the metabolite identifiers have
not avoided the problem of synonyms [55], and the incidence of other errors
means that metabolic networks generated automatically from the databases
are not fully connected and require manual correction. It is unclear whether
there is an effective error-reporting procedure. Metabolic pathway informa-
tion is also stored in the EMP database (http://www.empproject.com) [127].

• BRENDA (http://www.brenda.uni-koeln.de) [111]. This database can be
compared to ExPASy Enzyme, but differs in one main aspect. It includes
information on kinetic properties of enzymes, such as Michaelis–Menten
constants, optima and intervals of pH and temperature, inhibitors, reac-
tion mechanisms (e.g. ordered versus random mechanism), and subcellular
localization. Therefore, it is particularly helpful as a basis for dynamic
modeling.

• BioCyc (http://www.biocyc.org) [65]. This collection of databases has orig-
inated from an E. coli specific database, EcoCyc (which is still a part on
its own within BioCyc) and is now devoted to many organisms. It in-
volves both enzyme and pathway information, similar to KEGG, and its
datamodel deals with the many-to-many relationships of genes, enzymes
and reactions. Another part of that collection, MetaCyc, includes pathway
information about more than 300 different organisms. EcoCyc is manually
curated by experts in microbial metabolism; other organism specific data
varies from being partially curated, to not significantly curated after auto-
matic generation. There is a mechanism for reporting database errors.

• Reactome (http://www.reactome.org) [62] is a knowledgebase of core path-
ways and reactions in humans. In addition to curated entries about hu-
man biology, inferred orthologous events in 15 nonhuman species such as
mouse, fly, yeast and E. coli are also available. In addition to metabolic path-
ways, signal transduction pathways such as those occurring in apoptosis,
are included.

Several databases (e.g. KEGG and BioCyc) allow one to download data by
ftp or other means. Thus, one might assume that an automated compilation
of metabolic models on the basis of databases is feasible. This goal has not,
however, been completely reached so far. First, the information is often
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error-prone, insecure and incomplete [8, 55]. To build a reliable model still
requires checking the data in the original literature. At present, a genome-
scale reconstruction of a metabolic network specifically assembled for one
species is a nonautomated and iterative decision-making process requiring
at least one researcher-year (e.g. Refs. [8, 37]). Second, ontological issues
arise, as indicated above. In enzyme databases (as well as in the literature),
substances are given at different levels of specificity. For example, in some
databases, the term “branched-chain amino acids” is used in the context of
aminotransferases, while in others the specific amino acids are mentioned
separately. Another example is provided by alcohol dehydrogenase. The
substrate of that enzyme is given as ethanol or primary alcohol. Thus, the
additional information is needed that ethanol is a special case of primary
alcohol. Nevertheless, online databases are extremely helpful for modeling
because they provide an easy-to-get, comprehensive overview, which can be
detailed and cross-checked later in the modeling process.

4.3 Example: Red Blood Cell Metabolism

The “guinea pig” of metabolic modeling is the red blood cell (erythrocyte)
for various reasons. Mature erythrocytes in mammals are very simple cells.
They do not contain any cell organelles such as mitochondria, not even a
cell nucleus. The biological reason for this is that almost the entire cell
volume is packed with hemoglobin, which serves for oxygen transport. The
metabolism of these cells involves glycolysis (the most important pathway in
these cells), the pentose phosphate pathway and part of purine metabolism.
Figure 1 shows the main biochemical reactions involved in typical models
of erythrocyte metabolism, notably glycolysis and the pentose phosphate
pathway. Some models also include purine metabolism and the oxida-
tion/reduction cycle of glutathione, which is driven by NADP/NADPH.
Erythrocyte metabolism is even simpler than that of unicellular parasites
such as Mycoplasma. Paradoxically, erythrocytes transport oxygen (as well
as purine nucleotides), but are not “allowed” to use it for respiration. Another
reason why erythrocytes are so intensively studied theoretically is that they
have been thoroughly investigated experimentally due to easy accessibility.
Moreover, they are of great medical importance.

The dominance of glycolysis in erythrocytes allows one to study a metabolic
pathway of moderate size without much interference with other pathways.
Depending on whether pyruvate or lactate are considered as end-products
and whether the 2,3-bisphosphoglycerate bypass is included, glycolysis in-
volves 10–13 reactions and about 15 concentration variables (Figure 1). In
glycolysis, as in most other pathways, a timescale separation can be observed
due to the presence of both slow and fast enzymes. This fact can be employed
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Figure 11 Schematic representation of
the dependence of the stationary ATP
concentration on the rate constant of ATP
consumption (energetic load) in models
of erythrocyte metabolism. Thick solid and

dashed curves indicate stable and unstable
steady states, respectively. The tangent
(dotted line) to the branch of positive steady
states characterizes the robustness of the
system. Filled circle, in vivo point.

by applying the quasi-equilibrium approximation to about half of the reac-
tions [113].

The most comprehensive kinetic models of erythrocyte metabolism so far
have been developed in Refs. [61, 86]. These models include all the three
parts of metabolism mentioned above. Subsequent models and simulations
of erythrocyte metabolism [59,84] have focused on special aspects rather than
extended the earlier models.

From a detailed kinetic model, many conclusions can be drawn. In the case
of erythrocyte models, medically relevant conclusions concern, for example,
the robustness of the ATP and NADH levels against changes in the energetic
and oxidative loads. Energetic load means the consumption of ATP by diverse
processes such as ion pumps, while oxidative load refers to the consumption
of reduced redox equivalents such as NADH, NADPH, and glutathione by
oxidizing reactions involving, for example, free radicals. Figure 11 shows a
schematic picture of the dependence of the stationary ATP concentration on
the rate constant of ATP consumption. Similar figures based on numerical
simulations can be found, for example, in Ref. [51]. Note that for physiological
values of the energetic load, there are two stable steady states – the trivial state
with ATP = 0 and the in vivo state with positive ATP concentration. The reason
for the existence of the trivial state is that glycolysis starts with a reaction
consuming ATP (hexokinase, Figure 1). If no ATP is available, glycolysis is
not “ignited” and cannot produce ATP.

Consider now the branch involving the in vivo state. If the energetic load
becomes too high, the positive steady state disappears and the system “breaks
down”. The slope of the branch at the in vivo state can be interpreted as the ro-
bustness of the ATP producing system. Such figures (based on computational
results) have also been presented for the dependence of redox equivalents on
the energetic and oxidative loads [113, 114].
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An important medical application of models of erythrocyte metabolism is
the description and analysis of enzyme deficiencies. Many inherited diseases
are based on complete or partial deficiencies of some enzymes, as mentioned
in Section 2.1. An example relevant to red blood cells is provided by the
sometimes occurring insufficient production of the enzyme hexokinase, which
may lead to the disruption of these cells (hemolytic anemia). The impact of
various enzyme deficiencies was assessed by simulations [112,114]. If (nearly)
complete enzyme deficiencies are studied, network-based models can be used
to make qualitative assertions [12, 118].

4.4 Oscillations

Analysis of stationary states is the main paradigm in biochemical modeling.
However, it is obvious that not all biological processes are stationary. The
heartbeat, circadian clocks, cell division cycles, labor pain in childbirth and
many other examples show oscillatory dynamics. There are, however, rel-
atively few examples of oscillating metabolic processes (e.g. Ref. [45]). In
most cases, the cause of oscillation is at a level other than the metabolic
level, notably the genetic and hormonal levels, and electrophysiological effects
(such as in the case of the heartbeat) can also play a role. A metabolic system
relatively intensively studied in view of oscillations is the glycolytic pathway
in yeast [5, 77, 104, 125, 126,156]. In these oscillations, the concentrations of all
glycolytic intermediates move with the same frequency, yet partly in different
phases.

However, glycolytic oscillations seem not to be very relevant under physio-
logical conditions. Rather, they occur under special experimental conditions,
e.g. after addition of cyanide during the diauxic shift from glucose consump-
tion to ethanol consumption. In general, biochemical oscillations appear to
be the exception rather than the rule. Most biochemical systems subsist in
stable steady states, due to the stabilizing effect of usual chemical kinetics and
probably because metabolic oscillations are rarely physiologically favorable.
Nevertheless, glycolytic oscillations are of high academic interest because they
can be used as an appropriate example to which the toolbox of theoretical
methods can be applied. For example, the parameter values at which the
Higgins–Selkov system (see Section 4.1) starts oscillating can be calculated
analytically (e.g. Refs. [51, 70]).

A physiologically very important oscillating system where biochemical pro-
cesses are involved is the so-called mitotic oscillator, that is the system under-
lying the cell division cycle (for a model, see Ref. [87]). Another intensely
studied case is cAMP oscillations in Dictyostelium discoideum (for a model,
see Ref. [48]). However, that system rather belongs to signal transduction
because cAMP oscillations serve for communication among these amoebae
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before formation of the fruiting body. A phenomenon studied even more
intensely than glycolytic oscillations is that of intracellular calcium oscillations
[28, 45, 122, 134]. These play an important role in signaling as well because
calcium is a second messenger (see Chapter 22).

Different types of oscillations need to be distinguished depending on their
stability. The biologically most relevant type is that of asymptotically stable
oscillations; after a small fluctuation, the system returns to the same time
course (though perhaps with another phase of oscillation). This type is usually
called stable limit cycle (see Figure 10B). A second type is that of marginally
stable oscillations. Here, a small fluctuation leads to a permanent shift in the
maximum and minimum values of the oscillatory variables. A prominent
example is the predator–prey system in population dynamics first analyzed
by Lotka and Volterra (e.g. Ref. [85]). In linear differential equation systems,
limit cycles cannot occur while marginally stable oscillations can. This is
because the solutions of such equations are exponential functions. The real
part of the exponents is either positive (which leads to a permanent increase in
amplitude until infinity), zero (which leads to a marginally stable amplitude)
or negative (which leads to damped oscillations). Thus, limit cycles can
occur only in nonlinear systems. In fact, the nonlinearity must usually be
rather strong. The essential nonlinearity in Eq. (32b) is S1S2

2. It can be
shown by analyzing the Jacobian matrix that the term S1S2 would not suffice
to produce oscillations. In the model of calcium oscillations developed by
Somogyi and Stucki [134], for example, it is a Hill kinetics of the fourth degree.
One oscillatory mechanism is positive feedback (e.g. due to autocatalysis or
product activation). Most models of calcium oscillations are based on the
positive feedback of cytosolic calcium on its release from the endoplasmic
reticulum. For a long time, positive feedback by product activation of the
glycolytic enzyme phosphofructokinase (see Figure 1) has also been discussed
as an oscillatory mechanism (see Section 4.1). Apart from this, a positive
feedback due to stoichiometric effects, notably the consumption of ATP at
the upper end of glycolysis and production of ATP at the lower end, was
also considered [125, 126]. However, the mechanism underlying glycolytic
oscillations appears to be more complicated than either of these hypotheses
[77].

In continuous modeling, autonomous oscillations cannot occur in a 1-D
system. If for a 1-D equation, dx/dt = f (x), the curve x(t) were to have a
monotonic increasing part and a monotonic decreasing part, it would need
to pass a point where the time derivative dx/dt equals zero. At this point,
however, f (x) is zero, so that x remains constant and cannot, hence, decrease
– a contradiction (see also Ref. [137]). Accordingly, all continuous models of
the above-mentioned types of biological oscillations are at least 2-D.
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4.5 Whole-cell Modeling

A current trend in metabolic modeling is to aim at simulating the metabolism
of entire cells (e.g. Ref. [142]). This is motivated by the breathtaking achieve-
ments in sequencing whole genomes. Thus, many groups are making at-
tempts to perform modeling on a genome scale. This is done either by scaling
up models on the basis of existing software tools or by creating new software
tools specially designed for large systems. Projects in the latter direction
are Electronic cell [139], Virtual Cell [132] and Silicon Cell [133]. Virtual
Cell has the special feature that it allows spatial modeling. It provides a
formal framework for simulating biochemical, electrophysiological and trans-
port processes, while considering the subcellular localization of the various
substances. However, most systems simulated by packages for “whole-cell
modeling” so far have a size that can be treated with other simulation pack-
ages (such as GEPASI) as well.

There has been much controversy in the literature about the pros and cons
of whole-cell modeling. While this issue is largely beyond the scope of a
textbook, we wish to discuss at least some points. Any model is a simpli-
fied representation of some aspect of reality and usually serves a practical
purpose. For example, a model can be established to answer the question
what mechanism allows for calcium oscillations in the cell. A 2-D differential
equation system is sufficient to provide the answer to this specific question:
the positive feedback exerted by calcium-induced calcium release provides
such a mechanism (e.g. Refs. [28, 45, 122]). The idea of whole-cell modeling
is based on a different “philosophy” – rather than dealing with a specific
question and restricting the analysis to some part or aspect from the outset,
a comprehensive picture of the cell in its entirety is aimed at, from which
specific answers are to be derived later. Such a model would integrate the
available knowledge of the structure of the metabolic network and the param-
eters of the system (such as enzyme kinetic parameters), and could establish
whether it is sufficient to account for the observed metabolic characteristics
and responses of the cell. Whether this would amount to an explanation is
open to question, since it would still be necessary to analyze the model further
to determine which structural features and kinetic parameters are particularly
influential for specific behaviors. The predictive power of such a detailed and
comprehensive model could potentially be greater, since the consequences of
any intervention at the molecular level (such as mutation or enzyme inhibition
by a drug) could be followed through the whole system.

It has been questioned whether such a comprehensive, perfect picture can
be established. Major problems arise from three sources:

(i) For the vast majority of enzymes, the kinetic parameters such as maximal
velocities (which are proportional to in vivo enzyme concentrations) are



4 Dynamic Simulation 795

unknown. Therefore, approximation methods such as the quasi-steady-
state approximation are often used, and most models are restricted to
small parts of metabolism. In fact, each enzyme-kinetic rate law is based
on an approximation (see Section 2.4).

(ii) Computational problems. While modern computer technology allows
one to solve thousands of differential equations simultaneously and deal
with large linear programming problems, there are some questions in
metabolic modeling that are computationally hard. This concerns, in
particular, problems related to combinatorial explosion, such as in the
computation of extreme pathways or elementary modes.

(iii) Sometimes, the objection against whole-cell models is raised that even if
all data were known and the respective computer simulations were feasi-
ble, the huge amount of output data are hard to understand and interpret.
This is to do with constraints in the human mind. However, analyzing
the output data of computations can often be facilitated by automated
extraction methods. Computer routines can help extract the features of
interest (e.g. all elementary modes producing a given substance).

The problems in establishing dynamic models of the metabolism of whole
cells can be illustrated by the huge amount of work that has been spent over
about 40 years on the modeling and simulation of a very simple cell – the
human erythrocyte [50,51,59,61,84,86,113]. In spite of these enormous efforts,
we are far from being able to simulate all aspects of erythrocyte metabolism.
Thus, simulating the entire metabolism of more complex cells is unlikely to be
attained in the near future.

On the other hand, laboratory automation of the type that accelerated
genome sequencing and that is applied in the pharmaceutical industry for
high-throughput screening could be used to acquire enzyme kinetic param-
eters much more rapidly than in the past. Of course, it is of great aca-
demic and practical interest to scale up metabolic models. For example,
testing the effect of a drug in silico at the whole-cell level can be extremely
useful. The academic quest for whole-cell or even whole-organism models
can be compared to the striving of mankind to achieve nuclear fusion or
flying to Mars. Indeed, the development of computable models of organisms
has been nominated as one of the current grand challenges in computing
(http://www.ukcrc.org.uk/grand_challenges/index.cfm).

An approach that is, in a sense, in between small (or even minimal)
models and whole-cell models is to simulate only special aspects of whole
cells, such as their network properties, rather than all their dynamic prop-
erties. However, even this aim is difficult to achieve because of combi-
natorial complexity. For example, computing the elementary modes for
the whole of metabolism is impossible at present due to combinatorial
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explosion, even for microorganisms as simple as Mycoplasma pneumoniae.
Currently available software tools for network analysis are able to cope with
systems of about 200 reactions. Stelling and coworkers [135] computed
the elementary modes for a model containing 110 reactions, covering a
considerable part of central metabolism of E. coli. When four different
substrates are allowed simultaneously, this gives rise to about half a million
modes. The current version, METATOOL 5.0 (http://pinguin.biologie.uni-
jena.de/bioinformatik/networks/index.html) is able to cope with a system
extended to 112 reactions, computing 2 450 787 modes [146]. The number
of elementary modes depends very much on the special properties of the
network. In particular, adding reactions connecting to external metabolites
(exchange reactions) usually increases the number of modes much more than
adding internal reactions.

The above-mentioned E. coli system [135] was used to predict the viability
of single mutants, with 90% of the predictions being consistent with experi-
mental data. An even larger system of E. coli metabolism with 720 reactions
was analyzed in Ref. [25]. The viability of single mutants was predicted by
FBA rather than by elementary-modes analysis, with 86% of the predictions
being correct. In fact, FBA is sufficient to predict viability because, if the
flux distribution with the best biomass-over-substrate yield is not able to
sustain growth, then no flux distribution is. FBA (which is based on linear
programming) can cope with larger systems than elementary-modes analysis
because not all possible extreme flux situations need be enumerated. On the
other hand, it gives a less comprehensive picture of the system’s capabilities.
The extreme-pathway analyses in Refs. [91, 103] (see Section 3.6) have been
called “genome-wide” by their authors. However, combinatorial explosion
was avoided by considering one product (amino acid in that case) at a time
and macromolecule synthesis was excluded.

One of the largest metabolic networks so far reconstructed from genome
data was presented in [37]. It comprises 1175 enzymatic reactions and 584
metabolites in S. cerevisiae. Carrying out a linear programming analysis (FBA)
is feasible for that network. Applying FBA to the reconstructed network,
Förster and coworkers [37] predicted the metabolic capabilities of S. cerevisiae
when glucose is the sole carbon source and compared them with E. coli. It
turned out that S. cerevisiae can synthesize the 12 most important precursor
metabolites and the 20 proteinogenic amino acids more efficiently than E. coli.

The S. cerevisiae network reconstructed in Ref. [37], the E. coli network
compiled in Ref. [25] and a network of Helicobacter pylori metabolism com-
prising 389 reactions [109] were used for a flux-coupling analysis [11]. Flux
coupling analysis is part of network analysis and means that the coupling
between directionalities or values of fluxes in steady states is computed. For
example, in an unbranched reaction chain, in which at least one reaction is
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irreversible, all fluxes must be equal and their directionality is determined
by the irreversible reaction. Flux-coupling analysis allows, in particular, the
detection of infeasible fluxes (called blocked reactions in Ref. [11]). These
are fluxes that are always zero at steady state. It was determined that 10, 14
and 29% of the reactions in the three above-mentioned networks, respectively,
are blocked reactions. This may, however, be due to incompleteness of the
reconstructed networks.

5 Conclusions

In this chapter, an outline of the modeling and simulation of metabolic sys-
tems has been given. Of course, the field of metabolic modeling is much
broader than could be sketched here. We should at least mention metabolic
control analysis [5, 19, 32, 50, 51], in which the control by particular enzymes
over systemic properties such as steady-state fluxes is analyzed.

In addition to models of erythrocyte metabolism, many models of parts of
metabolism in other cell types have been established. For example, a model
and computer simulations of the threonine-synthesis pathway in E. coli were
presented by Chassagnole and coworkers [14, 15]. As pointed out above,
glycolysis in yeast has been studied intensely in view of oscillations. Nev-
ertheless, simulations of this pathway in the physiologically more relevant
regime of steady state have been presented as well [39, 140]. A number of
them can be examined, and run, at a web repository curated by J. L. Snoep
(http://jjj.biochem.sun.ac.za).

An important current trend is network modeling (constraint-based model-
ing), as outlined in Section 3. As shown by the CAM plant and TCA cycle
examples in Section 3.5, relevant conclusions can be drawn by this analysis
without the need for kinetic data. The algorithms and mathematical theory in
this field are permanently refined [38,66,144], and applied to biotechnological
[13,101,115,119,120,123,136] and medical problems [12,118,151] as well as to
functional genomics [20, 30]. A large body of literature on FBA has emerged
(some papers are cited in Section 3.7). Moreover, there are a number of
approaches to explaining the properties of metabolic networks by optimality
principles other than maximum yield, e.g. maximum pathway flux [2, 51, 147]
and also flux minimization [54]. A modern line of research is based on
game-theoretical approaches to studying the evolution of metabolic pathways
[3, 47, 96, 99].

Mathematical modeling and simulation in all fields of science have several
objectives. One goal is the explanation and better understanding of exper-
imental observations. This goal has been reached many times in metabolic
modeling. For example, modeling has allowed us to find the mechanistic
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bases of glycolytic and calcium oscillations (see Section 4.4). Another example
is provided by the elementary modes of the CAM plant metabolism, which
allowed a systematic classification of experimental data (see Section 3.5). A
more ambitious goal is to predict some novel phenomenon, which has not
been observed before. Theoretical physics has often achieved this (e.g. the
prediction of the positron). Theoretical biology is less predictive so far. Nev-
ertheless, some success stories exist. For example, the theoretically predicted
optimal time course of gene expression in an unbranched metabolic pathway
[69] could be confirmed experimentally [158]. The predictions of FBA for
E. coli could be verified in adaptive evolution experiments [36, 57]. Another
example is the catabolic pathway in hungry E. coli mentioned in Section 3.3.
In conclusion, it can be said that theoretical biology and bioinformatics will
shift more and more towards predictive sciences.
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Inferring Gene Regulatory Networks
Michael Q. Zhang

1 Introduction

Gene expression (normally referring to the cellular processes that lead to pro-
tein production) is responsive to environmental signals, and is controlled and
regulated at multiple levels [108]. In addition to protein-coding genes, there
are also non (protein)-coding RNA (ncRNA) genes, such as tRNAs, rRNAs,
small nucleolar RNAs (snoRNAs), small interfering RNAs (siRNAs)/micro
RNAs (miRNAs), antisense RNAs and many others [74]. A molecular net-
work is often represented by a graph of nodes (representing molecules) and
links (representing interactive relations between pairs of molecules). Such
interactions can be either symmetric, indicated by an undirected link, or
asymmetric, indicated by a directed link. There are many definitions (or
incarnations) of gene regulatory networks (GRNs) depending on the nature
of the nodes (i.e. DNAs, RNAs, proteins or a mixture) and the links (i.e.
regulatory relations). For example, signaling networks (one type or one part
of GRNs that is discussed in more detail in Chapter 22) are protein networks
that describe post-translational modification, degradation, subcellular local-
ization or physical interaction of proteins. In this chapter, the discussion is
mainly focused on protein–DNA and protein–RNA interactions, as such so-
called trans-factor and cis-element interactions are the key for understanding
how eventually genes are turned on or off. Therefore, knowledge of these
interactions is a prerequisite for building any gene regulation pathway or
more extended networks. The central question is how various input signals
are integrated at each step of gene expression to produce differential output
of the gene products in order to respond to different physiological conditions
in different types of cells at different developmental stages.
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2 Gene Regulation at the Transcriptional Level

Transcription is the first and the major step in gene expression during which
genetic information is transcribed from DNA to RNA transcript. Molecularly,
there are several substeps (e.g. initiation of the transcription, promoter escape,
whereby the polymerase overcomes the pausing at nucleosomes, elongation
of the transcript and termination of transcription) each of which can be subject
to regulation. Transcription factors (TFs) binding to specific promoter DNA
(cis-elements) is the most basic requirement for recruiting the transcription
machinery (polymerase and associated factors) to form the preinitiation com-
plex (PIC) at the transcriptional start site (TSS), and for switching on and off
RNA transcript synthesis. Co(transcription) factors (CTFs) that do not directly
bind to DNA, but to other molecules of the PIC, are also crucial as they can
help activating or deactivating TFs or transcription machinery and can modify
histones or chromatin structures (see Chapters 6 and 45, and reviews, e.g.
Ref. [132]).

Although many mathematical models have been developed for model-
ing single-cell dynamics of highly simplified systems ranging from lactose
metabolism in bacteria [118] to cell cycle control in yeast [26, 97], they are
largely based on known factors, pathways and network topologies. Given
the complexity of the GRNs and very limited dynamical measurements with
current experimental technologies, it may be still too early to build com-
prehensive and accurate dynamical models for truly realistic GRNs. (It is a
fascinating problem why a biological system is robust against fluctuating en-
vironments, for recent review on the stochasticity problem in realistic dynamic
modeling, see Ref. [81].) The majority of the new computational methods for
detecting cis–trans relationships are based on modern statistical or machine
learning approaches; these methods are quite effective in the discovery of
cis-regulatory elements (single motifs) or cis-regulatory modules (CRMs, also
called motif combinations or composite motifs) and the inference of GRN
modules. A GRN module is a triple of TFs/CTFs, cis-element and target
genes).

In the study of transcriptional regulation, there are two related problems:
one is to identify regulatory regions, i.e. promoters or TSSs (they may also
include introns and 3′ flanking regions in vertebrates); another is to detect cis-
element motifs [most of them are TF-binding sites (TFBSs)]. In Chapter 6,
Werner has given an excellent description of de novo promoter prediction
methods, and the interplay between promoter recognition and cis-element
analysis. (One can also find related reviews, e.g. in Refs. [165–167]). In this
chapter, I focus on finding cis-element motifs or network modules using large-
scale functional genomics microarray data.
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2.1 Finding TFBSs and Motifs

The traditional approach for finding cis-elements is to collect a set of (target
gene) promoter sequences believed to be enriched by some common TFBS
motifs. They may either be collected from the literature or from systematic
experiments [such as SELEX (selection-amplification), etc.]. There are many
de novo TFBS motif-finding algorithms that may be used. For recent reviews
on computational TFBS finding methods, see, e.g. Refs. [19, 120, 126, 156, 166],
and see Ref. [153] for a recent benchmark of some popular motif finders. In
addition to the three classical alignment-based motif-finding algorithms, i.e.
CONSENSUS [64], MEME [3] and Gibbs motif sampler [115], most modern
approaches have tried to extend either to discover motif combinations or
CRMs (e.g. Refs. [52, 53, 57]), or to use evolutionary conservation or com-
parative genomic information. The latter approach is also called phylogenetic
foot printing, e.g. Refs. [106, 113, 138, 155, 162]. There are also combinations
of both approaches, e.g. Refs. [122, 151, 161]. One can also increase specificity
by incorporating structural information [84, 107], e.g. if the protein binds as a
homodimer, one could restrict the search to palindromic motifs.

More powerful and flexible motif finders can take advantage of a separate
sequence set called the background set, serving as a negative control. The goal is
to search only for motifs that are most discriminating, i.e. only those enriched
in the foreground set relative to the background set. Such motif finders are
called discriminant motif finders. Examples are ANN-Spec [159], PSSM [6],
DMOTIFS [137], DWE [146] and DME [141].

2.2 Identifying Target Genes

For known TFs, one needs either to get or to construct their nucleotide weight
matrices (NWMs). (For a definition and discussion of NWMs, see Chapter 6.)
Currently there are at least two new types of microarrays for measuring in
vitro protein–DNA binding –protein binding microarrays (PBMs [114]) and
DIP-chip (DNA immunoprecipitation with microarray detection [103]). PBM
uses purified and tagged proteins binding to an array of double-stranded
DNA oligos. In DIP-chip, protein–DNA complexes are immunoprecipitated
from an in vitro mixture of purified protein and naked genomic DNA frag-
ments and the sequences of the bound DNA fragments are determined by
hybridization to a genomic DNA array. Both methods are very useful for sys-
tematically studying TF-binding specificity and hence defining motif-scoring
matrices, because most motifs in the existing transcription factor databases,
such as SCPD (yeast promoter database [171]), TRANSFAC (general com-
mercial transcription factor database [63]), JASPAR (derived database from
TRANFAC [133]) and TRED (cancer-related transcriptional regulation ele-
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ment database [169]), may still be very limited and therefore biased. It would
only be possible to use known motif matrices to search for target genes com-
putationally when the expectation of finding such a motif is much smaller
than in a random promoter region. This means (i) the motif should be long
and/or highly conserved, (ii) multiple motifs form clusters (homotypic or
heterotypic modules) or (iii) the search space could be further restricted (to
conserved regions, to nonrepeat regions, to be close to TSS, etc.) so that the
total information content is well above the background noises.

2.3 Discovering Novel Motifs and Target Genes

Often, neither the motif nor target genes are known. Then motif finding
and target identification have to be done simultaneously and/or iteratively.
Comparative sequence analysis by itself may give some reasonable results for
simple organisms [125]; however, in general, microarray data are required
for any comprehensive studies. Currently, two major types of microarray
data have provided large-scale input for transcriptional GRN studies. One
is mRNA expression microarray data (see Chapter 24) and the other is local-
ization data obtained by the ChIP-chip method (also called ChIP-on-chip, see
Refs. [70, 127] and Chapter 45). ChIP-chip differs from DIP-chip by formalde-
hyde cross-linking proteins to chromatin DNA in vivo. Instead of using
hybridization with genomic DNA arrays as in the ChIP-chip method, the
SACO (serial analysis of chromatin occupancy [76]) method employs SAGE-
tag sequencing after chromatin immunoprecipitation.

There are many approaches based on expression microarrays. The expres-
sion data is the direct readout of mRNA responses for a given condition; it
becomes much more powerful when data is collected under multiple condi-
tions or at multiple time points. The biggest problem in practice is that it is
difficult to identify the direct targets after a treatment or perturbation to the
cells. The best data for motif/target identification can be obtained when a
perturbation is done directly on DNA-binding TFs (such as by TF knockout,
mutation or knockdown, see, e.g. Ref. [25]). Things become more difficult
when perturbation is more upstream, which often causes the activation of
many pathways, as in heat shock or other stress responses, or when the top of
a signal transduction pathway is perturbed, as it happens in drug treatment
at the receptor level. As multiple TFs are likely to be involved in such
general perturbations, responsive target genes would consist of a mixture of
direct targets for different TFs. Another complication arises if the sample is
heterogeneous, either due to technical difficulties of pure sample extraction or
due to intrinsic mixtures such as embryonic stem cell differentiation. Classical
approaches were based on clustering analysis in order to identify correlated
gene expression patterns from which one could try to identify coregulated
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genes and common cis-elements enriched in their promoters (e.g. Ref. [72,
142]). When microarray data from a large number of conditions are combined,
more sophisticated two-dimensional or biclustering methods must be used to
identify significant expression patterns involving only some subset of genes
and subset of conditions [21, 28, 47]. For more information on clustering
of expression microarrays, see also Chapters 24, 26 and 27, and Ref. [56].
Since coexpressed genes may not all be coregulated, and genes expressed
at different conditions and times may be regulated by the same TF, other
information has also been used for filtering for functionally coregulated genes,
such as, using Gene Ontology (GO) annotations, protein–protein interactions,
metabolic networks or localization/binding data, etc., or combining potential
target genes at different time-points by using TF expression profiles (e.g. Refs.
[14, 172]. Since clustering can help in motif identification and good motifs
can help refining clusters, MDscan [104] tries to iterate the process in order to
sample the “good” genes and to weed out the “bad” ones. Models using joint
likelihoods for sequence and expression have also been developed [7, 68].

Finding discriminating motifs that can best classify the foreground promot-
ers of the responsive genes from the background promoters of the nonre-
sponsive genes may be used for motif discovery with expression microarray
data. The most powerful generalization of this idea would be to turn motif
finding into a feature selection problem in regression analysis by asking what
is the set of features X (some functions of the motifs or CRMs) that can best
explain the expression data Y (e.g. as scored via the log-ratio of the expression
data under a given condition). This is very similar to the general problem in
genetics: Y represents the phenotype (mRNA expression) and X represents
the genotype (measures of the DNA elements). One would like to learn a
model (function f ) so that f (X) can best predict Y. When “best” is measured
by the average squared error based on the distribution Pr(X,Y), the solution
is the conditional expectation (also known as the regression function, see,
e.g. Ref. [61]: f (X) = E(Y |X = x). REDUCE is the first successful motif-
selection algorithm based on linear regression [20]. It has been generalized
later to include cross-interaction terms [85], to use NWMs discovered by
MDscan (Motif_Regressor [31]), to apply logistic regression [86] and MARS
(multivariate adaptive regression splines [43]) – a nonlinear model based
on regression trees (MARS_Motif [33]). Using a simple Bayesian network
to learn the AND, OR and NOT logic with constraints on motif strength,
orientation and relative position from a training set of yeast cycle cell genes
and their expression patterns (coded as binary on–off variables), Beer and
Tavazoie [11] demonstrated that the inferred regulatory rules can correctly
predict expression patterns for about 70% of other cell cycle genes (not used
for training the model) in the same arrays.
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Figure 1 ChIP-chip example: genome-wide localization analysis in
yeast [128].

Almost all the tools developed for analyzing expression microarray data
can also be easily applied to the analysis of localization data, e.g. of protein-
binding sites in the genome, such as ChIP-chip data. Although ChIP-chip is
a global measurement for in vivo binding of proteins to chromatin DNA and,
hence, is potentially capable of revealing direct target genes – most targets
identified in expression arrays are not direct targets – due to the current
resolution and to non-specific or non-functional cross-links, not all putative
targets are functional or possess functional cis-elements. ChIP-chip data have
also been used to further refine motifs found by expression data (e.g. using
boosting approach [69]). The most comprehensive ChIP-chip analysis done to
date is the study of 203 TFs in yeast (Figure 1); since experimental resolution
can only narrow down the binding sites to 200- to 1000-kb regions, further
computational analysis is required for functional motif discovery. Using
genome alignment information of four related yeast species and six de novo
motif finders, a transcriptional regulatory code for the yeast genome has been
inferred [58].

2.4 Inferring GRN Modules and Integrating Diverse Types of Data

Fully probabilistic graphical models, Bayesian networks in particular, have
become very popular in GRN module inference. They are flexible with respect
to the integration of diverse data sets (see also Chapter 35; for a recent review,
see Friedman [44]). Bayesian networks have frequently been used to infer reg-
ulatory relationships between a regulator and its (often indirect) target given
the expression data, ChIP-chip data were initially used as an informative prior
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to bias the Bayesian network model (posterior probability) towards potential
direct regulator–target pairs [13,60] or as a noisy sensor [135]. If a parent gene
in the hierarchical Bayesian network is a TF, its children may share its binding
side motif in their promoter DNA. This idea may be used to refine Bayesian
networks iteratively [149].

To reconstruct robust GRNs, network modules of genes that are coregu-
lated under a set of experimental conditions have been proposed [75, 136]
in which all the genes within a single module are controlled by a common
regulatory program (shared set of TFs/cis-elements). When ChIP-chip data
is also incorporated, physical links between TFs and their targets allow for
building more robust GRNs (GRAM [5]). Inferring modules simultaneously
using all three data types, i.e. Motif, ChIP-chip and expression microarray,
have only been tried with the yeast cell cycle data. Here, a two-step process
was used. The seed construction step predicts the putative modules consisting
of TFs, their binding motifs and the common expression profile; the validation
step filters false positives, and determines the module size and function [36].
Similar results have also been obtained previously by an iterative procedure
for reconstruction of the yeast cell cycle regulation network [83] (see Banerjee
and Zhang [4] for a specific review on yeast cell cycle regulatory networks).

Expression microarray data can also been regarded as quantitative phe-
notypes for so-called genetic genomics analysis. In such an approach, the
genetic mechanisms of segregation and recombination are used to reshuffle
the genomes of two or more donor parents, to produce a population of seg-
regating offspring with many combinations of gene variants, both cis-linked
or trans-linked quantitative trait loci (QTL) may be mapped by comparing
differential expression (the method is also called eQTL) in the segregating
population [16, 29]. The power has been further demonstrated recently with
novel application in epistasis analysis for determining the order of function of
genes in pathways [154]. Although differential mRNA expression levels are
used, the regulatory relation inferred by eQTL analysis can be at any level:
from the genomic (cis–trans) level to the protein (interaction) level.

3 Gene Regulation at the Level of RNA Processing

The next level of gene regulation is at the level of RNA processing, which
includes capping, splicing, polyadenylation, editing, degradation (including
nonsense mediated decay) and transport; many of these (in particular, the first
three) steps are co-transcriptional and hence directly coupled to transcription
[108]. Hence, the steady state of the transcript level measured in an expression
microarray is the result of a combined (or net) effect (see Grigull [51] for a
microarray RNA stability study after a general transcriptional shutoff). In this
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section, we will only focus on RNA splicing, especially alternative splicing
that is responsible for generating diverse protein isoforms from a single gene
locus. Alternative splicing plays many critical roles in regulatory pathways
in metazoans, including those controlling cell growth, cell death, differentia-
tion and development, and its misregulation has been implicated in a large
number of human diseases [143]. Genomic technologies for RNA-splicing
regulation studies are much less developed, largely due to the difficulty of
handling RNAs and to much more complex structure and dynamics of the
spliceosome, which incorporates more than 300 protein/RNA components
and thus has significantly more parts then the transcriptional (e.g. the PIC)
or translational (ribosome) apparatus. Computational prediction of alterna-
tive exons is still in its infancy – almost all the exon–intron annotations are
primarily based on cDNAs and expressed sequence tags (ESTs) [93, 166].

3.1 Identification of Splicing Enhancers and Silencers

Like the TFs in transcription, splicing factors (SFs) play important roles
in regulating RNA splicing. Most well-characterized SFs belong to one
of two classes: heterogeneous nuclear ribonucleoproteins (hnRNPs) and
arginine/serine-rich (SR) proteins, besides some TFs and elongation factors
(see reviews, e.g. Refs. [15, 170]). There have been only a few large-scale
discovery and characterization projects of splicing enhancers – mostly bound
by SR proteins in exons – using SELEX through either a binding assay [148]
or a functional assay [32, 101, 102]. Even less data is available on intron
elements, many of which are silencers often bound by hnRNPs [18, 73] (see
review by Ladd and Cooper [90]). Hence there are limited entries in SF-
binding site databases [144, 145, 150]. Several computational approaches
have also been developed for finding putative cis-elements genome-wide in
silico [22, 41, 42, 124, 139, 168].

3.2 Splicing Microarrays

The feasibility of using microarrays to study RNA splicing regulation was
first demonstrated in yeast [30]. Since 40–60% of mammalian genes have
introns (a typical gene has about eight introns, see also Chapter 45), compared
to 3.8% intron-containing genes in yeast, detecting alternative splicing in a
mammalian system with microarrays has only become possible recently [79,
82,98,119,163]. Often, genes have many complex alternative-splicing isoforms
that cannot be tracked unambiguously by the limited number of exon or
junction probes – the biggest challenge of all splicing array experiments is
data analysis and biological interpretation (see review, e.g. Ref. [92]). As
transcription and splicing are intrinsically coupled, it may not be possible
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to separate their individual contributions to the steady-state levels of the
transcripts despite some initial attempts [91, 97, 164]. It is interesting that
transcription and alternative splicing appear to act independently on different
sets of genes in order to define tissue-specific expression profiles [119].

4 Gene Regulation at the Translational Level

Regulated translation controls a wide range of cellular processes in eukary-
otes. Like regulation at the other gene expression levels, global (cell-wide) reg-
ulation can be exercised through modification of the basic translation machin-
ery via events such as phosphorylation. Otherwise, control is more selective
with sequence-specific RNA-binding proteins recognizing target transcripts,
thereby regulating translation. While the number of such factors is growing
rapidly, the molecular details of how they regulate translation are not well un-
derstood for most of them. The binding sites for many of these regulatory pro-
teins are located in 5′- or 3′-untranslated regions (UTRs) of the target transcript
[37,67,123,130,158]. The databases UTRdb and UTRsite maintain a collection
of sequence and regulatory motifs in the UTRs of eukaryotic mRNAs [112].
Computational studies of sequence elements in UTRs have been used mainly
for UTR classification [35] or prediction of start or polyadenylation sites [49,
54, 94, 147]. Comparative genomics has also been applied to detect conserved
mammalian cis-regulatory elements in 3′-UTRs [162]. One of the best studied
cis-regulatory motifs in the 5′-UTR is the internal ribosome entry site (IRES)
[88] and the one in the 3′-UTR is the PUF/pumilo binding site [46,157]. SELEX
has also been applied to studying UTR motifs [71]. The PUF family of RNA-
binding proteins is highly conserved and plays important roles in regulating
mRNA transcript satiability. The first human PUF homolog – PUM2 target:
P2P-R – has also been identified by a microarray study using WebQTL (similar
to the eQTL mentioned above [134]). Another famous example of transla-
tional regulators is the nuclear–cytoplasmic shuttling protein HuR. It has the
dual functions of regulating RNA stability through the AU-rich element in
its 3′-UTR and differentially repressing cap-dependent and IRES-mediated
translational initiation via 5′-UTR binding, and its targets and binding sites
have also proved to be amenable to genome-wide studies [111]. In addition to
expression microarrays, high-throughput genomic arrays are currently being
developed and tested for large-scale identification of cis-regulatory elements
related to RNA binding proteins. This technology is similar to ChIP-chip for
detecting DNA-binding targets and is termed ribonomics [46, 121]. Genome-
wide translational regulatory network studies are clearly on the horizon. A
comprehensive review on UTR elements and post-transcriptional regulation
in cancer may be found in [1].
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5 Gene Regulation by Small ncRNAs

RNA transcripts that are not mRNA, tRNA or rRNA are often referred to as
ncRNAs. They include small nuclear RNA (snRNA), snoRNA, small temporal
RNA (stRNA), Xist (X inactive specific transcripts)-like RNA, antisense RNA,
processed pseudogenes, short RNAs (miRNA), siRNA, trophoblast ncRNA
(tncRNA), small modulatory RNA (smRNA) [17] and other RNA transcripts
of unknown function (TUFs) [27]). Here, we only focus on miRNA (some re-
sults are also applied to other short RNAs, such as siRNA) discovered recently
that can add “micromanagement” fine-tuning layers in complex GRNs [8, 9].
Processed by the RNA interference machinery, these short (around 22 bp)
RNAs can lead to sequence-specific inhibition of gene expression either at
the transcriptional level – through chromatin modification and epigenetic
silencing – in the nucleus or at the post-transcriptional level – through tar-
get message cleavage or degradation, or alternatively through translational
repression – in the cytoplasm [62, 110, 152]. Recently, microarrays have been
used for profiling tissue-specific expression of miRNAs [2, 100] as well as for
identifying target genes [99]. It has been found that miRNAs clustered within
50 kb tend to be cistronic (transcribed together as a single transcript) and those
in introns tend to transcribe together with the host mRNA [10].

Based on training samples in databases, such as the microRNA Registry
(which contains 227 human miRNAs in release 6.0) and in Rfam [50], there
has been a tremendous flood of computational programs and predictions for
miRNAs (based on conservation, secondary structure, etc.) as well as their
target genes (based on complementarity, conservation, etc.), mostly in the
3′-UTR (see the recent reviews of Bengert and Dandekar [12] and Brown
and Sanseau [17]). In animals, imperfect complementarity with miRNAs
makes computational prediction of their targets very difficult. Although
it has been computationally predicted that there may be about 2000 [78],
5000 [162] or more than 5300 [96] human miRNA targets, given that we
do not yet know even a single authentic training sample (an experimen-
tally characterized human endogenous target gene in vivo), we must be very
cautious about those computational predicted targets. In a zebrafish maternal-
zygotic Dicer null, where all miRNAs are globally removed, many of the
early developmental pathways computationally predicted to be targeted by
miRNAs remain intact [48]. This experimental result implies that either the
predicted targets are wrong or they have no functional consequences. The
miRNA target gene regulatory code mostly in 3′-UTRs appears to be very
similar to the transcriptional cis-regulatory code in promoters. Specificity
mainly comes from combinatorial binding of multiple regulators, as each indi-
vidual miRNA can target multiple genes [66]. With tissue-specific microarray
data and motif-finding algorithms, identification of functional target genes
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and cis-regulatory sites may be more reliable [99]. Incorporation of known
secondary structure information can further improve the target prediction
accuracy [131]. Using a conservation filter (which require target recognition
sites must be conserved among ortholog genes) of eight vertebrate species, a
new algorithm PicTar [89] is able to predict tissue-specific mammalian target
genes for a combination of miRNAs. This method was used to estimate about
200 targets per miRNA in the mammals. After all, miRNAs and TFs form
an integrated regulation network – natural feedback loops: pre-miRNAs are
regulated by TFs and many of the miRNA target themselves are TFs. It is a
computational challenge to be able to treat them simultaneously. It has been
demonstrated experimentally that such fascinating networks can regulate left
and right symmetry in nematode chemosensory neuron localizations, and
the two miRNAs that repress the die-1 zinc-finger TF were totally missed by
previous computational predictions [24]. Another endogenous feedback loop
was recently uncovered in the mammalian cell cycle regulation system where
two miRNAs regulated by c-Myc modulate another c-Myc activated target
E2F1 [116].

6 GRNs in Development and Evolution

The best context in which to study GRNs is metazoan organ development (see
the special section in Proceedings of the National Academy of Sciences USA 2005,
vol. 102, no. 14). Unlike the dynamics at the single-cell level, tissue lineage
differentiation and organogenesis involve much slower dynamics of creation
and evolution of cellular populations. In the terminally differentiated tissues,
the regulatory program is often relatively simple, cis-regulatory regions in
promoters tend to be closer to TSS and many TFBS are less conserved among
distant species. In fact, it has been shown recently that proximal promoters
can predict tissue-specific gene expression [140]. In contrast, the regulatory
programs that control early development tend to be much more complex,
almost always involving distal enhancers and/or complicated locus control
regions (LCRs). However, lineage developmental master TFs and their bind-
ing sites (hence the core networks) are often more conserved during evolution.
Using conservation and structural properties of TF modules (inter-distance
and orientation), large-scale computational identification of distal enhancers
has become possible [55]. Developmental GRNs refer to “logic maps of the
control functions that direct development, and they relate these maps directly
to the genomic regulatory sequence” [117]. They are typically large scale,
multilayered, and organized in a nested, modular hierarchy of regulatory
network kernels, function-specific building blocks and structural gene batter-
ies. They are also inherently multicellular and involve changing topological
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relationships among a growing number of cells [105]. The two best-studied
early developmental systems are the specification of the endomesoderm in sea
urchin embryos and the dorsal–ventral patterning in the Drosophila embryo
[95]. The central problem for GRN reconstruction is to identify CRMs and to
figure out what kind of logic function, i.e. mapping from regulatory signal
input to protein production output, each DNA module is programmed to
compute and how different modules are integrated in the circuit [77].

Since the regulation of gene expression is ultimately the result of the evo-
lutionary response to the challenge of surviving in a changing environment
in the past history [23], we need to understand what is the core (conserved)
subnetwork and what are the species-specific innovations. Different species
may use different pathways to accomplish the same task or may invent unique
pathways for their survival in a particular niche or environment. Evolutionary
comparison of GRNs of related species is essential [38,160] (also Ref. [34] for a
discussion on evolution-development convergence). Studies on conservation
and evolution of cis-regulatory architectures [45], of global expression profiles
[39, 80, 109] or of GRNs [40, 65] have yielded valuable insight on history,
diversity and function of various genetic regulatory systems.

The obvious future task is to develop high-throughput experimental tech-
nologies to measure dynamic gene regulation at many different levels si-
multaneously and to develop large-scale computational tools to integrate
diverse data (DNA, RNA, protein, metabolites, etc.) in order to obtain a
coherent picture at the systems biology level [59, 105]. The current emphasis
should not be on graphs or “regulatory linkage, but the nature of biological
systems that allows gene products to be linked together in many nonlethal and
even useful combinations” [87]. Such a comprehensive study is important
for inferring regulatory programs not only in normal biological systems, but
also in pathological systems, such as in cancer [129].

The central dogma of molecular biology, stating that the flow of genetic
information from DNA to RNA to protein is hardly an archaic myth. Yet,
the subsequent discoveries that RNA can be transcribed back to DNA (“re-
verse transcription”), that it can cause gene silencing (“epigenetic control” or
imprinting) as well as degradation of mRNA transcripts or repress translation
(“RNA interference”) and that it can also function enzymatically like a protein
(ribozymes, cleave messages) have forced people to rethink: what is a gene
and in how many ways can it be regulated? The fact that information may
flow in more than one direction compels us to wonder if RNA may be the truly
central player with both the informational capacity of DNA and the functional
capacity of protein? With the dual role of information carrier and processor,
RNA cannot only store information into DNA for more stable preservation of
information (genetic structure), but also translate information into protein for
more flexible and efficient processing of information (biochemical function).
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Modeling Cell Signaling Networks
Anthony Hasseldine, Azi Lipshtat, Ravi Iyengar and Avi Ma’ayan

1 Introduction

A cell’s signaling network is in many ways analogous to an animal’s ner-
vous system, connecting and directing the activities of its constituent parts,
and processing information from the outside world; and, as in neurobiology,
despite extensive study, there is still a lot to learn about cell signaling. The
reason for the intricacy of signaling networks is evident if one considers
that they are responsible for the control of cellular functions and information
processing, and that such control systems are often more complex than the
core functions they regulate. To borrow a classical example from Kuipers [33]
and Lauffenburger [36], consider a simple system in which water delivery
is required from a tank with in- and outflow pipes. This is a primitive
core function indeed, but to prevent accidental overflow or depletion, it still
requires a control system comprised of valves, flow meters, transducers and
regulators, used in combination according to an appropriate computational
algorithm, i.e. a relatively complex control system. Cells, which are con-
siderably more sophisticated than water tanks, have vastly more complex
control systems (signaling networks), presenting a considerable challenge in
developing detailed predictive models. Different problems call for different
approaches. Hence, in this chapter we outline a few complementary modeling
strategies and the circumstances in which they may be useful.

1.1 Components and Cascades

The signal transduction field was born with the discovery of adenosine 3′,5′-
cyclic monophosphate (cAMP) by Earl Sutherland and coworkers in the 1950s
[58]. They called this molecule a “second messenger” in order to differentiate
it from extracellular “first messengers” (hormones and neurotransmitters),
which were the only real signaling molecules known at that time. Subse-
quently, other components of the cAMP signaling pathway were identified.
In particular, the discovery that hormones, such as epinephrine and glucagon,
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do not act by binding directly to adenylylcyclases. It was later discovered
that receptors and GTP-binding proteins (G-proteins) are required to mediate
such response. This finding led to the formulation of the “signal transduction”
concept, inspired partly by the burgeoning field of cybernetics [52].

In addition to cAMP, several other small molecules also play important
roles in signal transduction. From other work in the 1950s, it was noted that
membrane phospholipid metabolism was altered in response to acetylcholine
treatment of cells [23]. This response involves inositol phospholipids and
consequently the products of their hydrolysis, i.e. phosphoinositols (e.g. IP3,
IP4) and diacylglycerol (DAG), are among the best characterized lipid-derived
signaling molecules. Arachidonic acid, another lipid metabolite, is also highly
important in a variety of signaling events, both intra- and intercellularly.

Some small molecules signal via the production or release of other small
molecules. For example, adenylylcyclase, an enzyme that catalyzes the pro-
duction of the small messenger cAMP, causes an indirect activation of protein
kinase A (PKA). cAMP binds to the regulatory subunit of PKA and this
binding reaction causes the release of the catalytic subunit from the regula-
tory subunit. The catalytic subunit of PKA is then free to diffuse, and can
now catalyze the phosphorylation, potentiation and activation of ion Ca2+

channels. Ca2+, via its binding protein, calmodulin (CaM), can also activate,
for example, certain isoforms of phosphodiesterases and the phosphatase,
calcineurin. However, the most common effect of small-molecule release or
synthesis is the regulation of protein kinase activity. The best known of these
are cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase
(PKG), the DAG-sensitive kinases PKC and PKD, the inositol phospholipid-
sensitive PKB/Akt, and the calcium-CaM-dependent kinases (CaMK I–IV).

Protein phosphorylation is a very common regulatory modification in
cell signaling. Most protein kinases listed above are themselves regulated
by phosphorylation, while protein kinases of another important family, the
mitogen-activated protein kinases (MAPKs), are activated by phosphorylation
alone, in the classic MAPKKK–MAPKK–MAPK cascade.

In addition to small-molecule sensitivity and phosphorylation, there are
also many regulatory protein–protein binding interactions in cell signaling.
Many of these involve another important category of molecule: G-proteins. G-
proteins fall into two categories: heterotrimeric G-proteins (e.g. Gq, Gs, Gi and
Gz), which are activated by cell surface receptors of the seven-transmembrane
(7TM) receptor superfamily, and monomeric G-proteins (“small G-proteins”,
e.g. Ras, Rho, Rab), which are activated by specific guanine nucleotide ex-
change factors (GEFs). In both cases, the GTP-bound form is the active state
and G-protein activation is terminated by its hydrolysis to GDP. For small
G-proteins, this is usually catalyzed by a GTPase-activating-protein (GAP),
while the intrinsic GTPase rates of heterotrimeric G-proteins may be boosted
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Figure 1 Canonical signaling pathway to
illustrate how increase in production of one
small-molecule second messenger (cAMP)
can lead to an increase in intracellular
concentration of another second messenger
(Ca2+). Here, an example from heart cells
is shown. The signal starts by the binding of
some extracellular ligand to a transmembrane
cell surface GPCR. The binding of the
ligand induces a conformational change
in the receptor structure, which results in
the activation of a heterotrimeric G-protein.
The heterotrimeric G-protein activates the
membrane-bound enzyme adenylylcyclase.

This enzyme catalyzes the formation of the
second messenger cAMP, which in turn
diffuses through the cytoplasm to bind the
regulatory subunit of protein kinase PKA. This
binding of cAMP to the regulatory subunit of
PKA results in the release of the catalytic
subunit, which now is able to diffuse and
phosphorylate Ca2+ channels, and potentiate
their open state to induce intracellular Ca2+

entry. Intracellular Ca2+ can bind to a calcium
sensor protein named CaM which can bind
to and activate CaMK-type family of CaM-
activated kinases.

by the GAP activity of RGS proteins (regulators of G-protein signaling). See
Figure 1 for a canonical cascade of signaling interactions using some of the
components and interactions described.

The conformational change that results from a binding interaction often
causes a change in the target’s catalytic activity. 7TM receptor activation
by an agonist, permitting the receptor to catalyze G-protein activation, is
an example of this. Alternatively, the conformational change may result
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in the concealment or exposure of other binding sites on the target, thus
regulating protein complex formation, for example. Autoinhibitory domains
and subunits are common; PKA, for instance, is activated by the binding of
cAMP to its regulatory subunits, causing them to dissociate from the catalytic
subunits, which may then phosphorylate its targets.

Most of the protein kinases described above target serine or threonine
residues for phosphorylation, but tyrosine kinases are also very important
in the signal transduction systems of higher organisms, particularly in the
regulation of growth [44]. They come in two classes: receptor tyrosine kinases,
which are transmembrane proteins sensitive to growth factors, neurotrophins
and/or insulin, and nonreceptor tyrosine kinases, such as Src, Jak and FAK.

Counterbalancing the effects of protein kinases are protein phosphatases.
Serine/threonine phosphatases are far fewer in number than serine/threonine
kinases and appear to be regulated less extensively. Nonetheless, some, such
as the calcium-CaM-dependent calcineurin, do regulate the activity of phos-
phorylated substrates in a signal-dependent manner. Tyrosine phosphatases
are well known to be important regulators of cell signaling – many, such as
the T cell marker CD45, are in fact cell surface receptors.

There are also some protein kinases and phosphatases that are known as
“dual specificity”, because they catalyze the addition or removal of phosphate
groups from both serine/threonine and tyrosine residues.

The molecules detailed above comprise the basic building blocks of the
canonical signal transduction network: several types of small molecule
(e.g. cAMP, Ca2+ and the phosphoinositol IP3), G-protein-coupled recep-
tors (GPCRs/7TM receptors), heterotrimeric G-proteins, receptor tyrosine
kinases, nonreceptor serine/threonine and tyrosine kinases, dual-specificity
kinases, serine/threonine, tyrosine and dual-specificity phosphatases, lipid
kinases (although not mentioned explicitly, these produce phospholipids),
phospholipases (which hydrolyze phospholipids), small G-proteins, GEFs,
GAPs, and nucleotide cyclases. More generally, the kinetic building blocks
of cell signaling are small-molecule–protein and protein–protein binding
interactions, and enzymatic reactions.

1.2 From Pathways to Networks

1.2.1 Interactions between Signaling Pathways

With the discovery of each of the signaling components described above,
much effort was focused on discovering a corresponding functional role. This
process was, to a large extent, informed by the original view of signal trans-
duction as a linear cascade for information transfer and signal amplification.
However, even from the earliest biochemical and cell biological research,
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Figure 2 Illustration of “cross-talk” between
two canonical signaling pathways: the cAMP–
PKA pathway and the MAPK pathway.
Here, an example from neurons is shown.
Norepinephrine (NE) is a ligand that can
bind to adrenergic GPCR receptor types.
This induces the cAMP cascade (see for
Figure 1). cAMP is also known to activate
an exchange factor (cAMP-GEF) that can
influence the MAPK cascade through the
activation of the small G-protein Rap. The
MAPK cascade is typically induced by the
binding of growth factors (GF) to cell surface
family of receptors named receptor tyrosine
kinases (RTK). Once ligand bound, these
receptors dimerize, autophosphorylate

each other, and can bind and phosphorylate
intracellular proteins such as GRB. GRB once
bound to the receptor can bind to SOS which
binds and activates the small G-protein RAS.
RAS in turn activates MAPKKK (B-RAF)
which is in turn phosphorylates and activates
MAPKK (MEK1,2) which phosphorylates and
activates MAPK1,2. Both MAPK activated
kinase MSK and PKA can phosphorylate
and activate the transcription factor CREB.
CREB forms homodimers or heterodimers
(with other CREB family members) when it
is in its phosphorylated form. Active CREB
translocates into the nucleus, binds to DNA
and affects gene transcriptional regulation.
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it was clear that pathways did not really operate independently, and the
interactions between them were termed “cross-talk”.

Examples of interactions between signaling pathways can be found at
many levels, from receptors to effectors. For example, the two endogenous
adrenergic agonists, epinephrine and norepinephrine, activate one or several
(depending on the cell type) of 10 different α- and β-adrenergic receptors,
which differ in their regulation and also, by class (α1, α2, β), in their G-
protein/effector coupling. Other hormone and neurotransmitter receptors
may affect adrenergic receptor sensitivity (e.g. by heterologous desensiti-
zation), and also share some of the same effector pathways, which in turn
are further connected at multiple levels downstream. See Figure 2 for two
examples of “cross-talk” between two canonical signaling pathways – the
cAMP–PKA pathway and MAPK pathway.

Interactions between pathways result in regulatory signaling computation,
which is limited in “linear” signal cascades. Much as signaling pathways
themselves connect and control core cellular functions, these interactions be-
tween pathways, while not central to the task of getting information through
the cell, are no doubt critical for sophisticated control of cellular behavior.
Note, however, that this distinction between pathways and their interactions
is contextual, because many signaling components are multifunctional. This
point is further expanded below.

1.2.2 Implications of Network Topology

The growth in understanding signaling pathways and interconnections, and
the advent of high-throughput techniques for studying large-scale protein
interactions and protein post-translational modifications (i.e. phosphoryla-
tion) have led to the mapping of intracellular interactions on a breadth never
considered before. One striking characteristic of the networks that have
emerged from assembling many interactions to form in silico networks data
sets is the so-called “small-world” topology; this type of organization means
that on average there are a small number of connection “steps” between
any two components (nodes), as well as high clustering (the proportion of
a node’s interacting partners that interact with one another) compared with
the same statistics computed for random or shuffled networks [64]. This has
interesting biological implications. Short paths across the signaling network
would presumably be advantageous for rapid signal transfer, while high
clustering implies the existence of network motifs, which can confer the ability
to process information as it is being transferred.

The second striking topological property that emerges in complex cell sig-
naling networks is their nodal connectivity degree distribution which is re-
ferred to as being “scale-free”. The distribution of nodes with the same
number of neighbors (number of direct biochemical interacting partners) com-
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monly follows a power law [4]. That is, there are many nodes with very
few connections and fewer, but substantial, numbers of nodes with many
connections (the distribution has a long heavy tail). In terms of the compo-
nents and cascades described above, it is easy to see that there are several
candidate proteins for “hubs”, i.e. highly connected nodes such as CaM, PKA
and PKC. Graph theory tells us that, while the eradication of most nodes is
tolerated easily, hubs are very important for maintaining network structure.
This conclusion might appear trivial in light of the examples above – one does
not need graph theory to conclude that PKA or PKC are important signaling
molecules since they are known to be involved in almost all cell signaling
processes and have many phosphorylation targets. Many other hubs are not
so well characterized, however, and understanding network vulnerability has
clear implications for understanding and identifying drug targets and treating
disease. The appearance of power law-distributed networks in many complex
systems abstracted to networks, including biology, has been proposed to have
come about by “highly optimized tolerance” [10]. This term was coined for
a design or evolutionary process that confers robustness to a wide variety of
anticipated or experienced conditions. The trade-off is that these networks
are very vulnerable to unforeseen or novel perturbations or attacks; again,
the pathophysiological implications of this may be far reaching for drug
discovery.

Network/graph theory is in itself a way of modeling cell signaling path-
ways [9], but it is a technique that is still in its infancy and one that can yield
only a qualitative picture. It should also be noted that questions have been
raised about the data used to draw some of the above conclusions, in partic-
ular, the validity of the interactions from yeast-two-hybrid and proteomics
studies [30, 63] (see also Chapters 28 and 31). However, similar network
characteristics have also been observed in data sets painstakingly collected
from older studies in the scientific literature that used less error-prone tech-
niques [40]. Of course, manually collected data also have their limitations,
being the product of research driven by human interest and hypotheses, but
the similarity in topological properties that emerges from the two approaches
is encouraging.

1.2.3 Network Motifs

A group of connections or direct interactions between few components in
the cell signaling network that has the potential to perform an information-
processing function may be described as a regulatory network motif. Probably
the best known is the negative feedback loop (NFBL), which occurs often
in metabolic pathways and in desensitization, as in the case of Gs-coupled
receptor phosphorylation by PKA and GRK (G-protein-coupled receptor ki-
nase) (Figure 3). The former forms a five-node NFBL which permits the
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Figure 3 The NFBLs that regulate the
sensitivity of a Gs-coupled receptor.
Stimulatory connections are symbolized
by arrows and inhibitory connections by
plungers. Agonist/ligand binds to the receptor
which activates Gs, causing it to dissociate
to Gαs and Gβγ subunits. GRK is recruited
to the plasma membrane by Gβγ subunits,

where it phosphorylates and uncouples the
active receptor. PKA, which is activated
by increased cAMP concentrations, also
phosphorylates the receptor. This may be
caused by activation of this or another Gs-
coupled receptor, or by other stimuli that
activate adenylylcyclase (AC).

cell to adjust its sensitivity to the extracellular environment according to
the concentration of a second messenger (cAMP) that is downstream of the
receptor. This allows for modulation of receptor sensitivity by other detector
systems that are coupled to cAMP. GRK, by contrast, is recruited directly by
the heterotrimeric G-protein Gβγ and regulates receptor sensitivity in direct
proportion to receptor activation. Hence, these two mechanisms, in concert,
confer the ability to tightly regulate receptor sensitivity according to the cell’s
experience. In general terms, negative feedback is a mechanism for setting
cellular expectations and preventing signaling hyperactivity.

In contrast to NFBLs, positive feedback loops (PFBLs) can produce bistability
(or switching). Bistability, as the name suggests, is the ability of a system
to stably occupy one of two steady states, with very little chance of coming
to rest at an intermediate activity level. This can occur if there is an even
number of inhibitory interactions, producing “double-negative” regulation or
no negative interactions (all the links in the feedback loop are positive). There
are several examples of human engineered systems which this motif has been
engineered [16].

Switching behavior and multistability are often associated with hysteresis
[37]. PFBLs are known to be involved in amplification of small stimuli and
the triggering of cellular state changes. A similar biochemical switch has also
been proposed: “ultrasensitivity” emerges readily from a signaling cascade,
such as the sequential phosphorylation of kinases leading to MAPK activation
[7, 8]. Like the bistability PFBL motifs described above, this is a threshold
mechanism, but in the case of an ultrasensitive cascade, the switching need
only be in one direction such that the PFBL is internal to one enzyme. Of
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course, ultrasensitive cascades can exist in combination with other motifs,
which may confer bidirectional switching overall.

The network motifs described above have long been known, at least in
terms of regulatory negative feedback inhibition, and amplification by ultra-
sensitivity and positive feedback created by a group of coupled biochemical
reactions, but the concept of switching is relatively new in cell signaling.
Experimental methods such as immunoblotting to observe state changes often
do not produce evidence for this behavior, because switching occurs at the
single-cell level which is below the resolution of most experimental tech-
niques, i.e. bistability in cell populations, be they in a tissue or a culture
dish, will be hidden by averaging. The result of a stimulus is an apparently
gradual change in behavior, reflecting a cumulative distribution of single-cell
threshold responses.

One important contribution of cellular switches is that they comprise a
means of producing cellular state by consolidating many inputs into a single
output response. This might be compared with decision making, classification
and information processing. Hence, the ubiquitous MAPK cascade (Figure 2),
which controls a broad range of cellular outcomes, e.g. by regulating the
machinery required for differentiation or proliferation, is not only ultrasen-
sitive, but displays bistability because of a PFBL between MAPK activation
and arachidonic acid-mediated PKC activation [7, 8].

An additional implication of bistability and ultrasensitivity is a reduction
in the number of possible steady states. The signaling network is constrained
to a given range of presumably dynamical stable steady-state configurations,
improving response reproducibility and network stability to perturbations.
This analog-to-digital conversion is obviously not desirable in all regions
of the cellular regulatory network, but may be particularly advantageous
in the regulation of key effector systems. The term “attractor” is used by
mathematicians to describe one of these small volumes in “state space” that
biochemical regulatory networks tend to occupy [25].

In addition to the well-studied PFBL and NFBL network motifs outlined
above, two other motifs, feedforward loops (FFLs) and bifans, have recently
been found to be statistically enriched in cell signaling regulatory networks
compared with network motifs identified in randomized or shuffled net-
works. These additional two motifs are potentially important for information
processing capabilities in biological networks (these motifs are diagrammed
in Figure 4). The FFL has been studied most intensively in gene regulatory
networks (GRNs), where it has been proposed to perform several biologically
interesting functions that can be extrapolated to cell signaling. FFLs have been
categorized into two subdivisions: coherent and incoherent [41]. The former
refers to FFLs in which regulation is consistent across the two arms of the
motif, i.e. the node furthest downstream (output node) receives the same
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Figure 4 Network motifs. Nodes
are symbolized by circles, stimulatory
connections by arrows and inhibitory
connections by plungers. A dashed
line indicates that the connection is not
necessarily direct. (A) PFBL. (B) NFBL.
(C) “All-positive” bifan. (D) Bifan with
“accelerator” and “brake” arrangement. (E)

“Competitive” bi-fan. (F) A “biased” bifan
(three negative and one positive is another
possible configuration). (G) Examples of
coherent FFLs (i.e. consistent influence on
the output across both arms). (H) Examples
of incoherent FFLs (in which conflicting
signals are sent across the two arms).

type of signal from both its input arms (Figure 4). In contrast, incoherent
FFLs are those in which the two arms have antagonistic effects on the activity
of the downstream node. A FFL can modulate the duration of signaling,
conferring either signal-onset delay or signal-decay acceleration, depending
on its configuration. Detail analysis of different FFL configurations and their
potential dynamical behavior was developed by Alon and coworkers [14, 41–
43].

The bifan motif, like the FFL, plays a potentially important role in signal
integration, although it has not yet been studied extensively. In principle,
there are several functions it could perform (see Figure 4 for diagrams).
“All-positive links” or “all-negative links” bifans would be expected to
act as coincidence detectors and branching points, to produce consistent
cellular responses from multiple inputs. The all-negative and all-positive
bifan configuration is highly abundant in cell signaling networks most likely
because cellular components (proteins) arise in these networks through
duplication–divergence evolutionary processes. Regulation in tandem may
also be achieved when upstream nodes are connected as follows: positive–
positive (“accelerator” input) and negative–negative (“brake” input), with
each output receiving one of each. This configuration is probably the most
common, biologically, due to the tendency for kinases and phosphatases, as
well as GEFs and GAPs, to share substrates. Alternatively, if the inputs each
have one positive and one negative connection to the output nodes, the motif
would be expected to function as two competing cascades. This could occur
under circumstances in which phosphorylation stimulated one pathway and
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inhibited the other. There is also the “biased” bifan, with just one connection
differing in sign from the other three; this is expected to produce coincidence
detection at one output and competition at the other. The information-
processing function of each of these motifs will further depend on the nature
of the inputs’ interactions, be they competitive, conditional or synergistic. In
Boolean algebra or in electrical engineering parlance, it depends whether the
inputs form OR or AND gates.

Other motifs, and more analysis of their functions, have been reported,
particularly by Arkin and coworkers. These include signaling configurations
that act as oscillators, various frequency filters and amplitude filters [3, 56,
65]. With further research, it will become clearer which of these are utilized in
nature. Such analyses may provide some interesting insights into evolution’s
engineering principles of biological systems.

2 Types of Models and the Information they can Yield

2.1 Boolean Networks and Bayesian Networks Modeling Approaches

The broadest analysis that can be applied to a signaling network is the top-
down approach employed by graph (network) theory. This approach yields
a description of the entire network in terms of its topology, as well as mea-
sures such as average number of connections per component and maximum
distance across the signaling network (see Section 1.2.2). This is a rapidly
growing new field, from which many novel applications and techniques are
exponentially emerging. For example, the analysis of “dynamic networks”
may deliver biologically relevant insights into the way in which signaling
and GRNs are rewired in response to external cues and the cell cycle [5, 39].
Furthermore, techniques from the field of machine learning have recently been
employed in an attempt to derive the evolutionary foundation of biological
networks by analyzing the frequency of the motifs they contain [47]. None of
these techniques, however, yet offer a dynamic simulation system for predict-
ing and investigating the function of cell signaling network interactions.

Boolean networks modeling is the simplest dynamical depiction of a sig-
naling system, representing states of components as “1” and “0” [31]. The
activation state of a node is governed by that of its input neighbors using
Boolean logic (Boolean function). Activation and inhibition in a linear cascade
can be represented by activation links and inhibition links, while there are
eight possible Boolean functions to decode two Boolean inputs, OR and AND
suffice to be used to simulate the effects of two converging inputs in signaling
networks. For diagrams, formulas and an explanation of these, see Figure 5.
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Figure 5 Boolean representations of
signaling interactions. Components (nodes)
are represented by circles, each labeled with
a letter: A–H are inputs and O is the output.
Stimulatory connections are symbolized by
arrowheads and inhibitory connections by
plungers. The two unary functions (single
input), I and II, are IF (O = A) and NOT
(O = B′), respectively; in Boolean notation,
the prime symbol represents the complement
(it “flips” a value between “0” and “1”). The
other three functions are two-input Boolean
functions. In III, two stimulatory inputs
converge on an output; this interaction may
be represented by an AND function (O = CD)
if both inputs are required to activate the

output and by an OR function (O = C + D)
if only one input is required to propagate
the signal. In IV, dual regulation (positive
and negative) of a node is shown. The AND
function (O = E′F) describes this interaction
if the inhibitor is off and the activator is
on. Whereas the OR function (O = E′ + F)
describes activation either when the inhibitor
is off OR the activator is on. V shows a binary
interaction in which two inhibitors converge
on the output. Again, AND (O = G′H′) and
OR (O = G′ + H′) functions can be used to
represent the interaction; in the former case,
both inputs need to be inactive, for the output
to be turned on. In the latter case, both inputs
need to be activated to inhibit the output.

The Boolean approach is useful for handling very large models, as it is
computationally cheap compared with other dynamical modeling approaches
such as ordinary differential equations (ODEs) and partial differential equa-
tions (PDEs) representations. It is particularly useful when the relationships
between nodes have not been characterized quantitatively, i.e. in systems with
unknown kinetics of binding and catalysis. Pseudodynamics modeling can
also be used to create dynamic “maps” of signaling network topology, which
reveal the presence of information-processing motifs specific to particular
pathways or regions of signaling space [40]. While quick and easy, relative
to other modeling strategies, Boolean and pseudodynamics representations of
cell signaling do have limitations. Imposition of binary descriptions can at
times be somewhat arbitrary, as many complex, conditional activation events
exist in cell signaling. Some of these issues are being addressed by ongoing
work in the field. The introduction of more complex functions, customized
for every node based on careful experimental observation [11], may go some
way towards ameliorating these problems.
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Cell signaling networks could also be modeled by classifier systems [24].
Statistical classification machine learning-based models are called Bayesian
networks. Bayesian networks are most commonly used to build GRNs from
microarray time series or single knockout data sets [18, 53, 66]. Bayesian
networks are acyclic graphs where nodes represent variables and links are
probabilistic influences of variables on each other. Bayesian networks can
be useful in interpreting multidimensional signalome type experimental data
such as phospho-proteomics. For example, a Bayesian network was built
to understand mouse embryonic stem cells cellular choices under different
stimulations protocols [51, 65]. These cells can be driven to self-renewal or
to differentiation in culture based on extracellular media provided. A similar
approach was used to study the relationships between proteins and phospho-
lipids, and the directionality of their links, after T cell activation of naive T
cells [54]. Using data from single-cell measurements using flow cytometry
to measure the phosphorylation levels of key signaling components [26] it
is possible to determine the hierarchical ordering of signaling components
by applying experimental perturbations, such as knocking out genes and
proteins, by either pharmacological agents or RNA interference. Another
relatively simple qualitative related statistical method was used to study cell
signaling axes of apoptosis [28].

2.2 Quantitative Dynamics Modeling

In order to understand intracellular behavior on a quantitative detailed level,
quantitative system dynamics need to be captured. Although certain behav-
iors are fairly robust with respect to kinetic parameters, there are also frequent
examples of systems-level behaviors that emerge from quantitative dynamics
rather than simply connection maps. An example of this is a system alluded
to earlier, in which bistability results from a PFBL formed by the MAPK
cascade in conjunction with arachidonic acid production and PKC activation
(see Figure 6). This switch is in turn regulated by a PFBL between MAPK and
MAPK phosphatase (MKP): active MAPK phosphorylates MKP, protecting it
from degradation, while MKP activity inhibits MAPK. Once enough MKP has
accumulated, its inhibitory influence attenuates the activity of the PFBL and
the MAPK response becomes proportional to the input stimulus, rather than
sustained or switch-like (Figure 6).

Kinetics-dependent behavior is also evidenced in the activation of immedi-
ate early genes by MAPK – an example of a coherent FFL. MAPK can stimulate
transcription and translation of c-Fos, and it can also phosphorylate the c-
Fos protein, which protects it from degradation by the ubiquitin–proteasome
system. However, the duration of MAPK activation is critical for the function
of the motif. If it is brief, then protection and synthesis are asynchronous,
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Figure 6 MAPK regulatory modules include
both PFBLs and NFBLs. The former includes
the small G-protein, Ras, which activates the
MAPKKK, Raf, which in turn activates the
MAPKK, MEK1,2, which activates MAPK1,2.
MAPK1,2 stimulates phospholipase A2
(PLA2), which synthesizes arachidonic
acid (AA), activating PKC, which in turn can
promote both Ras and Raf activation. This
PFBL confers bistability of the system in the
absence of high levels of MKP. The NFBL

involves increased synthesis of MKP and its
protection from degradation, both of which
are stimulated by MAPK. Dephosphorylation
inhibits MAPK, so high levels of MKP, which
can come about either through persistent
activation of MAPK as outlined above, or
via other regulators, prevent the sustained
activation of MAPK despite the positive
feedback loop, thus eliminating the system’s
bistability.

meaning that the FFL is ineffective, i.e. if MAPK activity has returned to a
low level in the time required for transcription and translation, the new c-
Fos is not phosphorylated and is consequently degraded. By contrast, when
MAPK activation is sustained, the FFL is functional, causing an increase in
c-Fos activity (Figure 7) [15, 50].

Signal processing can also be affected simply by an activation cascade that
works across divergent time scales. For example, the dynamics of calcium
concentration changes (due to channel fluxes and diffusion) is faster than that
of calcium detection systems (small-molecule–protein binding interactions),
which in turn operate faster than the downstream protein–protein interactions
and enzymatic processes that rely upon calcium detection. This change in
dynamics can act as a frequency filter, typically low pass, which removes noise
from the external input signal. Dynamic quantitative models can capture
these traits, whereas Boolean representations probably cannot.
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Figure 7 Example of a PFFL where MAPK
directly phosphorylates c-Fos and protects
it from degradation, while at the same
time it can enhance c-Fos transcription

and translation through indirect pathways.
Sustained activation of MAPK is required to
achieve enhanced c-Fos activity.

2.2.1 Deterministic Models

Signaling reactions are discrete events, involving binding and/or chemical
transformation of individual molecules, sometimes catalyzed by other indi-
vidual molecules. Predicting the exact details at a molecular level requires
calculations of individual probability trajectories, and is currently not feasible
for systems with more than just a few molecules. However, if there are many
reacting molecules, their average behavior can be described by some relatively
simple mathematics, in which concentrations are treated as continuous vari-
ables.

The reactions in a signaling network can be broken into two categories:
binding and/or catalyzed transformation; in most cases, the latter process is
irreversible or may be considered irreversible for the purposes of modeling. In
cases where some details are not known, approximations can suffice. The most
commonly used such approximation is the Michaelis–Menten formulation
[46], that assumes that the mass-action is significantly faster than the catalyzed
transformation, and so the forward and reverse reaction rate constants, kf
and kr, collapse into one term, KM; enzyme activity is also described by
the constants Vmax, which is the product of total enzyme concentration and
kcat. The use of Vmax in the Michaelis–Menten equation can be particularly
advantageous to the modeler, as this parameter is more easily measured and
is found often in the biochemistry and molecular biology literature compared
with enzyme concentrations and kcat. See Box 1 for details of these reactions
and the expression of their kinetics. Other customized kinetic formalisms are
also possible, so long as the reaction can be expressed by an ODE. Chapter 20
also discusses the kinetics of biochemical reactions.
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Box 1 Basic reactions and the deterministic expression of their kinetics

A + E↔ AE (1)

AE→ B + E (2)

The rate equations (ODEs) that describe these reactions deterministically are,
respectively:

d[AE]
dt

= [A][E]kf − [AE]kr − [AE]kcat (3)

d[B]
dt

= [AE]kcat , (4)

where kf and kr are the forward and reverse rate constants, respectively,
having units of concentration−1 time−1 and time−1, respectively (herein,
following convention, we use μM and s); kcat is the first order rate constant
of catalysis (s−1); thus all reaction rates are expressed in units of μM s−1.

Combining Eqs. (3) and (4), and making the assumption that the
concentration of enzyme–substrate complex is initially constant (i.e. the
steady-state assumption) yields the Michaelis–Menten approximation:

V = kcat[E]total
[A]

[A] + KM
(5)

where V is the initial rate of the reaction, before appreciable changes occur
in components’ concentrations (equivalent to the initial rates of change in
Eqs. (3) and (4); [E]total is the total amount of E present in the system, i.e.
[E]total = [E] + [AE]; and KM = (kr + kcat)/kf. The maximum reaction rate
(Vmax = kcat[E]total) is the rate under the extreme condition [AE] = [E]total
and when [A]� KM.

The formulations above are all based on the well-stirred assumption,
implying that there is a homogeneous distribution of molecules in
space. If this is not reasonable, compartments may be introduced (e.g.
intracellular/extracellular). Compartmentalization can be implemented by
duplication of the relevant equations for the spatially segregated species,
with a flux term where necessary, such as:

[A]ic
C←→ [A]ec (6)

d[A]ec

dt
= [C] (kf[A]ic − kr[A]ec) = −d[A]ic

dt
, (7)

where [A]ic and [A]ec are the concentrations of A in the intracellular and
extracellular compartments, respectively, and C is a channel. Note that the
rate constants here are in units of μM−1 s−1 and the reaction rate is again
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in μM s−1. The equations are more complex, but well established [1], if
membrane potential is involved.

If compartments are insufficient to describe the spatial distribution of
the reactions, e.g. if one wishes to study the development of concentration
gradients within a single compartment, then PDEs must be used in place
of ODEs. In the resulting reaction–diffusion equation, rate of change of
concentration varies with respect to several parameters (normally, two- or
three-dimensional space and time) rather than one (time). For example, the
equation describing reaction 2 would be:

∂[B]
∂t

= D∇2[B] + [AE]kcat , (8)

where the first term represents change due to diffusion, and the second term
represents change due to reaction (cf. Eq. 4). D is the diffusion coefficient
of B; ∇2[B] is the three-dimensional Laplacian that describes the change in
distribution of B in space, being the sum of the second derivatives of [B] with
respect to each spatial dimension. The equation’s second term is simply the
function that describes the reaction-driven rate of change of [B] with respect
to time [34].

As was alluded to above, one key assumption in the use of any deterministic
model is that there are large numbers of molecules in the reactions. If this is
not the case, then reality can deviate significantly from the predicted average
behavior. Furthermore, ODE models also assume that the reactions take place
in a “well-mixed” environment, i.e. concentrations are the same everywhere,
as there is no representation of space. If this assumption is unreasonable,
then the simplest solution, computationally, is to introduce compartments.
For example, if a molecular species is capable of existing on either side of
a membrane, it and its reactions must be represented twice – once for each
compartment. If transit across the membrane is possible, then a flux term can
be added (see Box 1).

Sometimes, independent compartments do not offer an appropriate solu-
tion for the representation of concentration differences in space, e.g. when
studying chemical gradients across a single cellular compartment. In this case,
PDEs can be used instead of ODEs. PDE models explicitly include spatial
dimensions, in addition to time. The reaction–diffusion equation they utilize
is detailed in Box 1; although its complete derivation is beyond the scope of
this chapter, an excellent introduction to its physical meaning and application
may be found in Ref. [6].

Deterministic modeling, with either ODEs or PDEs, requires the numerical
solution of differential equations, using a solver. There are many algorithms
available, whose precise workings are beyond the scope of this chapter. The
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modeler does not normally need to know the mechanistic details of a solver’s
function, although some understanding of its strengths and weaknesses can
be useful. Numerical problems can lead to spurious simulation results and
a modeler should be aware of what to look out for. Numerical problems
are usually obvious, and inspection of the reaction rates and component
concentrations over the time course of the simulation will reveal rapidly
changing (spiking) or unreasonable or logically irrelevant values (unreason-
able values may also be caused by errors in the model). In many cases, a
simple operation such as reduction in the size of the time step will solve the
problem. At other times, a change of algorithm is required; higher-order,
variable time-step algorithms are usually recommended. Systems that have
heterogeneous kinetics wherein some reactions are much faster than others
are described as being stiff. The exact definition of stiffness has been inves-
tigated in considerable depth since the term was first proposed by Curtiss
and Hirschfelder in 1952 [13]. Pragmatically, it refers to problems that can
be solved better using implicit methods than explicit methods. These require
an appropriate solver, which is included in many simulation packages, e.g.
LSODA (http://www.llnl.gov/CASC/odepack) and Rosenbrock algorithms
[12]. One drawback of a stiff solver is that, when solving nonstiff systems, it
is slightly slower because of the extra calculations it carries out.

Depending on the size of the model and the time of the simulation, de-
terministic models can be fairly quick and easy to run, using, for example,
MATLAB (http://www.mathworks.com) on a desktop PC. PDE models and
large ODE models usually require many hours of processor time, however.
One convenient option in these cases is the program Virtual Cell [57], which
runs in a web browser and does all of its calculations on a centralized server
of very powerful processors. This is not only faster than performing the
calculations on the local machine, but allows the user to shut down their
computer or run other software while the simulation progresses. Virtual Cell
also has the benefit of an intuitively simple graphical user interface. Other
alternatives to MATLAB and Virtual Cell include E-Cell [59], Gepasi/Copasi
[45], Genesis/Kinetikit [62] and Berkeley Madonna.

Deterministic models have been used successfully to derive a number of
insights about signaling systems. However, they are not always adequate or
appropriate. They do not capture behavior that emerges from fluctuations,
such as stochastic resonance, and they are only accurate when there are many
molecules of each species involved in reactions.

2.2.2 Stochastic Models

Stochastic models deal with discrete molecules or reactions, rather than treat-
ing concentration as a continuous variable, and are probabilistic in nature.
Stochastic models are frequently used in systems that are so physically small
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that concentration is no longer a meaningful parameter. For example, the
distal part of a neuronal dendrite can be as little as 0.2 μm across; thus
a 2-μm stretch of approximately cylindrical dendrite has a volume of just
6 × 10−17 L. If the concentration of a signaling molecule in that part of
the neuron is, say, 100 nM, then there will be on average fewer than four
molecules in the section of interest and deterministic modeling breaks down.
Stochastic modeling may also be advantageous in physically larger systems
when addressing the problem of very low concentration. A common example
of this is the regulation of transcription. There are usually two copies of a
gene in a eukaryotic cell, each having adjacent to it one or few binding sites for
promoter sequences recognized by transcription factors. Again, concentration
as a continuous variable lacks meaning in this situation. Thirdly, stochastic
models are useful in situations where random fluctuations can determine
system behavior. Recent work has shown, for example, that certain types of
switching are stochastic in nature [48, 56] and there is a phenomenon known
as stochastic resonance that produces oscillatory behavior based on the ampli-
fication of a low-level signal by random fluctuations. Stochastic resonance is
a well-studied phenomenon and may be important in a range of biological
processes, such as neuronal excitability. Its dynamical origins have been
elucidated mathematically [2], so it can now be modeled deterministically,
although it must be included specifically in the model design to do so.

The best-known stochastic algorithm for the simulation of biochemical ki-
netics comes from the work of Gillespie [21]. He developed a set of rules
for calculating the probability of a given reaction occurring in a simulation
time step, i.e. a reaction probability density function, based on kinetic rate pa-
rameters that can be measured physically. He showed that his Monte Carlo
method relates directly to the chemical master equation, which describes
the change over time of reactants’ and products’ existence-probability. The
Gillespie algorithm is illustrated as a flow diagram in Figure 8. It is based
on two assumptions – that the molecules are distributed evenly in space
(“well mixed”, as in a deterministic ODE model) and that the system is at
thermodynamic (though not necessarily chemical) equilibrium. Since it was
originally described, the Gillespie algorithm has been modified, improved
and updated. In particular, Gibson developed the next-reaction method, which
is a more efficient version of Gillespie’s direct method, as well as techniques for
conducting sensitivity analysis within a stochastic framework [19].

The Gillespie algorithm deals with reaction probabilities and so treats all
molecules of a given species as identical. The alternative to this approach
is an object-oriented algorithm, such as that developed by Morton-Firth and
implemented in the program StochSim [49]. This algorithm tracks the number
of molecules and complexes (i.e. objects) themselves, instead of reactions.
When the absolute number of molecules is relatively small, but there are many
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Figure 8 Flow diagram for the Gillespie
algorithm [21], where t is time and n is the
number of steps taken; eν and Xi are the
reaction constants and concentrations,
respectively, for the M reactions and
N species in the simulation; eν is a
combinatorial factor describing the number
of potential occurrences of a reaction in the
current system state, usually calculated as
product of the reactants concentrations; τ
is the time to the next reaction (note that it

is inversely proportional to the total reaction
rate) derived from the reaction probability
density function; and μs an index number that
references a point on the probability density
function, determining which reaction will take
place. Rμ represents the reaction channel,
i.e. the reaction that has just taken place,
which determines the change in species
concentration values, Xi. The algorithm is
followed until some predetermined value of n
or t is reached [21].

possible reactions and/or states for each molecule (the so-called combinatorial
explosion), this technique can be significantly more efficient than the Gillespie
algorithm. The latest releases of StochSim also have the advantage of being
able to represent spatial heterogeneity.

Stochastic modeling, while more accurate in some circumstances than a
deterministic approximation, requires a great deal of computer processor
time. This is because stochastic simulations require an entire cycle of the algo-
rithm to run for every single molecular-level reaction event. By comparison,
each cycle of a deterministic solver’s algorithm gives a reaction rate value,
which typically would involve a large number of reacting molecules. For
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example, a 0.01-s simulation time step of the first-order reaction from Box 1,
AE→ B + E, taking place in a cell of volume 1 pL, having a rate constant of
1 s−1 and an initial AE concentration of 100 nM, would proceed at an initial
rate of 108 molecular reaction events per time step. Thus, if deterministic
modeling is a valid option, it is usually by far the more efficient strategy.
Nonetheless, with the increasing availability of affordable computing power
and continuing improvements to stochastic calculation strategies, including
multistep approximations [20] and even hardware solutions [55], stochastic
simulation is fast becoming a practical approach to a wide range of problems.

As the Gillespie algorithm is based on an underlying master equation, it
was proposed recently to solve the master equation by direct integration [38].
In this method, a set of deterministic ODEs is solved, where the dynamic
variables of the equations are the probabilities of the system to be in the
various states. This method is advantageous in several aspects: it provides
temporal evolution of the concentrations which cannot be calculated by the
Gillespie algorithm, and it is computationally efficient since no averaging is
required and the master equation can be easily coupled to other deterministic
rate equations in case a hybrid model is used.

2.2.3 Hybrid Models

As described above, deterministic and stochastic approaches to biochemical
kinetic modeling have their own advantages and disadvantages. In order to
exploit the benefits of both, it is possible to combine the two approaches in a
so-called hybrid model. Parts of the system are represented deterministically
and parts stochastically. In this way, one may take advantage of a determinis-
tic model’s computational efficiency (for those reactions where the necessary
assumptions hold) and the stochastic model’s accuracy (in representing low-
concentration and low-volume effects, and fluctuations). For example, in our
laboratory, we model the isotropic phase of fibroblast cell spreading. This
process is driven by actin polymerization and thus a stochastic model is
appropriate. However, the regulation of polymerization is by biochemical
signaling reactions that can be modeled deterministically. In this case, custom
C++ code has been written, which was necessary because of the particularly
complex and dynamic geometry of the problem. For most modeling problems,
however, programs are available that can perform hybrid modeling via a
reasonably user-friendly interface. The most recent versions of Kinetikit (an
add-on for the popular simulator, Genesis) have the capacity for hybrid mod-
eling [61], as does the Biochemical Network Stochastic Simulator (BioNetS),
which utilizes Gibson’s enhancement of the Gillespie algorithm [1].
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3 Identifying Parameters/Data Sets for Modeling

3.1 Functionally Relevant Connections

The cellular signaling network in eukaryotic cells is both vast and highly
connected. Modeling the entire intracellular network is not currently feasible.
The type of information sought, the size of the network being studied and
the physical context in which the model operates determine the model type.
This, in turn, limits the size of the network that can be modeled with the
computational power available and determines the level of detail required to
describe an interaction.

Modularity is a term that is commonly used to describe the structure of
signaling functional modules. In engineering parlance, a module is a set of
components that act together to perform a function, e.g. the navigation system
in an airplane or an organ in an animal. When modeling signaling networks,
in which many components are reused to a multitude of different ends, mod-
ules are defined relatively flexibly. Because of their context-dependence, it is
often useful to think of functional modules. For example, PKA is involved in a
large number of interactions and is therefore included in many mathematical
models of signaling. However, the majority of interactions involving PKA are
excluded from most models, because the inclusion of dozens of functionally
unrelated actions can quickly make a system intractable. Thus, the boundaries
of a module in a signaling network are defined by function. The decision
about whether to include or exclude given interactions must be made on a
case-by-case basis; clearly, the better informed one is about the functional
importance of reactions, the better the decision. However, often there is
inadequate information, and hence the need for modeling through trial and
error must be employed, followed by careful validation.

A major repercussion of function-based component and connection selec-
tion is that models are invariably incomplete. It is therefore necessary to
test a model against experimentally derived data in order to ensure that the
omissions have not compromised realistic function and to examine which
parameters warrant the greatest accuracy.

3.2 Qualitative Relationships

For graph theory analysis of networks and Boolean modeling, qualitative
relationships are all the information that is needed. One must, however, be
careful to include only data of acceptable quality. High-throughput tech-
niques have produced a lot of data recently. The accuracy of the information
content in these data sets is uncertain [29]. The yeast two-hybrid screen,
for example, is a technique that involves the activation of a promoter by
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a split activator – one half of which is fused to the prey protein and the
other to the bait. The fusion proteins are transfected into yeast, where, if
they interact, the two halves of the activator come together and the reporter
gene is transcribed [17]. Protein interaction networks for yeast and Drosophila
have been constructed using this technology, but there was worryingly little
overlap between some of the findings of different groups [27, 60] (see also
Chapter 31). There are also theoretical objections to the application of this
and some other high-throughput techniques to multicellular organisms. A
protein–protein interaction is dependent on the simultaneous expression of
both proteins in the appropriate subcellular compartment. Whether this oc-
curs in the nucleus of a genetically manipulated yeast strain is of questionable
relevance to metazoan biology. To avoid these issues we recommend to only
select interactions identified by rigorous biochemical methods and verified
by functional measurements. The limitation of this approach is that such
rigorous described systems are incomplete. Additionally, for Boolean models,
the type of interaction (stimulation/inhibition) must be known, and this is not
available from any high-throughput interaction techniques; dynamic models
necessitate still more accurate data.

3.3 Quantitative Specifications

Dynamic models of cell signaling networks ideally require experimentally
measured catalytic and binding rates for the interactions they include. These
can be measured by a range of enzymology techniques, which require ex-
pertise and a considerable investment of time. However, it is often possible
to extract kinetic data from the biochemical literature. Sometimes direct
measurements are available. In other cases, kinetic parameters may need to
be inferred or fitted using a model. In both situations, accuracy and precision
are not guaranteed, so a careful and critical appraisal of the published data is
required. Some guidelines and recommendations are suggested here.

Terms such as Vmax and kcat are not always used in strict accordance with
standard enzymology parlance. Care should be taken to assess that the
methods used are consistent with the conclusions presented. Note that, even
if nonstandard terminology is present, the appropriate numbers can often be
extracted from the raw data.

When several papers describe a given interaction, apparently contradictory
or inconsistent data may be reported and again one must be careful to examine
the experimental methods used. In some cases, a simple factor such as tem-
perature can account for the difference between reported values. A useful rule
of thumb here is that rate constants tend to double for every 10 ˚C increase in
temperature. This guideline is derived from the Arrhenius equation [35] and
it holds only over the limited range of temperatures in which the interacting
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proteins are conformationally stable. Fortunately, in order to be meaningful,
enzyme and binding kinetics should be measured in this appropriate range,
so the rule is widely applicable.

In addition to temperature, other aspects of the experimental methodology
can greatly affect the findings. Many kinetic parameters are measured in
vitro, using purified proteins, which are often recombinant. In some cases,
recombinant proteins display reduced enzyme activity or affinity for other
proteins, due to missing or inappropriate post-translational modifications. For
example, the affinity of rabbit liver Gαs for adenylylcyclase is around 100-
fold greater than that of recombinant Gαs prepared from Escherichia coli. This
occurs because Gαs derived from E. coli lacks a critical covalent modification
[32]. In vitro measurements of enzyme activity may also be sensitive to
parameters such as buffer composition (ion concentrations, pH, etc.). In some
cases, enzymes are only partially purified for assay. These measurements
do not always correspond to numbers derived from “purer” systems. The
presence of unidentified accessory proteins, such as chaperones or scaffolds,
may cause the observed kinetics to deviate from the “true” activity of the
enzyme being studied. If the model does not contain explicit information
about the influence of the accessory proteins – if they are unknown – then
their presence in the experimental system may actually result in more realistic
simulation results. Since a biochemical kinetic model is really just a mathemat-
ical representation of coupled input–output relationships, the precise details
of the reaction mechanism may not be important. On the other hand, if the
mechanistic details are of interest, then simulations can provide insight into
the failings of the model, and what additional information should be sought
experimentally.

Measurements of enzyme activity or binding affinity can also be made
in vivo, e.g. by the construction of phosphorylation time courses on an im-
munoblot. These often require the fitting of data to a model, and, before
using such results, a critical eye should be cast over the model and fitting
technique that were used. One should also be careful when using data derived
from populations of cells, because averaging effects can obscure the single-
cell mechanism. Sometimes it is necessary to perform model fitting using raw
published data. In this case, the freely available NIH image analysis program,
ImageJ, is useful for quantifying responses from a graph, and programs such
as Gepasi, Berkeley Madonna or MATLAB can be used to fit the extracted
data.

There are a number of assumptions underlying the fitting of data to a
function in order to extract useful parameters – principally involving the
mechanism behind the observation. For example, association and dissociation
data usually follow exponential curves, as these are the functions that result
from the integration of the mass-action binding equations in Box 1. At times,
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the observations will be attributable to a more complex mechanism than what
can be fitted. In this case, the modeler must decide whether a black box
simplification is acceptable or whether experiments should be conducted to
investigate the details of interactions.

In addition to kinetic parameters, quantitative modeling requires initial or
total concentrations of signaling molecules. In some cases, as with kinetic
parameters, these have been estimated directly and can be found in the liter-
ature. In other cases, biochemical characterization studies may be amenable
to back-calculation of concentration from protein standard curves, enzyme
purification tables and cell numbers used (usually one must assume a cell
volume, which should be estimated according to cell type). In some cases, one
can simulate an enzymatic reaction using Michaelis–Menten kinetics, so con-
centration and kcat as individual parameters are not even necessary. Enzyme
purification and activity tables frequently give the “fold” purification (FP; no
units) and enzyme activity (A; typically expressed in μmol min−1 mg−1);
these, combined with an assumed protein yield and a few units-conversions,
give the Vmax in μM s−1.

At times, it is not feasible to derive model parameters of interest from the
experimental literature and it may be almost impossible to access it experi-
mentally. In these cases, the kinetics of homologous enzymes, or the affinities
of proteins with identical interacting motifs, may be used as a starting point
for parameter estimation. Thus estimates are then validated by comparing the
systems-level behavior of the model with an appropriate experimental assay.

4 Model Validation

4.1 Parameter Variation and Sensitivity Analysis

Once a model has been built, it should be validated. As discussed above,
some parameters may not be as critical as others or there may be potentially
important connections that were excluded for pragmatic reasons. The prin-
cipal means of testing whether the behavior of the model system is realistic
is through comparison with experimental observations. Time courses for the
activation of various model components are often measurable. Phosphory-
lation, which is commonly an activation step at some point in the system
(in cell signaling, usually several), can be detected using phospho-specific
antibodies, 32P incorporation or by looking at molecular weight shifts in
protein immunoblots. It is preferable to conduct such experiments in-house,
in order to control for the variation in experimental factors that can affect
response reproducibility, but it may be possible to find the necessary data in
the literature. Essentially, this is similar to model fitting and some parameters
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may need to be “tweaked” (varied by a small amount) in order to reproduce
the experimental findings. This differs from the quantification of kinetics by
model fitting, which is used to find parameters for the model in its construc-
tion. Time course comparisons, by contrast, compare effects that are produced
by combinations of many parameters, as is typically of interest in modeling a
biological problem.

In addition to testing the conformity of the model with experimental data,
parameter variation can be used to identify which parameters are the main
determinants of system behavior. Ideally, one should aim to have reliable
estimates of these key parameters, whereas less accuracy may be sufficient
for noncritical parameters. A more formal type of parameter variation may
also be performed, using sensitivity analysis. There are many sophisticated
techniques for performing this analysis [22], but all estimate the sensitivity of
the output to variations in a particular input variable. Sensitivity analysis is
typically sampling based – an algorithm performs the simulation several times
with automatic variation across a random or assumed distribution of an input
parameter and assesses the effect on the output parameter. It is particularly
useful if one is interested in a single, well-defined, output parameter, but a
more informal approach to parameter variation can also be very informative
if one wishes to obtain a mechanistic understanding of the system as a whole.

4.2 Constraints and Predictions

In some situations, there is inadequate information to model a system with
precise mechanistic accuracy. During the process of validation, one may iden-
tify an input–output relationship in the model that is behaving unrealistically.
One must then decide whether the model needs refining by experimental
investigation, i.e. whether the components and reactions in the problematic
region are of particular relevance or interest. If not, or if the correct mechanism
is experimentally inaccessible, it is possible to constrain the model at that
particular level using experimentally derived input–output curves, essentially
putting a small “black box” into a peripheral part of the system. In this way,
technical limitations need not prevent insight into system dynamics.

Mathematical modeling should be able to make useful predictions that can-
not be surmised intuitively. A major advantage to having a model is the ease
with which it can be manipulated, and this can yield insights into complex
system dynamics. Thus, one can identify key parameters or components that
control network behavior. These predictions can then be tested by genetic
manipulations that change the concentration of cellular components, and with
pharmacological inhibitors of enzymes, which change their kinetic parameters
(kcat and/or KM). One long-range goal is to identify network control points
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that may be utilized to manipulate signaling networks in a clinical setting, to
diagnose or treat disease.

5 Perspective

The signaling network connects functionally dedicated cellular “machines”,
not only by passing information across the cell via signaling pathways, but
also processing information as it traverse the network by network connectivity
that results in regulatory motifs. In this way, the system context is taken
into account to ensure an appropriate response. In some cases, the signaling
system has evolved a limited range of responses and so “switches” between
predetermined states. In other cases, signaling is analog, conferring response
flexibility.

Signaling systems are undeniably complex, but their elucidation will no
doubt prove highly valuable in the understanding and treatment of disease.
In many cases, the number of permutations to be investigated experimentally
is daunting. Mathematical modeling can offer a formal and convenient ap-
proach for discovering systems-level behavior; for determining the roles not
only of signaling molecules, but of their “circuitry”. Many insights revealed
by modeling are nonintuitive to the biologist and would therefore be difficult
to arrive at without a mathematical description of the system. Of course,
mathematical predictions need to be confirmed experimentally, but modeling
enables us to choose the right types of experiment to understand systems-
level behaviors. All understanding is, in a sense, modeling. Textbooks and
reviews are replete with cartoons of mechanisms. Implicit in the derivation
of these from raw laboratory data is the implementation of a model. The use
of mathematics to make explicit predictions constrains the modeling process
strictly within the bounds of logic. Specifically, in the field of cell signaling,
biochemical kinetic modeling is the gold standard for making predictions.
Deterministic modeling is currently the standard approach, while stochastic
modeling is often used in situations where the deterministic assumptions are
violated.

The technological strides of the last decades are being felt in all realms of
biology. Thus, as techniques for experimental measurement improve, the
need for more penetrating analysis grows. No doubt the greatest insights into
cell signaling will come from advances in systems-level analysis, in which
mathematical modeling must necessarily play a leading role.
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Glossary

Bistability/multistability The existence of two (bistability) or more (multista-
bility) steady states of activity for a system. This can confer switching
behavior, comparable with analog-to-digital signal conversion.

CaMK I–IV Calmodulin-binding protein kinases that require activated calmod-
ulin for their kinase activity.

Coherent/incoherent feedforward loop A feedforward loop is a network
motif made up of three or more nodes (see Section 1.2.3) arranged such
that there is one input and one output node. These nodes are connected
through two separate cascades where the signal splits at the input node
and converges at the output node. The feedforward loop is said to be
coherent if these two “arms” have the same overall sign (positive or
negative) and incoherent if the arms differ qualitatively in their influence
on the output.

Compartmental model A model in which space is represented as compart-
ments – discrete mathematical systems, sometimes connected by fluxes
of components. Normally, ordinary differential equations are used to
represent the reactions in and between the compartments.

Cybernetics A field of science dealing with communication and control in
nature and in man-made engineered systems.

Diacylglycerol (DAG) A second messenger generated by the hydrolysis of
inositol phospholipids typically by the enzyme phospholipase C. Due to
its hydrophobic properties, DAG is in the plasma membrane.

Deterministic model The representation of reactions by rate equations (or-
dinary differential equations or partial differential equations) such that
the outcome of running the model is determined absolutely by the input
variables, with no random fluctuations or chance occurrences.

Guanine nucleotide exchange factor (GEF) A regulator that catalyzes the
release of guanosine diphosphate, permitting guanosine triphosphate to
bind.
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GTPase-activating protein (GAP) A protein that stimulates the hydrolysis of
guanosine triphosphate to guanosine diphosphate.

Hybrid model The representation of a reaction system by a combination of
deterministic and stochastic reaction equations.

Mitogen-activated protein kinase (MAPK) A family of ubiquitous kinase
enzymes, regulated by phosphorylation, which control many important
cellular functions, such as gene transcription.

Network motif A characteristic pattern of connections between network com-
ponents that have the potential to perform information processing func-
tions and are statistically enriched in network abstraction of real-world
complex systems. Examples include feedback and feedforward loops.

Ordinary differential equation (ODE) A rate equation that describes the
change in dependent variables (in biochemical kinetic modeling, concen-
trations) with respect to one independent variable (usually time).

Partial differential equation (PDE) A rate equation that describes the change
of dependent variables (usually concentrations) with respect to two or
more independent variables (usually time plus one to three spatial di-
mensions).

Protein kinase A (PKA or cAMP-dependent protein kinase) A ubiquitous
signaling enzyme that has serine/threonine kinase activity. PKA modu-
lates the activity of its targets by covalently attaching a phosphate group
to its substrate. PKA phosphorylates a range of targets, depending on
cell type, in response to elevated intracellular concentrations of cAMP
(adenosine 3′,5′-cyclic monophosphate).

Protein kinase B (PKB or Akt) Serine/threonine protein kinase which mostly
acts as a promoter for survival signals. The kinase acts downstream of
lipid signaling pathways, e.g. in the insulin receptor signal transduction
pathway.

Protein kinase C (PKC) A family of protein serine/threonine kinases divided
into two subfamilies: conventional and atypical. Conventional PKCs
require calcium and diacylglycerol, and are activated through the Gq and
phospholipase C pathway.

Protein kinase D (PKD) Calcium-independent diacylglycerol-dependent ser-
ine/threonine kinase; belongs to the PKC family of protein kinases.

Protein kinase G (PKG or cGMP-dependent kinase) A serine/threonine
protein kinase activated by cGMP and mostly known for its function in
regulating smooth muscle relaxation.
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Stochastic model A model in which reactions are simulated according to
probability of occurrence rather than rates.
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23
Dynamics of Virus–Host Cell Interaction
Udo Reichl and Yury Sidorenko

1 Introduction

For little more than 100 years viruses have been known as small, infectious,
obligate intracellular parasites, which efficiently use a wide range of host
cells for their reproduction. It was not until the early 20th century when
their structural simplicity was revealed by electron microscopy and a first
rational classification of viruses based on their morphology was proposed.
Over the following decades steady technical advances and enormous progress
in molecular biology not only allowed to precisely define structure, molecular
composition and synthesis of virus particles, but also to investigate their
relationship with their host cells.

The main interest in viruses derives from the understanding of their role
as agents responsible for epidemics of contagious diseases. Reports on vi-
ral diseases can be found in numerous ancient records, e.g. rabies, polio,
smallpox and, probably, influenza. From the earliest times efforts have been
undertaken to understand viral pathogenesis, and to prevent and control
epidemics. Today, the main focus of academic and pharmaceutical research
is on the identification and molecular biology of new and emerging viruses
such as human immunodeficiency virus (HIV), hepatitis virus or influenza
virus. In addition, enormous efforts are undertaken to prevent viral diseases
by vaccines and to develop new vaccine technologies and antiviral drugs.

Viral pathogenesis and virus spreading can be analyzed on several levels
(Figure 1), which comprise

• Structural aspects and detailed molecular level interactions of virus and
host cell components.
• The interaction of virions with a single host cell.
• The spreading of infectious agents within populations of cells, tissues and

organs.
• The infection of an individual resulting in an immune defense.
• The establishment of a viral disease in a host population.
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Figure 1 Modeling hierarchy. Virus dynamics
can be investigated at different levels
ranging from the detailed description of
molecular mechanisms relevant for the
interaction of viral components with their
host cells (e.g. conformational changes of

the influenza surface protein HA required for
the fusion of viral and host cell membrane)
to the spreading of virions in individuals
(micro-epidemiology [44]) and populations
(traditional epidemiology). Inner box: levels
discussed in this chapter.

This chapter focuses on the mathematical modeling of virus replication in
single cells and the (intracellular) interaction of virus components with their
host cell (structured, unsegregated models; see Section 3). Aspects covered
are virus attachment and entry, transcription and translation of viral mRNA,
genome replication, assembly, and virus release. Additionally, aspects of host
cell defenses, interference with cellular signal transduction networks and the
impact of infections on host cell gene expression are addressed. Many of the
experimental results required for these models have been derived from one-
step growth experiments [10] in static cultures, shake flasks and bioreactors
under controlled cultivation conditions where populations of cells are infected
at different multiplicity of infection (m.o.i., i.e. the number of infectious units
per cell). Therefore, mathematical models describing virus spreading from
cell to cell are also discussed briefly (unstructured, unsegregated models; see
Section 3).

Mathematical models for intracellular virus–host cell interactions have been
developed for a limited number of viruses including bacteriophages, bac-
uloviruses, HIV, Semliki Forest virus and influenza A virus [7, 13, 25, 48,
50, 52]. Most of the existing models address only specific aspects of virus
replication such as virus binding, endocytosis or viral RNA synthesis. So far,
the impact of viral infections on mammalian cells with regard to their signal
transduction processes, genome expression or apoptosis is being investigated
mainly experimentally. No attempt has been made to include these results ob-
tained for eukaryotic cells into existing models, e.g. to develop mathematical
models, which include virus attachment and viral genome replication as well
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as aspects of virus-induced apoptosis. However, to cope with the increasing
amount of quantitative and semiquantitative data obtained from infection
studies and to organize this information into a coherent whole the rigorous
use of mathematical modeling and the development of appropriate modeling
and simulations tools seems to be indispensable. Therefore, the existing
models (even with their limitations and drawbacks) should be considered as a
first step towards a quantitative and integrative understanding of virus–host
cell interaction and a key factor to establish a systems biology platform for
virus dynamics. This platform should allow:

• Simulating virus replication on a cellular level.

• Investigating requirements and limitations of viral growth in a host cell.

• Identifying targets for antiviral compounds.

• Evaluating new therapeutic strategies.

• Optimizing viral-based production systems.

2 Viral Infection of Cells

According to the latest report of the International Committee on Taxonomy
of Viruses (ICTV) [4] there are about 3000 identified virus species that infect
bacteria, fungi, plants, animal and human cells. The classification of these
viruses is based on their shared properties [15], which include the nature of
the nucleic acid (DNA, RNA), the symmetry of the capsid, the presence or
absence of an envelope and their size (virion diameter, genome length). As
obligate intracellular parasites, all viruses have to undergo a series of steps
for the successful completion of their life cycle inside their host cell:

• Cell attachment

• Internalization

• Release of viral genome

• Decoding of viral genome information

• Viral protein synthesis

• Viral genome replication

• Virus assembly

• Release of newly produced virions
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In addition, the transport of viral genome into the nucleus (most DNA viruses,
retroviruses, influenza viruses, etc.), the supply of cellular precursors for
viral genome replication and protein synthesis, the intracellular transport of
viral components as well as host cell-specific defense mechanisms have to be
considered.

Typically, the one-step growth cycle of viruses is experimentally studied in
cell cultures under defined conditions. Therefore, their host cells are grown
in suspension or monolayer cultures to their optimal growth phase (late loga-
rithmic phase). After the removal of the cell culture medium the virus seed
is added with a m.o.i. > 5–10 to guarantee rapid infection of all cells. In
a next step the cells are washed to remove any unabsorbed virions, fresh
medium is added and the kinetics of virus production is monitored. As an
example a one-step growth curve for lytic bacteriophages in Escherichia coli is
shown in Figure 2. It starts with a lag phase (eclipse period) during which
attachment, uncoating, phage synthesis and the intracellular formation of the
first complete phages takes place. During this period of time no infectious
particles can be detected in the cell culture supernatant (except for a more
or less low constant level of infectivity resulting from phages which only
attached to their host cells without internalization). After a brief period of
exponential increase the number of intracellular infectious particles increases
at a constant rate (rise period) due to limitations in the supply of cellular
precursors or other limitations in bacterial synthesis capacity. Eventually,
metabolism and cell structure of infected bacteria breaks down, and progeny
phages are released into the extracellular medium. The burst size corresponds
to the number of progeny phages produced per cell. In the following two
subsections viral infections in prokaryotic and eukaryotic cells are discussed
in more detail.

2.1 Viral Infection of Prokaryotic Cells

Since the 1930s, when the life cycle of bacteriophages in cell cultures was first
quantitatively analyzed in Staphylococcus aureus [28] and E. coli [10], enormous
progress has been achieved towards the understanding of bacteriophage–host
cell interaction. Mainly, this is due to the vast amount of information available
on the molecular biology of the host cells. In particular, for E. coli, which was
selected as one of the model organisms in systems biology [14], an extensive
set of data on macromolecular composition, cellular synthesis rates, signal
transduction, gene expression, etc., is available (e.g. Ref. [3]). In addition,
bacteria allow for detailed phage growth experiments under well-defined
conditions in shake flasks and bioreactors to investigate phage replication
with respect to the physiological status of the host cell (e.g. Refs. [23, 64]).
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Figure 2 Schematic: intracellular one-step growth cycle of
bacteriophages in E. coli. After about 15 min p.i. (eclipse period)
the intracellular number of progeny phages increases (rise period;
assumed rise rate α = 1.5 phages min−1) until phage synthesis
ceases due to lysis of the host cell. Here, the burst size is about
60 phages cell−1.

Consequently, mathematical models that describe the intracellular growth
cycle of bacteriophages have been developed for more than 15 years at various
levels of complexity. Rabinovitch and coworkers [48], for instance, show
that simple mathematical relations can be used to describe one-step growth
experiments for bacteriophage T4 development in E. coli (see Section 3.1).
In addition, the influence of bacterial growth rate on phage development
[47] and the kinetics of bacterial lysis by phages are investigated in detail
in Ref. [49]. In contrast, highly structured models (see Section 3.1) for the
intracellular growth of other bacteriophages (T3/T7) in E. coli have been
developed by various research groups (e.g. Refs. [5,13,65]). With such models
a first attempt has been made to quantitatively understand phage replication
at a molecular level. Based on the extensive set of data available for the
genetics, physiology and macromolecular composition of host cells, aspects
of phage gene replication, phage protein synthesis, phage assembly and its
dependence on host physiology were investigated. Other mathematical mod-
els have been developed to describe the use of intracellular resources and
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energy consumption for the growth of phage Qβ in E. coli [27]. Here, it
could be shown that protein synthesis of phages, particularly translation at
the ribosomes, dominates phage growth. This observation is in agreement
with the energy requirements of exponentially growing bacteria [56] as well
as with the influence of ribosome number and protein synthesis rate per
ribosome on the growth rate of exponential cultures [3]. Furthermore, it could
be shown that phages efficiently use host cell resources and that overall yields
are comparatively insensitive to changes in model parameters such as RNA-
to-ribosome or RNA-to-replicase binding.

2.2 Viral Infection of Eukaryotic Cells

Research on growth characteristics and genetic properties of viruses infect-
ing eukaryotic cells dates back into early 1950s when Dulbecco analyzed
plaques of western equine encephalomyelitis virus in primary chicken fi-
broblast cultures [9]. Over the following years continuous improvements in
the cultivation of cells, the generation of immortal cell lines and advances
in assay techniques allowed us to investigate the life cycle of plant, ani-
mal and human viruses under precisely controlled conditions in analogy
to the one-step growth cycle experiments of bacteriophages. Since then,
our understanding of the molecular basis of virus–host cell interaction in
eukaryotic cells has improved considerably. In particular, viruses infecting
animals and humans have attracted enormous research efforts to prevent and
treat viral infections as well as to avoid the spread of viral diseases. Today,
highly efficacious vaccines are available against a number of viral diseases
such as smallpox, polio, influenza or hepatitis A. In addition, new vaccine
technologies, e.g. viral vectors and DNA vaccines, are being developed to
complement existing vaccines or as potential candidates for HIV vaccines (see
Chapter 39). Eventually, research concerning the molecular mechanisms of
virus–host cell interaction has become a prerequisite for the development of
antiviral drugs and serves as a powerful tool for understanding fundamental
aspects of cellular functions.

So far, most mathematical models which describe the intracellular virus life
cycle in eukaryotic cells focus either on the initial steps of the virus infection
cycle or omit some intermediate steps of the replication cycle such as transport
processes across cell compartments or turnover of cellular pools of precursors
required for viral genome and protein synthesis. Mainly, these models have
been developed for biotechnology and biomedical applications.

In biotechnology, the majority of these mathematical models have been de-
veloped to describe dynamic aspects relevant for the production of viruses or
recombinant viral proteins in cell cultures. A model from Dee and coworkers
in 1995 [7] for the early steps of the infection cycle of Semliki Forest virus
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considers the initial steps of virus trafficking in baby hamster kidney cells
(BHK-21). In addition to the binding of the viruses to the cell surface receptors,
endocytosis and RNA synthesis are taken into account. However, neither
viral protein synthesis nor assembly or release of progeny virus particles are
considered. A similar model was used later by the same group to investigate
options to design infection strategies for baculovirus production in insect cell
cultures [8]. In a further modeling approach baculovirus replication in insect
cells for the manufacturing of recombinant proteins was investigated by Jang
and coworkers in 2000 [25]. The model considers cellular metabolism and key
features of the infection cycle of baculovirus, but focuses mainly on recombi-
nant protein production. Therefore, attachment kinetics, cellular transport or
available pools of amino acids, nucleotides and energy requirements for virus
synthesis are not addressed.

Mathematical models of intracellular virus growth can also be useful for
biomedical applications, e.g. to support the evaluation of anti-HIV strategies
or to improve our understanding of virus-mediated diseases on a cellular
level. Based on the extensive information available on molecular aspects of
HIV-1 replication, Reddy and Yin [50] have formulated a highly structured
model of the virus growth cycle in CD4+ T lymphocytes. The model covers
most of the key features of the replication cycle from the reverse transcription
of the viral genome and its integration into the host genome to virus budding
in maturation. Based on the model it was not only possible to quantitatively
describe the dynamics of transcription, translation and virion production,
but also to investigate the influence of potential drug targets for anti-HIV
therapies.

In contrast to the replication of phages in bacteria, a quantitative under-
standing of the interaction of viruses with eukaryotic cells is more difficult
to obtain for a number of reasons. First, cellular growth, gene expression,
protein synthesis, transport processes and metabolism in eukaryotes are far
more complex compared to bacteria. Second, eukaryotic cells are highly
structured containing various specialized compartments relevant for virus
replication, e.g. the different compartments of the secretory pathway required
for covalent modifications, transport and apical sorting of influenza virus
membrane proteins. Third, several cellular key processes required for a com-
prehensive understanding of virus–host cell interaction are the subject of
current research activities and are not elucidated in sufficient detail to be used
in mathematical models for virus dynamics. These include cellular signal
transduction processes, in particular the specific interaction of viruses or viral
proteins with signal transduction networks of their host cell, and specific
and unspecific defense mechanisms of host cells, such as the production
of interferon and the impact of viral gene products on programmed cell
death (apoptosis) of infected cells [35, 36]. Fourth, comprehensive data sets
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(and mathematical models) available for growth and physiological status of
“model organisms” such as E. coli are not available for higher cells, except for
the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe [14]. So far,
no animal or human “model cell” has been selected and thoroughly charac-
terized with respect to general aspects of its structure, growth, metabolism
and, specifically, virus–host cell interaction. For example, while the first steps
have been made to develop detailed mathematical models for the replication
of HIV in CD4+ T lymphocytes [50] or influenza A virus in animal cells [52],
most kinetic parameters, synthesis and degradation rates as well as quanti-
tative information on cellular composition had to be taken from numerous
publications and textbooks. An additional problem is the fact that present data
is derived from experiments performed under various cultivation conditions,
obtained from different cell lines, virus strains and subtypes. Therefore, the
status of mathematical models available for the description of key processes of
the host cells themselves is still far from being satisfactory. However, despite
all the complexity of eukaryotic host cells and the considerable diversity of
viruses, it can be expected that extensive research efforts in this exciting field
will finally allow us to derive fundamental laws that govern virus–host cell
interaction and understand at least part of its enormous complexity.

3 Mathematical Models of Virus Dynamics

Mathematical modeling plays a crucial role for a quantitative understanding
of intracellular virus dynamics. Based on the theoretical framework of such a
model it is possible to systematically structure experimental data, to analyze
biological systems of high complexity and to predict the system’s behavior
at any moment of time. Additionally, a model allows the investigation of
parameter sensitivity and robustness of biological systems, e.g. to examine
the influence of changes in intracellular metabolite concentrations, protein
synthesis and degradation rates or attachment rates on virus yield per cell.
Based on a model it is eventually possible to identify key components and
their relationships as well as bottlenecks within biological systems, and to
use this information for optimization and design of bioprocesses. However,
no matter what approach is finally used one key question should be always
answered beforehand: “what its use is and what problem it is intended to help
to solve” [2].

Quantitative mathematical models of biological systems can be set up in
several ways, ranging from mechanistic descriptions based on algebraic ex-
pressions and differential equations to stochastic approaches. A classification
for cell populations, which has found general acceptance in biochemical en-
gineering, was introduced by Frederickson [2, 16, 58]. In this context, the sim-
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plest models of virus dynamics can be formulated by unstructured or structured
approaches [32]. An “unstructured” model does not consider intracellular
phenomena. For example, the basic dynamics of viral growth in a bioreactor
would be modeled by a system of three differential equations which describe
how the number of uninfected cells, infected cells and free virus particles
changes over time. Assuming that cells do not differ in composition, cell cycle
phase, etc. (“average cell”), the cell population is designated “unsegregated”.
In contrast, in a “structured” approach, different state variables are used
to model virus replication in different cellular compartments such as the
membrane, endosome, cytoplasm or nucleus. Based on genetic and molecular
mechanistic data, rate equations are expressed for viral transcription, transla-
tion, protein expression and reactions catalyzed by virus-encoded enzymes.
The most complex description is obtained by detailed models of intracellular
virus growth and spreading in a population of heterogeneous individual cells
[24]. Obviously, such a “structured segregated” approach represents the most
realistic scenario to describe the progression of viral infections in populations
of cells or individuals.

3.1 Unstructured Models of Virus Dynamics

Basic intracellular virus dynamics can be described by an approach developed
by Rabinovitch and coworkers for the replication of bacteriophage T4 in E.
coli [48]. The infection cycle is described by three parameters: an eclipse
period ν until the first phage is completed in the bacterium, a constant rise
rate α at which intracellular phages accumulate and a latent period λ (eclipse
period + rise period) when the bacterium bursts and phages are released into
the extracellular medium (Figure 2). The burst size B that corresponds to the
number of released phages after cell lysis is defined by:

B = α(λ − ν).

Typical values for the burst size B are in the range of 10 to several hundred
bacteriophages produced per infected bacterium after an eclipse period ν of
18–42 min at a rise rate α of 2–47 phages min−1 depending on experimental
conditions and corresponding E. coli strain. Similar results were obtained by
You and coworkers [64] who investigated the growth of phage T7 in E. coli in
continuous culture under different dilution rates in a chemostat.

Another unstructured approach comprises the description of virus dynam-
ics in a population of host cells by a system of differential equations. As an
example, a basic model that describes the replication of influenza A virus
in adherent Madin-Darby canine kidney (MDCK) cells in a bioreactor for
inactivated vaccine production is briefly discussed in the following [39]. The
time-delayed model considers three variables: the number of uninfected cells
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UC, infected cells IC and free virus particles V. The number of uninfected
cells UC increases with a specific cell growth rate μ, while cells die with a
specific cell death rate kcd f due to process conditions. The rate of infection is
proportional to the product of the concentration of uninfected cells UC, the
concentration of free virions V, and the virus infection rate kvi:

dUC

dt
= μ ·UC − kcdf ·UC − kvi ·UC ·V .

Infected cells IC disintegrate with a specific cell death rate kcdv, mainly due to
virus induced cell damage:

dIC

dt
= kvi ·UC ·V − kcdv · IC .

After a time delay τ (for m.o.i. > 1 corresponding to the latent period de-
fined above) infected cells start to release progeny virus into the extracellular
medium. The specific virus replication rate is μvir. Released virions are either
degraded with a specific rate kvd or adsorbed by uninfected, susceptible cells
UC with a specific attachment rate kva:

dV
dt

= μvir · IC(t− τ)− kvd ·V − kva ·UC ·V .

Adherent MDCK cells only proliferate in a bioreactor if attached to a micro-
carrier and growth slows down by contact inhibition. Main substrates of en-
ergy metabolism such as glucose and glutamine, as well as inhibiting metabo-
lites such as lactate and ammonium, do not reach critical levels during virus
replication [20]. Therefore, the degree of contact inhibition, determined by the
maximum number of cells supported by the surface area of the carriers Cmax
(about 500) and the capacity used by infected and uninfected cell, is regarded
as the only influence reducing the maximum growth rate μmax:

μ = μmax ·
Cmax − (UC + IC)

Cmax
.

Experimental results show that it takes about 4–6 h before visibly infected
cells can be identified by light microscopy followed by a strong increase in
virus titers [measured by a hemagglutination (HA) assay, an indirect method
to quantify virus particles in suspension] after 10–12 h in the supernatant
(Figure 3). After infection at low m.o.i. and typical process conditions, the
maximum virus yield Vmax is about 5 × 109–1 × 1010 virions ml−1 with a
burst size of about 10 000–20 000 virus particles per infected cell. Simulation
results show that small variations (below 10%) in initial values and specific
rates do not influence Vmax significantly. The main parameters relevant for
obtaining maximal virus yields are specific virus replication rate and specific
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Figure 3 Unstructured time delay model for influenza A virus infection
of a population of MDCK cells in a bioreactor at low m.o.i.: uninfected
cells (dashed line), infected cells (dotted line) and the total number
of virions produced (solid line) expressed in log HA units [39]. Inset:
increase in virus particle number during the first hours post infection.

cell death rate due to infection. Similar models focusing on biotechnological
applications of baculoviruses have been developed by Licari and Bailey [32],
Nielsen [43], Enden and coworkers [12], and others. In addition, models
with an equivalent structure have been introduced by Gilchrist and cowork-
ers [21] and Nelson and coworkers [41] to describe immunological aspects
and infectious diseases. An excellent overview on virus dynamics in micro-
epidemiology is given by Nowak and May [44].

3.2 Structured Models of Virus Dynamics

Structured approaches have been developed to investigate one-step virus
infection cycles in bacteria, insect and animal cells. A mathematical model
for bacterial viruses, considered by Endy and coworkers [13], examines the
replication of bacteriophage T7 in E. coli. The model provides a complete
picture of the phage growth cycle. It describes individual steps of infection,
including transcription of DNA, translation of mRNA and progeny phage
assembly. In a similar way the quantitative intracellular kinetics of HIV
type 1 was modeled by Reddy and Yin [50]. Typically, these models consist
of a system of coupled differential equations comprising 10–50 differential
equations and a minimum of 40–100 parameters and initial conditions. In
addition, models that include stochastic events have been introduced (e.g. Ref.
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[55]). As an example for structured models of virus replication, a dynamical
model for the life cycle of influenza A virus in animal cells is discussed in
more detail in the following Section.

4 Influenza Virus as an Example for Virus–Host Cell Interaction

Influenza virus is a lipid-enveloped negative-strand RNA virus that belongs
to the Orthomyxoviridae family. Among the three types of influenza (A, B
and C), influenza A virus is the best characterized. It causes respiratory in-
fections that result in severe human and animal suffering with high economic
losses. Conservative estimations indicate that in case of a human influenza
pandemic 2–7 million people would die and tens of millions would need
medical attention [61]. During the annual epidemics about 5–15% of the
world population is affected with 250 000–500 000 deaths [60]. Influenza
virus replication was thoroughly investigated by many groups, and a number
of excellent books and reviews give a detailed description of its biological
properties, the molecular composition of virions and the life cycle in its host
cells [15, 31, 36, 42, 59].

Due to the detailed characterization of structure and life cycle of the in-
fluenza A virus, the availability of well-characterized cell systems for studying
virus propagation in animal and human cell lines under controlled condi-
tions and its relevance as a human pathogen, influenza A virus is (next to
bacteriophages and HIV) an excellent “model virus” for systems biology.
So far, the overwhelming number of studies on the influenza A virus life
cycle have focused on the qualitative characterization of virus attachment,
endocytosis, protein expression, genome replication, budding and release. In
addition, a few mathematical models are available which describe molecu-
lar mechanisms of individual steps such as virus binding and endocytosis
(e.g. Refs. [22, 38, 45]). In the following a first step towards a structured
mathematical model, which describes the complete influenza A life cycle
in animal cells is presented. The purpose of this model is 2-fold: (i) to
analyze the key processes of virus replication at a cellular level, and (ii) to
better understand rate-determining steps and factors limiting intracellular
virus growth in mammalian cells for the design and optimization of virus-
related production processes for recombinant proteins, classical vaccines and
viral vectors for gene therapy. In the following sections key steps of the
influenza A virus life cycle are described in more detail (Section 4.1). Then
a structured mathematical model is introduced (Section 4.2) with simulation
results for influenza virus growth dynamics (Section 4.3). The section ends
with a discussion and an outlook on several aspects of influenza–host cell
interaction not included into mathematical models so far (Section 4.4).
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4.1 The Influenza A Virus Life Cycle

A schematic overview on the key steps of influenza A virus replication in
animal cells, for example in adherent MDCK cell used for vaccine production
[20], is given in Figure 4. The influenza A virus life cycle comprises the
following steps:

1) Attachment to the apical membrane of the host cell and receptor-mediated
endocytosis.

2) Uncoating and transfer of viral ribonucleoprotein complexes (vRNPs) into
the nucleus.

3) Viral genome replication: transcription of (–) strand viral RNA [vRNA(–)]
to (+) strand viral messenger RNA [vmRNA(+)].

4) Synthesis of complementary (+) strand RNAs [cRNAs(+)] and then vRNAs(–
).

5) Translation of viral capsid, nonstrucctural and matrix proteins from vmR-
NAs(+).

6) Translation of viral envelope proteins from vmRNAs(+).

7) Packaging of progeny vRNPs and export to apical cell membrane.

8) Budding and release of progeny virions from the plasma membrane.

Influenza A virus infects humans and a wide variety of animals, including
pigs, horses, ferrets and birds. In mammals, the virus replicates in epithelial
cells of the upper respiratory tract, but in vitro it can also infect many other
cell types that possess sialic acid-containing cellular surface proteins. The
genome of influenza A virus is segmented and consists of eight vRNAs(–)
of different size associated with nucleoproteins (NP) and three polymerases
(PB1, PB2 and PA) involved in viral RNA transcription and viral genome repli-
cation. PB1 is a catalytic subunit of the viral RNA transcriptase and replication
complex which catalyses the nucleotide addition during the elongation of the
vmRNA(+) transcript. In addition, it has endonuclease activity. PB2 is a cap-
dependent endonuclease, which is responsible for both binding and cleavage
of capped cellular mRNA to generate primers for vmRNA(+) synthesis. PA
is essential for viral genome replication; however, its actual role is not fully
understood. The arrangement of vRNAs(–), NP proteins and the three asso-
ciated polymerase proteins is called the vRNP or nucleocapsid. The vRNP
complexes are enclosed within a shell composed of matrix protein (M1, the
major component of virions) associated with a lipid membrane derived from
the host cell. Embedded in the plasma membrane are three envelope proteins:
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Figure 4 Single-cell reproductive cycle of influenza A virus. Different
steps are numbered according to the virus life cycle discussed in
Section 4 (adapted from Ref. [52] with permission).

HA, the major surface protein with sialic acid binding and membrane fusion
activity at low pH, neuraminidase (NA) involved in virus release and an ion
channel protein (M2). In addition, influenza virions contain NS2 proteins, also
called nuclear export proteins.

Each of the viral genes has been sequenced completely for influenza A virus
PR/8/34 and many other isolates of the different virus subtypes [19]. Eight
genome segments encode 10 viral proteins. Nine of them are incorporated into
the virus particle, except for the nonstructural protein NS1 – a regulatory fac-
tor with several activities which include the inhibition of cellular pre-mRNA
3′-end cleavage and polyadenylation, the inhibition of cellular pre-mRNA
splicing in the nucleus, and the inhibition of the interferon-mediated cellular
response to virus infection. Six genome segments encode one viral protein.
The others contain two open reading frames (ORF), encoding for M1 and M2
proteins and NS1 and NS2 proteins, respectively. Recently a novel protein
PB1-F2 was discovered, which is encoded by a second ORF, within the viral
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RNA of PB1. The protein seems to participate in the induction of apoptosis
and also seems to be involved in killing host immune cells responding to
influenza virus infections. This protein was shown to be nonessential for virus
replication in vitro and is therefore not considered in the model.

The following individual steps of the virus life cycle (Figure 4) including
modeling assumptions concerning initial conditions, cellular resources and
replication mechanisms are considered in the model.

(i) Virus entry into the host cell. Influenza virus particles attach to N-
acetylneuraminic (sialic) acid-containing receptors on their host cell via the
viral HA glycoprotein. In a next step, the virions are taken up into the cell by a
clathrin-dependent receptor-mediated endocytosis. While several other entry
pathways for influenza virus are also reported [53, 54], the model considers
only the endocytic pathway, which seems to be the most common.

(ii) vRNP uncoating and transport into the nucleus. The delivery of the vRNPs
into the cytoplasm of their host cell is a multistep process. After a pH
drop in the endosome to approximately pH 5.0, viral M2 ion channels are
activated, which allows protons to enter the interior of the virus particle.
Upon acidification, HA molecules undergo conformational rearrangements
mediating the fusion of the viral membrane with the endosomal membrane.
Acidification also facilitates the dissociation of vRNPs from M1 matrix pro-
teins. As a consequence, individual vRNPs are released into the cytoplasm
of their host cells. The import of vRNPs into the nucleus is mediated by
nuclear localization signals, carried by NP proteins. Since M1 proteins inhibit
the import into the nucleus through the nuclear pore complexes (NPCs), their
detachment from vRNPs plays a crucial role at this step. Virus particles, which
do not fuse with the membrane, e.g. virions with defective M2 ion channels,
are eventually degraded by lysosomes.

(iii) Transcription [vmRNA(+) production]. Three types of viral RNAs are
synthesized in the cellular nucleus: viral mRNAs of positive polarity [vm-
RNA(+)], viral genomic RNAs of negative polarity [vRNAs(–)] and comple-
mentary RNAs of positive polarity [cRNAs(+)]. Influenza virus vmRNAs(+)
contain a cap structure at the 5′ end and a poly(A) tail at the 3′ end, which
are derived from cellular precursor mRNAs. Their synthesis is catalyzed by
the viral polymerase complex and comprises several steps. Splicing of M and
NS vmRNAs(+) also occurs in the nucleus, and seems to be regulated by NS1
proteins. Newly synthesized vmRNAs(+) are exported from the nucleus to the
ribosomes in the cytoplasm via nuclear pore complexes (NPCs) or degraded.

(iv) Viral genome replication. Viral genome replication involves the synthe-
sis of full-length cRNAs(+), which serve as templates for vRNA(–) strands.
Newly replicated vRNAs(–) are used for the production of further vmR-
NAs(+) and cRNAs(+) as well as for the assembly of vRNP complexes. While
PB1 and PB2 proteins carry out transcription, genome replication requires PB1
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and PA subunits of the viral polymerase complex. It was also shown that NP
proteins not only mediate the nuclear import of vRNPs, but also participate in
the switch from vmRNA(+) synthesis to viral genome replication. In addition
it is assumed that all viral RNAs are degraded to a certain extent in the
nucleus.

(v) Capsid, nonstructural and matrix protein production. Viral proteins (PB1,
PB2, PA, NP, NS1, NS2 and M1) are synthesized at maximum rate by ribo-
somes organized in polysome complexes. At the same time the translation
of cellular mRNAs seems to be inhibited. The mechanisms of a selective
translation of vmRNAs(+) are poorly understood so far. There are three
possible mechanisms for the inhibition of cellular protein synthesis [46]. One
of them involves the degradation of cellular precursor mRNAs in the nucleus.
Another option is the inhibition of the translation of cellular mRNAs at the ini-
tiation and elongation steps. Finally, cellular protein production seems to be
inhibited by retarding the transport of cellular mRNAs to the cytoplasm. The
newly synthesized polymerases as well as matrix and nonstructural proteins
are transported to the nucleus, where they participate in M and NS mRNA
splicing, transcription and viral genome replication. Additionally, they are
consumed for the production of new vRNP complexes.

(vi) Envelope protein production. M2, HA and NA protein synthesis is carried
out by membrane-bound ribosomes. Newly synthesized envelope proteins
are translocated across the membrane of the endoplasmic reticulum (ER),
glycosylated and transported out of the ER to the Golgi apparatus. Finally,
they are delivered to the apical membrane of their host cell for the assembly
with vRNP complexes and budding.

(vii) Packaging. The formation of vRNP complexes takes place in the cellular
nucleus. Newly synthesized PB1, PB2, PA, NP and NS2 proteins associate
with vRNAs and M1 proteins forming vRNP–M1–NS2 complexes, which
mediate nuclear export. M1 proteins inhibit the re-import of vRNP complexes,
while nuclear export signals of NS2 proteins seem to be required to overcome
the nuclear import signals of NP proteins.

(viii) Virus budding and release. In the last step vRNP–M1–NS2 complexes
interact with the cytoplasmic tails of M2, HA and NA proteins, which leads to
the formation of a bud at the apical membrane of polarized epithelial cells.
Host cell membrane proteins seem to be excluded from the newly formed
progeny virions. Eventually, buds separate from the cellular surface and
virions are released to the extracellular medium. The model assumes that
eight influenza virus vRNP complexes are packaged per virion.
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4.2 Mathematical Model of the Influenza A Virus Life Cycle

The model considers an “average” cell, which is immersed in a small volume
of medium (1 nL) and infected by a low number of influenza virus particles
(10 virions cell−1), which survives about 10–12 h post-infection (p.i.). Only
one replication cycle is taken into account without re-infection of the cell
by newly released progeny virus. Additionally, it is assumed that cellular
protein synthesis is shut off after infection and that infected cells do not divide.
The model is represented by a system of 43 nonlinear ordinary differential
equations (ODE) and 81 parameters. About half of these parameters (42)
are confirmed by our own experiments or taken from literature. The non-
confirmed parameters (39), e.g. degradation rate coefficients and parameters
describing the switch from vmRNA(+) synthesis to viral genome replication,
were estimated according to the average duration of individual replication
steps and overall virus dynamics. In the following only aspects of the virus
life cycle that are relevant for the results presented later (Section 4.3) are briefly
discussed. A complete list of all equations, initial conditions, and kinetic
parameters is given in the Appendix.

Infection starts with the virus entry into the host cells (also see Appendix,
1):

dVex

dt
= −kex-s,VexVex + ks-ex,VexVs

dVs

dt
= kex-s,VsVex + ks-ex,VsVs − ks-endVs

where t is the time measured in hours, Vex and Vs represent the number of
virus particles in the extracellular medium and on the cellular surface. The
rate coefficient of virus binding to the cellular surface receptors is kex-s,Vex . The
rate constant of virus dissociation from the surface is ks-ex,Vex . The rates kex-s,Vs

and ks-ex,Vs are related to kex-s,Vex and ks-ex,Vex, respectively, via ks-ex,VsVs =
Ur

Ncells
kex-s,Vex, and ks-ex,Vs = Ur

Ncells
ks-ex,Vex , where Ur is the medium volume,

containing Ncells cells (Ncells = 1 ). Usually, cells are infected with a small
number of virions. Therefore, the number of cellular receptors, which is in
the range of 104–105 receptors per cell (see Appendix, Table A1), significantly
exceeds the number of virus particles binding to the cell surface and does not
represent a limiting factor for virus entry. Consequently, a Michaelis–Menten-
type kinetics is not considered and it is assumed that kex-s,Vex as well as ks-ex,Vex

is constant. Virus uptake via clathrin-coated pits is omitted in the model
and viruses attached to the cellular membrane are assumed to penetrate
directly into endosomes. Typically, there are several hundred endosomes per
cell. Therefore, their number significantly exceeds the number of endosomes
containing virus and the rate of endocytosis is assumed constant.



878 23 Dynamics of Virus–Host Cell Interaction

The next steps comprise vRNP uncoating and transport into the nucleus
(see Appendix, 2) via NPCs, which is in the range of 3000–4000 pores per cell.
At low m.o.i. only a small percentage of the NPCs is involved in the transfer
of vRNPs into the nucleus at time of infection. With the transfer of vRNPs into
the nucleus the synthesis of vmRNAs(+) starts (also see Appendix, 3):

dCi,nuc

dt
= kv-vm,iPPol,nuc − kvm,i,nuc-cytCi,nuc− kvm,i,nuc-degrCi,nuc

dCi,cyt

dt
= kvm,i,nuc-cytCi,nuc− kvm,i,cyt-degrCi,cyt

i ∈ [Pol, NP, M1, NS1, NS2, M2, HA, NA] ,

where Ci,nuc is the number of vmRNAs(+) encoding the i-th protein in the
nucleus, Ci,cyt is the number of vmRNAs(+) in the cytoplasm, and PPol,nuc is
the number of polymerase complexes in the nucleus. The first term (Ci,nuc)
in the right-hand side of the first equation is the rate of vmRNA(+) synthe-
sis in the nucleus. All three polymerase subunits and their corresponding
vRNA(–) are considered as one unit. The polymerase complexes are assumed
to operate at the same speed, so the first term is proportional to PPol,nuc. The
rate coefficient kv-vm,i of vmRNAs(+) synthesis depends on the number of
vRNAs(–) in the nucleus Cv (see Appendix, 4.2) and on PNP,nuc, the number
of NP molecules in the nucleus which are assumed to regulate the switch
from vRNA(–) transcription to viral genome replication depending on their
nuclear concentration (see Appendix, 5.2). In addition, it is assumed that
the rate of the process is not limited by Cv. Every polymerase complex
is involved in transcription and all polymerase complexes operate at the
same speed. As mentioned above, NP proteins are assumed to inhibit the
production of vmRNAs(+). Consequently, kv-vm,i should be maximal when
PNP,nuc = 0 and should tend to zero when PNP,nuc → ∞. Taking all this
into account, it is assumed that kv-vm,i = kv-vm,i,max

1
1+aNPPNP,nuc

, where aNP

is a positive parameter. Here, aNP represents an inverse concentration of NP
proteins at which kv-vm,i = 1

2 kv-vm,i,max. It is aNP that defines the influence of
NP proteins on vmRNA(+) production. The rate coefficients of viral mRNA
nuclear export and degradation are kvm,i,nuc-cyt and kvm,i,nuc-degr, respectively.
The rate constant of cytoplasmic vmRNA(+) degradation is kvm,i,cyt-degr. A
splicing of M and NS mRNAs is not considered in the model.

Viral genome replication is modeled in a similar way (see Appendix, 4):

dCc

dt
= kv-cPPol,nuc − kc-degrCc

dCv

dt
= kc-vPPol,nuc + kspl,Cv Snuc − kun,Cv Cv ∏

l
Pl,nuc− kv-degrCv ,



4 Influenza Virus as an Example for Virus–Host Cell Interaction 879

l ∈ [Pol, NP, M, NS2] ,

where Cc is the number of cRNAs(+), Cv is the number of vRNAs(–) and
Pl,nuc is the number of molecules of the l-th protein in the nucleus. The
rate coefficients of cRNA(+) and vRNA(–) synthesis are kv-c and kc-v, re-
spectively. Assuming that all vRNA molecules are synthesized at similar
rates [63], it is not necessary to describe their numbers by different functions.
Furthermore, it is assumed that every polymerase complex participates in
either positive or negative strand synthesis. Neither Cv nor Cc limit the
rate of the corresponding process because their number exceeds the number
of polymerase complexes. Since a high concentration of NP proteins acti-
vates genome replication, kv-c and kc-v should have maximum values when
PNP,nuc → ∞ and be equal to zero when PNP,nuc = 0. Thus, it is assumed that
kv-c = kv-c,max

PNP,nuc
bNP+PNP,nuc

and kc-v = kc-v,max
PNP,nuc

bNP+PNP,nuc
. Here, bNP is a positive

parameter that defines the influence of NP proteins on viral genome replica-
tion. It represents the concentration of NP proteins at which kv-c = 1

2 kv-c,max
and kc-v = 1

2 kc-v,max. The rate constants of cRNA(+) and vRNA(–) degradation
are kc-degr and kv-degr, respectively. The rate constants of vRNP splicing
kspl,Cv and kspl,Snuc (see Appendix, 2.2) are given by kspl,Cv = Csegkspl,Snuc and
kspl,Pi,nuc

= Pi,segkspl,Snuc , respectively, where Cseg is the average number of
nucleotides contained in one segment. [Influenza A (A/PR/8/34) consists of
about Cvir = 13588 nucleotides [31]; therefore one segment has an average of
Cseg = Cvir/Nseg = 1699 nucleotides.] The rate constant of the assembly of
new vRNPs is kun,Cv .

Translation of viral proteins includes the synthesis of capsid, nonstructural
and matrix proteins (polymerase, NP, M1, NS1 and NS2; see Appendix, 5),
which are transported from the cytoplasm back into the nucleus. Newly
synthesized envelope proteins (HA, NA, M2; see Appendix, 6) are further
processed via the ER and Golgi apparatus. The influence of the number of
cellular ribosomes on viral protein synthesis is neglected, assuming that a
cell contains about R0 = 5 × 106 ribosomes, which is significantly higher
than the number of vmRNA(+) molecules to be processed. In addition, it is
assumed that the ribosomes are organized in polysome complexes with an
average distance of about 80 nucleotides. Furthermore, it is assumed that rate
coefficients of the synthesis of viral proteins do not depend on the cellular
pool of free amino acids Pcell for the following reasons: (i) consumption of
amino acids for cellular protein synthesis ceases soon after infection [46];
(ii) uninfected cells contain a pool of approximately Pcell = 3.1 × 1010 free
amino acids (0.4% of cellular wet weight, 138 Dalton average weight of amino
acids; [1, 40], which is sufficient to produce about 1.3 × 104 virions (about
2.4× 106 amino acids per virion, influenza A/PR/8/34) even when assuming
that after infection cellular energy and amino acid metabolism is not switched
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off and there could be an additional supply of amino acids for viral protein
synthesis [20]. Thus, the influence of virus infection on the pool of cellular
amino acids and therefore on the rate of viral protein synthesis seems to be
negligible.

While envelope proteins are incorporated into the apical membrane of the
cell vRNPs associate in the nucleus and are being transported to the budding
site (see Appendix, 7). It is assumed that vRNPs are packaged randomly with
eight segments each. Finally, the assembly of virions is completed and virus
particles are released into the medium (see Appendix, 8):

dVbud
dt

= kbud,Vbud
Sun,bud ∏

l
Pl,bud− kbud-rel,Vbud

Vbud

l ∈ [M2, HA, NA]
dVrel

dt
= kbud-rel,Vrel

Vbud ,

where Vbud and Vrel are the number of budding and released virions, re-
spectively. The rate constant of the assembly of progeny virus particles
kbud,Vbud

is related to kbud,Pj,bud
and kbud,Sun,bud

via kbud,Pj,bud
= Pj,virkbud,Vbud

and kbud,Sun,bud
= Nsegkbud,Vbud

(see Appendix, 6.2 and 7.2). Here Pj,vir is the
number of molecules of the j-th envelope protein in the virus particle and
kbud-rel, Vbud is the rate constant of progeny virus release. The rates kbud-rel,Vrel

and kbud-rel,Vbud
are related via kbud-rel,Vbud

= Ur
Ncells

kbud-rel,Vrel
.

4.3 Influenza A Virus Growth Dynamics

Simulation results of the mathematical model discussed above for the in-
fluenza A virus dynamics are shown in Figures 5–10. Immediately after the
infection the number of extracellular virions decreases and within about 2 h
more than 90% are taken up by the cell (Figure 5). Correspondingly, both the
number of virions attached to the surface and, with a short delay, the number
of virions incorporated into endosomes increases and a maximum is achieved
for virions attached to the surface and endosomal virions after 14 and 19 min,
respectively (Figure 5). From the endosomes individual vRNPs are released
into the cytoplasm and start to accumulate in the nucleus (Figure 6). The
maximum number of parental vRNPs in the cytoplasm and in the nucleus is
found 38 and 99 min p.i., respectively.

After about 25–27 min p.i. first vmRNAs(+) are synthesized in the nucleus
and between 1 and 2 h p.i. the number of vmRNAs(+) in the nucleus increases
significantly before it achieves a steady state due to continuous export into the
cytoplasm and degradation (Figure 7). About 40–44 min p.i., first vmRNAs(+)
are found in the cytoplasm, where they accumulate. The switch from vm-
RNA(+) production to viral genome replication starts about 55 min p.i. when
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Figure 5 Virus attachment and endocytosis: free extracellular virions
(solid line), virions attached to the cellular surface membrane (dashed
line) and virions (dash/dotted line) incorporated by endocytosis.

Figure 6 Release of vRNPs from endosomes into the cytoplasm (+)
and accumulation of individual vRNPs in the nucleus (×).

a significant amount of newly produced NP proteins have accumulated in the
nucleus (Figure 8). About 4 h p.i. cRNA(+) is synthesized at almost maximum
rate. As a consequence, viral genome is replicated and the assembly of new
vRNP complexes starts in the nucleus (Figure 9).
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Figure 7 Transcription of viral genes. Accumulation of vmRNAs (+)
in nucleus [NP (-· − ·-), HA (- - -), polymerase (—)] and cytoplasm [NP
(+), HA (×), polymerase (©)].

Figure 8 Switch from viral transcription to viral genome
replication: rate coefficients of vmRNA (+) synthesis (©) and
cRNA (+) production (×).

Approximately 2.5 h p.i., first virions are released into the extracellular
medium. Initially, the number of released virions increases exponentially
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Figure 9 Dynamics of vRNPs: In the
nucleus, vRNPs (–·–·–) accumulate while
virion formation is limited by the number
of vRNPs in the cytoplasm (-o-o-) during
budding. Progeny virions are formed at the

surface membrane of the host cell (–x–x–),
and released into the extracellular medium
(—). The maximum number of released
virions is about 8000 per cell.

as vRNP formation and budding are not limited in precursor supply. As
soon as viral proteins or vRNAs(–) become limiting, viral growth increases
proportional to the square of time. [This can be explained by the fact that at
the late period of infection, vmRNAs(+) are produced at maximum rate in the
nucleus, and, as a result, the total number of all viral proteins and RNAs, as
well as the number of budding viruses, increase linearly with time.] In total
the cell produces about 8000 virions within 12 h (Figure 9) before it dies due to
the virus interfering with basic cellular processes or virus induced apoptosis.

During the replication cycle several cellular resources [surface receptors,
endosomes, transport capacity for vRNPs, vmRNAs(+) and viral proteins via
the NPCs, precursors for viral protein and genome synthesis, ATP and redox
equivalents in form of NAD(P)H, cellular plasma membrane] are required to a
varying extent. During the early steps of virus replication neither the number
of cellular surface receptors nor the number of endosomes is a limiting factor.
Both resources exceed by far the capacities for virus internalization at low
m.o.i. Virus attachment and detachment kinetics itself also does not seem to
influence overall virus dynamics on the cellular level. Even drastic changes



884 23 Dynamics of Virus–Host Cell Interaction

Figure 10 Influence of binding kinetics. Variations of the ratio
(virions attached to the surface)/(extracellular virions) at steady-state
have almost no influence on the maximum number of virus particles
released 12 h p.i. (+).

in attachment kinetics have almost no impact on the total number of virions
released during virus replication (Figure 10).

Transfer of vRNPs via the NPCs, which is in the range of 3000–4000 nu-
clear pores in mammalian cells, also does not seem to limit virus replication.
Assuming a transfer rate of 102–104 molecules s−1, typical for membrane
transport proteins [34], 109–1011 viral molecules [vmRNAs(+), vRNPs, viral
proteins] could cross the nuclear membrane per hour. Simulation results
clearly demonstrate that NPCs are mainly used for the transfer of newly
synthesized viral proteins, e.g. M1 and NP, from cytoplasm into the nucleus.
The maximum rate of this process is about 107 molecules h−1 and therefore
negligible with respect to total transfer capacity of the cell. The bottleneck
during early steps of infection seems to depend on the virus itself. For a
successful infection the fusion of the viral membrane with the endosomal
membrane and the release of the viral genome into the cytoplasm of the cell is
essential. According to Martin and Helenius [37], the genome of only 65–70%
of all endosomal viruses is finally released into the cytoplasm. Additionally,
packaging of the correct number and distribution of vRNPs is required to
successfully infect a cell. Both factors together explain the comparatively low
number of successful infections in influenza A virus infectivity studies. De-
pending on the cell system, cultivation conditions and assay (plaque forming
units, tissue culture infectivity dose), the ratio of infectious to noninfectious
virus particles varies in the range of 1/50–1/20 [15].
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During the first hour of virus replication the total number of free cellular
nucleotides and amino acids consumed for virus production makes up only a
small part of the total cellular pool of these components. Even under the very
restricting assumption that the cellular biosynthesis of nucleotides and amino
acids as well as any uptake of these precursors from the medium is stopped
early during infection, their total number is much higher than necessary for
synthesizing about 4000–8000 virus particles within the average life-time of
an infected cell which is in the range of 10–12 h. Assuming a cellular pool size
of 1.3 × 1010 nucleotides and 3.1 × 1010 amino acids (Appendix, Table A1) at
most 0.8% of the available nucleotides and 60.8% of the free amino acids are
consumed for virion production.

The maximum number of vmRNAs(+) in the cytoplasm never exceeds
104 molecules cell−1 (not shown). Therefore, the number of ribosomes in-
volved in the synthesis of viral proteins is significantly smaller than the total
number of cellular ribosomes (approximately 107). Consequently, the num-
ber of cellular ribosomes does not seem to limit viral protein production.
Also, the number of heterogeneous nuclear precursor mRNAs, which is about
2.2 × 105 molecules cell−1 [26], is not limiting for vmRNA(+) synthesis (not
shown).

Simulations show that during vRNP assembly, as well as during virus bud-
ding, one of the newly produced viral components is completely consumed
for the virion formation. Under the current modeling assumptions it is the
number of M1 proteins that represents a limiting factor for the formation of
new vRNP–M1–NS2 complexes in the nucleus while the number of all other
viral proteins increases linearly with time (not shown). A similar situation
takes place during virus budding where newly synthesized vRNPs represent
the limiting factor (Figure 9). In contrast, viral membrane proteins seem to
accumulate at the budding sites.

What factors mainly limit virus production? Simulation studies show
that the total number of virus particles produced during the life-time of
an infected cell mainly depends on the efficiency of viral polymerase com-
plexes required for vmRNA(+) and therefore for viral protein synthesis.
Even drastic variations in the parameters of all other steps during virus
attachment/detachment, endocytosis, transfer of vRNPs into the nucleus
result in only modest changes in infection dynamics, e.g. a time delay before
vmRNA(+) synthesis starts or an initial reduction in the number of vRNPs
entering the nucleus. However, as soon as the infection is successfully
initiated the total number of virions produced during a fixed period of
time is more or less constant. Changes in the ratio (virions attached to
the surface)/(extracellular virions) at steady-state in the range of 0.4–8.4
(standard 2.8), for instance, result in differences of less than 2.5% in the
total number of virus particles produced (Figure 10). In addition, the
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protein synthesis capacity of the infected cell itself has a major influence.
Even when the number of ribosomes and the number of precursors itself
do not seem to be limiting factors for viral protein synthesis the translation
efficiency at the ribosomes clearly influences overall virus production. For
example, an increase of the corresponding rate coefficient by a factor of 2
(kRib, see Appendix, Table A2) increases the total number of virus particles
produced by a factor of 2.15. Overall, it seems that the capacity for influenza
virus production in eukaryotic cells is mainly determined by the efficiency
of protein synthesis at the ribosomes and the synthesis rate of vmRNAs(+)
defined by the viral polymerase complexes. Cellular resources such as the
number of ribosomes, the number of nucleotides and the number of available
amino acids do not seem to limit virion formation during the average life-time
of infected cells.

4.4 Discussion and Outlook

The structured model for the complete single-cell reproductive cycle of in-
fluenza A virus in mammalian cells presented takes into account most steps
from virus entry into the host cell to progeny virus release. The overall virus
dynamics agrees well with results obtained for other structured models, for
example HIV-1 infection of lymphocytes [50] or the replication of bacterio-
phage T7 in E. coli [13].

However, even with the time-course of virus entry, vmRNA(+) synthesis,
viral genome replication, virus budding and release reasonably represent
overall virus dynamics on a cellular level there are several aspects of the
virus replication cycle which should be quantitatively characterized in more
detail. First of all, the control of vmRNA(+) synthesis is not completely under-
stood. According to Lamb and Choppin [30], similar amounts of vmRNAs(+)
and corresponding viral proteins are produced during the very first hours
of infection only. Later in infection vmRNAs(+) coding for NP and NS1
proteins seem to be synthesized in higher amounts than those required for
polymerases. After the onset of vRNA(–) production and vRNP association,
the synthesis of vmRNAs(+) seems to dominate. Therefore, the assumption
of the present model that all vmRNAs(+) as well as all viral proteins are
produced in equal amounts is oversimplified. In addition, the vRNAs(–)
seem to be produced in nonequivalent amounts. As mechanisms regulating a
selective synthesis of viral proteins and genome segments are not understood
quantitatively, no attempts have been made so far to introduce corresponding
control factors into the existing model. A similar problem is the discussed
switch from viral protein synthesis to viral genome replication. It seems that
the number of NP proteins in the nucleus is regulating this switch, but the
exact mechanism is not clear. Correspondingly, the parameters controlling the
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switch from vmRNA(+) production to cRNA(+) synthesis (see Appendix, 3
and 4) are more or less arbitrarily selected to follow the overall time course of
virus replication. Clearly, more experiments are needed to better understand
these complex phenomena. Finally, viral genome packaging itself is still a
subject of discussion. So far, it is not clear whether genome segments are
selectively incorporated into a progeny virus particle or packaging of genome
segments is a purely random process. Experimentally, a ratio of infectious
to noninfectious virus particles was confirmed to be in the range of 1/50–
1/20 favoring selective mechanisms [15,17]. On the other hand, assuming that
virus particles can contain more than eight genome segments [11, 42] results
in similar ratios (1/90–1/50 for nine segments). So far, for simplicity it is
assumed in the model that all virus particles contain eight genome segments.
However, if required this can be easily modified to cope with corresponding
experimental results.

Cells infected with influenza virus die at about 10–12 h p.i. So far, the
mechanisms of cell death are not fully understood. As shown before, cellular
resources consumed for virus replication are used only to a limited degree for
virion formation. Therefore, cell death is probably not directly linked with the
exhaustion of cellular pools. Also the number of nuclear precursor mRNAs
[their poly(A) tail] used for vmRNA(+) production does not to seem to be a
limiting factor (Section 4.3). The most likely reason for cell death is virus-
induced apoptosis, an active process of cellular self-destruction. For influenza
A virus several factors have been identified which activate apoptosis path-
ways [35] including caspase activation by double-strand vRNAs of infected
cells [33, 57, 66], activation of the latent transforming growth factor-β by viral
membrane proteins HA and NA [51] and the interaction with mitochondrial-
dependent apoptotic pathways of a newly described influenza A virus gene
product PB1-F2 [6]. In addition, host defense mechanisms such as interferon-
mediated antiviral responses and virus induced cellular gene expression play
important roles in virus replication [18,29,35,36]. However, while these topics
are being studied in an increasing number of experimental systems, their
kinetics as well as the precise mechanisms of apoptotic factors and virus-
induced stimulation of cellular defense on virus replication still have to be
elucidated in more detail before incorporation into mathematical models of
virus replication.

5 Conclusions

Mathematical models of virus replication in single cells are a crucial step
towards a quantitative understanding of virus–host cell interaction. Most
models developed so far focus on kinetics of virus attachment and entry,
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transcription and translation of viral mRNAs, genome replication, assem-
bly, and virus release. In particular, the overall growth dynamics of bac-
teriophages, the influence of the physiological status of the host bacterium
and the interaction of phage components with the regulatory networks of
their host cells have been analyzed in detail. Models of viruses infecting
eukaryotic cells, especially mammalian cells, are adding a further level of
complexity. Apart from the impact of virus replication on cellular metabolism,
the impact of viral components on host cell defenses as well as on cellular
signal transduction networks and gene expression have to be considered to
fully understand the multiple facets of virus–host cell interaction. However,
existing mathematical models developed for the simulation of HIV, influenza
A virus and baculovirus dynamics neglect most of these aspects which differ
eukaryotes from prokaryotes. Therefore, these models can be considered
only as a first step towards a quantitative and integrative understanding of
virus replication on a cellular level. For further progress, virus–eukaryotic
cell systems should be selected as models for systems biology approaches
to cope with these challenges and to improve our understanding on virus–
host cell interactions. Eventually, this will allow us not only to reveal basic
laws that control virus replication in cells and to identify molecular targets for
virus-related diseases, but also to optimize viral-based production systems for
vaccines and pharmaceuticals required for gene or cancer therapy.
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Nomenclature

aNP influence of the NP protein on vmRNA production (cell NP−1)

bNP influence of the NP protein on genome replication (NP cell−1)

B burst size (phages bacterium−1)

Cmax maximum cell concentration due to contact inhibition (cells mL−1)

Cc cRNA (nucleotides cell−1)

Ccell number of free cellular nucleotides (nucleotides cell−1)

Cm,cell number of cellular mRNAs (nucleotides cell−1)
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Ci,nuc vmRNA, encoding the i-th protein in the nucleus (nucleotides cell−1)

Ci,cyt vmRNA, encoding i-th protein in the cytoplasm (nucleotides cell−1)

Cseg the average number of nucleotides of one vRNA segment (nu-
cleotides)

Cv number of vRNA nucleotides (nucleotides cell−1)

Cvir number of nucleotides in a virus particle (nucleotides)

drib distance between ribosomes processing a vmRNA (nucleotides)

E number of cellular endosomes (endosomes cell−1)

H number of nuclear pores (pores cell−1)

IC concentration of infected cells (cells mL−1)

kbud-rel,Vbud
rate constant of progeny virus release (h−1)

kbud-rel,Vrel
rate constant of progeny virus release (nL−1 h−1)

kbud,Pj,bud
rate constant of progeny virus particles assembly (h−1)

kbud,Sun,bud
rate constant of progeny virus particles assembly (h−1)

kbud,Vbud
rate constant of progeny virus particles assembly (h−1)

kcdf specific cell death rate due to cultivation conditions (h−1)

kc-degr rate constant of cRNA degradation (h−1)

kcdv specific cell death rate due to viral infection (h−1)

kc-v rate coefficient of vRNA synthesis (h−1)

kcyt-nuc rate coefficient of vRNP nuclear import (h−1)

kend-cyt,Scyt rate coefficient of endocytosis (h−1)

kend-cyt,Vend
rate constant of vRNP uncoating (h−1)

kend-degr rate constant of virus degradation within endosomes (h−1)

kex-s,Vex rate coefficient of virus binding (nL h−1)

kex-s,Vs rate coefficient of virus binding (h−1)

ki,cyt-degr rate constant of the degradation of the i-th protein in cytoplasm
(h−1)
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ki,cyt-nuc rate coefficient of nuclear import of the i-th protein (h−1)

ki,nuc-degr rate constant of the degradation of the i-th protein in the nucleus
(h−1)

ki,synt rate coefficient of the synthesis of the i-th protein (h−1)

kj,bud-degr rate constant of the degradation of the j-th protein at the budding
site (h−1)

kj,ER-bud rate constant of the transport of the j-th protein to the budding
site (h−1)

kj,ER-degr rate constant of the degradation of the j-th protein in the ER
(h−1)

kPl rate of the synthesis of RNA (nucleotides h−1)

kRib rate of the elongation of a peptide chain (amino acids h−1)

ks-end rate coefficient of the endocytosis (h−1)

ks-ex,Vex rate constant of virus dissociation from the surface (h−1)

ks-ex,Vs rate constant of virus dissociation from the surface (h−1)

kspl,Cv rate constant of vRNP splicing (h−1)

kspl,Pi,nuc
rate constant of vRNP splicing (h−1)

kspl,Snuc rate constant of vRNP splicing (h−1)

kun,Cv rate constant of the assembly of new vRNP (h−1)

kun,nuc-bud rate coefficient of the export of new vRNP (h−1)

kun,Pi,nuc rate constant of the assembly of new vRNP (h−1)

kun,Sun,nuc rate constant of the assembly of new vRNP (h−1)

kva specific virus attachment rate (mL h−1)

kv-c rate coefficient of cRNA synthesis (h−1)

kvd specific virus degradation rate (h−1)

kv-degr rate constant of vRNA degradation (h−1)

kvi specific virus infection rate (mL h−1)
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kv-vm,i rate coefficient of vmRNA synthesis (h−1)

kvm,i,cyt-degr rate constant of cytoplasmic vmRNA degradation (h−1)

kvm,i,nuc-cyt rate coefficient of vmRNA nuclear export (h−1)

kvm,i,nuc-degr rate constant of nuclear vmRNA degradation (h−1)

Ncells number of cells (cells)

Pcell number cellular amino acids (amino acids cell−1)

Pi,cyt number of the i-th protein in the cytoplasm (amino acids cell−1)

Pi,nuc number of the i-th protein in the nucleus (amino acids cell−1)

Pj,bud number of the j-th protein at the budding site (amino acids cell−1)

Pj,ER number of the j-th protein in the ER (amino acids cell−1)

PNP,nuc number of NP proteins in the nucleus (amino acids cell−1)

PPol,nuc number of polymerase complexes in the nucleus (amino acids cell−1)

R number of cellular ribosomes (ribosomes cell−1)

Rsf number of cellular receptors (receptors cell−1)

Scyt number of vRNPs in the cytoplasm (vRNPs cell−1)

Snuc number of vRNPs in the nucleus (vRNPs cell−1)

Sun,bud newly synthesized vRNPs at the budding site (vRNPs cell−1)

Sun,nuc newly synthesized vRNPs in the nucleus (vRNPs cell−1)

t time (h)

UC concentration of uninfected cells (cells mL−1)

Ur volume of medium containing Ncells cells (nL)

V concentration of virus particles (virions mL−1)

Vbud number of budding viruses (virions cell−1)

Vend number of endosomal viruses (virions cell−1)

Vex number of extracellular viruses (virions nL−1)

Vrel number of released viruses (virions nL−1)
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Vs number of surface viruses (virions cell−1)

Greek

α rise rate (phages min−1)

λ latent period (min)

μ specific cell growth rate (h−1)

μmax maximum specific cell growth rate (h−1)

μvir specific virus replication rate (h−1)

ν eclipse period (min)

τ time delay (h)

ωi fraction of i-th mRNA nucleotides (–)

References

1 ALBERTS, B., A. JOHNSON, J. LEWIS,
M. RAFF, K. ROBERTS AND P. WALTER.
2002. Molecular Biology of the Cell, 4th edn.
Garland, New York, NY.

2 BAILEY, J. E. 1998. Mathematical
modeling and analysis in biochemical
engineering: past accomplishments and
future opportunities. Biotech. Prog. 14:
8–20.

3 BREMER, H. AND P. P. DENNIS. 1996.
Modulation of chemical composition
and other parameters of the cell by
growth rate. In NEIDHARDT, F. C., R.
CURTISS, III, C. GROSS, et al. (eds.),
Escherichia coli and Salmonella: Cellular and
Molecular Biology. American Society for
Microbiology, Washington, DC: 1553–69.

4 BÜCHEN-OSMOND, C. 2003. Taxonomy and
Classification of Viruses, Manual of Clinical
Microbiology, 8th edn, vol. 2. ASM Press,
Washington, DC: 1217–26.

5 BUCHHOLTZ, F. AND F. W. SCHNEIDER.
1987. Computer simulation of T3/T7
phage infection using lag times. Biophys.
Chem. 26: 171–9.

6 CHEN, W., P. A. CALVO, D. MALIDE,
et al. 2001. A novel influenza A virus

mitochondrial protein that induces cell
death. Nat. Med. 7: 1306–12.

7 DEE, K. U., D. A. HAMMER AND M. L.
SHULER. 1995. A model of the binding,
entry, uncoating, and RNA synthesis
of Semliki forest virus in baby hamster
kidney (BHK-21) cells. Biotechnol. Bioeng
46: 485–96.

8 DEE, K. U. AND M. L. SHULER. 1997.
A mathematical model of the trafficking
of acid-dependent enveloped viruses:
application to the binding, uptake, and
nuclear accumulation of baculovirus.
Biotechnol. Bioeng. 54: 468–90.

9 DULBECCO, R. 1952. Production of
plaques in monolayer tissue cultures by
single particles of an animal virus. Proc.
Natl Acad. Sci. USA 38: 747–52.

10 ELLIS, E. L. AND M. DELBRÜCK. 1939.
The growth of bacteriophage. J. Gen.
Physiol. 22: 365–84.

11 ENAMI, M., G. SHARMA, C. BENHAM

AND P. PALESE. 1991. An influenza virus
containing nine different RNA segments.
Virology 185: 291–8.

12 ENDEN, G., Y. H. ZHANG AND J.
C. MERCHUK. 2005. A model of the



References 893

dynamics of insect cell infection at low
multiplicity of infection. J. Theor. Biol.
237: 257–64.

13 ENDY, D., D. KONG AND J. YIN. 1997.
Intracellular kinetics of a growing virus:
a genetically structured simulation for
bacteriophage T7. Biotechnol. Bioeng. 55:
375–89.

14 FIELDS, S. AND M. JOHNSTON. 2005.
Cell biology. Whither model organism
research? Science 307: 1885–6.

15 FLINT, J. S., L. W. ENQUIST, V. R.
RACANIELLO, R. KRUG AND A. M.
SALKA. 2000. Principles of Virology:
Molecular Biology, Pathogenesis, and Control.
ASM Press, Washington, DC.

16 FREDRICKSON, A. G., R. D. MEGEE,
III AND H. M. TSUCHIYA. 1970.
Mathematical models for fermentation
processes. Adv. Appl. Microbiol. 13: 419–
65.

17 FUJII, Y., H. GOTO, T. WATANABE, T.
YOSHIDA AND Y. KAWAOKA. 2003.
Selective incorporation of influenza virus
RNA segments into virions. Proc. Natl
Acad. Sci. USA 100: 2002–7.

18 GEISS, G. K., M. SALVATORE, T.
M. TUMPEY, et al. 2002. Cellular
transcriptional profiling in influenza A
virus-infected lung epithelial cells: the
role of the nonstructural NS1 protein in
the evasion of the host innate defense and
its potential contribution to pandemic
influenza. Proc. Natl Acad. Sci. USA 99:
10736–41.

19 GENBANK.
http://www.ncbi.nih.gov/Genbank.

20 GENZEL, Y., I. BEHRENDT, S. KÖNIG, H.
SANN AND U. REICHL. 2004. Metabolism
of MDCK cells during cell growth and
influenza virus production in large-scale
microcarrier culture. Vaccine 22: 2202–8.

21 GILCHRIST, M. A., D. COOMBS AND A.
S. PERELSON. 2004. Optimizing within-
host viral fitness: infected cell lifespan and
virion production rate. J. Theor. Biol. 229:
281–8.

22 GÜNTHER-AUSBORN, S., P. SCHOEN,
I. BARTOLDUS, J. WILSCHUT AND T.
STEGMANN. 2000. Role of hemagglutinin
surface density in the initial stages of

influenza virus fusion: lack of evidence
for cooperativity. J. Virol. 74: 2714–20.

23 HADAS, H., M. EINAV, I. FISHOV AND

A. ZARITSKY. 1997. Bacteriophage T4
development depends on the physiology
of its host Escherichia coli. Microbiology
134: 179–85.

24 HASELTINE, E. L., J. B. RAWLINGS AND

J. YIN. 2005. Dynamics of viral infections:
incorporating both the intracellular and
extracellular levels. Comput. Chem. Eng.
29: 675–86.

25 JANG, J. D., C. S. SANDERSON, L. C.
L. CHAN, J. P. BARFORD AND S. REID.
2000. Structured modeling of recombinant
protein production in batch and fed-batch
culture of baculovirus-infected insect cells.
Cytotechnology 34: 71–82.

26 KAUFMAN, R. J. 2000. Overview of vector
design for mammalian gene expression.
Mol. Biotechnol. 16: 151–60.

27 KIM, H. AND J. YIN. 2004. Energy-
efficient growth of phage Q Beta in
Escherichia coli. Biotechnol. Bioeng. 88:
148–56.

28 KRUEGER, A. P. AND J. H. NORTHROP.
1930. The kinetics of the bacterium–
bacteriophage reaction. J. Gen. Physiol.
14: 223–54.

29 KRUG, R. M., W. YUAN, D. L. NOAH

AND A. G. LATHAM. 2003. Intracellular
warfare between human influenza viruses
and human cells: the roles of the viral NS1
protein. Virology 309: 181–9.

30 LAMB, R. A. AND P. W. CHOPPIN.
1976. Synthesis of influenza virus
proteins in infected cells: translation of
viral polypeptides, including three P
polypeptides, from RNA produced by
primary transcription. Virology 74: 504–
19.

31 LAMB, R. A. AND R. M. KRUG. 2001.
Orthomyxoviridae: the viruses and
their replication. In KNIPE, D. M. AND

P. M. HOWLEY (eds.), Field’s Virology,
4th edn. Lippincott Williams & Wilkins,
Philadelphia, PA: 1487–579.

32 LICARI, P. AND J. E. BAILEY. 1992.
Modeling the population dynamics
of baculovirus-infected insect cells:
Optimizing infection strategies for
enhanced recombinant protein yields.
Biotechnol. Bioeng. 39: 432–41.



894 23 Dynamics of Virus–Host Cell Interaction

33 LIN, C., R. E. HOLLAND, JR., J. C.
DONOFRIO, M. H. MCCOY, L. R.
TUDOR AND T. M. CHAMBERS. 2002.
Caspase activation in equine influenza
virus induced apoptotic cell death. Vet.
Microbiol. 84: 357–65.

34 LODISH, H., A. BERK, P. MATSUDAIRA,
A. KAISER, M. KRIEGER, M. P. SCOTT,
L. ZIPURSKY AND J. DARNELL. 2003.
Molecular Cell Biology, 5th edn. Freeman,
New York, NY.

35 LOWY, R. J. 2003. Influenza virus
induction of apoptosis by intrinsic and
extrinsic mechanisms. Int. Rev. Immunol.
22: 425–49.

36 LUDWIG, S., S. PLESCHKA AND T.
WOLFF. 1999. A fatal relationship –
influenza virus interactions with the host
cell. Viral Immunol. 12: 175–96.

37 MARTIN, K. AND A. HELENIUS. 1991.
Transport of incoming influenza virus
nucleocapsids into the nucleus. J. Virol.
65: 232–44.

38 MITTAL, A. AND J. BENTZ. 2001.
Comprehensive kinetic analysis of
influenza hemagglutinin-mediated
membrane fusion: role of sialate binding.
Biophys. J. 81: 1521–35.

39 MÖHLER, L., D. FLOCKERZI, H. SANN

AND U. REICHL. 2005. Mathematical
model of influenza A virus production
in large-scale microcarrier culture.
Biotechnol. Bioeng. 90: 46–58.

40 NELSON, D. L. AND M. M. COX. 2004.
Lehninger: Principles of Biochemistry, 4th
edn. Freeman, New York, NY.

41 NELSON, P. W. AND A. S. PERELSON.
2002. Mathematical analysis of delay
differential equation models of HIV-1
infection. Math Biosci. 179: 73–94.

42 NICHOLSON, K. G., R. G. WEBSTER AND

A. J. HAY. 1998. Textbook of Influenza.
Blackwell Science, Oxford.

43 NIELSEN, L. K. 2000. Virus production
from cell culture kinetics. In SPIER, R. E.
(ed.), Encyclopedia of Cell Technology, vol. 2.
Wiley, New York, NY: 1217–30.

44 NOWAK, M. A. AND R. M. MAY. 2000.
Virus Dynamics: Mathematical Principles
of Immunology and Virology. Oxford
University Press, Oxford.

45 NUNES-CORREIA, I., J. RAMALHO-
SANTOS, S. NIR AND M. C. PEDROSO

DE LIMA. 1999. Interactions of influenza
virus with cultured cells: detailed kinetic
modeling of binding and endocytosis.
Biochemistry 38: 1095–101.

46 PARK, Y. W. AND M. G. KATZE. 1995.
Translational control by influenza virus.
Identification of cis-acting sequences and
trans-acting factors which may regulate
selective viral mRNA translation. J. Biol.
Chem. 270: 28433–39.

47 RABINOVITCH, A., I. FISHOV, H. HADAS,
M. EINAV AND A. ZARITSKY. 2002.
Bacteriophage T4 development in
Escherichia coli is growth rate dependent. J.
Theor. Biol. 216: 1–4.

48 RABINOVITCH, A., H. HADAS, M. EINAV,
Z. MELAMED AND A. ZARITSKY. 1999.
Model for bacteriophage T4 development
in Escherichia coli. J. Bacteriol. 181: 1677–
83.

49 RABINOVITCH, A., A. ZARITSKY, I.
FISHOV, M. EINAV AND H. HADAS. 1999.
Bacterial lysis by phage – a theoretical
model. J. Theor. Biol. 201: 209–13.

50 REDDY, B. AND Y. YIN. 1999. Quantitative
intracellular kinetics of HIV type 1. Aids
Res. Human Retrovir. 15: 273–83.

51 SCHULTZ-CHERRY, S., M. KOCI, E.
THOMPSON AND T. M. TUMPEY. 2003.
Examining the cellular pathways involved
in influenza virus induced apoptosis.
Avian Dis. 47: 968–71.

52 SIDORENKO, Y. AND U. REICHL. 2004.
Structured model of influenza virus
replication in MDCK cells. Biotechnol.
Bioeng. 88: 1–14.

53 SIECZKARSKI, S. B. AND G. R.
WHITTAKER. 2002. Dissecting virus entry
via endocytosis. J. Gen. Virol. 83: 1535–45.

54 SIECZKARSKI, S. B. AND G. R.
WHITTAKER. 2002. Influenza virus can
enter and infect cells in the absence of
clathrin-mediated endocytosis. J. Virol. 76:
10455–64.

55 SRIVASTAVA, R., L. YOU, J. SUMMERS

AND J. YIN. 2002. Stochastic vs.
deterministic modeling of intracellular
viral kinetics. J. Theor. Biol. 218: 309–21.

56 STOUTHAMER, A. H. 1979. The search
or correlation between theoretical
and experimental growth yields. In



Appendix 895

QUAYLE, R. R. (ed.), International Review
Of Biochemistry: Microbial Biochemistry.
University Park Press, Baltimore MD:
1–47.

57 TAKIZAWA, T., C. TATEMATSU, K.
OHASHI AND Y. NAKANISHI. 1999.
Recruitment of apoptotic cysteine
proteases (caspases) in influenza virus-
induced cell death. Microbiol. Immunol.
43: 245–52.

58 TSUCHIYA, H. M., A. G. FREDRICKSON

AND R. ARIS. 1966. Dynamics of
microbial cell populations. Adv. Chem.
Eng. 6: 125–206.

59 WHITTAKER, G. R., M. BUI AND A.
HELENIUS. 1996. The role of nuclear
import and export in influenza virus
infection. Trends Cell. Biol. 6: 67–71.

60 WHO. 2004. Communicable
Disease Surveillance & Response
(CSR), Estimating the impact of
the next influenza pandemic:
enhancing preparedness.
http://www.who.int/csr/disease/influenza/en.

61 WHO. 2003. Influenza.
http://www.who.int/mediacentre/-
factsheets/fs211/en.

62 WICKHAM, T. J., R. R. GRANADOS, H.
A. WOOD, D. A. HAMMER AND M.
L. SHULER. 1990. General analysis of
receptor-mediated viral attachment to cell
surfaces. Biophys. J. 58: 1501–16.

63 YAMANAKA, K., A. ISHIHAMA AND K.
NAGATA. 1988. Translational regulation
of influenza virus mRNAs. Virus Genes 2:
19–30.

64 YOU, L., P. F. SUTHERS AND J. YIN. 2002.
Effects of Escherichia coli physiology on
growth of phage T7 in vivo and in silico. J.
Bacteriol. 184: 1888–94.

65 YOU, L. AND J. YIN. 2001. Simulating
the growth of viruses. Pac. Symp.
Biocomput.: 532–43.

66 ZHIRNOV, O. P., T. E. KONAKOVA, W.
GARTEN AND H. KLENK. 1999. Caspase-
dependent N-terminal cleavage of
influenza virus nucleocapsid protein in
infected cells. J. Virol. 73: 10158–63.

Appendix

Model equations

The model is represented by a system of nonlinear ODEs, which represent the
key steps of the influenza A virus infection cycle (Figure 4).

1 Virus Entry into the Host Cell
dVex

dt
= −kex-s,VexVex + ks-ex,VexVs (1.1)

dVs

dt
= kex-s,VsVex − ks-ex,VsVs − ks-endVs (1.2)

dVend
dt

= ks-endVs − kend-cyt,Vend
Vend − kend-degrVend (1.3)

and

kex-s,Vs =
Ur

Ncells
kex-s,Vex

ks-ex,Vs =
Ur

Ncells
ks-ex,Vex .



896 23 Dynamics of Virus–Host Cell Interaction

2 vRNP Uncoating and Transport into the Nucleus
dScyt

dt
= kend-cyt,ScytVend − kcyt-nucScyt (2.1)

dSnuc

dt
= kcyt-nucScyt − kspl,Snuc Snuc (2.2)

and:

kend-cyt,Scyt = Nsegkend-cyt,Vend
. (2.3)

3 Transcription [vmRNA(+) Production]
dCi,nuc

dt
= kv-vm,iPPol,nuc − kvm,i,nuc-cytCi,nuc− kvm,i,nuc-degrCi,nuc (3.1)

dCi,cyt

dt
= kvm,i,nuc-cytCi,nuc− kvm,i,cyt-degrCi,cyt (3.2)

i ∈ [Pol, NP, M1, NS1, NS2, M2, HA, NA] ,

with the following assumption concerning the kinetic coefficients:

kv-vm,i = kv-vm,i,max
1

1 + aNPPNP,nuc
.

4 Viral Genome Replication
dCc

dt
= kv-cPPol,nuc − kc-degrCc (4.1)

dCv

dt
= kc-vPPol,nuc + kspl,Cv Snuc − kun,Cv Cv ∏

l
Pl,nuc− kv-degrCv (4.2)

i ∈ [Pol, NP, M1, NS2] ,

with the following assumptions concerning the kinetic coefficients:

kv-c = kv-c,max
PNP,nuc

bNP + PNP,nuc

kc-v = kc-v,max
PNP,nuc

bNP + PNP,nuc

kspl,Cv = Csegkspl,Snuc .

5 Capsid, Nonstructural and Matrix Protein Production
dPi,cyt

dt
= ki,synt

Cicyt

drib
− ki,cyt-nucPi,cyt− ki,cyt-degrPi,cyt (5.1)
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dPi,nuc

dt
= ki,cyt-nucPi,cyt + kspl,Pi,cyt

Snuc− kun,Pi,nucCv ∏
l

Pl,nuc− ki,nuc-degrPi,nuc

(5.2)

i ∈ [Pol, NP, M1, NS1, NS2] l ∈[Pol, NP, M1, NS2] ,

and:

kspl,Pi,nuc
= Pi,segksplSnuc

ki,synt = kRib (kRib rate of peptide chain elongation, Table A2).

6 Envelope Protein Production
dPj,ER

dt
= kj,synt

Cj,cyt

dRib
− kj,Er-budPj,ER− kj,ER-degrPj,ER (6.1)

dPj,bud

dt
= kj,ER-budPj,ER− kbud,Pj,bud

Sun,bud ∏
l

Pl,bud− kj,bud-degrPj,bud (6.2)

j, l ∈ [M2, HA, NA]

7 Packaging
dSun,nuc

dt
= kun,Sun,nuc Cv ∏

l
Pl,nuc− kun,nuc-budSun,nuc (7.1)

dSun,bud

dt
= kun,nuc-budSun,nuc − kbud,Sun,bud

Sun,bud ∏
s

Ps,bud (7.2)

l ∈ [Pol, NP, M1, NS2] s ∈ [M2, HA, NA] ,

and:

kun,Cv = Csegkun,Sun,nuc

kunPi,nuc = Pi,segkun,Sun,nuc .

8 Virus Budding and Release
dVbud

dt
= kbud,Vbud

Sun,bud ∏
l

Pl,bud− kbud-rel,Vbud
Vbud (8.1)

l ∈ [M2, HA, NA]

dVrel
dt

= kbud-rel,Vrel
Vbud , (8.2)

and:

kbud,Pj,bud
= Pj,virkbud,Vbud

kbud,Sun,bud
= Nsegkbud,Vbud

kbud-rel,Vbud
=

Ur

Ncells
kbud-rel,Vrel
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Initial Conditions and Kinetic Parameters

Initial conditions, kinetic parameters and assumptions are summarized in the
following two tables. ODEs were solved using MATLAB version 6.5 release
13 (Mathworks, Natick, MA, USA).

Table A1 Basic assumptions on host cell and virus composition used for simulation studies of
the structured mathematical model of the influenza A virus life cycle (Section 4.3)

Parameter Value Source
Host cell

number of receptors (receptors cell−1) 104–105 [62]
number of endosomes (endosomes cell−1) 200 [1]
number of ribosomes (ribosomes cell−1) 5 × 106 [1]
distance between ribosomes on mRNA (nucleotides) 80 [1]
number of nuclear pores (pores cell−1) 3000–4000 [15]
dry weight of a host cell (ng cell−1) 0.54 –[a]

number of free nucleotides (nucleotides cell−1) 1.3 × 1010 [1, 26]
number of nuclear precursor mRNAs (molecules cell−1) 2.2 × 105 [1, 26]
average number of nucleotides per mRNA (nucleotides) 6000 [1, 26]
number of free amino acids (amino acids cell−1) 3.1 × 1010 [1, 40]

Virus (influenza A, A/PR/8/34)
number of genome segments (segments virion−1) 8 [31]
full length of the genome (nucleotides virion−1) 13588 [31]
average length of one genome segment (nucleotides) 1699 [31]
total number of amino acids (amino acids virion−1) 2.4 × 106 [31]

[a] For MDCK cells (own data).

Table A2 Kinetic parameters used for simulation studies of the structured mathematical model
of the influenza A virus life cycle (Section 4.3)

Parameter Value Source
Rate coefficients from literature
Rate constant for endocytosis ks-end (s−1) 2.6 × 10−4 [45]
Rate of peptide chain elongation kRib (s−1) 5.0 [1]
Rate of RNA synthesis kPl (s−1) 30.0 [1]
Estimated rate coefficients
Parameter Value Parameter Value

kex-s,Vs (h−1) 8.4[a] kc-degr (h−1) 100.0
ks-ex,Vs (h−1) 4.444[a] kv-degr (h−1) 100.0
ks-end (h−1) 0.936 ki,cyt-nuc (h−1) 1.0
kend−cyt,Vend

(h−1) 14.0 ki,cyt-degr (h−1) 0.01
kend-degr (h−1) 6.0 ki,nuc-degr (h−1) 5.0
kcyt-nuc (h−1) 5.0 kj,ER-bud (h−1) 1.0
kspl,Snuc (h−1) 1.0 kj,Er-degr (h−1) 0.01
kvm,i,nuc-cyt (h−1) 1.0 kj,bud-degr (h−1) 5.0
kvm,i,nuc-degr (h−1) 0.1 kun,nuc-bud (h−1) 1.0
kvm,i,cyt-degr (h−1) 0.01 kbud-rel,Vbud

(h−1) 1.0

[45] Nunes-Correia et al., 1999, [1] Alberts et al., 2002
[a] For MDCK cells (own data).
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Part 7 Analysis of Expression Data

24
DNA Microarray Technology and Applications –
An Overview
John Quackenbush

1 Introduction to DNA Microarrays

The Human Genome Project promised to transform biology and medicine by
providing us with a complete human genome sequence and a catalogue of all
human genes. However, neither the 2001 announcement of completion of a
draft human genome sequence by the competing public and private efforts to
sequence the genome [50, 93] nor the 2004 publication of a “finished” human
genome sequence [1] have delivered on that promise. Rather, genomics has
transformed biology by providing technologies such as DNA microarrays,
proteomics and metabolomics that are allowing us to generate holistic data
on patters of gene, protein or metabolite expression. These approaches are
seeing increasing applications in the study of human disease. There have been
a number of promising studies in which microarray data, in particular, have
been useful for discovering new molecular classes of previously well-studied
diseases. The molecular fingerprints that emerge from such analyses can also
be used for classification of disease, with the expression profiles, rather than
the presence or levels of specific proteins, serving as biomarkers for diagnostic
and prognostic classification.

2 Microarrays and Clinical Applications

In 1995, DNA microarrays were first reported as a tool for probing transcrip-
tional levels on a genomic scale [54, 78] and the research community quickly
seized upon this approach as a means of identifying genes that might provide
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insight into a wide range of biological processes. Most of the early exper-
iments adopted as simple, yet powerful design – comparing two biological
classes in order to identify genes that were differentially expressed between
them. These experiments generally sought to gain insight into the underlying
biology and microarrays were used as a tool for gene discovery; many of the
early applications were to the analysis of gene expression in human cancers
[25, 46, 97].

It did not take long, however, for many to realize that the utility of
microarray-based approaches extended beyond mechanistic studies; arrays
could be used to find new subclasses in disease states [3, 66], to identify
new biomarkers that could be associated with disease [60] and even that the
expression patterns themselves could be used as biomarkers to distinguish
subclasses of disease [34]. This realization resulted in a proliferation of studies
that searched for patterns of expression that could be used to classify tumor
types [82], and to predict outcome [12,92] and response to chemotherapy [91].

Many of the earliest microarray publications on classification of cancer fo-
cused on cluster analysis of tumor samples and genes, including applications
of hierarchical clustering [2, 3, 13, 66, 67, 73, 82] and partitioning methods such
as self-organizing maps (SOMs) [34, 67]. These unsupervised data mining
approaches have proven useful for class discovery as they take an unbiased
approach to looking for patterns in the data to look for consistent subgroups
in the data. Alizadeh and coworkers [2] used hierarchical clustering of cDNA
microarray expression data from lymphoma samples to identify two previ-
ously unrecognized and transcriptionally distinct subclasses of diffuse large
B cell lymphomas (DLBCLs) that were eventually related to different stages
of B cell differentiation. One class expressed genes characteristic of germi-
nal B cells (germinal center B-like DLBCL class), while the other expressed
genes normally induced during in vitro activation of peripheral blood B cells
(activated B-like DLBCL class). Their analysis also showed that patients
within these subclasses had distinct clinical prognoses. Bhattacharjee and
coworkers [13] used a similar approach to identify lung adenocarcinoma
subclasses with different patient outcome. Hierarchical clustering of cDNA
microarray expression data was also used by Ross and coworkers [73] to
analyze the 60 cell lines form the National Cancer Institute’s anticancer drug
screening panel (the NCI 60 cell lines). Their analysis showed that cell line
expression could be used to group samples based on their tissue of origin
as well as to find genes that had similar patterns of expression across the
samples.

However, in a clinical setting, the goal is generally not to look for new
disease subtypes, but rather to use new techniques to provide better diag-
nostic and prognostic evidence to the clinician. In that light, the ability of
gene expression profiles to distinguish different disease subtypes suggests
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that these same profiles can be used to classify samples based on the patterns
of expression that are observed. Golub and coworkers [34] were the first to
extend the class discovery approach to classification. Starting with expres-
sion profiles on acute lymphoblastic leukemia (ALL) and acute myeloblastic
leukemia (AML) samples collected using Affymetrix GeneChipsTM. These
samples were analyzed using SOMs and the tumor groups discovered based
on expression patterns were compared to known classes. Their ability to
partition the data into distinct ALL/AML groups prompted them to use the
expression profiles as a means of classifying the samples. They proposed
a weighted gene voting scheme for classification that is a variant on linear
discriminant analysis methods. Since that time, there have been a large
number of other studies describing classification approaches. Ramaswamy
and colleagues [70] used support vector machines (SVMs) to demonstrate that
expression profiles from microarrays could be used to separate tumors from
14 different organ sites, and Bloom and coworkers [14] used artificial neural
networks (ANNs) to extend the approach to include 21 different tumor types
profiled on both cDNA and Affymetrix GeneChipsTM, and further demon-
strated that the same approach could be used to predict the primary source for
metastatic lesions. Pomeroy and coworkers [67] profiled embryonic tumors
of the central nervous system (CNS) on Affymetrix GeneChipsTM, and ap-
plied a range of unsupervised and supervised learning methods to investigate
whether gene expression data could be used to distinguish between new and
existing CNS tumor classes and for patient prognosis. Beer and coworkers [12]
used an approach based on the Cox regression model to identify marker genes
for predicting the survival of patients with lung adenocarcinoma.

Although mechanistic and discovery-based analyses of gene expression
using microarrays continue to have widespread use, it is becoming increas-
ingly clear that the use of array-based expression profiles for classification
and class discovery will continue to be major applications for microarrays,
as well as a broad range of other “omic” technologies, including proteomics,
metabolomics and others. Fundamentally, all of these technologies can be
used to ask a simple question: “Can we find a pattern that we can use to
distinguish biological samples based on some inherent property?”. To better
understand how and when this question can be answered, it is useful to
review some of the basic issues related to use of microarray data for the clas-
sification of human cancer and to point out some of the potential limitations
of this approach.
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3 Microarray Data Collection, Transformation and Representation

DNA microarray technology is relatively simple. Gene-specific probes, rep-
resenting thousands of individual genes, are arrayed on an inert substrate
(such as glass) and used to assay gene expression levels in selected biological
samples. RNA is extracted from tissues of interest, converted into an appro-
priate target nucleic acid mixture labeled with a detectable marker (typically
a fluorescent dye) and allowed to hybridize to the arrays. Individual RNA
species hybridize to complementary gene-specific probes and hybridization
is assayed by measuring fluorescence for each probe using a confocal laser
scanner. These hybridization intensities, in turn, are used as estimates of gene-
expression levels.

Microarray technology can be divided into two broad classes based on
the way in which gene expression data is generated and how samples are
compared. In a “two-color” microarray assay, two RNA samples, each la-
beled with a different dye, are simultaneously hybridized to a single array
(Figure 1A). The sample of interest (or “query” sample), e.g. tissue from a
cancerous colon tumor, is labeled with one dye and a control sample, e.g.
normal colon mucosa, is labeled with another dye, and the two samples
mixed in an approximate 1:1 ratio based on the quantity of labeled sample.
Such as assay compares the expression levels between paired samples and
reports expression levels as the logarithm of the ratio [the “log2(ratio)”] of
the query to the control sample for each gene represented on the array. For
single-color arrays, such as the widely-used Affymetrix GeneChipTM, each
sample is individually labeled and hybridized to a single array (Figure 1B).
The expression for each gene is then reported as a single fluorescence intensity
that represents an estimated expression level, less nonspecific background,
although these measures can be used to derive others such as the log2(ratio)
of expression levels in samples that one wishes to compare.

There are, of course, many variants of the various basic technologies and
many commercial vendors. Two-color assays generally use either cDNA or
long (50- to 70-mer) oligonucleotide probes while single-color assays typically
are based on short (25-mer) or long (50- to 70-mer) oligonucleotide probes.
Manufacturers of gene expression arrays include Affymetrix, Agilent, Illu-
mina, Combimatrix, Nimblegen and a host of others, as well as “homebrew”
arrays printed in individual laboratories. Labeling approaches use a variety
of approaches including reverse transcription of RNA to cDNA (often used in
two-color approaches), creation and fragmentation of antisense RNA (a pro-
tocol used on Affymetrix GeneChips), and various amplification approaches,
most notably variations on Eberwine’s T7 amplification. However, regardless
of the approach or technology, the fundamental data used in all subsequent
analyses are expression measures for each gene in each sample.
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Following collection, the data are usually normalized to facilitate compar-
ison between individual hybridization assays, and to compensate for differ-
ences in labeling, hybridization and detection efficiencies. There are several
approaches to data normalization; the most appropriate approach depends
on the type of array and assumptions regarding about biases in the data [40,
68, 76, 99, 100]. The data are then generally filtered using some set of objective
criteria (e.g. eliminating those genes with minimal variance across samples or
those with signals approaching background levels) or using some statistical
analyses to select genes whose expression levels are correlated with particular
groups of samples. These normalization and filtering transformations must be
carefully applied as they can have a profound effect on the results obtained.
Different statistical analysis methods applied to the very same data set can
often produce different (but usually overlapping) sets of “significant” genes.
Not surprisingly, the best way to deal with these “high-dimensional” data
sets, in which there are often more measurements (genes) than samples, is an
area of active research and debate. Chapter 25 gives a detailed account of
current methods for preprocessing expression data. It should be noted that, to
date, there is no single “right” way to analyze microarray data as even a single
data set may reveal different features that are biologically relevant if a new
analysis method is applied to the data. Extracting meaning from expression
data really requires active participation of an expert in the biological system
who is willing to explore the features contained within the data.

Once the normalized and filtered expression data are assembled, they are
typically represented in an “expression matrix” in which each row represents
a particular gene and each column represents a specific biological sample
(Figure 1C). Each row is a “gene expression vector” where the individual
entries are the expression levels of a specific gene across all of the samples
and each column is a “sample expression vector” that records the expression
of all genes in that sample. To ease interpretation of the results of multiple
hybridizations, these data are often represented as a matrix in which indi-
vidual elements are colored to indicate the expression level of each gene
in each sample (Figure 1C), creating a visual representation of gene expres-
sion patterns across the collection of samples. The most common approach
colors genes based on the log2(ratio) for each sample measured relative to
some control, with log2(ratio) values close to zero colored black, those with
log2(ratio) values greater than zero colored red (indicating “upregulated”
genes) and those with negative values colored green (for “downregulated”
genes), although other color schemes are kinder to those to those who are
“red–green” colorblind (Figure 1C). The relative intensity of each element
indicates the relative expression of the gene that it represents, with brighter
elements indicating a higher level of expression. For any particular group
of samples, the expression matrix generally appears without any apparent
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pattern or order (Figure 1D). Clustering programs generally reorder the rows,
or columns, or both, such that patterns of expression become visually appar-
ent (Figure 1E and F). While we will focus on using DNA microarray data, it
should be noted that any data which can be placed into a “genes by samples”
expression matrix format (e.g. “proteins by samples”) can be analyzed using
exactly the same techniques. This applies also to proteomics data discussed in
Chapter 28, for instance.

4 Identifying Patterns of Expression

In doing microarray analysis, we are generally looking for genes that exhibit
patterns of expression correlating with the biological states of the system
being analyzed or that have “similar” patterns of expression across multiple
samples; alternatively, we may look for samples that exhibit “similar” profiles.
To facilitate this process, we need to define a measure of similarity between
samples by defining distance measures. Although this might seem esoteric,
there are a variety of distance measures that can be used and each can reveal
different features in the data. Two of the most commonly used are Euclidean
distance and Pearson correlation coefficient distances. Euclidean distance is
important if the “magnitude” of expression levels is important as genes are
scored as “close” if they are, for example, upregulated by same amount. On

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1 An overview of DNA microarray
analysis. (A) Single-color analysis, such
as that using the Affymetrix GeneChipTM,
hybridizes labeled RNA from each biological
sample to a single array in which a series of
“perfect match” (PM) gene-specific probes
are arrayed. Gene expression levels are
estimated by measuring hybridization
intensities are for each probe and background
is measured using a corresponding
set of “mismatch” (MM) probes. Gene
expression levels are reported for each
patient sample as a “sample expression
vector” summarizing the difference between
signal and background for each gene. (B)
In two-color analysis approaches, RNA
samples from patient and control samples
are individually labeled with distinguishable
fluorescent dyes and cohybridized to single
DNA microarray consisting of individual
gene-specific probes. Relative gene
expression levels in the two samples are
estimated by measuring the fluorescence
intensities for each arrayed probe; a

sample expression vector summarizing the
expression level of each gene in the patient
sample (relative to the control) is reported.
(C) The collection of sample expression
vectors is typically compiled into a single
“expression matrix.” Each column in the
expression matrix represents an individual
sample and its measured expression levels
for each gene (the sample expression
vector); each row represents a gene and
its expression levels across all samples (a
“gene expression vector”). The expression
matrix is often visualized by presenting a
colored matrix (typically red/green although
other combinations such as blue/yellow
are now common). Here, the color and its
intensity represent the relative direction and
magnitude of a gene expression difference.
(D) An unordered data set, subjected to (E)
average linkage hierarchical clustering or
(F) k-means clustering reveals underlying
patterns that can help identify classes in the
data set; here the resulting two clusters are
shown.
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the other hand, Pearson correlation coefficients are useful if the “shape” of
the expression profile is important so genes are close if their expression levels
are increasing in some samples and decreasing in others, regardless of their
absolute levels. Generally, in applications involving classification, we are
interested in the pattern of expression across samples, so Pearson correlation
coefficient distances are most useful, but not always.

Having recorded the appropriate data, normalized and filtered it, and cho-
sen a means of measuring similarity, there are a variety of approaches we can
take to looking for features and the methods we use are generally grouped
into two broad classes: supervised and unsupervised methods. Supervised
methods use information about the underlying structure of the data to search
for patterns, e.g. using clinical classification to search for genes that correlate
with class. These approaches are very useful when we know a great deal about
the samples, but are not useful if we want to find new disease subclasses.
Unsupervised methods are very useful for data exploration and can reveal
unexpected patterns in the data, although the danger is that these patterns
may be an artifact of the data or the algorithm itself.

5 Class Discovery

A useful first approach in the analysis of microarray data is to use an unsu-
pervised method to explore expression patterns of that exist in the data. The
question we are asking is: “Are there unexpected but biologically interesting
patterns that exist in the data?”. Unsupervised methods do not use the sample
classification as input – they do not take into account, for example, whether
the samples come from ALL or AML patients. They simply group samples
together based on some measure of similarity between then. Two of the most
widely used unsupervised approaches are hierarchical clustering and k-means
clustering.

5.1 Hierarchical Clustering

Hierarchical clustering has become one of the most widely used techniques
for the analysis of gene expression data; it has the advantage that it is simple
and the result can be easily visualized [30, 59, 98]. Initially, we start with
N clusters, where N is the number of genes (or samples) in the target data
set. Hierarchical clustering (Figure 2) is an agglomerative approach in which
single expression profiles are joined to form nodes, which are further joined
until the process has been carried to completion, forming a single hierarchical
tree. The algorithm proceeds in a straightforward manner for the clustering
of genes (or similarly for samples):
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(i) Calculate the pairwise distances for all of the genes to be clustered (using
an appropriately selected distance measure).

(ii) Search all of the distances for the two most similar genes or clusters;
initially each cluster consists of a single gene. This is the true first stage
in the “clustering” process. If several pairs share the same similarity, a
predetermined rule is used to decide between alternatives.

(iii) The two selected clusters are merged to produce a new cluster that now
contains two or more objects.

(iv) The distances are calculated between this new cluster and all other clus-
ters. There is no need to calculate all distances since only those involving
the new cluster have changed.

(v) Steps (ii)–(iv) are repeated N – 1 times until all objects are in one cluster.

There are a number of variants of hierarchical clustering that reflect different
approaches to calculating distances between the newly defined clusters and
the other genes or clusters. Single linkage clustering determines the distance of
two clusters to be the shortest distance between any pair of elements, one in
each cluster, complete linkage clustering takes the largest distance between any
such pair and average linkage clustering uses the average distance between all
such pairs.

Typically, we represent the relationship between samples using a dendro-
gram where branches in the tree are built based on the connections determined
between clusters as the algorithm progresses. In order to visualize the rela-
tionships between samples, we generally use the dendrogram to rearrange the
columns (or rows as appropriate) in the expression matrix to better visualize
patterns in the data set.

5.2 k-means Clustering

If there is prior knowledge regarding the number of clusters that should be
represented in the data, k-means clustering (Figure 3) is a good alternative
to hierarchical methods [5, 83]. In k-means, objects are partitioned into a
fixed number (k) of clusters such that the clusters are internally similar but
externally dissimilar; no dendrograms are produced (but one could use hier-
archical techniques on each of the data partitions after they are constructed).
The process involved in k-means clustering is conceptually simple, but can be
computationally intensive:

(i) All initial objects (genes or samples) are randomly assigned to one of k
clusters (where k is specified by the user).
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(ii) An average expression vector is then calculated for each cluster and this
is used to compute the distances between clusters.

(iii) Using an iterative method, objects are moved between clusters and intra-
and inter-cluster distances are measured with each move. Objects are
allowed to remain in the new cluster only if they are closer to it than to
their previous cluster.

(iv) Following each move, the expression vectors for each cluster are recalcu-
lated.

(v) The shuffling proceeds until moving any more objects would make the
clusters more variable, increasing intra-cluster distances and decreasing
inter-cluster dissimilarity.

Some implementations of k-means clustering allow not only the number of
clusters to be specified, but also seed cases for each cluster. This has the
potential to allow one to use prior knowledge of the system to help define
the cluster output, such as a typical profile for a few key genes known to
distinguish classes of patients. Of course, the “means” in k-means refers to
the use of a mean expression vector for each emerging cluster. As one might
imagine, there are variations also use other measures or each cluster, such as
k-medians clustering.

Although k-means uses prior knowledge about the number of clusters, it is
unsupervised in the sense that no prior knowledge about cluster membership
is used in making the assignments. One can also use measures of cluster
compactness to estimate the number of clusters in the data before beginning
the process [102]. One important thing to remember about k-means clustering
is that it is not deterministic – running the algorithm twice is likely to produce
different clusters or associations. There are approaches to dealing with this
ambiguity, e.g. running k-means multiple times at fixed k and using the
consensus clusters.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Hierarchical clustering proceeds
by (A) first collecting all of the objects (genes
or samples) to be clustered and calculating
the pairwise distance between them. The two
closest objects are then grouped, reducing
the number of objects by one. The distance
between this new “cluster” and the remaining
objects is calculated. (B–F) The process
repeats with the closest objects being fused
into a new cluster until all objects are placed
in a single cluster. (G) A dendrogram is

then drawn representing the relationships
between samples. It is important to note
that dendrograms are not unique – there
are many ways to represent the same
relationships. The branch structure defines
the relatedness of various samples. (I) An
unordered data set, subjected to average
linkage hierarchical clustering (J) reveals
underlying patterns that can help identify
classes in the data set.
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5.3 Other Unsupervised Approaches

There are many approaches that have been applied to unsupervised analysis,
including SOMs [85, 88, 95], self-organizing trees (SOTA) [36], relevance net-
works [18], force-directed layouts [47], principal component analysis [71] and
others. Fundamentally, each of these uses some feature of the data and a rule
for determining relationships to group genes (or samples) that share similar
patterns of expression. In the context of disease analysis, all of these can be
extremely useful for identifying new subclasses in the data – provided that
the classes are reproducible and that they can be related to other clinical data.
All of these algorithms will divide data into clusters, but whether the clusters
are meaningful requires expert input and analysis. Critical assessment of the
results is essential. There are anecdotal reports of clusters being found that
separate data based on the hospital in which the sample was collected, the
technician who ran the microarray assay or the day of the week on which the
array was run. Clearly arrays can be very sensitive – one just has to filter the
biological signal from the noise.

Chapter 27 addresses issue of data clustering in the context of elucidating
gene function from expression data. Chapter 26 gives a detailed account of
more advanced unsupervised methods for classifying expression data.

6 Classification

The goal in classification is to use supervised approaches to first find genes
that separate samples into different clinical classes in the data, and then to
implement an algorithm that can take the data from a new sample and, based
on the patterns observed, assign that new sample to one of the previously
identified classes.

One starts by assigning samples to particular biological classes based on
some objective criteria. For example, in looking at leukemia samples, I may
know for some initial set of data which patients have ALL and which have
AML. The first question to be asked is: “Which genes best distinguish the
various classes in the data?”. The goal at this stage is to find those genes that

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3 k-means clustering (A) begins
with a collection of objects that (B) are
randomly assigned to some number k of
clusters, where k is specified by the user
based on some intuition regarding the
number of groups represented in the data.
For each group, an average expression
vector, represented by the hexagons, is
calculated. (C) These average vectors are

then used as “seeds” to form k new clusters,
with objects reassigned to the new cluster
whose average they are closest to. (D)
Averages are computed for the new clusters,
and the process repeats itself (E and F) until
it converges with stable clusters. (G) An initial
data set representing tumors from two organ
sites (H) can be split by tissue type using
k-means clustering with k = 2.
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are most informative for distinguishing the samples based on class. Fortu-
nately, there are a wide variety of statistical tools that can be brought to bear
on this question, including t-tests (for two classes) and analysis of variance
(ANOVA; for three or more classes) that assign p-values to genes based on
their ability to distinguish between groups. One concern with these statistical
approaches is the problem of multiple testing. Simply put, in an array with
10 000 genes, applying a 95% confidence limit on gene selection (p ≤ 0.05)
means that, by chance, one would expect to find 500 genes as significant.
Clearly, we need to be more stringent in our gene selection. However, the
important thing to remember is that what these methods provide are a means
for prioritizing genes for further analysis. It should be noted that there are
other widely used approaches, such as significance analysis of microarrays
(SAM) [89], which uses an adjusted t-statistic (or F-statistic), modified to
correct for overestimates arising from small values in the denominator, along
with permutation testing to estimate the false discovery rate (FDR) in any
selected significant gene set. Chapter 25 goes into detail about the statistics
of selecting significantly differentially expressed genes.

The second key element is the selection of an appropriate classification
algorithm. There are a wide range of algorithms that have been used for
classification, including weighted voting [34], ANNs [14, 31], discriminant
analysis [4,52,62,64], classification and regression trees (CART) [15], SVMs [17,
70], and k-nearest neighbors (kNN) [87], as well as a host of others. Essentially
each of these uses an original set of samples, or training set, to develop a rule
that takes a new test sample from a test set and uses its expression vector
sample, trimmed to a previously identified set of classification genes, to place
this test sample into the context of the original sample set, thus identifying its
class.

6.1 kNN Classification

In many ways, kNN is the simplest approach to doing classification (Figure 4).
First, we must assemble a collection of expression vectors for our samples and
assign the samples to various experimental classes. We will refer to these
samples, about which we have prior knowledge, as our training set. It is
also useful to have a second collection of samples on which we will test the
algorithm, known as the test set. Using the training set of samples, we then
select genes that separate the various classes using an appropriate statistical
test to identify good classification candidate genes, thus reducing the size
of the sample classification vectors. This represents a first-pass collection of
classification genes. The next step is to identify and eliminate samples that
appear to be outliers. These may be important because they possibly represent
new subclasses in our original sample classification set; alternatively, they
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Figure 4 kNN classification (A) starts with a well-defined set of
training samples that fall into distinct classes. (B) A sample to be
classified is added from a test set. (C) The parameter k specifies the
number of neighbors to be used in classification; for k = 5, the five
nearest neighbors (based on some distance measure) are found. (D)
Among the k nearest neighbors, majority rule determines the class of
the test sample.

may just represent poor-quality data. The outlying samples are identified by
applying a correlation filter to the reduced sample expression vectors:

(i) The Pearson correlation coefficient r is computed between a given vector
and each member of the training set; the maximum r identified is called
the rmax for that vector.

(ii) The vector is randomized a user-specified number of times, and each
time, an rmax is calculated using the randomized vector (call it r∗max),
just as in step (i).

(iii) The fraction of times r∗max exceeds rmax over all randomizations is used
to calculate a p-value for that vector.

(iv) If the p-value for a vector is less than a user-specified threshold (meaning
it is well correlated with other samples), that vector is retained for further
analysis; otherwise, it is discarded.

(v) Steps (i)–(iv) are repeated for every sample vector in the set.

At this stage, we have a collection of sample vectors, our training set, that
represent our prior knowledge of the biological classes represented in the data.



914 24 DNA Microarray Technology and Applications – An Overview

We now turn our attention to the assigning new samples in our test set
to classes based on their expression vectors and attempt to classify these
test samples. For each new sample in the test set, we reduce its expression
vector to include only those genes previously identified as being significant for
classification. We then compute the distance between this reduced expression
vector and the reduced expression vectors for each and every sample in
the training set. As the name kNN implies, we choose some number k of
nearest neighbors from the training set – those k vectors that have the smallest
distances from our test sample. We then simply assign the new test vector to
the class most highly represented in its k nearest neighbors. If there is a tie,
the new sample is unclassified.

Chapter 26 goes into more detail about how to classify samples of expres-
sion data.

7 Validation

Ideally, to validate a classification method, it is most useful to have a set of
samples in the test set that is independent of those used in the training set. In
practice, microarray studies often have a limited number of samples and these
are needed for building and training the algorithm. An alternative to using an
independent test set is to do leave-k-out cross-validation (LKOCV) [81]. As one
might guess, this approach leaves out some subset of the initial collection of
N samples, develops a classifier using the (N − k) samples that remain and
applies it to k samples in the test set. This process is then repeated choosing
a new set of k vectors to be left out and classified, and the process repeats
itself. The simplest approach is to simply do leave-one-out cross-validation
(LOOCV).

While this approach can be extremely useful when we lack an independent
test set, it is often applied inappropriately as a partial rather than a full cross-
validation. The distinction is the stage in the process where one “leaves k
out”. Many published studies have used their entire data set to select a set
of classification genes, and then divide the samples into k and (N − k) sample
test and training sets. In fact, this has the potential to bias the results because
the test and training sets are not independent as all of the samples were used
to select the classification gene set. In particular, the presence of all of the
samples in the initial gene selection process may favorably bias the ultimate
success of any classifier that is constructed.

In full LKOCV, the data is divided into k and (N − k) sample test and
training sets, and the (N − k) training set is used to select a classification
gene set and then to apply it to creating a classification algorithm and using
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it to classifying the k test samples. One can then estimate the accuracy of the
classification system by simply averaging over the complete set of classifiers.

8 Sample Selection and Classification

The choice of samples for training is an important but often neglected element
of developing a classifier. One of the most important issues in sample selection
is balancing representation of sample classes, as well as making sure that the
analysis is not confounded by other factors. Nearly all algorithms work by a
majority consensus rule and if we have two classes, A and B, with eight in class
A and two in class B, the simplest classifier would simply assign everything
to class A with 80% accuracy – a result that clearly would not be widely
applicable. We also need to make sure that the samples are selected such
that there are no confounding factors. For example, if we wanted to classify
patients based on survival and all of the surviving patients received adjuvant
chemotherapy, while the patients in the nonsurviving class did not, it is not
likely that the patterns we find and use for classification will be applicable
to a more heterogeneous population. It is also clear that selecting a sample
of sufficient size to resolve classes is an important consideration [22, 61, 80].
One important aspect of this problem was recently illustrated in a publication
by Radich and colleagues [69], which analyzed gene expression levels in pe-
ripheral blood and demonstrated significant but reproducible inter-individual
variation in expression for a 1130 genes (selected from an array assaying 24 000
transcripts). What this suggests is that a small sample size may lead to biases
in the gene selection set due to random effects in assigning patients to classes.
These differences may be biological in nature or they may be due to systematic
effects such as where the experimental population lives or the protocol used
for sample collection. A truly independent test set would allow the results
from a study to be validated in a much more meaningful and robust manner.
Chapter 26 gives a more detailed statistical account of supervised methods for
classifying expression data.

9 Limitations and Success of Classification

Although there have been attempts to identify “the best” classification ap-
proach, the evidence suggests that there is no single method that will work in
all cases and, similarly, that many methods may work in any particular case.
What is important is to understand the limitations of the approach. Most of
the studies that have been conducted to date have involved relatively small
numbers of patients and it is not at all clear how these results will generalize
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to larger clinical populations, with samples collected across a number of sites,
with variations in sample collection and handling that occur outside of a well
controlled laboratory-based study.

One potential difficulty in using expression profiles for classification is
that very often the signatures that are identified are not easily interpreted
causally or mechanistically with respect to the underlying disease. Ultimately,
finding genes that can be functionally linked to outcome may provide insight
into possible therapeutic interventions. However, the failure to provide a
biological interpretation does not diminish the potential clinical utility of well-
established biomarkers. It should be noted that there are many examples of
biomarkers of unknown function, such as prostate-specific antigen (PSA) or
carcinoembryonic antigen (CEA), that are extremely useful as diagnostic or
prognostic markers for various diseases. It may be more useful to consider
gene lists emerging from classification experiments as nothing more that sets
of biomarkers with clinical applications; if they have a biological interpreta-
tion, this is simply a bonus.

10 Data Reporting and Comparisons

As noted previously, many microarray studies are underpowered in the sense
that they do not include enough samples to draw firm conclusions without
the collection of additional samples that can be used for validation. While
collecting new samples, particularly patient samples that require significant
follow-up, can be a challenge, the increasing number of published microarray
studies provides an opportunity for the analysis of additional, independently
derived data sets. To facilitate comparisons between studies, the Microarray
Gene Expression Data (MGED) society developed a set of standards for data
reporting known as MIAME (the Minimal Information About a Microarray
Experiment) [7–10, 16].

The MIAME standards attempt to capture all of the information necessary
to fully describe a particular microarray experiment. The driving principle in
developing MIAME was an attempt to answer the question: “What would
an independent scientist need to know to analyze a particular published
experiment?”. In discussing this problem, the MGED group came to the
realization that answering this question required nearly complete descriptions
of all aspects of the experiment, including the composition and construction
of the microarray platform itself (and specifically the sequence of the indi-
vidual probes used on the arrays), the protocols used for RNA labeling and
hybridization, the design of the hybridization assays performed (detailing, in
two-color assays, which samples are compared on each array), the methods
used for data extraction and analysis, and, most importantly, the design and
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implementation of the method used to assemble the samples including a
detailed description of those samples.

Although there was some initial resistance to MIAME (as it required, what
some termed, maximal rather than minimal information) the research commu-
nity came to acknowledge that the requested was essential to effective data
interpretation. At a very high level, it is the samples and their annotation
that drive the analysis (e.g. what genes separate tumor and normal tissue).
However, the genes selected in a study depend on understanding what genes
are represented on the array and probe sequence allows the results to evolve
as our understanding of the genome does, as well as providing a basis for
comparison between studies. Microarrays are sensitive enough that we now
know that minor variations in protocols, such as between hospitals or in
creating different lots of arrays, can often be detected in the assays, and
so even that level of detail is useful. Further, all of the results depend on
the methods used for data analysis and different approaches can produce
different results.

The major DNA sequence databases have developed gene expression data
repositories that require MIAME-compliant data, and most journals now re-
quire that both raw and transformed data be submitted to one of these repos-
itories; efforts are ongoing, both in the public and private sectors, to de-
velop software that captures and presents data consistent with the MIAME
standards. There is tremendous value in making gene expression data sets
publicly available. In addition to serving as a source of independent data
that can be used as a means of validating results, larger and more diverse
sample populations, including cross-species comparisons, can provide more
robust data sets for “meta-analysis” designed to find universal patterns of
gene expression that can be associated with a given biological system [57, 84].

One must also exercise caution in comparing data sets between laboratories.
Although there have been many successful applications of microarray anal-
ysis, often with high rates of validation using an alternate technology such
as Northern analysis or quantitative reverse transcription polymerase chain
reaction (qRT-PCR), a number of published studies have called into question
the validity of microarray assays, in part because of observed disparities
between results obtained by different groups analyzing similar samples [48,
55, 56, 65, 72, 79, 90, 101]. However, in many instances, it seems that the
failure to find concordance between microarray platforms designed to assay
biologically relevant patterns of expression is a failure not of the platform
or the biological system, but rather a reflection of metrics used to evaluate
concordance. Other meta-analyses focus on overlapping lists of significant
genes, neglecting the fact that in many instances these are derived from
not only different platforms, but also vastly different approaches to data
analysis [42, 55, 86] – an effect can be seen even in looking at a single data
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set generated on a single platform. When this has been compensated for, the
results generally show good concordance between different laboratories and
the various array types [11, 19, 38, 44, 94, 103].

This problem of between-platform and -laboratory comparison was system-
atically dealt with in a series of papers that appeared in the May 2005 issue of
Nature Methods [41, 51, 96]. Larkin and coworkers [51] analyzed gene expres-
sion in a mouse model of hypertension and compared results obtained using
spotted cDNA arrays and Affymetrix GeneChipsTM. What they found was
that for the genes that could be compared, 88% showed expression patterns
that were driven by the underlying biology rather than the platform and that
these genes also correlated well with real-time qRT-PCR). Surprisingly, the
12% of genes that showed platform-specific effects also correlated poorly with
qRT-PCR. When comparing these platform discrepant genes to the platform
concordant genes, it was found that the discrepant genes were much more
likely to map to poorly annotated regions of the genome and consequently
more likely to represent different splice forms. Irizarry and colleagues [41]
compared gene expression using pairs of defined RNA samples and looked
at a variety of platforms with data generated by a number of laboratories
using a variety of microarray platforms. What Irizarry showed is that one can
estimate the “lab effect,” which encompasses differences in sites, platforms
and protocols, and in doing so arrive at estimates of gene expression that
can be compared between laboratories. Finally, the Toxicogenomics Research
Consortium [96] reported that a careful standardization of laboratory and data
analysis protocols resulted in a dramatic increase in concordance between the
results obtained by different laboratories. The general conclusion, arrived
at by these three groups independently, is that if experiments are done and
analyzed carefully and systematically, the results are quite reproducible and
provide insight to the underlying biology driving the systems being analyzed.

There are a number of other efforts to improve the overall utility of microar-
ray data. MGED continues to develop standards for data reporting in stan-
dardized formats, particularly through the creation of the MGED ontology to
describe experiments in a consistent fashion and an MGED working group is
also seeking to develop objective quality standards for DNA microarrays. At
present, this is seen as one of the greatest challenges in extending the utility
of microarray analyses. In many ways, the development of objective quality
scores for DNA sequence changed the way in which sequence data were used
and the general consensus is that a similar transformation is necessary in the
microarray field.

The challenge here, just as in data analysis, is that functional genomics
data are much more complex than genome sequence data. One can define
quality metrics on the level of the individual array probes, at the level of an
entire array or in the context of a particular study comprised of hundreds of
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arrays. The real questions come down to understanding whether a particular
assay is useful for the identification of genes that can be correlated with
particular phenotypes and how high a level of confidence one can place in the
results. There are various approaches that have been proposed ranging from
intrinsic measures starting with signal-to-noise for each probe and analysis of
replicates to the use of extrinsic standards, such as exogenous RNAs “spiked”
into each assay. Likely, a combination of these approaches will emerge and
prove to be useful.

Following the success of MIAME, a number of groups are attempting to
extend MIAME to better capture information relevant to their particular disci-
plines (http://www.mged.org/Workgroups/rsbi/rsbi.html), including a MI-
AME/Tox for toxicogenomics, MIAME/Env for environmental exposures [75]
and MIAME/Nut for nutrigenomics [33]. Work is also ongoing to develop
standards for proteomics – the Minimal Information About a Proteomics Ex-
periment (MIAPE [63]) – and for metabolomic/metabolonomic profiling – the
Standard Metabolic Reporting Structure ( [53]; http://www.smrsgroup.org).
Finally, the External RNA Control Consortium (http://www.cstl.nist.gov/-
biotech/workshops/ERCC2004/) [24] is attempting to create a set of well-
defined RNA samples that can be used in as a control and calibration standard
for a wide range of gene expression technologies.

11 Meta-analysis

Regardless of the initial goal of any microarray analysis, the most satisfying
analysis yields insight into the underlying biological processes and this tends
to be the most significant challenge that one must address in any study. The
results of most analyses are a long list of genes that somehow need to be
placed into a broader context. Further, additional data sources to the analysis
can help provide constraints to mitigate the potential problems of multiple
testing by providing independent pieces of evidence that the genes selected
from a microarray study really do contribute to the underlying biology.

Fortunately, there is a long history of biological investigation and many
tools and techniques that can be used effectively to further classify the data
and aid in its interpretation. Some approaches build on relationships found by
linking genes to PubMed abstracts or the associated Medical Subject Heading
(MeSH) terms [26,28,32,43,58,104]. Others use constraints from the biological
system under analysis such as using genetic linkage or quantitative trait locus
(QTL) maps to narrow down the set of significant genes to those mapping
to regions of the genome associated with appropriate trait [23, 27, 49, 77],
although this can miss genes that contain causative mutations but which are
not differentially regulated [23]. In solid tumor studies, one can analyze
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correlations between expression patterns and genome deletions or amplifica-
tions as determined by comparative genomic hybridization on arrays (array
CGH) [21, 35]. In developmental imprinting studies, gene expression may be
compared to patterns of methylation [20, 29], etc.

Another approach is to use the properties of the array itself to extract
additional information. Ideally, each probe on the array should have been
designed to query a specific transcript and each array element should carry
annotation describing the gene and its known or putative function. There are
many sources that can be drawn upon to provide classification that can be
used for further analysis.

The Gene Ontology (GO) project (http://www.geneontology.org) attempts
to classify gene products, assigning proteins to groups specifying their Molec-
ular Function, the Biological Process to which they contribute, and their Cellu-
lar Component [6]. The GO terms in each class form a hierarchy of increasing
specificity [formally, a directed acyclic graph (DAG)] so that the broadest
classifications provide a general picture of the functional class to which a gene
belongs (e.g. a kinase), while more precise terms will specify precisely what
a particular gene does (such as specifying the substrate on which a kinase
acts). As not all genes have a complete functional classification, increasing
specificity reduces the sensitivity for placing genes into a particular functional
class. As the functions of many genes have not been fully explored, there are
some advantages to using the less-specific classes, which are often assigned
based on sequence homology searches, for some analyses. Similarly, using
Enzyme Commission (EC) numbers, genes can be mapped to metabolic and
signaling pathway databases such as KEGG (Kyoto Encyclopedia of Genes
and Genomes, http://www.genome.ad.jp/kegg) [45]. Mapping sequences to
the genome sequence available for an increasing number of species can put the
data into the context of genetic mapping results (e.g. QTL maps), chromoso-
mal amplification and deletion data (important for the analysis of many forms
of cancer), and allow analysis of epigenetic effects (such as promoter analysis
from computational searches or chromatin immunoprecipitation analysis of
transcription factor binding). Even linking array elements to the associated
PubMed abstracts can provide insight given some final significant gene list.

Another very attractive approach is to use the properties of the data and
the construction of the array to look for significant functional associations.
You will recall that one of the key elements in establishing an array platform
is the annotation of the arrayed probe elements. Imagine, for example, that
20% of the genes on the array are annotated as belonging to GO categories
representing energy metabolism. If this is the case, then if we were to select,
at random, a collection of “significant” genes would most likely have approx-
imately 20% of its elements as belonging to the same energy metabolism class.
In fact, we might not be very surprised if 30% of the genes in our significant
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set were energy metabolism genes; however, if the fraction were 80%, it might
suggest that our experiment affected energy metabolism with a much higher
frequency than one might expect by chance. Such insight may indeed provide
clues as to the mechanisms at work in the biological system under study.

One widely used approach to leverage these classification schemes starts
with the genes in a selected “significant” set that was selected based on the
biology of phenotype under study. In looking at the classification assigned to
these genes, as well as the classification assigned to the collection of genes on
the array, one simply asks whether any particular class is overrepresented in
the significant set and the Fisher exact test does precisely that. While doing
this for any particular class is relatively straightforward, applying this method
to a large collection assigned classes such as KEGG pathways or GO terms
can be a huge challenge; for GO, what we really want to do is to consider all
possible terms in the GO hierarchy. Fortunately, there are some software tools,
including MAPPFinder [28], GOMiner [104] and EASE [37] (also implemented
in MeV [74]) that calculate p-values for GO, KEGG, GenMAPP, Pfam and
SMART protein domain assignments, promoter elements and a range of other
classification systems.

The advantage of this approach is that it can provide a high-level view
of functional classes or pathways that might be significantly affected in an
experiment. However, we have to remember that these are functional classes,
not functions, and deciphering these requires significant additional effort. It
should also be noted that the only genes on each array that can be analyzed
using this approach are those for which we have functional assignments.
In any given experiment, one often finds a number of unknown expressed
sequence tags (ESTs) and predicted genes that do not have defined functions
and these drop out of any category-based meta-analysis. One approach to
“rescue” these is to look for functional classes that pass a significance test
and then to search the data for other genes that have similar patterns of
expression across the sample. This provides a testable hypothesis that the
genes of unknown function belong that that particular functional class.

If large, well-curated databases exist, such analysis can be carried out in
interesting ways. For example Stuart and colleagues [84] started with gene
expression data representing more than 3000 assays collected from a range of
experiments in human, Drosophila, Caenorhabditis elegans and yeast, and stored
in a common format in the Stanford Microarray Database (http://genome-
www5.stanford.edu). By first identifying likely orthologs across all four
species and then searching for orthologs that were highly correlated across
the evolutionary history represented in the collection, they were able to test
the hypothesis that genes fulfilling core biological functions should have
conserved patterns of expression. Among their findings were a set of genes
not previously associated with cell proliferation/cell cycle that the exhibit
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significant association with known genes mapped to these fundamental
pathways. In order to test the hypothesis that the unknown genes were,
in fact, involved in the cell cycle, Stuart and colleagues first looked at gene
expression in a previously published human study comparing pancreatic
tumors and normal tissue [39], and discovered that these genes were highly
up-regulated in the rapidly dividing cancer cells. To further lend support to
the association of these genes with cell cycle and proliferation functions, a
RNA interference experiment was performed in C. elegans using one of these
genes (ZK652.1) and the resulting loss of function phenotype included cells
in the germline containing excess nuclei, suggesting the role of the gene is to
suppress germline proliferation.

While significant process has been made in this area, our approaches to
meta-analysis remain primitive. A great deal of work remains to be done
in this area and as well-annotated, high-quality data sets are assembled and
stored in databases such as GEO and ArrayExpress, our hope is that these will
facilitate the creation of new, flexible software tools that can more effectively
be used to discover function.

Part VIII of the book (Chapters 29–35) discusses in detail bioinformatics
approaches towards elucidating gene and protein function, starting with ap-
proaches that reside upon a certain kind data, e.g. sequence, structure, free
text, etc., and ending in a discussion of methods for integrating different kinds
of data.

12 The Path Forward

For the time being, it appears that the greatest impact of arrays will remain
their use in classification and, although these are still in there infancy, they are
starting to see broader applications. One such example is The Netherlands
Breast Cancer Study [91], which sought to distinguish between patients with
the same stage of disease, but different response to treatment and overall
outcome. The study was motivated by the observation that the best clinical
predictors for metastasis, including lymph node status and histological grade,
did not provide adequate prediction of clinical outcome. As a result many
patients receive chemotherapy or hormonal therapy regardless of whether
they need this additional treatment. The goal of their analysis was to identify
signatures that would allow for individually tailored therapeutic strategies.
By profiling tumors from 117 young patients and looking for correlations
with clinical outcome, they were able to identify a “poor prognosis” signa-
ture comprised of 70 genes that was predictive of a short interval to distant
metastasis in lymph node negative patients. Their analysis demonstrated that
microarray-based signatures could outperform any clinically based predic-
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tions of outcome in identifying those patients who would benefit most from
adjuvant therapy. The success of this initial study motivated a more extensive
independent follow-up study involving 295 patients [92] that showed that the
70 gene classification profile was a more powerful predictor of the outcome of
disease in young patients with breast cancer than standard systems based on
clinical and histological criteria. The success of these two studies has led to a
nationwide clinical trial in The Netherlands in which gene expression profiles
for these 70 classifier genes are being collected on all breast cancer patients and
used as an adjunct to classical clinical staging. Although we are still eagerly
awaiting the outcome of this study, it is clear that the use of expression profiles
as biomarkers to predict disease prognosis and outcome is coming of age.
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Low-level Analysis of Microarray Experiments
Wolfgang Huber, Anja von Heydebreck and Martin Vingron

1 Introduction

This chapter gives an overview over the methods used in the low-level anal-
ysis of gene expression data generated using DNA microarrays. This type
of experiment allows to determine relative levels of nucleic acid abundance
in a set of tissues or cell populations for thousands of transcripts or loci si-
multaneously. Careful statistical design and analysis are essential to improve
the efficiency and reliability of microarray experiments throughout the data
acquisition and analysis process. This includes the design of probes, experi-
mental design, image analysis of microarray scanned images, normalization
of fluorescence intensities, the assessment of the quality of microarray data
and incorporation of quality information in subsequent analyses, combination
of information across arrays and across sets of experiments, the discovery
and recognition of patterns in expression at the single-gene and multiple-
gene levels, and assessment of significance of these findings, considering the
fact that there is a lot of noise and thus random features in the data. For all
of these components, access to a flexible and efficient statistical computing
environment is an essential aspect.

1.1 Microarray technology

In the context of the Human Genome Project, new technologies emerged that
facilitate the parallel execution of experiments on a large number of genes
simultaneously. The so-called DNA microarrays, or DNA chips, constitute a
prominent example. This technology aims at the measurement of nucleic acid
levels in particular cells or tissues for many genes or loci at once. Nucleic
acids of interest can be polyadenylated RNA, total RNA or DNA. We will in
the following use the term gene loosely to denote any unit of nucleic acid of
interest. Single strands of complementary DNA for the genes to be considered
are immobilized on spots arranged in a grid (array) on a support which will
typically be a glass slide or a quartz wafer. The number of spots can range
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from dozens to millions. From a sample of interest, e.g. a tumor biopsy, the
nucleic acid is extracted, labeled and hybridized to the array. Measuring
the amount of label on each spot then yields an intensity measurement that
should be correlated to the abundance of the corresponding gene in the sam-
ple. Chapter 24 goes into more detail regarding the experimental technology,
therefore we only give a short summary here.

Two schemes of fluorescent labeling are in common use today. One variant
labels a single sample. For example, the Affymetrix synthesizes sets of short
oligomers on a glass wafer and uses a single fluorescent label ( [26], see also
www.affymetrix.com). Alternatively, two samples are labeled with a green
and a red fluorescent dye, respectively. The mixture of the two nucleic acid
preparations is then hybridized simultaneously to a common array on a glass
slide. In the case where the probes are polymerase chain reaction (PCR)
products from cDNA clones that are spotted on the array, this technology
is usually refered to as the Stanford technology [12]. On the other hand,
companies like Agilent have immobilized long oligomers of 60–70 bp length
and used two-color labeling. The hybridization is quantified by a laser scanner
that determines the intensities of each of the two labels over the entire array.

The parallelism in microarray experiments lies in the hybridization of nu-
cleic acids extracted from a single sample to many genes simultaneously.
The measured abundances, though, are usually not obtained on an absolute
scale. This is because they depend on many hard-to-control factors such
as the efficiencies of the various chemical reactions involved in the sample
preparation, as well as on the amount of immobilized DNA available for
hybridization.

Traditionally, one or a few probes were selected for each gene, based on
known information on its sequence and structure. More recently, it has be-
come possible to produce probes for the complete sequence content of a whole
genome or for significant parts of it [3, 6, 32].

1.2 Prerequisites

A number of steps are involved in the generation of the raw data. The
experimental design includes choice and collection of samples (tissue biopsies or
cell lines exposed to different treatments), choice of probes and array platform,
choice of controls, RNA extraction, amplification, labeling and hybridization
procedures, allocation of replicates, and scheduling of the experiments. Care-
ful planning is needed, as the quality of the experimental design determines
to a large extent the utility of the data [7, 23, 42]. A fundamental guideline is
the avoidance of confounding between different biological factors of interest or
between a biological factor of interest and a technical factor that is anticipated
to affect the measurements.
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There are many different ways for the outline of a microarray experiment.
In many cases, a development in time is studied leading to a series of hy-
bridizations following each other. In a cohort study, different conditions like
healthy/diseased or different disease types may be studied. In designed
factorial experiments, one or several factors, e.g. treatment with a drug, ge-
netic background and/or tissue type, are varied in a controlled manner. We
generally refer to a time point or a state as a condition and typically for
each condition several replicate hybridizations are performed. The replicates
should provide the information necessary to judge the significance of the con-
clusions one wishes to draw from the comparison of the different conditions.
When going deeper into the subject it soon becomes clear that this simple
outline constitutes a challenging program.

1.3 Preprocessing

Preprocessing is the link between the raw experiment data and the higher-
level statistical analysis. The five tasks of preprocessing can be summarized as
follows: data import, background adjustment, normalization, summarization
of multiple probes per transcript and quality control. They are driven by the
properties of microarray technology. The data come in different formats and
are often scattered across a number of files (or, possibly, database tables), from
which they need to be extracted and unified. Part of the hybridization is
nonspecific and the measured intensities are affected by noise in the optical
detection. Therefore, the observed intensities need to be adjusted to give
accurate measurements of specific hybridization. We refer to this aspect
of preprocessing as background adjustment. Different efficiencies of reverse
transcription, labeling or hybridization reactions among different arrays cause
systematic technical biases and need to be corrected. We call the task of
manipulating data to make measurements from different arrays comparable
normalization. On some platforms, genes are represented with more than one
probe. Summarizing the data is necessary when we want to reduce the mea-
surements from various probes into one quantity that estimates the amount of
RNA transcript. The reproducibility of measurements is limited by random
fluctuations or measurement error. Basically, we can distinguish between
two types of fluctuations: (i) those that affect individual measurements, and
follow a localized distribution, and (ii) those, that affect whole groups of
measurements, and are often drastic, large and irregular. The former type
can be described with error models, while the latter is best dealt with by quality
control procedures that try to detect and eliminate the affected measurements.
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2 Visualization and Exploration of the Raw Data

A microarray experiment consists of the following components: a set of probes,
an array on which these probes are immobilized at specified locations, a sample
containing a complex mixture of labeled biomolecules that can bind to the
probes and a detector that is able to measure the spatially resolved distribution
of label after it has bound to the array. The probes are chosen such that they
bind to specific sample molecules; for DNA arrays, this is ensured by the high
sequence specificity of the hybridization reaction between complementary
DNA strands. The array is typically a glass slide or a quartz wafer. The sample
molecules are labeled through fluorescent dyes such as phycoerythrin, Cy3 or
Cy5. After exposure of the array to the sample, the abundance of individual
species of sample molecules can be quantified through the signal intensity at
the matching probe sites. To facilitate direct comparison, the spotted array
technology developed in Stanford [12] involves the simultaneous hybridiza-
tion of two samples labeled with different fluorescent dyes, and detection at
the two corresponding wavelengths. Figure 1 shows an example.

Figure 1 The detected intensity distributions
from a cDNA microarray for a region
comprising 40 probes spotted in duplicate.
The total number of probes on an array
may range from a few dozens to tens of
thousands. (a) Grey-scale representation
of the detected label fluorescence at 635
nm (red), corresponding to mRNA sample

A. (c) Label fluorescence at 532 nm (green),
corresponding to mRNA sample B. (b) False-
color overlay image from the two intensity
distributions. The spots are red, green or
yellow, depending on whether the gene is
transcribed only in sample A, sample B or
both.

2.1 Image Analysis

In the image analysis step we extract probe intensities out of the scanned
images, such as shown in Figures 1 and 2. The images are scanned by the
detector at a high spatial resolution, such that each probe is represented by
many pixels. In order to obtain a single overall intensity value for each
probe, the corresponding pixels need to be identified (segmentation) and the
intensities need to be summarized (quantification). In addition to the overall
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Figure 2 Gray-scale representation of the intensity distribution from a
small sector of an Affymetrix HG-U133A genechip.

probe intensity, further auxiliary quantities may be calculated, such as an
estimate of apparent unspecific “local background” intensity or spot quality
measures.

Various software packages offer a variety of segmentation and quantifi-
cation methods. They differ in their robustness against irregularities and
in the amount of human interaction that they require. Different types of
irregularities may occur in different types of microarray technology and a
segmentation or quantification algorithm that is good for one platform is not
necessarily suitable for another. For instance, the variation of spot shapes and
positions that the segmentation has to deal with depends on the properties
of the support and how the probes were attached to it (e.g. quill-pen type
printing of PCR product, in situ oligonucleotide synthesis by ink jetting, in
situ synthesis by photolithography). Furthermore, larger variations in the spot
positioning from array to array can be expected in home-made arrays than in
mass produced ones. An evaluation of image analysis methods for spotted
cDNA arrays is described by Yang and coworkers [40].

For a microarray project, the image quantification marks the transition in
the work flow from “wet-lab” procedures to computational ones. Hence, this
is a good point to spend some effort looking at the quality and plausibility
of the data. This has several aspects: confirm that positive and negative
controls behave as expected, verify that replicates yield measurements close
to each other, and check for the occurrence of artifacts, biases or errors. In the
following we present a number of data exploration and visualization methods
that may be useful for these tasks.

2.2 Dynamic Range and Spatial Effects

A simple and fundamental property of the data is the dynamic range and
the distribution of intensities. Since many experimental problems occur at
the level of a whole array or the sample preparation, it is instructive to look
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Figure 3 Histogram of probe intensities at
the green wavelength for a cDNA microarray
similar to the one depicted in Figure 1. The
intensities were determined, in arbitrary units,
by an image quantification method and “local
background” intensities were subtracted.

Due to measurement noise, this lead to
nonpositive probe intensities for part of the
genes with low or zero abundance. The x-
axis has been cut off at the 99% quantile of
the distribution. The maximum value is about
4000.

at the histogram of intensities from each sample. An example is shown in
Figure 3. Typically, for arrays that contain quasi-random gene selections, one
observes a unimodal distribution with most of its mass at small intensities,
corresponding to genes that are not or only weakly transcribed in the sample,
and a long tail to the right, corresponding to genes that are transcribed at
various levels. In most cases, the occurence of multiple peaks in the histogram
indicates an experimental artifact. To get an overview over multiple arrays,
it is instructive to look at the box plots of the intensities from each sample.
Problematic arrays should be excluded from further analysis.

Crude artifacts, such as scratches or spatial inhomogeneities, will usually
be noticed already from the scanner image at the stage of the image quan-
tification. Nevertheless, to get a quick and potentially more sensitive view of
spatial effects, a false-color representation of the probe intensities as a function
of their spatial coordinates can be useful. There are different options for the
intensity scaling, among them the linear, logarithmic and rank scales. Each
one will highlight different features of the spatial distribution. Examples are
shown in Figure 4. A more sophisticated and more sensitive method to detect
subtle artifacts is to look at the residuals of a probe-level model fitted for a set
of arrays instead of the probe intensities themselves [5].

2.3 Scatterplot

Usually, the samples hybridized to a series of arrays are biologically related,
such that the transcription levels of a large fraction of genes are approximately
the same across the samples. This can be expected, for example, for cell
cultures exposed to different conditions or for cells from biopsies of the same
tissue type, possibly subject to different disease conditions. Visually, this can
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Figure 4 False-color representations of
the spatial intensity distributions from three
different 64 × 136 spot cDNA microarrays
from one experiment series. The color scale
is shown in the panel on the right. (a) Probe
intensities in the red color channel, (b) local
background intensities and (c) background-
subtracted probe intensities. In (a) and (b),
there is an artifactual intensity gradient, which
is mostly removed in (c). For visualization, the
color scale was chosen in each image to be
proportional to the ranks of the intensities. (d)
For a second array, probe intensities in the
green color channel. There is a rectangular

region of low intensity in the top left corner,
corresponding to one print-tip. Apparently,
there was a sporadic failure of the tip for
this particular array. Panels (e) and (f) show
the probe intensities in the green color
channel from a third array. The color scale
was chosen proportional to the logarithms
of intensities in (e) and proportional to the
ranks in (f). Here, the latter provides better
contrast. Interestingly, the bright blob in the
lower right corner appears only in the green
color channel, while the half-moon-shaped
region appears both in green and red (not
shown).

be examined from the scatterplot of the probe intensities for a pair of samples.
An example is shown in Figure 5.

The scatterplot allows us to assess both measurement noise and systematic
biases. Ideally, the data from the majority of the genes that are unchanged
should lie on the bisector of the scatterplot. In reality, there are both systematic
and random deviations from this [33]. For instance, if the label incorporation
rate and photoefficiency of the red dye were systematically lower than that of
the green dye by a factor of 0.75, the data would be expected not to lie on the
bisector, but rather on the line y = 0.75x.

Most of the data in Figure 5 is squeezed into a tiny corner in the bottom
left of the plot. More informative displays may be obtained from other
axis scalings. A frequently used choice is the double-logarithmic scale. An
example is shown in Figure 6. It is customary to transform to new variables
A = (log R + log G)/2, M = log R− log G [11]. Up to a scale factor of

√
2, this

corresponds to a coordinate system rotation by 45◦. The horizontal coordinate
A is a measure of average transcription level, while the log-ratio M is a measure
for differential transcription. If the majority of genes are not differentially
transcribed, the scatter of the data in the vertical direction may be considered
a measure of the random variation. Figure 6(a) also shows a systematic
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Figure 5 Scatterplot of probe intensities in the red and the green color
channel from a cDNA array containing 8000 probes.

deviation of the observed values of M from the line M = 0, estimated through
a local regression line (we used loess [8] with default parameters span = 0.75,
degree = 2). There is an apparent dependence M0(A) of this deviation on
the mean intensity A. However, this is most likely an artifact of applying the
logarithmic transformation: as shown in Figure 6(b), the regression line may
be modeled sufficiently well by a constant M0(A) = M0 if an appropriate
offset is added to the R values before taking the logarithm. Note that a
horizontal line at M = M0 in Figure 6(b) corresponds to a straight line of
slope 2M0 and with intercept c in Figure 5.

Figure 6 shows the heteroskedasticity of log-ratios: while the variance of M
is relatively small and approximately constant for large average intensities A,
it becomes larger as A decreases. Conversely, examination of the differences
R− G, e.g. through plots like in Figure 5, shows that their variance is smallest
for small values of the average intensity R + G and increases with R + G.
Sometimes, one wishes to visualize the data in a manner such that the variance
is constant along the whole dynamic range. A data transformation that
achieves this goal is called a variance-stabilizing transformation. In fact,
homoskedastic representations of the data are not only useful for visualization,
but also for further statistical analyses. This will be discussed in more detail
in Section 5.2.

Two extensions of the scatterplot are shown in Figures 7 and 8. Rather than
plotting a symbol for every data point, they use a density representation,
which may be useful for larger arrays. For example, Figure 7 shows the
scatterplot from the comparison of two tissue samples based on 152 000 probes
[the arrays used were RZPD Unigene-II arrays (www.rzpd.de)]. The point
density in the central region of the plot is estimated by a kernel density esti-
mator. Three-way comparisons may be performed through a projection such
as in Figure 8. This uses the fact that the (1, 1, 1)-component of a three-way
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Figure 6 (a) The same data as in Figure 5,
after logarithmic transformation and clockwise
rotation by 45◦. The dashed line shows a
local regression estimate of the systematic
effect M0(A), see text. (b) similar to (a);

however, a constant value c = 42 has
been added to the red intensities before
log transformation. After this, the estimated
curve for the systematic effect M0(A) is
approximately constant.

Figure 7 Scatterplot of a pairwise
comparison of noncancerous colon tissue
and a colorectal tumor. Individual probes are
represented by crosses. The x-coordinate is
the average of the appropriately calibrated
and transformed intensities (see Section 5.2).
The y-coordinate is their difference and is
a measure of differential transcription. The

array used in this experiment contained
152 000 probes representing around 70 000
different clones. Since plotting all of these
would lead to an uninformative solid black
blob in the center of the plot, the point density
is visualized by a color scale and only 1500
data points in sparser regions are individually
plotted.
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Figure 8 Scatterplot of a triple comparison
between noncancerous colon tissue, a lymph
node-negative colorectal tumor (N0) and
a lymph node-positive tumor (N1). The
measurements from each probe correspond
to a point in three-dimensional space and
are projected orthogonally on a plane
perpendicular to the (1,1,1)-axis. The three
coordinate axes of the data space correspond
to the vectors from the origin of the plot to the
three labels “normal”, “tumor N0” and “tumor
N1”. The (1,1,1)-axis corresponds to average
intensity, while differences between the three
tissues are represented by the position of
the measurements in the two-dimensional
plot plane. For instance, both c-myc and

nme1 (nucleoside diphosphate kinase A)
are higher transcribed in the N0 and in the N1
tumor, compared to the noncancerous tissue.
However, while the increase is approximately
balanced for c-myc in the two tumors, nme1
is more upregulated in the N1 tumor than in
the N0 tumor, a behavior that is consistent
with a gene involved in tumor progression.
On the other side, the apoptosis-inducing
receptor trail-r2 is downregulated specifically
in the N1 tumors, while it has about the
same intermediate-high transcription level
in the noncancerous tissue and the N0
tumor. Similar behavior of these genes was
observed over repeated experiments.

microarray measurement corresponds to average intensity and hence is not
directly informative with respect to differential transcription. Note that if the
plotted data was preprocessed through a variance-stabilizing transformation,
its variance does not depend on the (1, 1, 1)-component.

2.4 Batch Effects

Present day microarray technology measures abundances only in terms of
relative probe intensities and generally provides no calibration to absolute
physical units. Hence, the comparison of measurements between different
studies is difficult. Moreover, even within a single study, the measurements
are highly susceptible to batch effects. By this term, we refer to experimental
factors that (i) add systematic biases to the measurements and (ii) may vary
between different subsets or stages of an experiment. Some examples are [33]:
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(i) Spotting. To manufacture spotted microarrays, the probe DNA is de-
posited on the surface through spotting pins. Usually, the robot works
with multiple pins in parallel, and the efficiency of their probe delivery
may be quite different [e.g. Figure 4(d) or [11]]. Furthermore, the effi-
ciency of a pin may change over time through mechanical wear and the
quality of the spotting process as a whole may be different at different
times, due to varying temperature and humidity conditions.

(ii) PCR amplification. For cDNA arrays, the probes are synthesized through
PCR, whose yield varies from instance to instance. Typically, the reac-
tions are carried out in parallel in 384-well plates, and probes that have
been synthesized in the same plate tend to have correlated variations in
concentration and quality. An example is shown in Figure 9.

(iii) Sample preparation protocols. Reverse transcription and labeling are com-
plex biochemical reactions, whose efficiencies are variable and may de-
pend sensitively on a number of hard-to-control circumstances. Further-
more, RNA can quickly degrade, hence the outcome of the experiment
can depend sensitively on when and how conditions that prevent RNA
degradation are applied to the tissue samples.

(iv) Array coating. Both the efficiency of the probe fixation on the array, as well
as the amount of unspecific background fluorescence strongly depend on
the array coating.

(v) Scanner and image analysis. Different scanners can produce slightly differ-
ent intensity images even from identical slides and the performance of
the same scanner can drift over time. Different image analysis programs
can use different algorithms to calculate probe summaries and the same
program, in particular when it requires human interaction, can produce
different results from the same image.

These considerations have important consequences for the experimental
design. First, any variation that can be avoided by any means within an
experiment should be avoided. Second, any variation that cannot be avoided
should be organized in such a manner that it does not confound the biological
question of interest. Clearly, when looking for differences between two tumor
types, it would not be wise to have samples of one tumor type processed by
one laboratory, and samples of the other type by another laboratory.

Points (i) and (ii) are specific for spotted cDNA arrays. To be less sensi-
tive against these variations, the two-color-labeling protocol is used, which
employs the simultaneous hybridization of two samples to the same array
[12]. Ideally, if only ratios of intensities between the two color channels are
considered, variations in probe abundance should cancel out. Empirically,
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they do not quite do so, which may, for example, be attributed to the fact
that observed intensities are the sum of probe-specific signal and unspecific
background [43]. Furthermore, in the extreme case of total failure of the PCR
amplification or the DNA deposition for probes on some, but not all arrays in
an experimental series, artifactual results are hardly avoidable.

If any of the factors (iii)–(v) is changed within an experiment, there is a good
chance that this will show up later in the data as one of the most pronounced
sources of variation. A simple and instructive visual tool for exploring such
variations is the correlation plot: given a set of d arrays, each represented
through a high-dimensional vector �Yi of suitably transformed and filtered
probe intensities, calculate the d × d correlation matrix corr(�Yi,�Yj), sort its
rows and columns according to different experimental factors, and visualize
the resulting false-color images.

2.5 Along Chromosome Plots

Visualization of microarray data along genomic coordinates can be useful for
many purposes, e.g. to detect genomic aberrations (deletions, insertions) or
regulatory mechanisms that act at the level of genomic regions [35]. Here,
we show an example from the application of a genome tiling microarray to
transcription analysis.

While conventional microarrays contain only a preselected set of one or a
few probes for each of a set of known or putative transcripts, more recent mi-
croarray designs provide probes for the complete genomic sequence content of
an organism. Rather than relying on a manufacturer’s assignment of probes to
genes (or, more exactly, target transcripts), it can become part of the analysis
to make the assignment on the basis of the data themselves. An example is
shown in Figure 10.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 9 (a) Scatterplot of logarithmized
intensities from a pair of single-color cDNA
arrays, comparing renal cell carcinoma to
matched noncancerous kidney tissue. Similar
to Figure 7, the x-coordinate represents
average and the y-coordinate differential
signal. In the bottom of the plot, there is a
cloud of probes that appear to represent a
cluster of strongly downregulated genes.
However, closer scrutiny reveals that this is
an experimental artifact: (b) shows the box
plots of the intensities for the two arrays,
separately for each of the 41 PCR plates
(see text). Probes from plates no. 21, 22, 27

and 28 have extraordinarily high intensities
on one of the arrays, but not on the other.
Since the clone selection was quasi-random,
this points to a defect in the probe synthesis
that affected one array, but not the other. The
discovery of such artifacts may be facilitated
by coloring the dots in the scatterplot by
attributes such as PCR plate of origin or
spotting pin. While the example presented
here is an extreme one, caution towards
batch artifacts is warranted whenever arrays
from different manufacturing lots are used in
a single study.
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Figure 10 Along chromosome plot of
the data from an Affymetrix genechip
that contains 25-mer oligonucleotide
probes covering the whole genome of
Saccharomyces cerevisiae in steps of 8
bases, on both strands. The displayed
values are the base 2 logarithms of the ratios
between intensities from hybridization with
a poly(A) RNA sample and with a genomic
DNA sample. Also shown are genomic

coordinates and annotated genomic features.
The vertical bars show the segmentation of
the intensity signal into an approximately
piecewise constant function [9a, 18a, 28].
The data allows for the mapping of 5′ and
3′ untranslated regions, the deconvolution
of populations of overlapping transcripts of
different lengths, and the detection of novel
transcripts.

2.6 Sensitivity and Specificity of Probes

The probes on a microarray are intended to measure the abundance of the
particular transcript or locus that they are assigned to. However, probes may
differ in terms of their sensitivity and specificity. Here, sensitivity means that
a probe’s fluorescence signal indeed responds to changes in the abundance of
its target; specificity means that it does not respond to other targets or other
types of perturbations.

Probes may lack sensitivity. Some probes initially identified with a gene
do not actually hybridize to any of its products. Some probes will have
been developed from information that has been superseded. In some cases,
the probe may correspond to a different gene or it may in fact not represent
any gene. In other cases, a probe may match only certain transcript variants
of a given gene, which makes it more complicated to derive statements on
the gene’s expression (e.g. NDE1 and CIN4 in Figure 10). There is also the
possibility of human error [15, 24].
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A potential problem, especially with short oligonucleotide technology, is
that the probes may not be specific, i.e. in addition to matching the intended
transcript, they may also match others. In this case, we expect the observed
intensity to be a composite from all matching transcripts. Note that, par-
ticularly in the case of higher eukaryotes, we are limited by the current
state of knowledge of the transcriptomes. As our knowledge improves, the
information about specificity of probes should also improve.

3 Error Models

3.1 Motivation

With a microarray experiment, we aim to make statements about the abun-
dances of specific molecules in a set of biological samples. However, the
quantities that we measure are the fluoresence intensities of the different
elements of the array. The measurement process consists of a cascade of
biochemical reactions and an optical detection system with a laser scanner or
a CCD camera. Biochemical reactions and detection are performed in parallel,
allowing millions of measurements on one array. Subtle variations between
arrays, the reagents used and the environmental conditions lead to slightly
different measurements even for the same sample.

The effects of these variations may be grouped in two classes. Systematic
effects affect a large number of measurements (e.g. the measurements for all
probes on one array or the measurements from one probe across several
arrays) simultaneously. Such effects can be estimated and, to good approxima-
tion, be removed. Other kinds of effects are random, with no well-understood
pattern. These effects are commonly called stochastic effects or noise. This
classification is not a property of the variations per se, but rather reflects our
understanding of them and our modeling effort. The same kind of variation
can be considered stochastic in one analysis and systematic in another.

So what is the purpose of constructing error models for microarrays? There
are three aspects as outlined below.

3.1.1 Obtaining Optimal Estimates

Stochastic models are useful for preprocessing because they permit us to find
optimal estimates of the systematic effects. We are interested in estimates that
are precise and accurate. However, given the noise structure of the data
we sometimes have to sacrifice accuracy for better precision and vice versa.
An appropriate stochastic model will aid in understanding the accuracy-
precision, or bias-variance, trade-off.
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3.1.2 Biological Inference

Stochastic models are also useful for statistical inference from experimental
data. Consider an experiment in which we want to compare gene expression
in the colons of mice that were treated with a substance and mice that were
not. If we have many measurements, we can simply compare their empirical
distributions. For example, if the values from 10 replicate measurements for
the DMBT1 gene in the treated condition are all larger than 10 measurements
from the untreated condition, the Wilcoxon test tells us that with a p-value of
10−5 the level of the transcript is really elevated in the treated mice. However,
often it is not possible, too expensive or unethical to obtain so many replicate
measurements for all genes and for all conditions of interest. Often, it is also
not necessary. If we have some confidence in a model, we are able to draw
significant conclusions from fewer replicates.

3.1.3 Quality Control

Quality control is yet another example of the usefulness of stochastic models:
if the distribution of a new set of data greatly deviates from the model, this
may direct our attention to quality issues with these data.

3.2 The Additive–Multiplicative Error Model

3.2.1 Induction from Data

Different hybridizations will result in more or less different signal intensities
even if the biological sample is the same. To see this, let us look in Figure 11
at the empirical distribution of the intensities from six replicate Affymetrix
genechips. The data are part of the Latin Square Data for Expression Algo-
rithm Assessment provided by Affymetrix (http://www.affymetrix.com/sup-
port/technical/sample_data/datasets.affx).

Figure 11 (a) Density estimates of probe intensity data from six
replicate Affymetrix arrays. The x-axis is on a logarithmic scale (base
2). (b) Box plots of the same data.
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One task of error modeling is to deal with background noise. Notice
in Figure 11 that the smallest values attained are around 64, with slight
differences between the arrays. We know that many of the probes are not
supposed to be hybridizing to anything (as not all genes are expressed),
so many measurements should indeed be 0. A bottom-line effect of not
removing background noise is that estimates of differential expression are
biased. Specifically, the ratios are attenuated toward 1. This can be seen
using the Affymetrix spike-in experiment, where genes were spiked in at
known concentrations. Figure 12(a) shows the observed concentrations versus
nominal concentrations of the spiked-in genes. Measurements with smaller
nominal concentrations appear to be affected by attenuation bias. To see why,
notice that the curve has a slope of about 1 for high nominal concentrations,
but becomes flat as the nominal concentration gets closer to 0. This is consis-
tent with the additive background noise model which we will discuss in the
next section. Mathematically, it is easy to see that if s1/s2 is the true ratio, and
b1 and b2 are approximately equal positive numbers, then (s1 + b1)/(s2 + b2) is
closer to 1 than the true ratio, and the more so the smaller the si are compared
to the bi.

Figure 12 (a) Plot of observed against nominal concentrations. Both
axes are on the logarithmic scale (base 2). The curve represents the
average value of all probes at each nominal concentration. Nominal
concentrations are measured in picomoles. (b) Normal quantile–
quantile plot of the logarithmic (base 2) intensities for all probes with
the same nominal concentration of 1 pmol.

Figure 12(b) shows a normal quantile–quantile plot of logarithmic inten-
sities of probes for genes with the same nominal concentration. Note that
these appear to roughly follow a normal distribution. Figure 12 supports the
multiplicative error assumption of the model that we formulate in the next
section.



946 25 Low-level Analysis of Microarray Experiments

3.2.2 A Theoretical Deduction

Consider the generic observation equation z = f (x, y), where z is the out-
come of the measurement, x is the true underlying quantity that we want
to measure, the function f represents the measurement apparatus and y =
(y1, . . . , yn) is a vector that contains all other parameters on which the func-
tioning of the apparatus may depend. The functional dependence of f on
some of the yi may be known; on others, it may not. Some of the yi are
explicitly controlled by the experimenter; some are not. For a well-constructed
measurement apparatus, f is a well-behaved, smooth function and we can
rewrite the observation equation as:

z = f (0, y) + f ′(0, y) x + O(x2), (1)

where f (0, y) is the baseline value that is measured if x is zero, f ′ is the
derivative of f with respect to x, f ′(0, y) is a gain factor and O(x2) represents
nonlinear efffects. By proper design of the experiment, the nonlinear terms
can be made negligibly small within the relevant range of x. Examples for the
parameters y in the case of microarrays are the efficiencies of mRNA extrac-
tion, reverse transcription, labeling and hybridization reactions, amount and
quality of probe DNA on the array, unspecific hybridization, dye quantum
yield, scanner gain, and background fluorescence of the array.

Ideally, the parameters y could be fixed once and forever exactly at some
value ȳ = (ȳ1, . . . , ȳn). In practice, they will fluctuate around ȳ between
repeated experiments. If the fluctuations are not too large, we can expand:

f (0, y) ≈ f (0, ȳ) +
n

∑
i=1

∂ f (0, ȳ)
∂yi

(yi − ȳi) (2)

f ′(0, y) ≈ f ′(0, ȳ) +
n

∑
i=1

∂ f ′(0, ȳ)
∂yi

(yi − ȳi). (3)

The sums on the right-hand sides of Eqs. (2) and (3) are linear combinations
of a large number n of random variables with mean 0. Thus, it is a reasonable
approximation to model f (0, y) and f ′(0, y) as normally distributed random
variables with means a = f (0, ȳ) and b = f ′(0, ȳ) and variances σ2

a and σ2
b,

respectively. Thus, omitting the nonlinear term, Eq. (1) leads to:

z = a + ε + b x(1 + η), (4)

with ε ∼ N(0, σ2
a) and η ∼ N(0, σ2

b/b2). This is the additive–multiplicative error
model for microarray data, which was proposed by Ideker and coworkers [29].
Rocke and Durbin [29] proposed it in the form:

z = a + ε + b x exp(η), (5)
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which is equivalent to Eq. (4) up to first-order terms in η. Models (4) and
(5) differ significantly only if the coefficient of variation σb/b is large. For
microarray data, it is typically smaller than 0.2, thus the difference is of little
practical relevance.

One of the main predictions of the error model (4) is the form of the depen-
dence of the variance of z on its mean E(z):

Var(z) = v2
0 +

σ2
b

b2 (E(z)− z0)
2 , (6)

that is, a strictly positive quadratic function. In the following we will assume
that the correlation between ε and η is negligible. Then the parameters of
Eq. (6) are related to those of Eq. (4) via v2

0 = σ2
a and z0 = a. If the correlation

is not negligible, the relationship is slightly more complicated, but the form of
Eq. (6) remains the same.

4 Normalization

A parametrization of Eq. (5) that captures the main factors that play a role in
current experiments is:

zip = ai,s(p) + ε ip + bi,s(p)Bp xj(i),k(p) exp(ηip). (7)

Let us dissect this equation. The index p labels the different probes on the
array and k = k(p) is the transcript or locus that probe p maps to. Each
probe is intended to map to exactly one k, but one transcript or locus may
be represented by several probes. Bp is the probe-specific gain factor of the
p-th probe. i counts over the arrays and, if applicable, over the different
dyes. j = j(i) labels the biological conditions (e.g. normal/diseased). ai,s(p)
and bi,s(p) are normalization offsets and scale factors that may be different for
each i and possibly for different groups (“strata”) of probes s = s(p). Probes
can be stratified according to their physicochemical properties [39] or array-
manufacturing parameters such as print-tip [41] or spatial location. In the
simplest case, ai,s(p) = ai and bi,s(p) = bi are the same for all probes on an
array. The noise terms ε and η are as above.

On an abstract level, much of the literature on normalization can be viewed
as an application of Eq. (7) to data, employing various choices for probe
stratification, making simplifying assumptions on some of its parameters,
rearranging the equation and using different, more or less robust algorithms
to estimate its parameters [2, 16–18, 21, 22, 25, 33, 38].

There is an alternative approach to normalization, which focuses on non-
parametric methods and the algorithmic aspects. In this approach, one identi-
fies those statistics (properties) of the data that one would like to be the same,
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say, between different arrays, but observes empirically in the raw data that
they are not. One then designs an algorithm that transforms the data so that
the desired statistics are made the same in the normalized data. The intention
is that the interesting, biological signal is kept intact in the process [4, 31, 41].

For example, the loess normalization [41] calculates log-ratios M between
the red and the green intensities on one array, plots them versus A, the
logarithm of the geometric mean (see Figures 6 and 7), and postulates that
a nonparametric regression line, calculated by a so-called loess scatterplot
smoother [8] ought to look straight. In order to achieve this, the loess-fitted
regression values for M are subtracted from the observed values and the
residuals are kept as the normalized data.

In quantile normalization, one plots the histogram of log-transformed in-
tensities for each array and postulates that they all should look the same.
Bolstad and coworkers [4] have introduced an algorithm that achieves this by
rank-transforming the data and then mapping the ranks back to a consensus
distribution. The result is a monotonous nonlinear transformation for each
array which assures that the distribution function of the transformed data is
the same for all arrays.

These nonparametric methods are popular because they always “work”, by
construction, and usually in a fully automatic manner. In contrast, in model-
based approaches it may turn out that a given set of data does not fit. Also,
the assessment of goodness of fit is not easily automated, and often requires
some human interaction. If the fit is bad, the data cannot be normalized, thus
not be further analysed, and an expensive and time-consuming experiment
would be left hanging.

However, there is a caveat: experiments may contain failed hybridizations,
degraded samples and nonfunctioning probes. The goodness-of-fit criteria
from a model-based normalization method can serve as relevant criteria to
detect these. With a method that “always works”, there is the risk of over-
looking these aspects of the data, to normalize them away and move on to
further analysis pretending that everything was fine. Conversely, one needs a
sophisticated and largely nonautomatic quality control step. So, if we consider
normalization and quality control together as one task, the balance between
model-based and nonparametric methods is more even.

Furthermore, parametric methods have, if they are appropriate, better
power than nonparametric ones. They provide better sensitivity and speci-
ficity in the application of detecting differentially expressed genes. Given the
typically small sample size and the expense of microarray experiments, this is
a consequential point. It has been verified in comparison studies [9, 16].
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5 Detection of Differentially Expressed Genes

5.1 Stepwise versus Integrated Approaches

Most commonly used is the stepwise approach to microarray data analysis.
It takes a collection of raw data as input and produces an expression matrix
as output. In this matrix, rows correspond to gene transcripts and columns
to conditions. Each matrix element represents the abundance, in certain
units, of a transcript under a condition. Subsequent biological analyses work
off the expression matrix and generally do not consider the raw data. The
preprocessing itself is largely independent of the subsequent biological anal-
ysis. In some cases, the preprocessing is further subdivided into a set of
sequential instructions, e.g. subtract the background, then normalize the in-
tensities, then summarize replicate probes, then summarize replicate arrays.
By its modularity, the stepwise approach allows us to structure the analysis
workflow. Software, data structures and methodology can be more easily
reused. For example, the same machine learning algorithm can be applied to
an expression matrix irrespective of whether the raw data were obtained on
Affymetrix chips or on spotted cDNA arrays. A potential disadvantage of the
stepwise approach is that each step is optimized for itself and that the results
of subsequent steps have no influence on the previous ones. For example, the
normalization procedure has to deal with whatever the preceding background
correction procedure produced and has no chance to ask it to reconsider. This
can and does lead to inefficiencies.

In contrast, integrated approaches try to gain sensitivity by doing as much
as possible at once, and therefore using the available data more efficiently.
For example, rather than calculating an expression matrix, one might fit an
ANOVA-type linear model that includes both technical covariates, such as dye
and sample effects, and biological covariates, such as treatment [22], to the raw
data. In Ben Bolstad’s affyPLM method [5], the weighting and summarization
of the multiple probes per transcript on Affymetrix chips is integrated with the
detection of differential expression. Another example is the vsn method [16],
which integrates background subtraction and normalization.

Stepwise approaches are often presented as modular data-processing pipe-
lines; integrated approaches as statistical models whose parameters are to
be fitted to the data. In practice, data analysts will often choose to use a
combination of both approaches, maybe starting with the stepwise approach,
do a first round of high-level analyses and then turn back to the raw data
to answer specific questions that arise. Good software tools allow us to use
and explore both stepwise and integrated methods, and to freely adapt and
combine them.
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5.2 Measures of Differential Eexpression: The Variance Bias Trade-off

What is a good statistic to compare two (or several) measurements from
the same probe on a microarray, taken from hybridizations with different
biological targets?

Plausible choices include the difference, the ratio and the logarithm of
the ratio. To understand the problem more systematically, we return to the
notation of Section 3.2.2. Let z1 and z2 denote two measurements from the
same probe, and assume that they are distributed according to Eq. (5) with
the same parameters a, b, σa, and σb, but possibly with different values
of x1, x2, corresponding to different levels of the target in the biological
samples of interest. We want to find a function h(z1, z2) that fulfills the
following two conditions: antisymmetry, h(z1, z2) = −h(z2, z1) for all x1, x2
and homoskedasticity, constant variance of h(z1, z2) independent of x1, x2. An
approximate solution is given by [17]:

h(z1, z2) = arsinh
(

z1 − a
β

)
− arsinh

(
z2 − a

β

)
, (8)

with β = σab/σb. If both z1 and z2 are large, this expression approaches the
log-ratio:

q(z1, z2) = log (z1 − a)− log (z2 − a) . (9)

However, for zi → a, the log-ratio q(z1, z2) has a large, diverging variance, a
singularity at zi = a and is not defined in the range of real numbers for zi < a.

Figure 13 The shrinkage property of the
generalized log-ratio h. Blue diamonds
and error bars correspond to mean and
standard deviation of h(z1, z2), cf. Eq. (8);
black dots and error bars to q(z1, z2), cf.
Eq. (9). Data were generated according to
Eq. (5) with x2 = 0.5, . . . , 15, x1 = 2x2,
a = 0, σa = 1, b = 1, σb = 0.1. The
horizontal line corresponds to the true log-
ratio log(2) ∼ 0.693. For intensities x2 that

are larger than about 10 times the additive
noise level σa, h and q are approximately
equal. For smaller intensities, we can see a
variance bias trade-off : q has no bias but a
huge variance, thus an estimate of the fold
change based on a limited set of data can be
arbitrarily off. In contrast, h keeps a constant
variance – for the price of systematically
underestimating the true fold change.
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These unpleasant properties are important for applications: many genes are
not expressed or only weakly expressed in some, but not all conditions of
interest. That means we need to compare conditions in which, for example,
x1 is large and x2 is small. The log-ratio (9) is not a useful quantity for this
purpose, since the second term will wildly fluctuate and be sensitive to small
errors in the estimation of the parameter a. In contrast, the statistic (8), which
is called the generalized log-ratio [30], is well-defined everywhere and robust
against small errors in a. It is always smaller in magnitude than the log-ratio
(see also Figure 13):

|h(z1, z2)| < |q(z1, z2)| ∀z1, z2,

h(z1, z2) ≈ q(z1, z2) for z1, z2 
 a + β.
(10)

The exponentiated value:

F̂C = exp(h(z1, z2)), (11)

can be interpreted as a shrinkage estimator for the fold-change x1/x2. It is
more specific, i.e. leads to fewer false positives in the detection of differentially
expressed genes, than the naive estimator (z1 − a)/(z2 − a) [13, 16].

5.3 Identifying Differentially Expressed Genes from Replicated Measurements

One of the main motivations for performing microarray studies is the need
to identify genes whose patterns of expression differ according to phenotype
or experimental condition. Gene expression is a well-coordinated system
and, hence, measurements on different genes are in general not independent.
Given more complete knowledge of the specific interactions and transcrip-
tional controls it is conceivable that meaningful comparisons between samples
can be made by considering the joint distribution of specific sets of genes.
However, the high dimension of gene expression space prohibits a com-
prehensive exploration, while the fact that our understanding of biological
systems is only in its infancy means that in many cases we do not know
which relationships are important and should be studied. In current practice,
differential expression analysis will therefore at least start with a gene-by-gene
approach, ignoring the dependencies between genes.

A simple approach in the comparison of different conditions is to rank genes
by the difference of means of appropriately transformed intensities in the
sense of Section 5.2. This may be the only possibility in cases where no, or very
few replicates, are available. An analysis solely based on a difference of means
statistic, however, does not allow the assessment of significance of expression
differences in the presence of biological and experimental variation, which
may differ from gene to gene. This is the main reason for using statistical
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tests to assess differential expression. Generally, one might look at various
properties of the distributions of a gene’s expression levels under different
conditions, though most often location parameters of these distributions, such
as the mean or the median, are considered. One may distinguish between
parametric tests, such as the t-test, and nonparametric tests, such as the
Mann–Whitney test or permutation tests. Parametric tests usually have a
higher power if the underlying model assumptions, such as normality in the
case of the t-test, are at least approximately fulfilled. Nonparametric tests
do have the advantage of making less stringent assumptions on the data-
generating distribution. In many microarray studies however, a small sample
size leads to insufficient power for nonparametric tests and, as discussed in
Section 3.1, increasing the sample size might be uneconomical or unethical if
parametric alternatives are feasible. A pragmatic approach in these situations
is to employ parametric tests, but to use the resulting p-values cautiously to
rank genes by their evidence for differential expression, rather than taking
them for the truth.

A generalized log-transformation of intensity data as described in Sec-
tion 5.2 can be beneficial not only when using a difference of means statistic,
but also for parametric statistical tests. Typically it will make the distribution
of replicated measurements per gene roughly symmetric and more or less
close to normal. The variance stabilization achieved by the transformation
can be advantageous for gene-wise statistical tests that rely on variance homo-
geneity, because it diminishes differences in variance between experimental
conditions that are due to differences in the intensity level; however, of course
differences in variance between conditions may also have gene-specific bio-
logical reasons, and these will remain untouched by the transformation.

One or two group t-test comparisons, multiple group ANOVAs and more
general trend tests are all instances of linear models that are frequently used
for assessing differential gene expression. As a parametric method, linear
modeling is subject to the caveats discussed above, but the convenient in-
terpretability of the model parameters often makes it the method of choice
for microarray analysis. Due to the aforementioned lack of information re-
garding coregulation of genes, linear models are generally computed for each
gene separately. When the genes of interest are identified, investigators can
hopefully begin to study their coordinated regulation for more sophisticated
modeling of their joint behavior.

The approach of conducting a statistical test for each gene is popular, largely
because it is relatively straightforward and a standard repertoire of methods
can be applied. However, the approach has a number of drawbacks – most
important is the fact that a large number of hypothesis tests is carried out,
potentially leading to a large number of falsely significant results. Multiple
testing procedures allow us to assess the overall significance of the results of
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a family of hypothesis tests. They focus on specificity by controlling type I
(false-positive) error rates such as the familywise error rate or the false discovery
rate [10]. Still, multiple hypothesis testing remains a problem, because an
increase in specificity, as provided by p-value adjustment methods, is coupled
with a loss of sensitivity, i.e. a reduced chance of detecting true positives.
Furthermore, the genes with the most drastic changes in expression are not
necessarily the “key players” in the relevant biological processes [37]. This
problem can only be addressed by incorporating prior biological knowledge
into the analysis of microarray data, which may lead to focusing the analysis
on a specific set of genes. Also if such a biologically motivated preselection
is not feasible, the number of hypotheses to be tested can often be reason-
ably reduced by nonspecific filtering procedures, discarding, e.g. genes with
consistently low intensity values or low variance across the samples. This is
especially relevant in the case of genome-wide arrays, as often only a minority
of all genes will be expressed at all in the cell type under consideration.

Many microarray experiments involve only few replicates per condition,
which makes it difficult to estimate the gene-specific variances that are used,
e.g. in the t-test. Different methods have been developed to exploit the
variance information provided by the data of all genes [1, 20, 27, 36]. In
Ref. [34], an empirical Bayes approach is implemented that employs a global
variance estimator s2

0 computed on the basis of all genes’ variances. The
resulting test statistic is a moderated t-statistic, where instead of the single-
gene estimated variances s2

g, a weighted average of s2
g and s2

0 is used. Under
certain distributional assumptions, this test statistic can be shown to follow a
t-distribution under the null hypothesis with the degrees of freedom depend-
ing on the data.

6 Software

Many of the algorithms and visualizations discussed in this chapter are avail-
able through the Bioconductor project [14]. This project is an initiative for
the collaborative creation of extensible software for computational biology
and bioinformatics. Its goals include fostering development and widespread
use of innovative software, reducing barriers to entry into interdisciplinary
scientific research, and promoting the achievement of remote reproducibility
of research results.

The software produced by the Bioconductor project is organized into pack-
ages, each of which is written and maintained relatively autonomously by
its authors, who come from many different institutions around the world,
and which are held together through a common language platform, R, a set
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of common data structures, a uniform structure of package organization and
documentation, and a lively user community.

Results of this project are available on the website http://www.bioconduc-
tor.org. Among the packages that are most relevant for the subject of this
chapter are affy (preprocessing of Affymetrix genechip data), vsn (affine-
linear parametric normalization and variance stabilizing normalization), mar-
ray (two-color preprocessing) and limma (differential expression with lin-
ear models). Some further aspects are represented by arrayMagic (high-
throughput quality control and preprocessing) and tilingArray (along chro-
mosome plots and segmentation).
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Classification of Patients
Claudio Lottaz, Dennis Kostka and Rainer Spang

1 Introduction

In microarray gene expression studies tissue samples are examined using
microarray chips covering as many as 50 000 transcripts. Automatic classi-
fication of patients is a powerful tool for molecular diagnosis as well as for
the discovery of novel molecular disease subentities. Exploiting this potential
in clinical research is of primary interest and holds great promise. Two early
examples for clinical microarray studies are given below.

Roepman and coworkers [89] describe a study on head and neck squamous
cell carcinomas. In this disease, treatment strongly depends on the presence
of metastases in lymph nodes. However, near the neck, diagnosis of metas-
tases is difficult. More than 50% of patients unnecessarily undergo surgery,
while 23% remain under-treated. The authors show that treatment based
on microarray prediction is significantly more accurate: in a validation co-
hort under-treatment was completely avoided, while the rate of unnecessary
surgery dropped to 14%. By Alizadeh and coworkers [1] a clinical microarray
study on diffuse large B cell lymphomas (DLBCLs) is described. Expression
profiles from patients were complemented by profiles from cell lines of known
differentiation stage and activation status. The authors were able to identify
two different groups of DLBCL patients, characterized by expression profiles
similar to germinal center B cells and in vitro activated peripheral blood B cells,
respectively. Further on, significant differences in the survival rates of the two
groups were detected.

From a statistical point of view, the major characteristic of microarray stud-
ies is that the number of genes is orders of magnitude larger than the number
of patients. For classification as well as class discovery this leads to problems
involving overfitting and saturated models. When blindly applying classi-
fication algorithms, a model rather adapts to noise in the data than to the
molecular characteristics of investigated diseases. Thus, the challenge is to
find molecular classification rules and novel disease subclasses that can be
generalized from a study cohort to entire disease populations.
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The most frequent clinical problems addressed by microarray analysis in-
clude molecular diagnosis of known disease entities, prognosis of disease
outcome and prediction of treatment response. These are all supervised
problems, relating expression profiles to additional clinical data. Additionally,
the detection of previously unknown molecular subentities of a disease is of
great interest. This task is an unsupervised problem, the objective is to detect
structure inherent in the expression data without the help of additional clinical
information. This chapter is structured accordingly. We start by discussing
supervised analysis, covering the general setup of predictive classification and
present a selection of classification algorithms. Further on, gene selection and
issues of model selection as well as the validation of predictive performance
are described. Then we proceed to unsupervised analysis including clustering
algorithms, class finding, biclustering, semisupervised approaches and con-
cepts related to the validation of unsupervised analysis results.

2 Molecular Diagnosis

Molecular diagnosis based on gene expression profiles is the most widely used
approach in clinical microarray studies. The data consists of gene expression
profiles of n patients. In addition, each patient has an attributed class label.
The label reflects a clinical phenotype. Phenotypes can include previously
defined disease entities, as in the leukemia study of Yeoh and coworkers [117],
risk groups, like in the breast cancer studies of van’t Veer and coworkers [110]
or disease outcome, as in the breast cancer study of West and coworkers [116].
The challenge is to learn expression signatures that allow to predict the correct
clinical phenotype for new patients.

It is important that the class labels must not be derived from the expression
profiles themselves. This requirement embeds molecular diagnosis into the
field of supervised machine learning and defines the difference to unsuper-
vised class finding problems. The latter are discussed in Section 3. There
are many more genes on the arrays than patients in the study and gene-to-
sample ratios typically are in the hundreds. This is the main difficulty in the
supervised approaches. A large number of machine-learning algorithms are
available to overcome this problem and in the following we will summarize
the basic ideas (see Table 1).

2.1 Problem Statement

We start by presenting a basic framework of supervised machine learning.
This enables us to formulate the problem of molecular diagnosis in mathe-
matical terms.
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Table 1 Notation of key quantities used throughout the chapter (terms commonly used in the
machine-learning literature as well as their counterparts in clinical applications are given).

Symbol Theory Application

F(X, Y) data generating disease population
distribution

(X, Y) random variable new (future) patients
{x(i)}n

i=1 profiles microarrays from patients in the study
{yi}n

i=1 labels clinical phenotypes
n number of data points number of patients in the study
p dimension of input space number of transcripts on the microarray
K number of classes number of phenotypes of interest in the study
D data set microarrays hybridized in the study
c(x) classifier diagnostic signature
c�(x) Bayes classifier best possible signature
L learning algorithm method to infer a diagnostic signature
C function class candidate signatures
R[ c ] risk performance of a signature on the disease population
R̂[ c ] empirical risk performance of a signature on patients in the study
E[ c ] conditional error rate misclassification rate of a signature
Ē[ L ] unconditional error rate misclassification rate of a learning algorithm

2.1.1 Notation

We measure p genes on n patients. The data from each microarray is repre-
sented by a profile x(i) ∈ Rp. The corresponding label, that encodes one of K
clinical phenotypes, is denoted by yi ∈ K = {k}K

k=1.
The profiles are arranged as rows in a matrix X ∈ Rn×p. All labels together

form a vector y ∈ Rn. The two quantities (X, y) are called a data set D. It
holds all data of a study in pairs of observations {(x(i), yi)}n

i=1. Study cases
are always samples from a larger disease population. Such a population
comprises all patients who had a certain disease, have it now or will have
it in the future. Of course one has no access to this population. Nevertheless,
it is convenient to make it part of the mathematical formalism. We assume
that there is a data-generating distribution F(X, Y) on Rp ×K. F(X, Y) is the
joint distribution of expression profiles and associated clinical phenotypes.
The patients who enrolled for the study, as well as new patients who need
to be diagnosed in clinical practice, can be modeled as independent samples
{(x(i), yi)} drawn from F. In general, capitalized quantities constitute random
variables (population properties) (e.g. X and Y), whereas realizations (study
properties) are in lower case (as in x(i) and yi). We aim for a diagnostic
signature with good performance not only on the patients in the study, but
also in future clinical practice. In mathematical terms this means that we aim
for a well-generalizing classification rule c : Rp → K.
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2.1.2 Loss and Risk

We start with defining a mathematical framework for the performance of a
diagnostic signature. In this context we need to distinguish between the per-
formance on the samples in the study and the expected performance in clinical
practice. We define a loss function l that quantifies the loss of diagnosing profile
x to have phenotype c(x), given the true phenotype is y:

l(x, c(x), y) : Rp ×K×K → [0, ∞). (1)

A simple loss function is the 0/1 loss function, which assigns a loss of one to
each misclassified sample. Loss functions play a role in signature construction
as well as validation and vary from algorithm to algorithm. Let us now define
the risk of a signature as:

R[c] = E l(X, c(X), Y) =
∫

l(x, c(x), y) dF(X, Y), (2)

which measures the expected loss of a diagnostic signature when applied to
the entire disease population. It is the performance of the signature in clinical
practice. Since we have no access to the population, we do not know F and
cannot calculate the risk R explicitly. However, we have access to the patients
in the study to approximate R. We define the empirical risk:

R̂[c] =
∫

l(x, c(x), y) dF̂(X, Y) =
1
n

n

∑
i

l(x(i), c(x(i)), yi), (3)

where F̂ is the empirical distribution function which puts weight 1/n on each
observed data-point. In the context of a microarray study, the empirical risk
for the 0/1 loss function is the error rate of the signature on patients in the
study. It can be easily calculated.

2.1.3 Bayes Classifier and Bayes Error

Before we explain how to build diagnostic signatures in practice we introduce
a purely theoretical construct – the best thinkable signature, also called the
Bayes classifier. While it cannot be built in practice, it is helpful for the devel-
opment of the theory.

Assume we know what is called the posterior densities of F, i.e. P(Y = k|X =
x). Then the Bayes classifier is defined as:

c�(x) = argmax
k∈K

P(Y = k|X = x). (4)

Its error is called the Bayes error. The Bayes error can be different from zero,
which means it is impossible to construct a molecular signature that never
fails. This is not necessarily a matter of insufficient bioinformatics expertise,
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but can be an intrinsic property of the disease population F. If the same
expression profiles can occur under different clinical phenotypes, it is obvious
that false classifications cannot be ruled out entirely. The Bayes classifier can
be derived theoretically from the risk defined in Eq. (2): Take the 0/1 loss,
i.e. l(x, c(x), y) = I c(x) �=y, where I denotes the indicator function. Ic(x) �=y = 0
if c(x) = y and 1 for wrong predictions. Minimizing the risk at some x ∈ Rp

is equivalent to minimizing the probability of future misclassifications at this
point. This, in turn, is the same as always assigning the most probable class.
That is precisely the statement of Eq. (4). The Bayes classifier is a purely
theoretical construct. The challenge is to approximate it based on study data.

2.1.4 Minimal Empirical Risk and Maximum Likelihood

Here, we introduce a general principle for adjusting a signature to a given
dataset. We assume a specific dependency structure f of Y on X. Often f is a
family of functions indexed by parameters. As an example, take the linear
model. There one assumes Y = XTβ + ε, ε being a random variable. In
this case Y depends on X linearly, f (X) = XTβ and the parameters are the
components β. In general we model F(Y|X, f ), i.e. P(Y| f (X)), and define the
likelihood of the observed yi and x(i) as:

P(D| f ) =
n

∏
i

P(Y = yi|X = x(i), f )P(X = x(i)). (5)

Maximization of the above quantity is the same as taking the log, dropping
f -independent terms and minimizing

Ll[ f ] = −
n

∑
i

log(P(Y = yi|X = x(i), f )). (6)

This is equivalent to minimizing the empirical risk defined in Eq. (3) taking
the loss function to be l = − log P(Y| f (X)).

2.1.5 Regularized Risk and Priors

As mentioned before, the main challenge in microarray-based diagnosis is the
large number of genes on the array compared to the few patients in the study.
In this section we demonstrate mathematical implications of this situation.

In the previous section we have seen that minimizing the empirical risk
can be equivalent to the maximum likelihood approach. This suggests that
minimizing the empirical risk over a class of candidate signatures C , i.e. ĉ :=
argminc∈C R̂[c], is a valid approach to molecular diagnosis. Unfortunately,
the maximum likelihood approach can lead to ill-posed problems where the
optimum is not uniquely determined [108]. For high-dimensional microarray
data, this is the case even for simple signature classes. An example is linear
discriminant analysis (LDA), which will be discussed in Section 2.2.
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Figure 1 A toy situation with as many genes
as patients. The solid diamond and circle
represent patients from two different disease
types. They can be separated linearly in
several ways, two separating signatures
are shown. The question mark represents
a patient with unknown diagnosis. Both

signatures yield conflicting predictions. The
data alone does not suggest that one of the
signature is better then the other – it does not
suggest a unique diagnosis. This situation
occurs if the number of genes is higher or
equal then the number of patients, which is
always the case in microarray studies.

As a simplified illustration imagine a study where two patients, each rep-
resentative of a certain phenotype, are selected. Then the mRNA abundance
of two genes is measured. Further on, we want to construct a linear signature
that can discriminate between the two classes. This is the same problem as
finding a straight line between two points (each representing a patient) in a
plane. The candidate signatures in C now correspond to all possible straight
lines. There is no unique solution (Figure 1). Next, think about a third point
which incidentally does not lie on the line going through the first two points.
Imagine it represents a new patient with unknown diagnosis. It is always
possible to linearly separate the first two points such that the new one lies
on the same side as either one of them. The two training patients do not
contain sufficient information to diagnose the third patient uniquely. We are
in this situation whenever there are more genes than patients. Due to the large
number of genes on the chip this problem is inherent in microarray studies.

A way out of the dilemma is regularization, which artificially makes the
minimizer of the empirical risk unique. In our example above this can cor-
respond to finding the straight line which separates the two points and which
has maximal distance to both of them. This strategy is implemented in support
vector machines (SVMs), a classification algorithm discussed in the next section.
Regularization results in the minimization of the regularized risk functional:

R̂reg[c] := R̂[c] + λΩ[c], (7)
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where Ω is called the regularization operator and penalizes the complexity of
signatures. The parameter λ determines a trade-off between performance on
the study data (R̂) and complexity of the classifier (Ω).

Introducing a regularization term seems natural from the following per-
spective. Recall the section about maximum likelihood. There we assumed
a dependency f between the two random variables X and Y. If we start
modeling prior belief about the dependency f and express them in a prior
distribution P( f ), an application of Bayes rule leads to:

P( f |D)︸ ︷︷ ︸
posterior

= P(D| f )︸ ︷︷ ︸
likelihood

P( f )︸︷︷︸
prior

1
P(D)

, (8)

where “posterior” represents the probability of a model f , given the data.
Usually f corresponds to a certain diagnostic signature. The f � that max-
imizes the posterior is a reasonable choice to yield a classifier, since it best
explains the data at hand and matches prior beliefs. The classifier corre-
sponding to f � is called maximum aposteriori (MAP) estimate. Finding the
MAP estimate is equivalent to minimizing a regularized risk. Recall that the
posterior is proportional to the likelihood times the prior. The likelihood is, as
discussed before, the probability of the data given the model. We have also
seen that maximizing the likelihood can be viewed as minimizing a suitable
empirical risk. The regularization now comes via the prior. It puts more
weight onto models f that we deem more likely than others, without having
seen the data. This can resolve ambiguities where the likelihood alone is
undecided. More formally we can see the equivalence as follows. Ignore the
last factor in Eq. (8), since it does not depend on f . Then recall Eq. (5), set
l = − log P(Y| f (X)) and choose λΩ[ f ] = − log P( f ) in Eq. (7).

2.2 Supervised Classification

Having introduced basic concepts and terminology of supervised machine
learning, we now present a collection of classification algorithms commonly
used with microarray data. It is important to distinguish between a diagnostic
signature c and a learning algorithm L. A signature takes expression profiles
as an input and returns class labels as an output. A learning algorithm is used
to build signatures. It takes training data as an input and returns signatures
as an output. To review notation, L is a set of rules how to generate a
signature ĉ, given data D consisting of n independent samples from F(X, Y),
i.e. L : D �→ ĉ. We will discuss gene selection-based methods, penalized
logistic regression and SVMs as well as bagging and boosting. Several of these
algorithms build linear signatures.
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2.2.1 Discriminant Analysis and Feature Selection

We start by modeling the data-generating distribution F in a parametric way:
P(X, Y) = P(X = x|Y = k)P(Y = k): = fk(x)πk. We further assume that the
fk are Gaussian densities:

fk(x) = |2πΣk|−
1
2 exp

[− 1
2
(x− μk)

TΣ−1
k (x− μk)

]
(9)

log fkπk = log |2πΣk|−
1
2 − 1

2
xTΣ−1

k x

+xTΣ−1
k μk −

1
2

μT
k Σ−1

k μk + log πk. (10)

For the unknown parameters, unbiased estimates for mean and covariance
(μ̂k, Σ̂k) can be employed. The priors πk can be estimated by the relative
class sizes π̂k := nk/n. This yields estimates f̂k and the Bayes classifier can
be approximated via ĉ(x) = argmaxk∈K f̂kπ̂k. The classification boundary
between any two classes i and j is defined in terms of the log odds:

ηij(x) = log
P(Y = i|X = x)
P(Y = j|X = x)

for all i, j ∈ K,

as the set {x|ηij(x) = 0}where the posterior probability to belong to either one
of the two classes is the same. Assume equal covariance matrices in Equations
(9) and (10). This is called the homoskedastic case. Then the first two terms in
(10) are the same for all classes k and the classification boundaries are linear in
x. This is called LDA. If the Σk are assumed different in the two phenotypes
(heteroskedastic case), the decision boundaries are quadratic. This is then called
quadratic discriminant analysis (QDA). If the covariances are assumed to be
diagonal, i.e. Σk = diag(σk1, . . . , σkp) =: diag(σk), one talks about diagonal
discriminant analysis (DDA). Consequently, the assumption of equal diagonal
covariance matrices leads to diagonal LDA (DLDA).

Deriving the signature requires the inversion of the estimated covariance
matrices. For QDA this leads to the constraints ni ≥ p + 1, where the ni denote
the class sizes, and for LDA to n ≥ p + K. In other words, one needs more
patients than genes on the chip, which in our setting is unrealistic. For DDA
the estimates Σ̂k are always invertible and it can be applied to expression data
directly. With the help of gene selection, LDA and QDA are also applicable
to microarray data. Gene selection has to be done prior to the estimation of
model parameters. From the entire set of genes only a small number of genes
is selected and then discriminant analysis is applied using only the selected
subset of genes. Also, the performance of DLDA can be improved using gene
selection [30]. A popular method equipping a variant of DLDA with gene
selection was proposed by Tibshirani and coworkers [107]. We will discuss it
now in some detail.
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In the case of LDA, diagnosis consists of classifying a new sample to the
class k with the nearest group centroid μk (modulo the influence of the priors
πk). Distance is measured in terms of the Mahalanobis distance , i.e. ĉ(x) =
argmink∈K(x − μ̂k)TΣ̂−1(x − μ̂k) . Tibshirani and coworkers [107] restrict Σ
to be diagonal. Additionally it is pointed out, that the estimate of the mean
might be obscured by noise present in the data. Therefore, Tibshirani and
coworkers [107] advocate the use of a denoised or shrunken centroid for each
group k in the distance calculation, i.e.:

ĉ(x) = argmin
k∈K

(x− μ̃k)
TΣ̂−1(x− μ̃k) + log π̂k

μ̃k = μ̂ + Δk(δ),
(11)

where Σ̂ = diag(σ̂) and
√

σ̂i is the pooled within-class standard deviation of
class k for gene i plus a fudge factor s that reduces the effect of nearly constant
genes. μ̂ is the usual estimate for the overall mean. The vector Δk extracts only
genes in which the mean of group k strongly differs from the overall mean, i.e.:

(Δk)i = sgn(μ̂k − μ̂)i
∣∣|(μ̂k − μ̂)i| −mk(si + s) δ

∣∣
+,

where mksi estimates the standard error of (μ̂k − μ̂)i and |x|+ = x for x > 0
and 0 otherwise, i.e. each component of μ̂k is shrunken towards the overall
mean in units of the standard error. Additionally to the classification function,
this approach can yield an estimate of the posterior class probability P(Y =
k|X = x) by the f̂k(x) and an application of Bayes rule. The value for the
gene selection parameter δ is obtained by cross-validation, which is discussed
in Section 2.4. A link between this approach and classical linear models
is discussed by Huang and coworkers [55]. Other flavors of discriminant
analysis have been applied to gene expression data as well. For an overview
as well as a comparison with other methods, see Refs. [30, 67].

2.2.2 Penalized Logistic Regression

In our discussion above we modeled the data-generating distribution explic-
itly via the class-conditional probabilities fk. Here, we take a discriminative
approach and model the posterior densities as follows:

P(Y = k|X = x) =
exp[βT

k x]

∑K
i exp[βT

i x]
, (12)

with identifiability constraints. The classification rule corresponding to this
model imitates the Bayes classifier: ĉ(x) = argmaxk∈K P(Y = k|X = x, β̂).
If we focus on the two-class problem with yi ∈ {±1} this reduces to p :=
P(Y = 1|X = x) = 1/(1 + exp(−βTx)) and P(Y = −1|X = x) = 1 − p.
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The likelihood of the class labels can be modeled via independent biased coin
flips:

L =
n

∏
i=1

P(Y = yi|X = x(i), β) =
n

∏
i=1

p
1
2 |yi+1|
i (1− pi)

1
2 |yi−1|, (13)

and we can find β̂ as the minimizer of the negative log-likelihood, i.e. β̂ =
argminβ− logL. The dependence of L on β is through p and the minimization
can be done directly or via an iterated least-squares procedure. Note that this
is equivalent to minimizing the empirical risk with a loss function chosen as
l = − log[1 + exp(yβTx)], the logistic loss function. Due to the high numbers of
genes on the arrays the optimum of Eq. (13) is not unique. As a solution,
a regularized risk (see Eq. (7)) can be minimized choosing an appropriate
regularization term. Common choices are the L1 and the L2 penalty, where
Ω[c] = ‖β‖2

1 and Ω[c] = ‖β‖2
2, respectively. The L2 penalty is usually

combined with gene selection techniques [34, 121], while the L1 penalty au-
tomatically produces sparse solutions, i.e. only few genes contribute to the
posterior [91, 95]. For the minimization Roth [91] utilizes an iterative least
squares procedure extending an algorithm of Osborne and coworkers [80],
while Shevade and coworkers [95] use a Gauss–Seidel method. Kim et al. [62]
propose a gradient descent algorithm for problems of this form.

A related approach is that of West and coworkers [116] and Spang and
coworkers [100], who model P(Y = 1|X = x) = Φ(xTβ) via the probit re-
gression model . Here, Φ denotes the cumulative density function of a standard
normal distribution. However, in contrast to what corresponds to a maxi-
mum a posteriori estimate in the approaches before, a full Bayesian analysis is
employed and the posterior distribution of all model parameters is sampled.
Regularization is achieved via the introduction of hierarchical normal priors.

2.2.3 Support Vector Classification

For simplicity suppose a classification problem with only two possible clinical
phenotypes, i.e. yi ∈ {±1}. Then, SVMs [93, 111, 112] fit a maximal (soft)
margin hyperplane between the two classes. In high-dimensional problems
there are always several perfectly separating hyperplanes (the maximum like-
lihood approach leads to an ill-posed problem). However, there is only one
separating hyperplane with maximal distance to the nearest training points of
either class.

This concept is typically combined with the kernel trick to allow for flexible
nonlinear classification boundaries. The kernel trick is applicable to classi-
fication algorithms that can be expressed in terms of inner products of the
inputs x(i) who reside in what is called the input space. This is the case for
the maximum margin hyperplane. The inner products are then substituted by
a kernel function k(x, x′), which corresponds to a feature map Φ that maps the
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profiles from the input space into a feature spaceH:

Φ : Rp −→ H
x �→ Φ(x).

(14)

This results in the original algorithm being now carried out in H and leads to
nonlinear decision boundaries in the input space.

After applying the kernel trick, a class of linear functions in feature space
is given by F := { f (x) = ∑n

i αik(x, x(i)) + b |αi, b ∈ R}. The associated
diagnostic signatures read c(x) = sgn f (x). Finding the maximal margin
hyperplane is the same as minimizing a regularized risk. The loss function
employed is called soft margin loss and the regularization term is ‖ f‖2

H :=
αTKα. Here, K is the kernel matrix and Kij = k(x(i), x(j)). Regularization is
essential to counter the additional flexibility acquired by the kernel trick. In
summary:

f̂ (x) = argmin
f∈F

{ n

∑
i

max(0, 1− yi f (x(i))) +
λ
2

αTKα
}

. (15)

In this formulation, separability of the two classes is not required and mar-
gin violations are allowed. The trade off between margin violations and
margin size (measured as ‖ f‖−2

H ) is reflected by the regularization parameter
λ. Support vector classification, in combination with various gene selection
methods, has been applied to microarray data [42,87] and compared favorably
[16, 67, 72]. A SVM-specific wrapper method (see Section 2.3.2) for feature
selection is presented by Guyon and coworkers [47]. The generalization
to more than two classes is not straightforward and different methods are
compared by Hsu and coworkers [54].

2.2.4 Bagging

Bagging [14] is a method of aggregating weak classifiers via bootstrapping
the data at hand. Bagging stands for bootstrap aggregating and roughly
works as follows. M bootstrap samples are drawn from the data D. A
bootstrap sample from D is an iid sample {(x(i) ∗, y∗i )}nB

i=1 of size nB from the
empirical distribution function of the data, which puts weight 1/n onto each
observation. Then a simple learning algorithm is trained on each bootstrap
sample minimizing the empirical risk. This results in a set of weak classifiers
{ĉm}M

m=1. In the end all weak classifiers ĉm are averaged to obtain a final strong
signature: ĉ(x) = argmaxk ∑M

m=1 Iĉm(x)=k. The class k which most of the ĉm
agree on gets chosen. If the weak classifiers produce estimates of the class
conditional probabilities, these can be averaged instead [52].

Random forests [15] constitute an application of this concept. There weak
classifiers are derived using classification trees [13] grown using only a ran-
dom subset of genes. The forest of trees (weak signatures) is then averaged
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over the bootstrap samples. Random forests are applied to gene expression
data, for example, by Gunther and coworkers [46].

2.2.5 Boosting

Another method falling into the category of aggregated classifiers is boost-
ing. The algorithm Adaboost was introduced by Freund and coworkers [39].
Several weak signatures cm are combined to form an aggregate classifier.
Hastie and coworkers [52] present Adaboost as an forward stagewise additive
modeling approach. The empirical risk is minimized choosing the exponential
loss function l(x, c(x), y) = exp(−yc(x)) for y ∈ {±1}. Basically, the classifier
c(x) is viewed as an expansion in the weak cm, i.e. c(x) = sgn[∑M

i βmcm(x)].
However, in contrast to bagging, the different cm are not independently fit to
bootstrap samples. Rather, given coefficients {β̂i}m−1

i=1 and classifiers {ĉi}m−1
i=1 ,

the next pair (β̂m, ĉm) is determined to optimally supplement the previous
ones in terms of minimizing the empirical risk. This results in an iterative
optimization strategy. The complexity of the classifiers can be regulated by
the number of iterations allowed, i.e. M.

Dettling and coworkers [24] apply this procedure to microarray data. As
weak signatures decision stumps are used, i.e. classification trees with only two
terminal nodes. They use the LogitBoost algorithm of Friedman and cowork-
ers [40]. There, the exponential loss function of Adaboost is exchanged for the
logistic loss function introduced earlier. As feature selection, a nonparametric
filter method [81] is employed. A combination of bagging and boosting is
presented in Dettling and coworkers [25] in the context of gene expression
analysis. Both methods are discussed in Tan and coworkers [103]. Zhang
and coworkers [119, 120] also apply classification trees in the context of gene
expression.

2.3 Gene Selection

Combining classification algorithms with a gene selection procedure is com-
mon practice in microarray-based diagnosis. It is done for two reasons. First,
and most importantly, gene selection reduces model complexity and in many
cases impacts the predictive performance of the signature [30]. Here, model
complexity refers to the flexibility of the decision boundaries. Methods like
linear discriminant analysis are not applicable at all without gene selection.
Other methods, like nearest shrunken centroids [106] or L1-penalized re-
gression techniques, implicitly reduce the number of genes involved in the
signatures. Secondly, the reduction of genes leads to a smaller and hence
cheaper design of diagnostic chips or marker panels [57].

Feature selection has a strong impact on the predictive performance of a
signature. For this reason it cannot be considered to be a preprocessing step
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like data normalization discussed in the previous section. It is an essential part
of the signature-building algorithm. There is an important difference between
building a signature based on 10 genes and building a signature that depends
on only 10 genes that, however, were chosen from a pool of 30 000 genes.
The first is a low-dimensional model and can be specified by 10 parameters.
The second still involves 30 000 parameters, although 29 990 of them were
constrained to be zero. The important point is, that it was not agreed which
of them should be zero before the data was looked at. The importance of
not separating gene selection from the signature building process becomes
apparent in Section 2.4.

2.3.1 Filter Approaches

When feature selection is performed independently of the learning algorithm
one talks about a filter approach [59]. Straightforward implementations univari-
ately screen for genes, optimizing a score reflecting correlation with the class
labels. Popular choices are the t-statistic, the (nonparametric) Wilcoxon rank-
sum statistic, the absolute difference of the group means divided by the sum
of the estimated standard deviations [45] or the F-statistic in the multiclass
case. More sophisticated are filter approaches (heuristically) searching for an
optimal subset of informative genes [10,50]. Jäger and coworkers [58] and Ding
and coworkers [27] also take into account and minimize the redundancy of the
selected gene set.

2.3.2 Wrapper Approaches

If the learning algorithm is taken into account while looking for informative
genes, this is called a wrapper method [59]; the feature selection procedure is
“wrapped around” the learning algorithm. Either single features or subsets
of features are sought that maximize a performance score of the learning al-
gorithm, e.g. the estimated misclassification error. This is a generic procedure
and independent of the learning algorithm considered. Looking for optimal
feature subsets is a combinatorial problem, and heuristics like forward selec-
tion and backward elimination can be employed [59].

A prototypical example is recursive feature elimination (RFE) [47]. This ap-
proach has been put into the framework of assessing the sensitivity of general-
ization bounds [85]. This concept, in turn, has been applied to gene expression
data by Cho and coworkers [21]. Another approach is to use the penalty term
in the regularized risk to ensure sparse solutions (few genes contribute), as
it is the case for L1-penalized logistic regression. Shevade and coworkers
[95] use this property together with cross validation (see next section) to
simultaneously select and assess the relevance of genes. Such methods are
also called embedded methods [48].
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2.4 Adaptive Model Selection and Validation

This section covers two important steps in microarray-based diagnosis: adap-
tive model selection and the validation of the predictive performance of a
molecular signature. While these are two different tasks, the methodology
in use is similar.

2.4.1 Adaptive Model Selection

The algorithms discussed in the previous section can all be linked to mini-
mizing the empirical or the regularized risk (with an appropriate choice of
the loss function) over a class C of candidate signatures. For instance, in
the case of penalized logistic regression the signatures take the parametric
form of the right-hand side of Eq. (12) and are parameterized by the βk. For
kernel classifiers, C corresponds to signatures that can be written in the form
f (x) = sgn[∑n

i αik(x, x(i)) + b] with αi and b ∈ R. Depending on how rich
this class of signatures is, the learning algorithm is able to implement more or
less flexible boundaries between the K phenotypes. For microarray data, the
typical situation is that even simple signature classes, such as hyperplanes,
are extremely rich due to the high dimensionality of the profiles x(i). For
simplicity, we will refer to the richness of the set of candidate signatures as
the complexity of a diagnostic model.

2.4.1.1 Bias-variance Trade-off When dealing with complex diagnostic models
not the empirical risk needs to be optimized, but the regularized risk in Eq. (7).
This allows for controlling complexity. The regularization term introduces a
complexity penalty, thus effectively restricting the complexity of the derived
diagnostic signature ĉ. The regularization parameter λ quantifies the trade-
off between model fit and model complexity. With little regularization the
algorithm can fit very flexible decision boundaries to the data. This results in
few misclassifications on the data from patients in the study. Nevertheless, it
can have poor predictive performance in clinical practice. The reason is that
the algorithm not only fits population properties (as desired), but also reflects
noise resulting from patient sampling. We refer to this as overfitting. When the
regularization term dominates Eq. (7), the resulting signatures might be too
restricted. Then we have poor performance on both, the study patients and in
future clinical practice. We refer to this situation as underfitting. The problem
described above is also known as the bias-variance trade-off, since regularization
introduces a bias into the estimation of model parameters, while at the same
time reducing the sample variance. Sample variance here refers to ĉ varying
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Figure 2 Schematic diagram to illustrate the bias-variance trade-
off (see text). The x-axis codes for model complexity and the y-axis
for error rates. The dashed line displays the training error, the solid
line the test error. Low-complexity models produce high test errors
(underfitting, low variance, high bias) and so do highly complex models
(overfitting, high variance, low bias).

with different cohorts drawn from the same disease population. See also
Figure 2.

2.4.1.2 Choosing a Trade-off via the Hold Out The regularized risk is a general
example of how learning algorithms can implement a tuning parameter (in
this case λ) that allows for balancing over- and underfitting. Further instances
are the number of genes included after the variable selection process or the
amount of shrinkage in the nearest shrunken centroid method.

Before we start explaining how these parameters can be tuned, we need
some more notations: recall that we need to build signatures from a finite
data set D, drawn from F. Let us define the empirical error rate of a signature ĉ
built on D as:

êemp
λ [ ĉ ] :=

1
n

n

∑
i

Iĉλ(x(i)) �=yi
, (16)

where we have made the dependency of the classification rule on the reg-
ularization parameter λ explicit and I denotes the indicator function. The
empirical error rate is equivalent to the empirical risk R̂ when using the 0/1
loss function. The empirical error rate is a random variable since it depends
on the random sampling of patients that were included into a study. When
repeating the study with a second cohort of patients, one obtains a different
empirical error rate.

We now split the data set into a training or learning set Dl and a test set Dt.
The training set constitutes a (smaller) study cohort, while the test set can be
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used like novel patients with unknown diagnosis. In this respect, we want
little errors on the test set. To reduce test errors, we are even willing to pay
a price in terms of some more errors on the training set. For a fixed value
of the regularization parameter, one can learn a signature ĉλ(x) := L(x;Dl)
by applying a learning algorithm only to the training data. Subsequently, its
predictive performance can be evaluated by applying the generated signature
to the independent test data and calculating the error on the test set only.
The value of the regularization parameter can be varied, identifying a value
such that the above estimate is minimal. That is, the learning algorithm then
consists of minimizing R̂reg and choosing the regularization parameter via
assessment of generalization performance. This procedure is referred to as
adaptive model selection, since by determining the regularization parameter one
chooses a model with approximate optimal complexity. However, different
clinical classification problems need different amounts of regularization. By
using a hold out set, model selection is adapted to the data at hand.

2.4.1.3 Using Data More Efficiently via Cross-Validation Since microarray data
is expensive and scarce, one can make use of the following procedure. The
data set D is randomly partitioned into Q bins {Dq}Q

q=1. Each one of the Dq

is then used as hold out set in turn. More formally: Let κ : {1, . . . , n} →
{1, . . . , Q} be a partitioning, i.e. κ(i) = q for all i ∈ Dq, i ∈ {1, . . . , n} and

q ∈ {1, . . . , Q}. Further, let ĉ−κ(i)
λ := L(x;D \ Dκ(i)) be a classifier trained on

D \ Dκ(i) for a fixed value for λ. Then we estimate the misclassification rate
via [43, 102]:

ê cvq
λ [ ĉ ] :=

1
n

n

∑
i

I
ĉ−κ(i)

λ (x(i)) �=yi
. (17)

This quantity estimates the expected error rate on future data. Again, one can
do this for a grid of values of the regularization parameter and an approxi-
mately optimal value can be identified. Adaptive model selection is a part of
the learning algorithm, as it was the case with gene selection. This needs to be
kept in mind when assessing the performance of a signature.

2.4.2 Validation of the Predictive Performance of a Molecular Signature

After having derived a diagnostic signature one needs to estimate its expected
performance in future clinical practice. This validation step constitutes one
of the most critical steps in the whole process of molecular diagnosis and
several pitfalls are involved. Estimators can be overly optimistic (biased) or
they might have high sample variances. It also makes a difference whether
one is interested in estimating the performance of a fixed signature ĉ (which
is usually the case in clinical studies) or if one is interested in estimating the
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performance of the learning algorithm L that builds the signatures (which is
usually the case in methodological projects). The performance of the fixed
signature ĉ varies due to the random sampling of the test set, while the
performance of the algorithm L varies due to sampling of both the training
and test set.

The two different situations correspond to two different theoretical error
rates. The performance of a fixed signature ĉ(x) =: L(x;D), derived from a
training set D, is measured by the conditional error rate(s) or the true error:

Eij[ ĉ ] = P(L(X;D) = j|Y = i,D) i �= j ∈ K and

E[ ĉ ] = P(L(X;D) �= Y|D).
(18)

The first quantity, Eij, is the probability that the signature ĉ will classify a
patient from the disease population to belong to class j even though they
actually belong to the phenotypical class i. The second quantity only asks for
wrong classifications of ĉ, no matter which group is mistaken for what other
group. These quantities are not obtainable in practice, since the probabilities
need to be calculated with respect to the unknown population distribution
F(X, Y).

If, in contrast, one is interested in the performance of the learning algorithm
L, the sampling variability of the training set has to be taken into account.
This makes the conditional error rates random variables. Keeping the size of
the training set fixed and taking expectations leads to the (unconditional) error
rate(s) or the expected error :

Ēij[ L ] = ED Eij = P(L(X;D) = i|Y = j) i �= j ∈ K and

Ē[ L ] = ED E = P(L(X;D) �= Y).
(19)

As it was the case for the conditional error rates, these quantities depend on F
and are not accessible. Hence, both rates need to be estimated using the data
at hand.

2.4.2.1 Estimating Error Rates One might assume the empirical error [Eq. (16)]
can be employed to estimate the conditional error rate. The main problem
with this approach is that it uses the same data in D to train the classifier and
to evaluate it later on. This can result in highly biased error rates grossly
underestimating the true error. This is practically relevant in gene expression
data analysis, since the high dimensionality of the data makes algorithms
without complexity control prone to overfitting [3, 96].
A better approach is to use an independent test set. Only training data is used
for gene selection, classifier learning and adaptive model selection. The final
signature ĉ is then evaluated on an independent test set. Unfortunately, this
estimator can have a substantial sample variance, due to the random selection
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of patients in the test set. This is especially the case if the test set is small. It
falls in this line of thought that good performance in small studies can be a
chance artifact [79].

More effective use of the data at hand can be made via the cross-validation
procedure introduced earlier. The leave-one-out version produces an estima-
tor of the unconditional error rate with almost no bias. It is computationally
more expensive than q-fold cross-validation and suffers from a very high
sample variance. The latter is reduced for moderate q such as “somewhere
between 5 and 10” [52, 64, 73]. Braga-Neto and coworkers [12] advise to
average over many different partitionings. No unbiased estimator of the
variance of the cross-validation estimate, i.e. valid for all distributions F, exists
[7]. Cross-validation error rates naturally refer to the classification algorithm
L. In each iteration a different classifier is learned, based on (somewhat)
different training data. The cross-validation performance is the average of
the performance of different signatures. Nevertheless, cross-validation perfor-
mance can be also used as a bias-corrected estimator of the conditional error
rate. In fact, in applied work it is often used to validate fixed signatures that
were derived by the evaluated algorithm.

Efron and coworkers [33] apply bootstrap smoothing to the leave-one-out
cross-validation estimate. The basic idea is to generate different bootstrap
replicates {D∗b}nB

b=1, apply leave-one-out cross-validation to each and then to
average the results. A result of this approach is the so called “0.632+ esti-
mator”. It takes into account the possibility of overfitting and reduces the
variance compared to the regular cross-validation estimates. Ambroise and
coworkers [3] have found it to work well with gene expression data.

2.4.2.2 Selection Bias and Nested Loop Cross-validation As we have discussed
in the previous section, feature selection techniques are a central element in
the analysis of microarray data. In filter approaches, special care has to be
taken when using cross-validation: the feature selection is part of the learning
algorithm L. For this reason feature selection has to be repeated again on each
D \ Dq, i.e. Q times. Global gene selection before the cross-validation (which
is also called incomplete cross-validation or information leak ) can result in grossly
over-optimistic (biased) estimates of the error rates [3]. For example, Simon
and coworkers [96] describe a case, where the incomplete cross-validation
method and the fully cross-validated method result in estimated error rates
of 27% and 41%, respectively. Similarly, assume the algorithm L contains an
adaptive model selection procedure. To get reasonable error rate estimates
via cross-validation, the selection procedure has to be applied to everyD \Dq
separately. This leads to a cross-validation step inside a cross-validation, i.e. to
a nested loop cross-validation [43, 92]. Applying the selection procedure to the
complete data can lead to biased estimation of the error and over optimistic



3 Finding Molecular Disease Entities 975

results. Ruschaupt and coworkers [92] and Wessels and coworkers [115]
realize such a complete validation procedure and compare various methods.
Ntzani and coworkers [79] and Michiels and coworkers [75] report that, at
least in studies up to 2003, many of 84 considered studies lacked appropriate
validation of derived signatures. In fact, many of the shortcomings could have
been avoided keeping in mind the two points above.

2.5 Discussion

In the previous sections we introduced basic concepts and methods used in
classification problems. Whenever possible, we tried to point out aspects
specific to the classification of microarray data. General literature about
machine learning includes Refs. [26, 29, 52, 88, 93], where a more thorough
treatment of the theoretical concepts can be found. More focused on the
analysis of microarray data are Refs. [73, 101].

The methodology above was presented in the classification context only.
One might be tempted to interpret the genes driving the models, but this
is dangerous. First, it is unclear how the regularization term biases the
selection of signature genes. While a bias is a blessing from the diagnostic
perspective, this is not the case from the biological perspective. Second,
signatures are generally not unique: While outcome prediction for breast
cancer patients has been successful in various studies, e.g. [86, 99, 109], the
respective signatures do not overlap at all. Further on, Ein-Dor and coworkers
[35] derived a large number of almost equally performing signatures in a
single dataset. This is not too surprising considering the following: the
molecular cause of a clinical phenotype might involve only a small set of
genes. This primary event has secondary influences on other genes, which
in turn deregulate more genes and so on. In clinical microarray analysis we
typically observe an avalanche of secondary or later effects, often involving
thousands of differentially expressed genes. While complicating biological
interpretation of signatures, such an effect does not compromise the clinical
usefulness of predictors. On the contrary, it is conceivable that only signals
enhanced through propagation lead to a well-generalizing signature.

3 Finding Molecular Disease Entities

In the previous section we were concerned with reconstructing phenotypically
defined disease entities based on expression profiles. This is a supervised
learning problem and results in diagnostic signatures with obvious clinical
relevance. In this section we go beyond the level of already established clinical
phenotypes and aim to define novel disease entities exclusively based on
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the molecular properties that are reflected in expression profiles. This is an
unsupervised learning problem and results in novel patient stratifications.
The clinical relevance of such results must always be proved in subsequent
analysis. For instance, clinical follow-up studies may confirm that patients
belonging to different molecular entities respond differently to treatment. If
this is the case, treatment can be adjusted according to this novel molecular
diagnosis.

In various microarray studies researchers have applied unsupervised machine-
learning techniques to discover molecular disease subgroups, and subse-
quently validated the clinical impact of the stratification. For instance,
patient subgroups with particular outcome probabilities were characterized
in Ref. [8], and so far unclear disease mechanisms have been uncovered in
Refs. [1, 76].

3.1 Clustering

The most widely used approach to molecular disease characterization is via
clustering algorithms. Although this approach suffers from several limita-
tions, which we will point out below, we cover the most frequently used
methods here. Clustering algorithms are discussed in detail in Chapter 27
in the context of clustering genes. In this section, we focus on specific issues
when applying the same algorithms to the clustering of patients.

3.1.1 Clustering Algorithms

Hierarchical clustering is a well-studied and established method in the sta-
tistical community, and is by far the most widely used method for clustering
patients. It was first applied to microarray data in 1998 by Eisen and cowork-
ers [36]. Since then it has been applied in many clinical microarray studies to
support distinctions between patient groups, which are claimed to be coherent
from a molecular point of view. Clinical fields of these studies include lung
cancer [8], lymphomas [1,76], leukemia [20,45,117], breast cancer [82], ovarian
cancer [114], cutaneous melanoma [9], colon cancer [2], glioma [38, 41] and
parathyroid tumors [53]. The result of hierarchical clustering is typically
illustrated using dendrograms (Figure 3), where similar samples are depicted
close to each other. Cutting dendrograms at any level naturally defines a set
of clusters, but is subject to arbitrary decisions on where to cut.

Other clustering methods also based on distances between samples directly
aim to separate the set of samples into a given number of clusters. Examples
of such methods are k-means clustering [51], partitioning around medoids [60]
and self-organizing maps [65]. These methods, however, are restricted to
detect a predefined number of clusters. The FOREL method, otherwise very
similar to k-means, overcomes this limitation by determining one cluster at a
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Figure 3 Dendrograms illustrate results
of hierarchical clustering. The cluster plot
shown is generated from microarray data on
acute lymphocytic leukemia (ALL) partially
published in Ref. [20]. Half of the samples

chosen are from T cell ALL, the other half
from B cell ALL. The dendrogram at the top of
the image shows that hierarchical clustering
clearly separates these two classes.

time, removing its samples and then restarting to find the next cluster [83].
Alternatively, methods for automatic determination of the most adequate
number of clusters are suggested in Refs. [31, 66, 105].

In Ref. [19], probabilistic clustering based on a mixture model is suggested.
The authors present an algorithm to determine model parameters by Bayesian
inference. A similar approach is implemented in mclust [37], a freely available
add-on package for the statistical computing environment R [56, 84]. It was
applied to microarray data in Ref. [118]. Probabilistic model-based clustering
is discussed in further detail in Ref. [98] together with a suggestion of how to
choose model parameters in a cross-validation setting.

3.1.2 The Problem of Distances

All of the clustering methods described above compute distances between
objects, which are in this case patients. Typical choices are the Euclidean
distance or a distance based on Pearson’s correlation coefficient. Each patient
is described by a long list of gene expression values, but not all of them
can be assumed to carry information on disease states. Hence, it makes
no sense to include all genes in the distance function. Instead, clusters are
computed based on a subset of the genes measured in the expression profiles.
Including different sets of genes into a Euclidean metric, leads to different dis-
tances between patients and consequently influences the results of clusterings.
Nevertheless, there is no such thing as a justifiable best choice of features.
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The most straightforward selection method is simple selection for maximal
variance or maximal bandwidth of expression values within a gene (e.g. Ref.
[18]). The motivation for this is to avoid measurement noise expected to be
dominant in the many low variance genes. Bhattacharjee and coworkers [8]
as well as Monti and coworkers [76] suggest to select reproducibly variable
genes. In order to do so they extract two samples from a number of tumors
and determine a robust F-statistic to capture the reproducibility of genes
together with their corresponding variance. Genes are then selected for low
variance between replicates and high variance between patients.

3.2 Searching for Partitionings

3.2.1 Overlapping Partitionings

Clustering of patients returns the dominating structure of the patient space.
However, from a clinical perspective we expect that different sets of genes
uncover different structures on patients, which can all be relevant in their own
right. In the context of oncology we can think of one set of genes that partitions
the patients with respect to the regulation of the apoptosis pathway, while a
second set of genes classifies patients according to the proliferation rate of
tumor cells.

Systematically combining clustering with variable selection is one feasible
approach to uncover multiple structures in the patient space. For instance,
Dougas and coworkers [32] suggest an iterative exclusion of cluster sup-
porting genes in order to find new clusterings in each iteration. In each
step, 2-means clustering determines one clustering of the data and the most
differential gene with respect to this clustering is removed. During this
procedure, various differing clusterings are discovered.

3.2.2 Search and Find

The common aspect of algorithms discussed here is that they search in the
space of all partitionings for interesting splits. Different criteria to characterize
interesting partitionings are suggested and local or global search algorithms to
find them are applied. When searching for homogeneous groups in patients,
a desirable property is good separability. This property inspires a group of
unsupervised methods, which search in the space of possible partitionings by
optimizing a score for separability.

3.2.3 ISIS – Identifying Splits with Clear Separation

The ISIS method [113] is restricted to detecting bipartitions or splits of the
data. To this end it uses the diagonal linear discriminant score (DLD) to
measure separability of the two classes in a split. For computing the DLD
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scores, all samples are projected on one dimension as in DLD analysis (DLDA)
to discriminate between the two candidate classes. The DLD score is then the
two-sample t-statistic for the projected values. ISIS detects multiple structures
by searching for splits with local minima of the DLD score. Figure 4 illustrates
the result obtained from a single call to this method. In Ref. [61], the ISIS
method is applied to patients with congenital heart defects. The authors of
this study were able to confirm and further characterize molecular subclasses
of this disease.

Figure 4 The ISIS method reports a set of
locally optimal bipartitionings. Here, it was
applied on a subset of samples from the
leukemia dataset in Ref. [20] including B cell
and T cell ALL cases. The 500 most variable
genes are used to compute the results shown
here. Each row in the figure corresponds to

one of the samples, each column to a split
suggested by ISIS. The colors indicate the
partition of the cases and the scores on the
bottom are DLD scores. Split 2 in the figure
corresponds to the separation of T and B cell
ALL.
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3.2.4 Overabundance of Differential Genes

An alternative approach to class finding is described in Ref. [6]. The authors
define a figure of merit measuring the overabundance of genes supporting
one split compared to a null model for random splits. This provides a notion
of significance for candidate splits. Splits with optimal figure of merit are
searched using simulated annealing. This probabilistic process is iterated to
yield several alternative splits. An extension from bipartitions to multiple
partitions is described in Ref. [68].

3.2.5 Best-fitting Gaussian Model

The two methods described above are heuristics. A full statistical model for
class discovery has been described in Ref. [90]. A two-class Gaussian mixture
model is used for finding patient splits. In addition, the authors modify the
well-known expectation-maximization (EM) algorithm to incorporate feature
selection in the M-step using L1 regularization. Finally, a stability criterion
using artificial noisy versions of the data is used to test the robustness of
partitionings. The method reports only partitionings which prove stable in
the resampling step.

3.3 Biclustering

Methods discussed so far mostly insist on partitioning the entire set of patients
or samples. In contrast, biclustering algorithms directly search for homoge-
neous subgroups of patients which may be based on a subsample of genes.
Thus, there are opportunities to search more freely for homogeneous groups
of patients, while leaving out the samples which are difficult to associate with
others. An overview on suggested algorithms is given in Ref. [71].

Researchers have suggested various versions of biclustering algorithms
with differing applications in mind. Getz and coworkers [44] rediscovered
the distinction between lymphocytic and myeloid leukemia in the dataset
in Ref. [45] in a completely unsupervised manner. In the same analysis, the
authors report the rediscovery of the distinction between T and B cell ALL as
well as the detection whether patients underwent treatment. For each of these
distinctions supporting genes are determined. In a dataset on colon cancer by
Alon and coworkers [2], biclustering detected a change in protocol for the data
acquisition. Similar proofs of principle are reported in Refs. [63, 78, 94, 104] on
data from lymphoma, leukemia, breast cancer, multiple sclerosis and central
nervous system embryonal tumors.
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3.4 Semisupervised Methods

So far we have discussed both supervised and unsupervised analysis of pa-
tient profiles. Recently, several papers have described analysis strategies,
which carry characteristics of both fields in parallel. We will call them semisu-
pervised methods.

A major problem with unsupervised methods is that they detect any struc-
ture among patients. Novel stratifications can be of clinical relevance, but
in many cases they just reflect trivial differences like age and gender. Even
worse, clusterings may be detected due to experimental artifacts or noise. The
idea of semisupervised methods is to direct class discovery towards clinically
relevant partitionings through additional phenotypical information on the
patients.

3.4.1 Molecular Symptoms

From the hypothesis that known clinical phenotypes may be caused through
different molecular causes, Lottaz and coworkers [70] have derived a semisu-
pervised approach called structured analysis of microarray data (StAM). As
input the method needs both expression profiles and class labels reflecting a
relevant clinical phenotype, typically a disease group versus a control group.
Unlike purely supervised methods StAM does not aim to find a single molec-
ular signature, but searches for hidden subentities (the unsupervised aspect),
which need to be subsets of the predefined disease group (the supervised
aspect). Then it searches for molecular characteristics, which distinguish the
newly found subgroup of disease patients from all other patients. These
characteristics are called molecular symptoms in contrast to the molecular
signatures derived from purely supervised analysis. They are similar to
clinical symptoms, since these as well are not necessarily present in all pa-
tients, but almost never occur in healthy people. The method searches for
molecular symptoms using classifiers based on biologically focused sets of
genes. Candidate sets are deduced from functional annotations collected
in the Gene Ontology (GO) [4]. Figure 5 shows the structured analyses
concerned with mixed lineage leukemias from the leukemia dataset by Yeoh
and coworkers [117].

3.4.2 Survival-driven Class-finding

Outcome prediction is a particularly important issue in clinical studies. Most
methods described in the literature combine cluster analysis and classification
methods. In this respect, they can be considered semisupervised.

One approach to find classes related to survival is described in Bullinger
and coworkers [17]. In a first step, a cox proportional-hazards model is
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Figure 5 Molecular symptoms stratify
patients. Rows correspond to GO-node-
based classifiers, columns represent patients
with mixed-lineage leukemia. Colors in
the image encode classifier results. Bright

regions represent presence and dark regions
represent absence of molecular symptoms.
Presence/absence patterns of molecular
symptoms provide a molecular patient
stratification.
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used together with a permutation test to find genes, which are significantly
correlated to outcome. k-means clustering is used on the expression data
restricted to these outcome-related genes to separate patients into two groups.
Finally, Bullinger and coworkers use the nearest shrunken centroid classifica-
tion to confirm the separability of the two groups in a cross-validation scheme.
The authors have evaluated their method on data from a clinical study on
acute myelogenous leukemia in adults where they molecularly characterize a
separation into good- and poor-outcome patient groups.

3.4.3 Towards Survival Prediction

Dave and coworkers [22] suggest to determine survival correlated genes sim-
ilar to Ref. [17], but organize them into signatures associated with poor prog-
nosis and signatures associated with good prognosis by hierarchical clustering
on genes. A linear combination of these signatures was used to compute
survival scores used to separate patients into four different classes of expected
survival. The authors validate their approach on data from a clinical study
on follicular lymphoma. A similar approach more focused to determine a
small, clinically practical signature for survival prediction of diffuse large
B cell lymphoma patients is described in Ref. [69]. Its validity is confirmed
on data from independent clinical studies.

3.5 Validating Unsupervised Analysis

Compared to supervised analysis, the validation of clustering and class-
finding results is notoriously difficult, since predictive performance cannot
be assessed. Researchers have developed various quality indices based
on significance of structure, stability of clusters and over-representation of
pathways in the genes defining the classes.

3.5.1 Statistical Significance

In order to estimate statistical significance of a clustering, Monte Carlo meth-
ods are suggested to estimate the density distributions of indices under the
null hypothesis of random and unstructured data [49, 74]. Bolshakova and
coworkers [11] provide a tool to evaluate clusterings and quality indices
interactively.

3.5.2 Stability

Lange and coworkers [66] suggest to measure cluster stability computed as
follows. The data at hand is split many times into training and test set.
For each split, the clustering algorithm is applied to both data sets, yielding
labels for all samples. The training sets are then used to train a classifier, the
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corresponding test sets are used to determine misclassification rates compared
to the labels given by the clustering algorithm. Lange and coworkers suggest
to use average misclassification rates to measure stability of clusterings, ex-
pecting low values for stable clusterings.

3.5.3 Detect Consensus by Subsampling

Consensus matrices computed on subsampled data are suggested in Ref. [77]
to validate cluster stability. These are computed as follows. N random equal
size subsets of samples are generated. For each of them the same clustering
algorithm is applied to compute N perturbed partitioning. Each column and
each row of a consensus matrix represent one patient, rows and columns are
in the same order, such that elements from the same cluster in the partitioning
of the complete data are adjacent. The element in row i and column j of
the consensus matrix contains the relative frequency that patients i and j
fall in the same cluster. For a stable clustering, the consensus matrix holds
values close to zero and close to one. In this case, the consensus matrix holds
square blocks along the diagonal. Figure 6 shows a consensus matrix from
the leukemia data in Ref. [20] with two stable clusters (upper panel) and a
consensus matrix computed from the same data, but restricted to only B cell
samples, which displays a less apparent structure (lower panel). Monti and
coworkers [77] suggest to use average consensus values per cluster to identify
stable clusters as clusters with consensus value close to 1. Similarly, they use
average consensus values per sample to estimate if it is clearly attributed to its
cluster. Consensus clustering revealed three stable clusters in more than 200
diffuse large B cell lymphoma patients [76].

3.5.4 Adding Simulated Noise

An alternative to subsampling in order to perturb the clusterings is to add
noise from a Gaussian distribution to all expression levels and evaluate the
stability of clusters with respect to this noise. This is suggested in Ref. [74].

3.5.5 Over-represented Pathways

Evidence for the biological relevance of a molecular patient entity is given
when the list of driving genes has a clear biological focus. Therefore, biologists
often investigate functional annotations of these genes, e.g. using the GO.
Statistically significant over-representation of certain pathways or biological
processes in the list of genes that define a molecular partitioning of patients
can be used as validation for the partitioning itself. Over-representation
analysis is described in Refs. [5, 23, 28]. It is used as argument for cluster
validity in Ref. [76].
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Figure 6 Consensus matrices for subsets
of leukemia patients from Ref. [20]. The
set of patients used to generate the upper
consensus matrix contains T and B cell
leukemias. Expression profiles of these

differ strongly and yield a clear consensus
matrix. To generate the consensus matrix in
the lower panel, only B cell leukemias were
used and no obvious separation was found.

4 Conclusions

Both computational diagnostics and clinical class discovery using microarray
gene expression profiling are established fields in clinical research. Currently,
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however, the importance of microarray studies is limited to basic research,
while there is little impact on therapeutical decision making. Some reasons
for this are discussed in Ref. [97].

Important obstacles for large enough and sufficiently focused microarray
studies include stringent planning of unified protocols and procedures, ac-
quisition and selection of patient material, appropriate logistics as well as
financial support. The need for many patients to conduct a decent clinical
study often implies that material from several hospitals must be used. Such
complex collaborations, however, enforce meticulous planning to ensure ho-
mogeneous procedures as well as efficient logistics to make sure that probes
are handled quickly and reliably. Finally, such studies are expensive in labor
and material, given that several hundreds of patients are to be enrolled to
provide clinically relevant conclusions.

Furthermore, findings based on gene expression profiling need, as any
other clinical procedures do, external validation. With increasing commercial
interest, however, the technology is likely to find its way into medical routine.
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Classification of Genes
Jörg Rahnenführer and Thomas Lengauer

1 Introduction

Microarray experiments provide simultaneous measurements of transcript
levels of a large number of genes in a certain tissue and cellular condition.
The potential impact of this technology on our health is twofold. It has been
demonstrated repeatedly that expression patterns of samples belonging to
different patients can be used for classifying these samples into distinguish-
able groups. This process can generate disease-specific expression profiles
that potentially provide improved molecular diagnosis (see Chapter 26 for
a detailed description).

The second option is to draw from a set of microarray experiments the
expression patterns of single genes across different samples, and analyze and
classify the resulting expression level trajectories. The goal then is to elucidate
the role of specific genes in the disease process. The two main objectives of this
approach are (i) to assign a function to previously unannotated genes and (ii)
to group genes into functionally related groups – a concept that generalizes
the notion of a molecular pathway or network. Grouping genes is much
more difficult than grouping samples since, typically, the number of genes
is considerably larger than the number of samples which result from different
experiments. In many cases, assigning molecular function to genes just on
the basis of expression data is hopeless since learning about the differences
between a large number of genes based on very few experiments is an ill-
conditioned problem.

In addition, prediction of gene function based on expression profiles is
challenging from a biological point of view. The function of a gene is not
entirely encoded in expression patterns at the mRNA level, but is also in-
fluenced by translation efficiency, post-translational modifications, and other
cellular mechanisms. Therefore, sophisticated mathematical models are rarely
suitable and typically not worthwhile computing.

Nevertheless, it is accepted that similar expression patterns of two genes
across a sizeable number of experiments can be a clue to their functional
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relatedness. Increasing the diversity of the set of experiments can enhance
the explanatory power of gene comparisons based on coregulation. In early
studies, clustering algorithms were used to group genes based on their ex-
pression trajectories, following the approach presented in a seminal paper by
Eisen and coworkers [19].

Soon the limitations of this approach became evident [32]. Also, the even
more challenging goal of inferring genetic networks from expression data
alone turned out to be too ambitious [26]. Instead, a more promising idea
was increasingly adopted: in order to construct more complex and reliable
functional models, gene expression data were supplemented with additional
biological information, such as chromosomal location data [55] and shared
motifs in the promoters of similarly regulated genes [42, 48, 67, 69, 74]. Coex-
pressed genes that share functional sites in their upstream regulatory regions
are expected to be under similar regulatory regimes and thus to share a func-
tional relationship. Subsequently, explicit models of the involved regulators
have been developed [57, 58] (see also Chapter 21).

Another procedure which is different, in principle, but also effective, is to
use the supplementary biological data as a starting point and pursue a more
hypothesis-driven approach. Given predefined sets of genes that are already
known to share the same functional context, one compares a list of genes
identified from a microarray study with these a priori groups. As functional
gene sets, Gene Ontology (GO) terms [1, 4, 16, 17], metabolic pathways [50, 53,
76], and protein interaction data [29, 56] have been used, for example. In this
setup, single unannotated genes can be tested against the predefined func-
tional groups, transforming the unsupervised into a supervised classification
problem.

In general, the difference between unsupervised and supervised learning is
that in unsupervised learning there is no a priori output available, whereas in
supervised learning, training data are labeled with outputs that are supposed
to be learned. In Section 2, we give an introduction to gene classification
against the background of this important discrimination. In Section 3, un-
supervised methods for grouping genes from expression data are discussed
in detail. In Section 4, the supervised approach is presented, giving a detailed
description of methods for predicting gene function from expression data.

2 Overview of Gene Classification Tasks

From a methodical viewpoint, classifying gene probes can be divided into two
major tasks, i.e. class discovery and class prediction. Class discovery makes
use of unsupervised learning methods like clustering. Class prediction is
applied in a supervised setting, where certain gene groups, whose functional
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context is known or presumed, are given in advance and single genes have to
be classified to one or several of these groups. The knowledge of functional
class labels for a considerable number of genes enables the assignment of
unknown cDNA sequences to one of the labeled classes. We briefly describe
the ideas of both approaches.

2.1 Grouping Genes without Additional Information

To date, the function of the majority of the genes on a microarray with
genome-wide measurements is not known yet. Thus, addressing the unsu-
pervised learning problem, in which one lacks gene class labels, will continue
to be a relevant task for some time to come. One major objective is to partition
a set of genes into new, previously unknown functional classes on the basis
of their expression patterns across a number of samples. In this context, it is
important to understand and account for the difference between supervised
learning and unsupervised learning. If class labels are unknown, it is difficult
to ascertain the validity of inferences drawn from the obtained results – a
major characteristic of unsupervised learning. Cluster analysis as the most
prominent approach in this situation attempts to find regions that contain
modes of the underlying data distribution. The aim is to group the genes
into subsets such that those within a cluster are more closely related, in some
sense derived from the expression patterns, than those belonging to different
clusters. When generating the clustering, one has to deliberately make two
choices, i.e. which notion of similarity to use when scoring a pair of genes
and which clustering algorithm to apply for grouping genes according to this
similarity measure.

The analysis of expression data has not reached maturity yet. No com-
monly accepted stochastic data models for gene expression measurements
exist. Therefore, in general, simple interpretable methods are preferred over
more complex algorithms. Unsupervised methods can be used for generating
new hypotheses from expression data that afterwards can be verified with
other methods from molecular biology.

2.2 Functional Predictions

The major principle of unsupervised learning is to first cluster genes into
groups and then assume that genes belonging to the same cluster share some
biological function, e.g. in a disease process. However, researchers are often
explicitly interested in inferring the function of specific unannotated genes.
In this case a more promising approach is to incorporate a priori knowledge
about the function of already annotated genes in the analysis. A disadvantage
of this supervised learning approach is that the quality of the annotations is
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often low, such that class labels referring to biological functions are not always
reliable.

The prospects can be improved by integrating other biological data into the
models and predictions. Various additional sources of information have been
used. The most prominent examples are shared motifs in the promoters of
genes, joint membership to a metabolic or regulatory pathway, and known
interactions between the corresponding proteins.

The idea to combine different data types was further established in another
approach with a different philosophy. Here, a set of genes known to be in a
functional context is treated as a unit. By analyzing the expression levels of
such a group of genes in concert, statistical models can be introduced. Based
on this model, the statistical significance of a gene group is an indication
that the function common to the genes plays some role in the underlying
experiment, e.g. in the analyzed disease process. Moreover, in a second step
the statistical model can be used to quantify the probability of other genes to
belong to this gene group.

3 Grouping Genes on the Basis of Expression Data

3.1 Cluster Analysis

Many existing clustering algorithms have been proposed and new methods
have been developed specifically for grouping genes based on expression
values. For a general introduction to cluster analysis, an established statistical
discipline, see Ref. [33]. A recent extensive review on clustering algorithms
applied to gene expression data has been presented in Ref. [3]. For grouping
genes into classes, one first has to define a measure for the similarity or dis-
tance, respectively, of two genes. Then a clustering algorithm has to be chosen.
Different combinations of similarity measure and clustering scheme can lead
to substantially different results. Thus the analysis has to be performed with
care. In the following the basics of the most widely used methods as well as a
few clustering algorithms specifically developed for the analysis of expression
data are described.

3.1.1 Similarity Measures

In microarray research, the most popular measures for comparing gene ex-
pression trajectories are the Pearson correlation coefficient and the Euclidean
distance. Given two genes with corresponding expression vectors x and y
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over p different samples, the correlation distance is defined as:

d(x, y) = 1− ρxy = 1− ∑
p
i=1(xi − x̄) (yi − ȳ)(

∑
p
i=1(xi − x̄)2

)1/2 (
∑

p
i=1(yi − ȳ)2

)1/2 .

Correlation measures the linear dependence between two vectors, here the
vector of expression levels for two genes. The measure assigns high similarity
values if the two genes exhibit a joint trend across the samples. Thus gene
pairs with different means and variances can also receive small distances –
an often desired feature in the analysis of gene expression data. Sometimes it
is plausible that pairs of genes with opposite trends also belong to the same
biological process, e.g. if upregulation of one gene causes the simultaneous
downregulation of the other gene. In this case the correlation distance can
be modified to d(x, y) = 1 − |ρxy|. In contrast, when using the Euclidean
distance:

d(x, y) =

√√√√ p

∑
i=1

(xi − yi)2,

two genes are only close if they have similar values for all samples. Note that
after standardizing genes with respect to mean and variance across samples,
correlation and Euclidean distance coincide up to a constant factor. It has
been demonstrated that the choice of the similarity measure has a substantial
influence on the final results [53, 54]. Various measures developed in other
research fields could be reasonable alternatives, but have been rarely explored
in microarray re search. The Manhattan distance:

d(x, y) =
p

∑
i=1
|xi − yi|,

for example, is the sum of absolute differences of expression values and can
be used as a robust version of the Euclidean distance. This measure is less
sensitive to outliers in the data.

3.1.2 Hierarchical Clustering Algorithms

The initial influential paper on analyzing results obtained from expression
experiments describes the application of a hierarchical clustering algorithm
for grouping genes in the budding yeast Saccharomyces cerevisiae [19]. In this
paper, for the first time, it was demonstrated that gene clusters obtained from
expression data contain genes with known similar function. Hierarchical
clustering immediately became popular in the field due to two major advan-
tages. First, the large number of genes can pose a runtime problem to more
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complicated clustering algorithms. Second, hierarchical clustering provides a
convenient visualization – a so-called dendrogram.

The basic idea of hierarchical clustering is the generation of a hierarchy
of nested clusterings, with the number of clusters ranging from one to the
number of genes. Both agglomerative and divisive hierarchical clustering
exist. In divisive clustering, iteratively best possible ways of splitting a cluster
into two clusters are calculated. In the more popular agglomerative clustering,
initially, each gene is assigned to its own cluster. Then, iteratively the two most
similar clusters are joined until only a single cluster remains. Two clusters that
are joined represent a new node of the dendrogram, and new dissimilarities
between this node and the remaining clusters are calculated. In average
linkage hierarchical clustering, the distance between two clusters is defined
as the average distance between genes in the two clusters; in single linkage,
as the smallest pairwise distance; in complete linkage, as the largest pairwise
distance.

The dendrogram is an intuitive visualization of the hierarchical clustering
process. It depicts the level of similarity at which two clusters are merged.
A line connects clusters when they are joined. The height of this line denotes
the distance between the clusters. Typically, the cluster with smaller variation,
e.g. measured by within-cluster variance, is plotted on the left side, but other
procedures exist (see Section 4.5 in Ref. [62]).

Figure 1 shows a dendrogram calculated from gene expression measure-
ments for patients with acute lymphoblastic leukemia (ALL) [11]. For the 20
genes with largest variance across samples and for replicates of these genes on
the array, the plot shows the result of average linkage hierarchical clustering
using Euclidean distance.

It turns out that even replicates of the same gene are not always put in the
same cluster, e.g. the three copies of the gene HLA-DQB1. The third (right-
most) replicate is joined with the other two replicates only in a late step of the
(agglomerative) algorithm, although a calculation shows that its closest gene
with respect to Euclidean distance actually is one of the other two copies. The
reason for this discrepancy is the local iterative nature of the algorithm that
can lead to low-quality clustering results on a global level.

In the list of genes arranged corresponding to the order in the dendrogram,
the three replicates of HLA-DQB1 are neighbors, which can be misleading
as the three genes do not belong to the same cluster. This underlines the
need for a careful interpretation and evaluation of the results. An important
disadvantage of hierarchical clustering is the information loss due to the
enforcement of a tree structure. However, despite all these pitfalls, due to the
large number of genes, subgroups of genes with a high degree of coregulation
often exist. Hierarchical clustering can be particularly useful for identifying
such compact subgroups.
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Figure 1 Average linkage hierarchical clustering of 20 high-variance
genes and their replicates using Euclidean distance. Gene expression
measurements are obtained from 128 patients with ALL [11].

Figure 2 shows a heatmap of the above analyzed ALL data set. A heatmap
is a popular visualization for microarray data, providing a false color image
of the expression values with a dendrogram added to the left side and to the
top. Typically, rows correspond to genes and columns to samples.

3.1.3 Partitioning Clustering Algorithms

Partitioning algorithms seek to minimize the within-group dissimilarity
and/or to maximize the between-group dissimilarity for a fixed number k
of clusters. Often small heterogeneity within clusters is associated implicitly
with a clear separation between clusters. In contrast to hierarchical clustering,
the resulting clusters for different numbers of k are typically not nested.

The most popular and widely used partitioning method is k-means. This
algorithm aims at minimizing the sum of within-cluster variances:

WSS =
n

∑
i=1

min
j=1...k

d(xi, mk). (1)
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Figure 2 Heatmap for gene expression measurements from 128
patients with ALL [11].

Here, the first sum is taken over all genes, m1, . . . , mk are k cluster midpoints
and d(·, ·) is the squared Euclidean distance. k-means starts with a random
sample of k different objects as initial midpoints. Then it alternates between
assigning all objects to the closest of the k midpoints with respect to Euclidean
distance and calculating k new midpoints as averages of the newly assigned
clusters. The midpoints are also called centroids. It is guaranteed that the
algorithm converges to a local optimum. Since different starting solutions lead
to different final solutions, it is advisable to run the algorithm several times
and to memorize the result with minimal sum of within-cluster variances.
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Several clustering algorithms can be regarded as generalizations or modifi-
cations of k-means. For gene expression data, especially Partitioning Around
Medoids (PAM [34]) and self organizing maps (SOMs [37,64]) have been used.

PAM [34] has the advantage that it allows for an arbitrary dissimilarity
matrix as input and thus is not restricted to Euclidean distance. Another
important difference to k-means is that data points themselves serve as so-
called cluster prototypes. Given pairwise dissimilarities, PAM also aims at
minimizing an objective function, i.e. the sum (over all genes) of distances to
the closest of k prototypes, see Eq. (1). In the BUILD phase, initial prototypes
are chosen. Then, in the SWAP phase, iteratively the objective function is
locally optimized by replacing one of the prototypes with another data point
such that the objective function is decreased most. The usefulness for cluster-
ing microarray data is due to the combination of the optimization principle of
k-means and the flexibility of hierarchical clustering algorithms regarding the
choice of the gene similarity measure. A disadvantage compared to k-means
can be the increased running time.

In a SOM [37] data are represented by k cluster prototypes that are sub-
ject to some topological restriction. The prototypes are arranged in a low-
dimensional structure, typically a one- or two-dimensional array, such that
every prototype has a set of neighbors. Again, a random starting solution is
improved iteratively. Per iteration, one data point is picked at random and
all prototypes are moved into the direction of this data point. The amount of
change depends on the initial neighborhood structure of the prototypes. The
prototype that is closest to the selected data point is the winner and is moved
by the largest distance. The further a prototype is from the winner in the
neighborhood topology, the smaller is its movement. The amount of change
decreases with the number of iteration steps.

SOMs were successfully applied to group genes into biologically relevant
clusters suggesting novel hypotheses about hematopoietic differentiation [64].
They are especially appealing for analyzing gene expression data since the
topological structure between the prototypes provides information about rela-
tionships between neighboring clusters. On the other hand, an interpretation
based on the assumption of a meaningful topology between cluster prototypes
can easily be misleading. Another disadvantage of SOMs is the large number
of parameters characteristic for neural networks, such that sensible parameter
tuning requires some previous experience.

3.1.4 Model-based Clustering

Model-based clustering is based on probability models. It is assumed that
the data are generated by a mixture of distributions. The most popular
model is a Gaussian mixture model, in which the underlying distributions are
multivariate normal distributions. The task of selecting a clustering algorithm
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is then reduced to fitting parameters or, more general, to a model selection
problem. For the Gaussian mixture model, an Expectation-Maximization
(EM) algorithm is used to estimate the means and the covariance matrices
of the distributions that represent the clusters. The classical EM algorithm
for learning Gaussian mixture models can be regarded as a soft version of
k-means [24]. k-means assigns each sample to exactly one of the k clusters,
whereas in the EM algorithm samples can be assigned to more than one model
component. The probability of a sample to belong to a specific component
is called responsibility – for a given sample all responsibilities thus add up
to one. Both on real and on simulated gene expression data, model-based
clustering was compared with competing clustering approaches [71]. The al-
gorithm based on the mixture model turned out to have superior performance
on selected synthetic data sets and to be competitive on real gene expression
data.

The assumption that cluster analysis applied to gene expression data pro-
duces biologically related gene groups was tested in a comparative study
using various clustering algorithms and gene expression data sets of different
sizes [73]. The quality was measured by the fraction of gene pairs from the
same clusters that share at least one known common transcription factor,
making use of various transcription factor databases. On yeast data it was
shown that at least 50–100 experiments are needed for identifying coregulated
genes and even then gene pairs that do not share a common transcription
factor are often more likely to be clustered together than coregulated genes.
In this study the model-based clustering algorithm outperformed the other
algorithms in terms of assigning coregulated genes to the same clusters.

In the presence of experimental replicates of genes on a microarray, the
probabilistic framework of mixture models can be used for modeling between-
replicates variability [44]. It was shown that for the identification of coex-
pressed genes improvements in precision can be achieved with as few as two
replicates when the between-replicates variability is high.

3.1.5 Biclustering Algorithms

It is often a reasonable assumption that functionally related genes are not coex-
pressed in all samples of a study, but only in a subset of the analyzed samples.
Vice versa, it is not advisable either to consider all genes when discriminating
samples via expression measurements (see Chapter 26). This insight stimu-
lated the development of so-called two-way clustering algorithms, sometimes
also called biclustering algorithms, referring to the simultaneous clustering
of genes and selection of samples. For a recent overview over biclustering
algorithms see [47]. The first algorithm developed for gene expression data
based on this principle was an efficient node-deletion algorithm for find-
ing submatrices in the gene expression data with low mean-squared residue
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scores [10]. Another advantage of this method is that genes can belong to
several clusters and thus represent multiple functions.

Progressing along this road, a graph-theoretic algorithm coupled with sta-
tistical modeling was introduced [65]. Here, both genes and samples are
represented as nodes of a bipartite graph. This means that every gene is
connected with every sample. Gene–sample pairs are associated with weights
depending on the expression level of the respective gene in the respective
sample. The algorithm determines the heaviest induced subgraph (measured
in terms of the sum of edge weights) in polynomial time. It was shown that
within the presented probabilistic framework it is guaranteed that the most
significant biclusters are found. Moreover, using cross-validation techniques
(see Chapter 26) it was demonstrated that in comparison to classical one-
way clustering methods, specificity is increased when assigning gene function
based on expression data.

A statistical framework for the simultaneous clustering of genes and sam-
ples was proposed [52] in which classical properties of clustering methods,
such as consistency, can be analyzed. For a two-way clustering algorithm, a
so-called simultaneous clustering parameter is defined. For example, this pa-
rameter can be the set of all cluster labels for genes and samples, respectively,
that are obtained by a biclustering algorithm. The parameter can therefore
be defined as a function of the true data generating distribution. An estimate
for the parameter is obtained by applying the same function to the empirical
distribution function, i.e. to the data set under investigation. Methods for
estimating the distribution of the simultaneous clustering parameter are in-
troduced. It is shown that a large number of clustering algorithms including
hierarchical clustering fit this framework.

3.2 Heuristic Gene Grouping of Expression Data

The number of clustering algorithms that were developed in a variety of
research areas is enormous. Still the specific structure of microarray data pro-
voked the development of yet additional algorithms. Since the identification
of gene groups with similar expression patterns in a typically small number
of samples is of particular interest, a central idea is to only search for gene
groups with notably low heterogeneity.

3.2.1 CLICK Algorithm

The CLICK algorithm (CLuster Identification via Connectivity Kernels) [59]
combines probabilistic and graph-theoretic aspects. The goal is to identify
groups of genes that have a high likelihood to belong to the same cluster.
The input of the algorithm consists of pairwise similarities of genes. The
data are represented as a graph where genes are vertices and edge weights
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are derived from the gene similarities. The CLICK algorithm consists of two
steps. First, initial groups of genes with large pairwise similarities are iden-
tified. The algorithm recursively splits subgraphs until a stopping criterion
regarding minimal gene similarity is reached or the subgraph is a singleton.
In the second step, the identified gene groups are expanded to final clusters.
The output comprises potential clusters with high gene similarity as well as
singletons.

In a comparative study the CLICK algorithm outperformed k-means, hier-
archical clustering and SOMs on a variety of gene expression data sets with
respect to several cluster validity measures. Furthermore, it was shown that
common regulatory motifs occurring in the upstream regions of coregulated
genes could be identified for the resulting clusters. The suitability of the
CLICK algorithm is due to its stringent criterion of within-cluster similarity,
which is shown to be crucial for the relevance of inferred gene function.

3.2.2 CAST

CAST (Cluster Affinity Search Technique) [5] is targeted to the use on large
data sets and, therefore, is also suitable for clustering gene expression data.
The input of CAST consists of a gene similarity matrix and a threshold param-
eter. The clusters are generated iteratively. Genes are added to a cluster as long
as the average similarity in the cluster exceeds the predefined threshold. If no
more genes fulfill this criterion, a new cluster is opened. Afterwards, genes
can still be added or re moved from clusters in order to further increase the
average similarity. The algorithm is similar to hierarchical clustering in spirit,
resulting in a short runtime, but the reassignment step provides additional
flexibility.

3.2.3 Gene shaving

In a similar sense, gene shaving [25] aims at the identification of several small
and possibly overlapping groups of genes with small between-gene variance
and large between-sample variance. Principal components are orthogonal
directions calculated from a data set. The first principal component is the
direction in which the data have their highest variance, the second principal
component indicates highest variance among all directions orthogonal to the
first component and so on. In gene shaving, iteratively, clusters are gener-
ated using principal components and discarding a fraction of genes whose
expression vectors have low similarity with the principal component. Both
an unsupervised and a supervised version of gene shaving exist. In the
supervised version, known properties of the genes are included in the process.
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4 Predicting Gene Function from Expression Data

In order to produce high-quality functional predictions for genes from expres-
sion data, at least two types of information are required. First, a vocabulary
of functional attributes is needed. There have been several efforts to provide
meaningful directories, the most popular currently being the Gene Ontology
(GO) [2] (see Chapter 29 for a detailed description). GO is a controlled
vocabulary that provides structured networks of defined terms for describing
attributes of gene products. Second, given such a vocabulary, one needs
a considerable number of genes with annotations from that vocabulary. If
both requirements are met, the supervised learning problem of assigning
function to unannotated genes can be tackled by a multitude of statistical
and algorithmic classification methods. If the expression pattern of a specific
gene is similar to the patterns of a group of genes that are annotated with the
same function, one can expect the gene to be associated with this function, as
well. Another extensive source for annotations is MIPS [45] – a collection of
automatically generated and manually annotated genome-specific databases
and systematic classification schemes for the functional annotation of protein
sequences.

The difficulties in predicting gene function from expression data have been
pointed out repeatedly [35, 70]. One problem is the influence of events that
happen after transcription, e.g. post-translational modifications. However,
additional annotation information can help to improve the reliability of pre-
dictions. By combining the results of clustering algorithms applied to yeast
genes with predefined functional annotations, useful hypotheses about pro-
tein function could be generated [70]. A variety of clustering algorithms with
different parameter settings were compared regarding their ability to group
coexpressed genes. Among others, hierarchical clustering, k-means and SOMs
were applied, resulting in a large number of possibly overlapping clusters.
Then, annotations and confidence values were assigned to each cluster using
the hypergeometric distribution. Clusters with significant confidence values
are expected to be biologically relevant. Using this procedure, potential new
members of many existing functional categories involved in transcription,
processing and transport of noncoding RNA molecules were found.

Even in the metabolic networks of well-studied organisms, for some reac-
tions the corresponding enzymes have not been identified yet. In an effort to
identify genes encoding such enzymes, coexpression of genes representing
enzymes in close topological neighborhood within the metabolic network
was used to generate predictions from expression data [35]. The method
was tested by predicting metabolic enzyme-encoding genes in S. cerevisiae for
known cases. The limitations of the approach became manifest by the negligi-
ble number of correct predictions. Only 20% of all known genes scored within
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the top 50 out of 5594 candidates for their respective enzymatic function.
However, this number increased to 70% for those genes whose expression
level had been significantly perturbed across samples. This underlines the
need for considerable variation between samples.

4.1 Classification methods

For the supervised classification problem of assigning gene function in the
presence of functional labels for a large training set of genes, many statistical
and data-mining techniques are available. We present prototypic cases in
which genes with common function could be identified.

4.1.1 Support Vector Machines (SVMs)

SVMs provide a supervised learning method that has been applied success-
fully to both classification and regression problems in many research areas.
The basic classification SVM creates a maximum-margin hyperplane that lies
in a transformed input space. Given training data points with binary labels,
the maximum-margin hyperplane splits the positive and negative training
points, such that the margin, i.e. the distance of the closest data point to the
hyperplane, is maximized (see Chapter 26 for a more detailed introduction to
SVMs).

SVMs have achieved high prediction accuracy in classifying samples based
on expression data, partly due to their effective dimensionality reduction.
When classifying genes, the small number of samples is typically a handicap.
However, other classification methods also suffer from this dimensionality
problem. The first study on gene classification that compared SVMs with
other supervised learning methods, including decision trees, Parzen windows
and Fisher’s linear discriminant analysis [9], was based on gene expression
data from 79 samples and 2467 yeast genes with MIPS [45] annotations. Sev-
eral SVMs using different similarity metrics were tested. In the study it was
demonstrated that SVMs outperform the competitors with respect to correctly
classifying genes to gene sets with common annotated function.

4.1.2 Rule-based Models

In order to increase interpretability, predictive rule models have been intro-
duced for the functional classification of genes [27, 28]. The trained model
defines relationships between gene expression profiles and the involvement
of genes in biological processes. For example, if–then rules are used to define
minimal expression profile properties needed to classify a gene to a specific
biological process. The approach is supervised since functional classes of
unclassified genes are learned using GO [2] annotations of classified genes.



4 Predicting Gene Function from Expression Data 1007

First, biologically meaningful features are extracted from the expression data,
e.g. expression increase or decrease over time in a time series experiment.
Then, a rule model described in terms of these features is induced from the
expression data. Before classifying unknown genes, the model is fine-turned
using cross-validation on subsets of classified genes. On human fibroblast
serum response expression data [32], both the predictive quality of the model
and the interpretability of the extracted rules have been demonstrated.

This method provided high-precision GO biological process classifications
for 211 of the 213 uncharacterized genes in the data set [38]. An advantage of
the model is its capability of assigning genes to multiple biological processes.
The model is flexible as it allows genes in the same functional class to exhibit
a variety of expression profiles including inverse coregulation. Also, for
characterized genes, new roles in biological processes were hypothesized
by the algorithm and confirmed by literature search. For many previously
uncharacterized genes the predicted biological processes were in agreement
with homology information.

Another data-mining algorithm for predicting gene function from expres-
sion data is based on PolyFARM (Poly-machine First-order Association Rule
Mining) – a program that finds first-order associations [12]. For the 40% of
uncharacterized genes in the yeast S. cerevisiae, MIPS [45] annotations have
been predicted. Again, an advantage is the informativeness of the induced
rules. For many cases, agreement with biological knowledge can be observed.

4.2 Supplementing Expression Data with Additional Biological Information

In all classification methods described above the same principle is used to
incorporate a priori biological knowledge in gene function prediction. A set
of functional classes containing characterized genes is used to predict the
membership of uncharacterized genes. In this sense additional biological
knowledge enters only into the classification algorithm, but the unannotated
genes are not augmented with other biological data. In Chapter 35, informa-
tion integration for protein function prediction is described in more detail.
Here, we focus on methods in which gene expression data play an important
role.

One has to deliberately differentiate between two ideas for more efficiently
supplementing expression data with additional biological information. In a
more comprehensive classification approach, uncharacterized genes are not
only associated with labeled genes, but also with other data like sequence
or pathway information. The second idea is different in philosophy. The
goal is to relate biological terms or functions to the underlying microarray
experiments instead of characterizing single genes. For groups of genes that
are associated with the same function a joint score is calculated from the
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expression data. If this score is significant in a statistical sense, the biological
function is assumed to be relevant for the underlying experiment. In this
way more subtle signals can be detected by combining small coordinated
expression changes on the single-gene level to a significant change on the
gene-set level.

Both ideas are different from the aim of inferring gene function by elu-
cidating new pathways or parts thereof directly from expression data [15,
23, 29, 51, 66] (see also Chapter 21 on inferring gene regulation networks).
Prominent examples are reverse engineering of genetic networks using dis-
crete Boolean networks [15], Bayesian networks [23, 51], a model of a cellular
pathway using expression data, quantitative proteomics, databases of known
physical interactions [29], and a framework supporting the incorporation
of biologically motivated network constraints and rules [66]. Due to the
dimensionality problem with many genes and few experiments, the network
reconstruction from expression data is almost infeasible [26]. In simulation
experiments with dynamic Bayesian networks only local structures of the
network could be recovered, but the inferred global network was meaningless.
The number of spurious interactions substantially outweighed the number of
true interactions.

An extension is an algorithm that identifies modules of coregulated genes,
their regulators and the conditions under which regulation occurs, generating
testable hypotheses [57, 58]. Also, systematic transcriptional perturbations
can be used to construct better models of regulatory interactions in small
networks with just few genes. The major regulatory genes in a nine-gene
subnetwork of the SOS pathway in Escherichia coli were correctly identified
with this approach [21].

A general framework for integrating external data sources with expression
data is the Signature Algorithm [30, 31]. This approach can be viewed as a
biclustering algorithm that is enhanced by additional biological knowledge.
The standard algorithm [30] requires as input a set of genes that are expected
to be coregulated in a set of experimental conditions, e.g. due to common
functional annotation. First, the conditions that induce the highest average
expression changes in the input group of genes are selected. Then, all genes
highly expressed in these conditions are identified. The output set of genes
contains a coregulated subset of the input genes, as well as correponding
experimental conditions and additional genes with consistent profiles. The
Iterative Signature Algorithm [31] is an extension that does not require a
biologically motivated gene set. The two steps of the basic algorithm are
applied iteratively until convergence. This procedure yields a self-consistent
module, i.e. the resulting genes are most coherently coexpressed over the
resulting conditions and the resulting conditions induce the most coherent
expression of the resulting genes.
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4.2.1 Adding Sequence Data

The most important and well-studied source for understanding gene function
is sequence data. Combining chromosomal location and gene expression
data, binding of gene-specific transcription activators in yeast was monitored
[55]. Here, genes were identified whose expression is directly controlled
by the transcription factors Gal4 and Ste12, as cells respond to changes in
carbon source and mating pheromone. The identified pathways were jointly
regulated by each of the two activators, and previously unknown functions
for Gal4 and Ste12 were revealed. Using SVMs, gene expression profiles
and phylogenetic whole-genome sequence comparisons were combined in an
algorithm for function prediction [50] (see Chapter 35 for details).

Another relevant source is provided by the promoters of the investigated
genes. Many studies have been dedicated to the goal of finding putative tran-
scription factor binding sites in the upstream sequences of similarly expressed
genes [48]. Correlations between known binding site motifs in the upstream
regions of all genes in S. cerevisiae and gene expression changes in various
gene-disruption experiments were uncovered. Several of these correlations
turned out to be consistent with existing biological knowledge. Even without
significant sequence similarity of the involved genes, on the basis of their
common promoter structures gene expression data are capable of elucidating
functional features of genes [69].

An ambitious task is to identify transcriptional modules, sets of genes that
are coregulated in a set of experiments, through a common motif profile [58].
The motif profile specifies the relevance of different sequence motifs to the
module. After an initial gene-clustering step, a sophisticated application of an
EM algorithm was used to iteratively refine both the assignment of genes to
the modules and the motif profile itself, in order to best explain the expression
data as a function of transcriptional motifs. An evaluation of this method
on two S. cerevisiae expression data sets demonstrated the ability to recover
known motifs and to generate biologically coherent modules.

4.2.2 Adding Gene Ontology Data

GO [2] provides a vocabulary of gene product attributes, together with anno-
tations of a large number of genes to these attributes. For every annotation
of a gene product with a GO term, the source of this annotation and an
evidence code are provided. The source may be a literature reference, another
database or a computational analysis. The evidence is a categorical variable
that indicates what kind of evidence is found in the cited source to support
the corresponding annotation. However, for a specific gene and attribute,
the crucial information is whether the gene is associated with this attribute.
This information is binary and no quantitative values can be obtained. Thus,
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the kind of data provided by GO annotations is particularly suitable for the
hypotheses-based approach in which functional gene sets are analyzed as a
unity.

The approach applied most frequently in this field uses enrichment meth-
ods. In this approach the enrichment of members of a functional gene set
among the top-ranking genes in a gene expression study is evaluated. Onto-
Express [17] constructs functional profiles based on GO terms for the follow-
ing categories: biochemical function, biological process, cellular role, cellular
component, molecular function, and chromosome location. The starting point
is a list of differentially expressed genes in a cellular condition under study.
For a given set of functionally related genes, the significance of the number of
genes contained in this list is calculated using the hypergeometric distribution
or χ2-type tests. Similar implementations of the same idea include FatiGO [1],
GOstat [4], GoMiner [75] and a set of Perl modules called GO-TermFinder [6];
for an overview of current tools, see Ref. [36]. Most of these methods use
Fisher’s exact test for the significance calculation. We briefly describe the
underlying probabilistic framework.

The statistical principle common to all scoring methods is based on the anal-
ysis of a 2× 2 contingency table. Let sigGenes be the set of genes identified in
a microarray experiment, e.g. differentially expressed genes, and let sigGenes
be all other genes on the microarray. Let f uncGenes be a set of genes G with
a known common function and f uncGenes the complement with respect to
the set of all genes, denoted by allGenes. Table 1 counts numbers of genes
according to their membership to sigGenes and to f uncGenes.

Table 1 Contingency table of genes grouped according to significance in an expression study

and to membership to a functional group G.

Significant genes Not significant genes Sum

Genes in G |sigGenes ∩ funcGenes| |sigGenes ∩ funcGenes| |funcGenes|
Genes in G |sigGenes ∩ funcGenes| |sigGenes ∩ funcGenes| |funcGenes|
Sum |sigGenes| |sigGenes| |allGenes|

Assume that a particular gene is known to have the function attributed
to the gene group G. Such a gene is a member of f uncGenes. The question
then is if this gene has an increased likelihood of being a significant gene, e.g.
with respect to differential expression. The significance of the dependence
between the groups f uncGenes and sigGenes can be quantified using Fisher’s
exact test. This test computes a p-value based on the contingency table shown
in Table 1. The p-value denotes the probability of obtaining by chance at
least the same amount of enrichment with significant genes as observed in
the data. Lower p-values thus indicate stronger dependencies. Other tests
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based on the contingency table have been proposed [16]. After calculating
the percentages of significant genes in allGenes and in G, respectively, z-
scores are used to determine the significance of enrichment. From a statistical
viewpoint, all these tests implicitly use random gene label assignments as the
null hypothesis.

An extension of this idea is the iterative Group Analysis (iGA) that also
scores functional groups like GO classes [8]. First, an ordered list of genes
is obtained from the expression data. In contrast to the methods described
above, no fixed cutoff in this list is predetermined for dividing the genes
into interesting and uninteresting ones. Instead the algorithm moves along
the list, taking into account all possible cutoffs, and calculates a p-value of
enrichment for every cutoff. Then, the cutoff that yields the minimal p-value
is determined and assigned to the GO group. Due to the adaptive selection of
the cutoff, the minimal p-value itself is not valid in a statistical sense. Thus, the
significance of enrichment is determined by comparing the observed minimal
p-value with values obtained by applying the same algorithm to random gene
groups G. The method has been extended to a graph-based group analysis [7].
For functional evidence represented in the form of graphs, e.g. metabolic or
signaling pathways, subgraphs showing the most significant patterns of gene
expression are identified.

The same cutoff optimization principle has been used to test a gene set for
association with disease phenotype [46]. All genes are ranked according to
gene expression differences in the phenotypes. The optimal cutoff in this
list with respect to gene enrichment of a functional group G is obtained by
maximizing a Kolmogorov–Smirnov running sum statistic. The significance
is determined by permuting the labels for the diagnostic assignments.

GO provides a graph structure containing parent–child relationships be-
tween functional classes. If a specific functional attribute is a generalization
of another attribute, then the genes in the more specific GO class form a
subset of the genes in the other GO class. Efforts have been made to also
integrate the topology of the GO graph into the significance calculation [41].
A graph-theoretic algorithm extracts common biological attributes of a set of
interesting genes G in order to find the representative biological meanings.
The biological significance of the group G then is assessed by defining a
distance function on the GO graph. If the biological attributes associated with
the genes in G are closer in GO distance, the biological interpretation is more
reliable.

4.2.3 Integrating Pathway Information

Metabolic pathways are sequences of metabolic reactions that are represented
by enzymes. In an initial attempt to score genes with respect to metabolic
pathways based on expression data, the glycolysis pathway was analyzed
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[76]. It turned out that it is not possible, in general, to assign single genes
to this pathway using only gene expression measurements. However, scoring
the set of genes associated to the pathway as a whole, in order to relate the
pathway to the underlying microarray experiment, turned out to be a promis-
ing alternative. Using time series data, the average correlation between pairs
of genes associated to the glycolysis pathway was shown to be significantly
large. This approach was extended by developing scoring functions based
both on coexpression and on estimated functional distance [22, 61].

In a general context, three different scores for the significance of gene groups
defined by existing annotation schemes have been introduced [49]. The first
score is based on the average correlation of the expression profiles in the gene
group, as in previous work [76]. The second score exploits the learnability of
a given classification of samples, i.e. the ability to discriminate given classes
of samples using only members of the gene group. The third score compares
single-gene t-test type of scores between gene class members and randomly
selected genes. The latter method thus can be interpreted as an enrichment
method. All methods were particularly applied to score metabolic pathways
(see Chapter 35 for more details).

A sound statistical framework for calculating the significance of coregula-
tion of genes has been presented in Ref. [53]. The ScorePAGE algorithm scores
changes in pathway activity from gene expression data with a nonparametric
permutation test. The algorithm was validated on two yeast gene expression
data sets with time series measurements. It was shown that the specific
measure for calculating coregulation, e.g. correlation or covariance, drasti-
cally influences the significance value. However, it is possible to adaptively
identify a suitable measure. In addition, two extensions targeted to metabolic
pathways were presented. To overcome the ambiguity of enzyme-to-gene
mappings for a fixed pathway, different algorithms to select the best-fitting
gene for a specific enzyme in a specific condition were introduced. It was
shown that these algorithms improve the coherence of gene clusters prede-
fined by metabolic pathways. Including information about pathway topology
in the significance score further improved the sensitivity of the method. A
comparison with the classical enrichment approach showed that ScorePAGE
detects more relevant pathways.

4.2.4 Combination of Multiple Data Types

When combining expression data with other biological data it is reasonable
not to restrict oneself to one additional data source. The main challenge for
methods that use multiple sources is to combine the information from differ-
ent data types in a balanced manner. In the following we describe methods
that include expression data in such an analysis. A more comprehensive and
detailed description of this kind of data integration is presented in Chapter 35.
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In an initial attempt proteins were grouped by correlated expression pat-
terns, correlated evolution based on phylogenetic profiles and patterns of
domain fusion in order to determine functional relationships in S. cerevisiae
[43]. For more than half of the 2557 (at that time) uncharacterized yeast
proteins, a function could be assigned through a link with a characterized
protein. This work represented initial evidence that general biochemical
functions of proteins can be inferred by associating proteins on the basis of
properties other than sequence homology.

It has been discussed how diverse large-scale data sets can be integrated to
generate complex probabilistic gene networks, with a focus on exploring how
these gene networks can contribute to an understanding of developmental
pathways [20]. A master network was described as the total set of possible
pairwise interactions between proteins encoded in a genome. Subsets of the
master network are, for example, physical interaction networks of different
cell types. Only a small subset of the interactions of the master network is
present in any cell or tissue at any time. Thus, the idea is to first analyze the
subnetworks that are important at different stages in development and to deal
with the master network only at a later stage.

Another example for merging several data sources is the generation of
a map of the transcriptional regulatory network in S. cerevisiae [74]. The
presented map comprised 7419 interactions that connect 180 transcription
factors with their target genes. Networks from transcription factor-binding
experiments were correlated with findings from expression data. It turned
out that the degree of coexpression between genes targeted by the same tran-
scription factors increases with the number of transcription factors. Moreover,
genes targeted by the same transcription factor often have similar cellular
functions. A plausible insight was that, in general, correlation is not the best
measure for coexpression between a transcription factor and its target, since
the regulatory response of the target gene is typically delayed.

The most advanced regulatory network model generated from expression
data identifies modules of coregulated genes, their regulators and the condi-
tions under which regulation occurs [57]. The method fits in a probabilistic
framework. With an EM algorithm genes are iteratively assigned to modules
and the regulation model is updated for the sets of genes assigned to the
modules. The result of the EM algorithm consists of testable hypotheses on
which regulators regulate which models under which conditions. Function-
ally coherent modules and their correct regulators were identified on yeast
data. The same idea was applied to identifying modules from expression
data and protein interaction data [56]. Here, a module is a pathway with the
two properties that genes are coregulated and the respective protein products
interact. Again, using an EM algorithm, both coherent functional groups and
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entire protein complexes were discovered. For an overview of the combina-
tion of expression data with protein interaction data, see also Chapter 31.

The most comprehensive approach that combined multiple data types for
predicting yeast protein functional classifications was based on SVMs [39, 40]
(see also Chapter 35). For each data type separately, a similarity function
between pairs of genes is defined. An advantage of the SVM framework
is that single similarities can be combined to one function in a straightfor-
ward way. The optimal combination minimizing a statistical loss function
can be computed efficiently. The method was applied to yeast genome-
wide measurements of amino acid sequences, hydropathy profiles, expression
data and known protein–protein interactions. In particular, the new method
outperformed any of the SVMs trained on one of the single data types, which
provides evidence that combining multiple data sources enhances gene func-
tion prediction.

5 Evaluation

The result of a method that classifies genes based on expression data is either
a set of gene groups or a list of annotations of single genes to such groups. In
both cases the results must be evaluated carefully due to inherent biological
noise in expression measurements. Every algorithmic or statistical estimation
process that does not account for the dependence of the estimating procedure
on the data introduces too much optimism in the estimated model [24]. This
effect is also called overfitting. Overfitting is a statistical property of estimation
methods that is independent of the underlying biological truth.

In general, two kinds of evaluation procedures are available. First, other
biological data or further biological experiments can be used to verify the
results. However, the use of a priori biological knowledge for the evaluation
also has disadvantages. In particular, the additional information could help in
the estimation process itself (see Section 4.2 about supplementing expression
data with other biological knowledge). On the other hand, the alternative
approach to carry out additional experiments after the estimation process can
be costly and time consuming.

The second option for the evaluation is to account for the optimism in the
estimation with the help of statistical methods (see Chapter 26 for details). The
most frequently applied method for eliminating optimism is cross-validation.
In cross-validation, a data set is randomly partitioned into several subsets.
Each of the subsets is used in turn as a test set, while the remaining subsets
are aggregated and used for the estimation process. On the test set, the quality
of the method can then be evaluated. An alternative is to correct for optimism
by applying model selection criteria. Here, a penalty for model complexity
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punishes models with large parameter spaces. Due to their flexibility, more
complex models would otherwise suffer from overfitting.

5.1 Assessing the Biological Relevance of Gene Groups

The biological relevance of gene groups obtained from clustering algorithms
has to be checked carefully. Any clustering procedure imposes some struc-
ture on the data and groups objects into clusters, no matter whether such
a structure is available in the data or not. Even if the clustering algorithm
maximizes an objective function, the significance of the resulting value is a
priori not clear. In general, one can analyze the relevance of gene groups by
comparing the results with those obtained in a controlled scenario, e.g. by
applying the method to data sets generated from models without the imposed
structure.

5.1.1 Validation of Clustering Results

For validating the results obtained from clustering algorithms, one can follow
three directions, using either external, internal or relative criteria. External
cluster indices provide measures for the comparison with an independently
drawn structure, for example based on other biological data. If such indepen-
dent class labels are available, the number of misclassifications of a clustering
algorithm, for example, can be computed by minimizing the number of dif-
ferent assignments to classes and clusters, respectively, when considering
all possible matchings of class labels with cluster labels. Internal criteria
assess the quality of a clustering algorithm based on the clustering itself. An
example for an internal cluster index is the value of an objective function
that is maximized by a clustering algorithm, like the sum of within-cluster
variances (Eq. 1) for k-means. Relative criteria compare the clustering result
with clusterings from the application of the same algorithm, but with different
parameter values, or with clusterings obtained with other algorithms.

For hierarchical clustering, the coherence of the clustering result can be
measured via the cophenetic distance. The cophenetic distance is induced by the
dendrogram and assigns to a pair of genes the distance at which the respective
clusters containing the two genes are merged for the first time. For validation,
the cophenetic distance matrix is compared to the original distance matrix
that was the basis of the hierarchical clustering. If both distance matrices are
similar, the clustering captures the true structure of the data.

The importance of a careful evaluation can be discussed in the context
of cell cycle genes identified by clustering expression measurements in S.
cerevisiae. In the original publication, periodicity and correlation algorithms
were applied to identify 800 genes that meet an objective minimum criterion
for cell cycle regulation [63]. The gene clusters were validated by analyzing
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genes for known and new promoter elements that turned out to contain in-
formation predictive of cell cycle regulation. Subsequently, explicit criteria for
synchronization and precise criteria for identifying gene expression patterns
during the cell cycle were proposed [13]. Problems both in synchronization
and statistical methodology were pointed out, causing doubt about the va-
lidity of the previous results. For identifying the correct set of periodically
expressed genes, a thorough benchmark of identification methods has been
provided [14], revealing that most new advanced methods perform worse
than the original approach. A simple permutation-based method is proposed
that performs better than most existing methods.

An initial validation algorithm for assessing the quality of clustering algo-
rithms applied to expression data was based on cross-validation [72]. In a
leave-one-out scenario the clustering algorithm is applied to the expression
data with one sample left out. The predictive power of the resulting clusters
is then assessed on the left-out sample. It was also shown that the quanti-
tative measures of cluster quality obtained with this approach are positively
correlated with external measures for cluster quality.

5.1.2 Estimating the Number of Clusters in a Data Set

A difficult and unsolved task is the estimation of a suitable number of clusters
that is needed as input for many clustering algorithms. Two resampling meth-
ods have been proposed for estimating this number. The prediction-based
method Clest [18] proves to be competitive to other estimators with respect
to both accuracy and robustness. Cluster stability scores for microarray data
based on a subsampling technique have been developed in the context of
cancer studies [60]. Here, scores both for known and unknown clusters have
been introduced. The gap statistic [68] compares the change in within-cluster
variation with the variation that is expected under an appropriate reference
null distribution. Limited applicability of the method on high-dimensional
data has been discussed.

The silhouette value of an observation [34] compares the average distance
of an object to members of the same cluster with the average distance to
members of the closest of the other clusters. The number of clusters with
minimal average silhouette width over all observations best captures the
structure in the data and thus can be used as an estimate for the true number
of clusters. This method can be applied in the context of any clustering
algorithm. Furthermore, the silhouette value of a single observation can be
used to evaluate this observation on its own. Objects with lower silhouette
values are more likely to be misclassified, as they lie closer to a boundary
separating two clusters, whereas a silhouette value close to 1 indicates that an
object lies well in the center of the respective cluster.
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5.2 Assessing Function Prediction Accuracy

The evaluation of supervised gene function prediction methods has not drawn
much attention in the literature. For the classification of samples based on
high-dimensional expression measurements, the need of evaluation schemes
is evident. The problem of classifying samples, often to well-defined disease
subtypes, is much more prevalent. Classical approaches to assess prediction
accuracy, e.g. cross-validation, are described in detail in Chapter 26. These
techniques have been further refined and adapted to efficiently deal with the
dimensionality problem, since a meaningful gene selection is required to cope
with the large number of genes compared to the small number of samples.

The classical approaches for assessing prediction accuracy can also be ap-
plied for the supervised classification of genes. However, for this task, the
opposite problem emerges. The number of samples is too small compared to
the number of genes. In addition, the annotation schemes are often not reli-
able. Thus, more importance should be attached to the biological annotations
and to the number of samples. For a reliable classification, a sizeable number
of samples with considerable variability in the conditions under which the
expression experiments are performed is required.

6 Conclusions

Microarrays have become standard tools for gene expression profiling and
their potential impact on clinical research is beyond controversy. However,
different research tasks addressed with microarray technology are associated
with different levels of expected clinical relevance. For the classification of
patients based on expression profiles, sophisticated and suitable methods exist
(see Chapter 26). In this area, the most important requirements for meaningful
conclusions are studies with considerably large numbers of patients as well as
careful experimental design.

Classification of genes using microarray gene expression profiles is a more
difficult task due to the mostly small number of patients opposed to the huge
number of genes on a standard microarray. The unsupervised task of finding
coregulated gene groups depends on the choice of a distance measure between
expression profiles and a clustering algorithm for grouping genes into coher-
ent clusters. These choices can be guided by knowledge on properties of the
respective measures and algorithms, but arbitrariness always remains. The
supervised task of predicting gene function from gene expression data is even
more difficult, mostly due to the dimensionality problem and the low quality
of annotation schemes. Therefore, integrative approaches that combine ex-
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pression data with other types of biological information are expected to have
higher potential for reliable function prediction.
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1 Introduction and Principles

The term proteome had its first use in 1994 to picture the protein complement
of a genome [89]. It describes the ensemble of protein forms expressed in
a biological sample at a given point in time and in a given situation. Two
years later, the term proteomics was first used to define the study of proteomes,
in a very simplified way. A broader definition advocates that proteomics is
the science that deals with the global analysis of proteins, and this includes
their identification, the measure of their level of expression and their partial
characterization. Other definitions state that proteomics is the large-scale
study of proteins; in particular, their structures, their functions and their inter-
actions. Whatever the definition adopted, proteomics is in constant evolution,
and relies on efficient protein separation techniques, mass spectrometry (MS),
bioinformatics as well as gene and protein databases.

There are numerous proteomes for a single genome and proteomes are
much more complex than genomes. DNA chip technology allows for the
simultaneous analysis of the expression of thousands of genes at the mRNA
level and can unravel biological processes. However, the correlation be-
tween the expression of mRNA and protein is low [2]. For instance, the
dynamic range between transcription factors and albumin can be 1012 or
higher. Moreover, the complete sequences of active proteins can only be
partially deduced from their corresponding gene sequence. In fact, dur-
ing and after the transcription and the translation processes leading to an
active gene product, alterations often occur, such as alternative splicing, N-
terminal truncation and post-translational modification (PTM). In addition,
single genes can be expressed in more than 20 protein forms in a single tissue,
e.g. at least 22 different protein forms matching α1-antitrypsin have been
described in human plasma. Proteomics involves also the description of the
events generating the modifications that these proteins carry as functional
entities. Besides, one single organism will have radically different protein
expressions in different stages of its life cycle and in different cells, tissues and
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fluids. Therefore, the analysis and the understanding of the suspected 0.5–1
million proteins in human, expressed by a number of genes that is currently
estimated to be around 25 000, represent a real challenge in proteomics from
the technological, analytical and bioinformatics points of view. Methods
involving high-resolution protein separation, parallelization of sample prepa-
ration, automation of experimental processes and database comparison, as
well as powerful and specific visualization tools had to be developed and
integrated.

The development of new diagnostic tests and the discovery of new drug
therapies both depend on the capacity to analyze complex systems. Pro-
teomics offers the possibility to identify disease markers, to discover drug
targets or to observe the global influence of a drug in a complex mixture
of proteins. This will be possible only if one can describe the identity, the
occurrence and the interaction of each individual component of this mixture.

Proteomics was a real revolution to biochemistry and molecular biology,
essentially due to advances in experimental technology and the combina-
tion with bioinformatics. Due to the chemical and physical complexity of
proteomes, various methodological approaches have been considered so far.
Nevertheless, a representative workflow of a proteome analysis can be de-
scribed as the one given in Figure 1. This pathway includes most of the wet-lab
(analytical) and dry-lab (bioinformatics) steps required for the complete analysis
of a proteome.

The first crucial step is the sample choice. It can be a raw biological
fluid, a cell extract, a fraction of a sample, etc. Above all, the choice is also
strongly dependent on the separation method to be applied since it has to
be compatible with the dynamic range that the separation can handle. The
proteins contained in this sample have then to be separated. In proteomics,

Figure 1 A schematic proteomics workflow. Digestion of proteins may
occur either before the sample separation or before the MS.
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one-dimensional, two-dimensional or capillary electrophoresis (respectively,
1-DE, 2-DE and CE), or liquid chromatography (LC), or a combination of
them, are the preferred methods.

Once a separation method has been chosen, the next step is the analysis of
the result and the selection of the proteins to be identified. In the case of a
separation by 2-DE gels, the analysis is made with image analysis software.
This kind of software allows for visualizing images, for comparing images
and for performing a number of comparative analyses that enable tracking
statistically significant changes in protein expression between populations of
gels/samples. It helps to highlight the proteins of interest. Computer analysis
of proteomics images is discussed in Section 3.

To proceed further, proteins separated with LC or those selected from a gel
analysis are submitted to post-separation analysis. This experimental step
determines highly specific protein attributes, such as peptide mass finger-
prints or amino acid sequence information, when preceded by endoprote-
olytic cleavage. In endoproteolytic cleavage the proteins are typically incu-
bated with an enzyme that recognizes particular amino acids and cuts the
polypeptide chains at specific cleavage sites. The reaction produces shorter
peptides that are fragments of the so-called digested proteins. Today’s stan-
dard procedure most often involves a protein digestion step with trypsin and
the analysis of the generated fragments with a crucial tool in proteomics,
i.e. MS. Separation and post-separation techniques are briefly described in
Section 2.

The intensive use of LC and MS in proteomics analysis has opened a new
domain in proteomics imaging. The representation of LC-MS datasets as 2-
D plots highlights the redundancy of data not necessarily observable when
displayed in 1-D. Even though the analysis of this kind of images is still in its
infancy, their potential and advantages can already be anticipated. Computer
analysis of proteomics images is also discussed in Section 3.

Once in possession of the protein attributes acquired through the previous
experimental steps, we can then move to database search. This search iden-
tifies a protein by looking at the best match between experimental data and
data obtained by in silico processing and “digestion” of proteins in a sequence
database. The identification (determining the name or sequence of the known
proteins) and characterization (obtaining information about their function,
cellular localization, PTMs, etc.) procedures using bioinformatics tools are
the topic of Section 4.

Comprehensive sequence databases are a prerequisite for successful protein
identification, and data from the identified proteins and samples are in turn
used to populate specific proteomics databases. Section 5 browses some of the
necessary databases for current proteomics projects.
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The representation of a proteome analysis pathway such as the one given
in Figure 1 assembles the different steps required to perform the identification
of proteins from a crude biological sample. This pathway can, for instance,
generate a systematic description of a complete proteome observable in a 2-
DE gel. The result of such an analysis can be made concrete by the creation of
an annotated database such as SWISS-2DPAGE [43] or other 2-DE databases.
In addition, the information in such databases, e.g. annotated 2-DE gels, can
be compared to an unannotated image to correlate positions and intensities
of protein spots. From all the spots in the unannotated image, only those
representing a real interest are further analyzed with identification methods.
A widely used method to search for biological markers of specific diseases
is the comparison of a statistically significant number of 2-DE images from
samples of healthy and diseased patients or samples treated and not treated
with target drugs. The images are compared, clustered and searched for
protein spots that appear to be differently expressed. These become the spots
of interest to be further identified. In this approach most of the efforts are
concentrated in the generation of the 2-DE gels and in the comparison of the
generated images. Section 3 describes the possibilities of undergoing such an
analysis using dedicated software.

In addition, beyond the identification efforts, it is of great interest to de-
scribe and understand the modifications carried by the active gene products.
This implies the search for splicing variants, amino acid mutations or PTMs
that characterize a protein. Often, MS is used in a so-called MS/MS mode
to decipher the spectra generated by this process, and to reveal structural
information on the amino acid sequence and the description of PTMs attached
to the studied peptides.

2 Proteomics Analytical Methods

2.1 Electrophoresis Gels

2-DE is currently one of the fundamental tools to display and evaluate the
proteome complexity of any organism. It enables the separation of hetero-
geneous mixtures of proteins on a single polyacrylamide gel according to
isoelectric point and molecular weight. The introduction of 2-DE in 1975 by
O’Farrell and coworkers [48, 62, 75] allowed for separating between 2000 and
3000 proteins in a single gel. Isoelectric focusing (IEF) is the electrophoretic
technique in which the proteins are separated according to their isoelectric
point (pI) through a pH gradient. The pI of each protein corresponds to the
pH at which the net charge of the protein is equal to zero. Under an electric
field the proteins migrate until they reach their pI. Two methods are available
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for IEF. In the first one, the pH gradient is created and maintained by passing
an electric current through a solution containing amphoretic compounds.
These compounds are molecules with particular pKs. By mixing them in the
polyacrylamide gel, it is possible to form a mixture, which establishes a pH
gradient. In the second IEF technique, an immobilized pH gradient (IPG) is
used [36]. In this process, the pH gradient, which exists prior to the IEF, is
copolymerized within the fibers of the polyacrylamide matrix. This type of pH
gradient is achieved through the use of a set of weak acids and bases named
immobilines. Different types of IPG strips can be used with different ranges
of pH. Most of the laboratories running 2-DE gels are currently using strips
with a pH range from 3.5 to 10 to display a wide range of proteins. However,
IPG strips with a narrow pH range can also be used to create a biochemical
zoom on a part of the gradient range (like 4–7 IPG or 2–5 IPG). This provides
higher protein concentration loading and the investigation of more proteins
on a proteome “window”.

After the first dimension of separation (IEF), the IPG gel containing proteins
needs to be equilibrated in a solution containing sodium dodecylsulfate (SDS).
It is an anionic detergent that binds to the majority of proteins in a constant
mass ratio (1.4 g of SDS per gram of proteins). SDS allows the proteins to
acquire a net charge per mass unit that is approximately constant. During
this equilibration step, proteins are first reduced using dithiothreitol and
then alkylated by incubation with iodoacetamide. Once the equilibrium is
achieved, the IPG strip is loaded on the top of a polyacrylamide gel. In
this second dimension of the 2-DE technique, the polypeptides enter into the
polyacrylamide gel under an electric field and migrate through the porosity
strictly according to their size (the molecular weight, Mr).

After the second dimension, the polypeptides must be detected either by
staining, radiation (for radiolabeled proteins) or immunologic assays. Silver
staining is one of the most popular methods of detection due to its very
high sensitivity (below 1 ng). The main drawback of this method is the
incompatibility with MS because of the presence of glutaraldehyde, which
cross-links proteins. To overcome this problem, a silver staining method
without glutaraldehyde has been introduced (about 10 times less sensitive)
[91]. Coomassie blue staining is also very popular. It is a very simple method,
although 50 times less sensitive than standard silver staining. Other methods
are also used such as fluorescence or negative staining with zinc. After
staining, the 2-DE gels can be scanned, and are ready to be analyzed through
informatics software developed to perform quantitative protein analysis and
automatic comparison of gels.

Even though 2-DE gels are considered the gold standard of proteomics,
some issues remain uncertain. Due to analytical problems, between-gel varia-
tions (up to 30% coefficient of variation) lead to the problematic detection and
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quantification of differences in protein expression, resulting in difficulties in
distinguishing biological from experimental variations. The 2-D difference gel
electrophoresis (DIGE [83]) partially circumvents these problems. The DIGE
method labels each sample with a spectrally resolvable fluorescent dye (Cy2,
Cy3 or Cy5) prior to electrophoresis. The labeled samples are then mixed
before IEF and resolved on the same 2-DE gel. Different images are acquired
using different wavelengths and are compared with image analysis software.
Variation in spot intensities due to gel-specific experimental factors is the same
for each sample within a single DIGE gel. Consequently, the relative amount
of a protein in a gel in one sample compared to another is unaffected.

Other issues remain unsolved in the 2-DE technique. This approach does
not allow for identifying and characterizing all proteins present in a bio-
logical sample. Some proteins will not appear on the gel because of their
extreme physicochemical properties, such as exceedingly high or low molec-
ular weight, exceedingly high pI, extreme hydrophobicity, or insufficient
abundance. Other techniques must therefore be applied to complete the
picture, such as 1-DE (which separates samples only by molecular weight),
pretreatment of the starting material, prefractionation and early digestion of
the protein mixture followed by LC.

2.2 LC

The first chromatographic experiments were carried out in 1906 by the Rus-
sian botanist Mikhaïl Tswett, when he succeeded in separating various vegetal
pigments. Chromatography is an analytical method for separating the differ-
ent components of a mixture of molecules. It relies on differential affinities
of these molecules for a mobile phase, the medium that carries the molecules,
and for a stationary adsorbing medium, through which they pass. The sta-
tionary phase is either a solid or a liquid and the mobile phase is either a gas
or a liquid. The separation is achieved through the different rates of migration
of each component of a complex mixture, depending on their affinity for the
stationary phase. Three types of chromatography have been developed: thin-
layer (TLC), gas (GC) and liquid (LC) [27, 49, 52, 70].

In LC the mobile phase is a liquid and the stationary phase can be either a
liquid or a solid. The role of the liquid mobile phase is first to solubilize the
protein sample and second to carry the proteins along the column. Various
types of LC have been developed, depending on the type of stationary phase.
The separation can be based on partitioning, adsorption, ion exchange, size
exclusion or affinity.

In partitioning LC, the stationary phase is composed of an organic liquid
covalently fixed on an inert solid support (such as silica) or embedded in a
porous inert support. The principle of separation is based on the partitioning
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coefficient of the proteins between the nonmiscible stationary and mobile
phases. The higher the partitioning coefficient, the higher the number of
soluble proteins in the organic stationary phase and the higher the retention
time for these proteins [10].

In adsorption LC, the stationary phase is composed of a solid adsorbent.
The proteins are separated due to their varying degree of adsorption onto the
solid surfaces. Different types of adsorbent can be used. In normal phase
absorption, the stationary phase is composed of a polar compound (such as
an amine or carboxyl) linked to silica beads. In contrast, in reverse-phase LC
the stationary phase is composed of a nonpolar hydrophobic compound. In
general, the hydrophobic compounds are aliphatic chains such as C8 or C18
bound to silica beads. When the proteins are loaded to the top of the column
they bind to aliphatic compounds through hydrophobic interactions. The
proteins are eluted with increasing concentration of a hydrophobic solvent
such as acetonitrile. The low-hydrophobic proteins are eluted first by low
concentration of solvent and the high-hydrophobic proteins are eluted only
by a high concentration of solvent [61].

Ion-exchange LC is used to separate proteins on the basis of their electric
charge. In this method, ionic groups are covalently bound to the matrix
column. These groups can be either positively or negatively charged and are
compensated for by small concentrations of counterions that are present in the
buffer. When a sample is added to the column, an exchange with the weakly
bound counterions takes place. With a cationic exchange column the matrix
is negatively charged. The higher the positive charges of proteins, the higher
are their ionic interactions with the matrix. Increasing concentrations of salt
solution are then used to elute the bound peptides. The principle is the same
with anionic exchange, except that the matrix will be positively charged and
the most negatively charged proteins have higher retention times [78].

Size-exclusion LC is used to separate proteins by their size and shape. Its
principle is to use a porous polymer composed of beads with very small holes.
As the protein solution is poured on the column, small molecules enter the
pores in the beads. The small molecules are eluted last because they have a
longer path to go through, as they get stuck over and over again in the maze
of pores running from bead to bead [9].

Finally, affinity chromatography relies on the biological ability of a protein
to bind to a column. The most common type involves a ligand, a specific
small biomolecule. This small molecule is immobilized and attached to a
column matrix, such as cellulose or polyacrylamide. The target protein is then
passed through the column and binds to it by its ligand, while other proteins
elute out. This is a very efficient purification method since it relies on the
biological specificity of the target protein, such as the affinity of an enzyme
for its substrate [50].
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Currently, a large number of proteomics projects couple LC with MS, which
is described in the following section.

2.3 MS

MS is an analytical technique that is commonly used to identify unknown
compounds, quantify known materials, and elucidate the structural and phys-
ical properties of ions. It is a technique associated with very high levels
of specificity and sensitivity. Analyses can often be accomplished with tiny
quantities, sometimes requiring less than picogram amounts of material. Sir
J. J. Thomson developed the first mass spectrometer in the first decade of the
20th Century, even before the determination of mass-to-charge ratios (m/z)
of ions. The goal of all mass spectrometers is the exact determination and
analysis of the m/z ratio of ions. A mass spectrometer is formed of three
fundamental parts, i.e. the ionization source, the analyzer and the detector.
The first step in a mass spectrometric process is to generate ions from the
analyte. Nowadays, the two ionization methods used most frequently for bio-
chemical analyses are electrospray ionization (ESI) and matrix-assisted laser
desorption ionization (MALDI). However, other methods also exist such as
chemical ionization (CI), electronic ionization (EI) or fast atom bombardment
(FAB).

ESI, developed by Fenn and colleagues [30], is one of the atmospheric
pressure ionization (API) techniques and is well suited for the analysis of
polar molecules ranging from less than 100 to more than 106 Da in molecular
weight. In ESI, the sample is introduced into a capillary and then submitted
to a high voltage (around 4000 V). The high voltage causes the formation of
a cloud of charged droplets. Evaporation of the solvent from the initially
formed droplet as it traverses a pressure gradient toward the analyzer leads
to a reduction in diameter and an increase in surface field until the Rayleigh
limit is reached. The latter corresponds to the point where the surface tension
can no longer sustain the charge. At this point, an explosion occurs and the
droplet is ripped apart. This produces smaller droplets that can repeat the
process until obtaining singly or multiply charged ions.

The Nobel Laureate, Koichi Tanaka [80], developed the MALDI method
in 1987. It is based on the bombardment of molecules with a laser light
to provoke sample ionization. Most commercially available MALDI mass
spectrometers now have a pulsed nitrogen laser of 337 nm wavelength. In
MALDI, the sample is first mixed with a highly absorbing matrix compound.
The matrix cocrystallizes with the sample on the metal support. The matrix
minimizes the degradation of the sample caused by the energy absorption
of the incidental laser beam. The exact mechanism by which the MALDI
ionization occurs is not precisely understood. It is supposed that the matrix
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absorbs the energy transmitted by the laser and this contribution of energy
causes its expansion in gas phase by involving the molecules of the sample.
The sample is mainly ionized by transfer of protons, either before desorption
in the solid phase or by collision after desorption with the excited matrix to
form singly charged ions.

Once obtained, ions must be analyzed. The analyzer uses dispersion or
filtering to sort out ions according to their m/z ratios. Several types of
analyzers have been developed such as the quadrupole, the ion trap or the
time of flight (TOF). The Quadrupole mass filter consists in four parallel rods
to which an electric field is applied. The resultant magnetic field allows for
selecting ions according to their m/z ratio. Indeed, at one particular magnetic
field strength, only ions with a particular m/z will pass trough the quadrupole
filter and all other ions are thrown out of their original path. The ion trap
mass analyzer consists of three hyperbolic electrodes: the ring electrode, the
entrance end-cap electrode and the exit end-cap electrode. These electrodes
form a cavity in which it is possible to trap and analyze ions. Both end-cap
electrodes have a small hole in their center through which the ions can travel.
Ions produced from the source enter the trap through the inlet focusing system
and the entrance end-cap electrode. Various voltages can be applied to the
electrodes to trap and eject ions according to their m/z ratios.

TOF mass analyzers separate ions by virtue of their different flight times
over a known distance. A brief burst of ions is emitted from a source. These
ions are accelerated so that those with the same charge have an equal kinetic
energy and then are directed into a flight tube. Since kinetic energy is equal
to 1/2mv2 (where m is the mass of the ion and v is the ion velocity), the lower
the mass ion, the greater is the velocity and the shorter is the flying time.
The travel time from the ion source through the flight tube to the detector,
measured in microseconds, can be transformed onto an m/z value through
the relationships described above. As all ion masses are measured for each ion
burst, TOF mass spectrometers offer high sensitivity as well as rapid scanning.
They can also provide mass data for very-high-mass biomolecules [79].

Two analyzers can be combined to perform tandem MS (MS/MS). The first
analyzer selects a first ion, which is called the “parent ion”. After fragmenta-
tion of the parent ion by collision-induced dissociation (CID – a fragmentation
obtained by the collision of a molecule with neutral gas molecules), a second
analyzer measures the m/z ratio of the ions resulting from this fragmen-
tation. As fragmentation occurs mainly in the peptide bond of the amino
acid backbone, a ladder of sequence ions is generated. The resulting peptide
fragmentation masses differ by the mass of amino acid residues, thus allowing
stretches of the peptide sequence to be deduced, which can be very useful to
identify compounds in complex mixtures [1]. Fragments will only be detected
if they carry at least one charge. According to Roepstorff’s nomenclature [74],
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Figure 2 Fragmentation schema of a peptide with four amino acids.
Fragments that carry the charge on the N-terminal side are denoted a,
b and c, while those carry the charge on the C-terminal are denoted x,
y and z.

the product ions are denoted as a, b and c, when the charge is retained on the
N-terminal side of the fragmented peptide, and x, y and z when the charge is
retained on the C-terminal side. As shown in Figure 2, ion types differ by the
position of the fragmentation in respect with the peptide bond.

Once the ion passes through the mass analyzer, the ion detector (the final
element of the mass spectrometer) then detects it. The detector allows a
mass spectrometer to generate an electric current signal from incident ions by
generating secondary electrons, which are further amplified. Alternatively,
some detectors operate by inducing an electric current generated by a moving
charge. Among the described detectors, the electron multiplier and scintilla-
tion counter are the most commonly used and convert the kinetic energy of
incident ions into a cascade of secondary electrons.

Ideally, the MS and MS/MS processes should generate a list of m/z values
of all peptides (respectively, fragmented ions) present in the analyzed sample.
In reality, due to physicochemical properties of some peptides or ions, not all
m/z values are detected making the data interpretation much harder.

Finally, MS can be used in combination with analytical separation methods
such as LC (LC-MS) or GC (GC-MS). In these cases MS is used as a detector
after chromatographic separation. Nowadays, this configuration is often used
in many laboratories because it allows for combining high separation and
detection capacities [22]. Shotgun proteomics has evolved from the combina-
tion of some of these techniques, MS and multidimensional chromatography,
and bioinformatics. In a typical shotgun proteomics approach, a complex
protein mixture is digested with proteases to produce an even more complex
peptide mixture. The peptides are loaded directly onto an LC/LC column
placed in-line with an MS/MS spectrometer. The spectra are acquired “on
the fly” as peptides are eluted from the column, ionized, and emitted into
the mass spectrometer. Using elaborated algorithms, respective peptide se-
quences generated from MS/MS are automatically identified by comparison
against protein databases, avoiding any manual interpretation. One such
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approach is the multidimensional protein identification technology (MudPIT
[86]), which has been applied to the proteome study of various species such
as yeast, Escherichia coli [72], human extracts [14], Toxoplasma gondii [93], etc.

2.4 Protein Chips

The necessity to miniaturize and to automate high-throughput analysis sys-
tems led to the development of microarray (biochips) technology. It is based
on immobilizing small molecules, oligonucleotides or proteins onto surfaces
for various high-throughput screening studies. Microarrays were initially
developed for large-scale gene expression studies, e.g. to compare gene
expressions between different tissue types, treatments, disease models and
human samples (see Chapters 24–27). Today, DNA microarrays are well
established for studying the transcriptional state of a biological sample [69].
However, the level of expression of a transcribed mRNA does not always
correlate with the protein expression level [39]. Protein microarrays were
thus developed to analyze the expression level of a large number of proteins
simultaneously and to study the interaction of proteins with a variety of
molecules. It is already a successful method for the identification, quantitation
and functional analysis of proteins in proteome research [55].

There are two main types of protein microarrays used: (i) to measure the
abundance of a protein (abundance-based microarray) by the use of a specific
reagent, and (ii) to study protein function. Abundance-based microarrays are
divided in two types: capture microarrays and reverse-phase microarrays. In
capture microarrays, a molecule (such as antibodies, peptide, RNA or DNA
aptamers, or chemical molecules) is spotted on the surface of the microarray
to catch and assay their target from a complex mixture. The relative amounts
of the targeted proteins are then determined by comparison with a reference
sample [40]. In this technique, the most popular capture molecules are anti-
bodies because of their sensitivity and selectivity. However, it is estimated that
only 30% of the commercially available antibodies can be used qualitatively
and only 20% quantitatively. Contrary to capture microarray, reverse-phase
microarrays [76] consist of spotting an unknown mixture sample on the array
and probing it with an antibody or another specific reagent.

In function-based microarrays, the protein of interest is spotted on the
microarray surface to study its biochemical properties and/or activities. This
type of microarray can be used to examine protein interaction with other
proteins, nucleic acids, lipids and other biomolecules. Furthermore, function-
based microarrays can be used to study enzyme activity and substrate speci-
ficity [94, 95]. However, there are several limitations to this type of microar-
rays. First, proteins are often produced in vitro and do not possess their native
conformation and their usual PTMs. Furthermore, the methods used to attach
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proteins to the surface array can change the behavior of the proteins. Finally,
all tests are realized in vitro and must be confirmed in vivo.

Whilst there is tremendous excitement about the potential of protein ar-
rays to further our understanding about protein function, protein–protein
interactions and biological activities, there are also concerns over frustrating
technical limitations. Robustness, sensitivity and automation of protein mi-
croarrays still need to be improved in order to increase its use in proteomics.
The bioinformatics issues of protein microarrays are similar to those of cDNA
microarrays (see Chapters 24–27) and they are deliberately not dealt with
in this chapter. Several other proteomics approaches and combinations of
methods exist to separate, analyze and quantify complex protein mixtures.
They are not treated in this chapter either. We have intentionally decided
to focus on a few proteomics techniques that touch especially challenging
bioinformatics issues, which are detailed in the following sessions.

3 Computer Analysis of Proteomics Images

For each analytical method (2-DE, LC, MS and MS/MS) described in the
previous session, there is a corresponding bioinformatics tool to analyze and
interpret the resulting data. These tools allow for detecting differentially
expressed proteins in different proteomics samples, on the one hand, and for
identifying and characterizing the most pertinent proteins, on the other hand.

3.1 Analysis of 2-DE Gels

2-DE gel patterns, once digitized, provide an important basis for quantitative
analysis and comparative proteomics. The possibility of detecting protein
expression changes associated with diseases and treatments or finding thera-
peutic molecular targets opens up new frontiers for biological and biomedical
research. These applications have been a major incentive to the development
of specialized software systems for 2-DE gel image analysis [3, 5, 34, 51, 84].
Currently, a number of dedicated software packages are commercialized, the
main ones being listed in Table 1. Although each of the 2-DE gel image
analysis systems has its own philosophy and approach [85], most of them
provide the same basic operations and functionalities necessary to carry out
a complete gel study. These operations are usually based on state-of-the-art
image processing algorithms that have been adapted to this specific biological
need. In this section, the key issues and steps of 2-DE gel image analysis
are discussed and illustrated using the ImageMasterTM 2D Platinum release 6
(powered by Melanie, which is developed by the Proteome Informatics Group
at the Swiss Institute of Bioinformatics). Note that a free viewer of this soft-
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ware is available at www.expasy.org/melanie. It has the usual visualization
operations of the full version and most of the analysis procedures as well, even
though the analysis is restricted to a small number of proteins and only from
gels that have already been analyzed by a full version.

Table 1 Major commercialized 2-D image analysis software

Software Company Source website

DeCyder GE Healthcare www.gehealthcare.com
(formerly Amersham Biosciences)

Delta2D Decodon www.decodon.com
ImageMasterTM 2D Platinum GE Healthcare www.gehealthcare.com
PDQuest Bio-Rad www.bio-rad.com
Progenesis/Phoretix Nonlinear Dynamics www.nonlinear.com
Proteomweaver Definiens www.definiens.com
Z3/Z4000 Compugen www.2dgels.com

3.1.1 Data Analysis and Validation

The first operation of a 2-DE gel analysis is the scanning of the gels. In
most cases, this is achieved by the use of flatbed document scanners, camera
systems, densitometers, phosphor imagers or fluorescence scanners. These
equipments produce images of typically around 2000 × 2000 pixels or more
and a depth of 12 or 16 bits, thus providing a dynamic range of 4096 or 65 536
gray levels, respectively.

One of the basic properties of 2-DE analysis software is image visualization.
ImageMaster provides several means of manipulating and displaying the gels,
such as gel stacking, various zoom modes, customizable grids, “flicking” back
and forth between gels or a transparency mode to visually inspect the result
of matching. This makes it easy to browse through the data extracted from the
2-DE images.

Apart from the basic visualization properties, the major functions of soft-
ware systems for 2-DE image analysis are (i) to detect and quantify the protein
spots on the gels, (ii) to match corresponding spots across gels and (iii) to
locate significant protein expression changes. To achieve (iii), both (i) and
(ii) must have been successfully carried out. The optimal and reproducible
definition of spot borders depends mostly on gel running issues, uneven
focusing and polymerization problems. Very often proteins are not resolved as
discrete spots, particularly in regions with high spot density. Numerous dim
spots may be missed because they are confused with the background, whilst
others might be wrongly detected. In order to overcome these issues, detec-
tion algorithms often include filtering steps to automatically remove streak
artifacts and noise spikes [6] or a segmentation process based on the analysis
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of the gray levels [23]. Spot detection algorithms produce a repository of all
protein spots contained in the 2-DE images, as well as related quantitative
data, such as the spots’ optical densities, area and volume (integration of the
optical density over the area). Relative measures of these values are also given,
e.g. the relative volume calculated as the absolute volume divided by the total
volume of protein in the whole 2-DE gel. Relative values allow for partially
compensating for variations in sample load or staining. Using such relative
quantitative values provides better reproducibility of data.

Finding corresponding pairs of spots in gel images is also a critical task,
whether it is based on the detection of spots first [68] or based on the inten-
sities of the regions before the detection of spots [77]. Pair matching relies on
the similarity of the spatial distribution of spots, which then may vary accord-
ing to experimental gel running conditions and gel scanning. Quantitative
differential protein expression can be erroneous when spots representing the
same protein are not correctly matched or when spots representing different
proteins are mistakenly matched together.

After matching, the statistical data analysis is carried out to find interesting
proteins, i.e. those that have been suppressed or are upregulated. Descriptive
statistics summarize the values of matched spots that may indicate significant
characteristic spots of gel populations. Usually, 2-DE analysis software offers
common statistical tests such as Student’s t-test, or the Mann–Whitney or
Kolmogorov test, but they also propose multivariate analysis, clustering tools
or neural networks [26] to locate variations in protein expression profiles. The
results can then be visualized through histograms, scatter plots, reports or
different views of the gels such as gel transparency, overlapping spot contours
or 3-D view.

Figure 3 illustrates the analysis reasoning with eight 2-DE images. These
are eight gels from smooth muscle cells of rat samples, out of which four are
from newborn and four from aged rats [21]. All images have been matched
to gel 930018c-w (upper left in Figure 3). Two classes have been defined,
each containing four images (marked “Newborn” and “Aged”, respectively,
in Figure 3). We first select all groups of spots in each of the two classes
and then produce an Inter-Class Report (detail of Figure 3) that shows the
Maximum value of each class computed on the spots’ normalized volumes
(%VOL). A group is a set of spots that have been matched across all gel images,
thus representing the same protein. A Statistical Tests report will then show
various statistics about the groups in the two classes, such as Student’s t-
test, or the Wilcoxon or Kolmogorov–Smirnov test. This lets the user select
and highlight protein spots that are differentially expressed between the two
classes. Figure 3 shows the result of one of these tests, highlighting the group
of spots that were ranked highest in term of separability between the two
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classes. In Figure 3, the same group of spots has been highlighted on the
Inter-Class Report, the Inter-Class + Intra-Class Histograms and in the gels.

Once specific proteins of interest have been selected via careful data anal-
ysis, such as illustrated in Figure 3, further analysis may be carried out to
identify or partially characterize those proteins.

3.1.2 Annotation and Databases

After extensive analysis of the protein spots has been carried out, including
protein identification as detailed in Section 4, 2-DE images may be anno-
tated. The annotations have mainly two functions: linking gels and external
databases, and adding information on the gels for later reference. Image-
Master provides broad annotation capabilities in order to include into the gel
image all related data and information that has been acquired. Annotations
can be added either manually, or they may be imported from an external
database, for example through a Laboratory Information Management System
(LIMS). Any kind of annotations may be attached to a spot or a pixel, as for
example the protein ID, a SWISS-2DPAGE ID (or any other protein database
ID), a landmark, calibration values (pI, Mr, intensities) or comments, as well
as links to external files such as text files or MS spectra, and also Internet
links. By double clicking on the various labels that mark annotated objects, the
corresponding piece of information is displayed. In the case of an accession
number of a SWISS-2DPAGE entry (e.g. P02990), it launches the default web
browser and downloads the corresponding database entry from the local or
external user-specified database.

3.2 Analysis of LC-MS Images

So far, we have seen examples from a proteomics workflow in which samples
are separated via 2-DE gels. Another possible workflow in proteomics com-
bines separation of proteins and peptides by LC followed by direct analysis by
MS (Figure 1). In this case, data may also be represented in two dimensions,
the elution time and m/z, and they can be visualized and analyzed as images.
LC-MS image analysis systems are still in their infancy. Some prototypes have
been presented so far, such as Decyder-MS, MapQuant, SpectroArray, MSD-
Viewer and MarkerView, but almost no literature is available describing their
performance and characteristics. Pep3D is a tool for producing LC-MS images
that is also capable of representing the score values of protein identifications of
precursor ions using different color hues [53]. Its simple interface permits the
visualization of one experiment at a time and only a single view of the image.
The Proteome Informatics Group at the Swiss Institute of Bioinformatics has
developed a software tool, MSight [65], for the 2-D representation, visual
analysis and comparison of LC-MS datasets. MSight features (i) display and



4 Identification and Characterization of Proteins after Separation 1039

browsing, as an image, of any portion of the collected mass spectra, with a
smooth transition from a global overview of all spectra to selected isotopic
peaks, (ii) user-friendly navigation through large volumes of data, and (iii)
visualization tools to discriminate peptide or protein from noise or to perform
differential analysis. This software tool is available free of charge through the
ExPASy web server [35] at http://www.expasy.org/MSight. Future versions
of this tool will allow for semiautomatic analysis of LC-MS datasets, including
quantitative differential proteome analysis.

The images displayed in Figure 4 were obtained from a 42- to 59-kDa
fraction of an extract of the human BJAB B cell line. The sample was di-
gested with trypsin and separated by reverse-phase capillary LC coupled
to a SCIEX/Applied Biosystems QSTAR quadrupole-TOF mass spectrometer
equipped with an ESI source. Spectra were acquired in the m/z range 400–
1200, and the image was created using a 0.025 m/z sampling rate and thus
contains 55 million measures. The top-right image in Figure 4 displays a 2-D
view of the sample described above and the bottom-left image highlights part
of this sample in a 3-D view. The bottom right image in Figure 4 shows one
single spectrum of the sample.

Image processing of LC-MS datasets can be extremely useful for the mon-
itoring and quality control of experiments as well as knowledge extraction.
Software tools specifically developed for the representation of mass spectra
along with data from the separation step (such as LC-MS or SDS-MS) provide
simple ways to navigate through very large volumes of data. Assessment of
the data quality and of the experimental design is simplified by providing
a direct means of verifying the quality of the separation and detecting the
presence of artifacts and contaminants or mass calibration problems. The
redundancy in successive mass spectra may even be used to enhance the
signal-to-noise ratio, thereby improving the reliability of MS analysis. Such
visual representation of experimental data also helps to understand features
such as PTMs of peptides. Most importantly, it allows for automatic or
semiautomatic differential proteome analysis by comparing several sets of
data, as well as providing fast and intuitive detection of significant qualitative
and quantitative differences.

4 Identification and Characterization of Proteins after Separation

Pinpointing differentially expressed protein spots on gels or analyzing mass
spectra profiles in LC-MS runs using imaging tools is only the first step in the
computer analysis of proteomics data. An important challenge consists of the
interpretation of MS and/or MS/MS data to identify (determining the name
or sequence of the proteins) as well as to characterize (obtaining information
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about their function, cellular localization, PTMs, etc.) the concealed proteins.
Developing identification and characterization tools from MS data has there-
fore represented for bioinformatics research a major effort in the last 10 years.

Typically, identification tools identify one or several proteins by matching
experimentally obtained protein-related properties against the corresponding
theoretical values computed from sequences in a protein sequence database.
Once the sequence is known, characterization tools attempt to predict func-
tional and structural features, such as PTMs, splice variants or any other
modification or polymorphism.

This section presents the general mechanism of identification and character-
ization tools from mass spectrometric data, as well as the major tools that are
available on the Internet. Most of them are listed on the ExPASy tools page at
http://www.expasy.org/tools.

4.1 Identification with MS

MS is typically used to measure the mass of peptides obtained by proteolytic
cleavage of one or a mixture of proteins [the peptide mass fingerprinting
(PMF) approach] and/or the mass of fragment ions obtained by subsequent
fragmentation of one or several peptides [the peptide fragment fingerprinting
(PFF) approach]. In PMF, experimental peptide masses are compared to
theoretical mass values obtained by applying a proteolytic cleavage rule to
the entries in a sequence database. By analogy, PFF compares experimen-
tal MS/MS fragmentation mass values of a peptide to theoretical MS/MS
spectra computed from the database. In both methods the matches between
experimental and theoretical spectra are scored such as to provide a measure
of similarity between the two spectra, a higher score indicating a higher
likelihood that the corresponding protein or peptide is the target protein or
a peptide, respectively, from the target protein.

Software tools to identify proteins using the PMF or PFF approaches share
common characteristics:

• A database (typically Swiss-Prot/TrEMBL [12] or NCBI [87]) is searched for
the protein, whose theoretical MS (respectively MS/MS spectrum) is most
similar to the experimental one.

• A score function measures the similarity between experimental and theoret-
ical spectra; the result is presented as a list of candidate proteins or peptides,
sorted by decreasing score values. In PFF, the result shows either candidate
peptides or candidate proteins after peptides have been combined to pro-
teins.

• Experimental mass values may be entered manually or copy-pasted. Alter-
natively, a file with mass values for one or several spectra may be uploaded.
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• Experimental parameters may be specified which include the enzyme used
for proteolytic digestion as well as the user’s confidence in it (maximum
number of missed cleavage sites to be considered), the peptide mass toler-
ance (respectively, precursor ion mass and fragment ion mass tolerances)
and various fixed or variable modifications that can affect the protein or
peptide sequence, e.g. acetylation, carbamylation or oxidation of residues.

• To increase the specificity and speed of the database search, restrictions
may be added. For example, the search may be limited to one species
or taxonomic category, or to given pI or Mr intervals; resulting protein
or peptides may also by filtered out by various other criteria such as the
minimum number of matching peaks, minimum score value, etc.

Although PMF can produce excellent results in given situations, partic-
ularly when searching databases for species of small and fully sequenced
genomes, PFF is a more specific and sensitive identification method and is
better adapted when searching in larger databases or when working with
complex mixtures of peptides. The sequence information given by the amino
acids fragmentation, that are then analyzed using PFF programs, increases
the chances of finding true positive hits in database searches. It is possible
that even a single peptide (a single MS/MS spectrum) will correctly identify
a protein, but this depends on the number of amino acids in its sequence
(and as a consequence the peptide coverage on the identified protein). PFF
identification is not a perfect method either. Many MS/MS spectra collected
during an experiment may not be assigned to any peptide. Possible reasons
for these nonmatches can be the presence of contaminants, the poor-quality
spectra with noise and unusual fragmentation, spectra derived from proteins
not present in the database or with an alternative splicing not annotated in
the database, etc. In general, more and more current experimental settings
use both PMF and PFF methods in a complementary approach to increase the
number of confidently identified proteins.

PMF and PFF are very similar approaches; both correlate experimental
spectra with theoretical spectra (respectively, MS and MS/MS spectra). The
main difference among the substantial number of existing tools for PMF and
PFF lies in their scoring scheme and thus in their ability to identify the correct
protein or peptide amongst all candidates, i.e. to distinguish true-positive
from false-positive matches. A scoring function must take into account many
factors to produce a robust score, like dissimilarities in the peak positions
due to internal or calibration errors, peak intensities, noise, contaminants or
missing peaks, presence of PTMs, and so on. A variety of different scoring
functions have been implemented in various algorithms and programs for
PMF and PFF identification [42] such as:
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• Aldente [82] (http://www.expasy.org/tools/aldente) is a PMF identifica-
tion software developed at the Swiss Institute of Bioinformatics. It imple-
ments rules, empirical observations and user knowledge in various steps
of the identification procedure, and automatically determines the mass
deviation of the mass spectrometer by searching for the best mass alignment
within the estimated instrument internal precision using a robust method,
the Hough transform [73]. Aldente eliminates the need to provide cali-
brated data, as the alignment procedure considers relative mass variations
and thus automatically recalibrates all mass values. The alignment pro-
cedure also eliminates outliers thus making the identification much more
robust than usual PMF identification programs. Similarly to most other
tools on the ExPASy proteomics server (http://www.expasy.org), Aldente
takes into account the annotations available in the Swiss-Prot database, par-
ticularly PTMs and alternative splicing information. Aldente compares the
score of candidate peptides or proteins to the score obtained by matching
the spectra to a randomized database in order to statistically compute the
likelihood that the candidate proteins or peptides are true positive matches
(p-value). Also in line with the other tools on ExPASy, resulting proteins in
Aldente may directly be submitted to other ExPASy proteomics tools such
as Findpept (that explains peptides that result from unspecific cleavage),
PeptideMass (that theoretically cleaves proteins), BioGraph (that graphi-
cally represents matched and unmatched peaks in spectra) or FindMod and
GlycoMod (see below for details).

• Mascot [66] (http://www.matrixscience.com) includes both a PMF as well
as a PFF search tool. Mascot uses a probability-based scoring system that
considers matches as random events dependent on the number of entries in
the database. Mascot may be obtained from Matrix Science. A free public
Internet version is accessible from the above-mentioned URL.

• The ProteinProspector Server [16] (http://prospector.ucsf.edu) from the
University of California San Francisco MS facility has a suite of programs
that mine sequence databases using MS experiments. Among their tools
are MS-Fit for PMF analysis, MS-Tag for PFF, and MS-Seq for a combi-
nation of PFF and peptide sequence tag analysis. MS-Seq assumes that
short sequence tags are usually easily determined in MS/MS spectra
and that their combination with the mass values of the prefix and suffix
fragments creating a sequence composed of mass + Tag + mass) increases
the discrimination. MS-Seq program is based on the PeptideSearch tool
(http://www.narrador.embl-heidelberg.de/GroupPages/Homepage.html)
from EMBL [57].

• The PROWL environment [92] (http://prowl.rockefeller.edu) at Rockefeller
University comprises ProFound, a PMF identification program which can
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also be configured to identify components from a mixture of up to four
proteins, and PepFrag, an identification tool for PFF. It uses a Bayesian
probabilistic score that considers the deviation between theoretical and
experimental masses.

• Phenyx (http://www.phenyx-ms.com), developed at Geneva Bioinformat-
ics (GeneBio) in collaboration with the Swiss Institute of Bioinformatics,
is a second-generation MS analysis platform that includes both a PMF
algorithm using the Aldente alignment algorithm and a PFF identification
tool that implements the OLAV true probabilistic scoring scheme [17]. This
scoring function, based on a likelihood ratio, takes into account a signif-
icant amount of physicochemical parameters of the fragment ions such
agmentation pattern probabilities, the presence of different ion series (a,
b, y, etc), peak intensities and residue modifications (as annotated in the
Swiss-Prot/TrEMBL database). This gives Phenyx the ability to efficiently
discriminate between true- and false-positive matches. In addition, the
score can be optimized for specific mass spectrometers using a training set
of validated identified proteins. Finally, Phenyx also provides a combined
PMF and PFF identification mode that makes the identification process
more robust. Phenyx, available from GeneBio (http://www.genebio.com),
can also be accessed freely at the above-mentioned URL.

• Sequest [28] (http://fields.scripps.edu/sequest/index.html) was the first
PFF program to be developed. It compares a simplified experimental spec-
trum to theoretical spectra built from the databases and ranks candidate
peptides using a simple correlation measure. Sequest is available from
Thermo Electron Corporation. Examples of tools employing heuristic al-
gorithms include Spectrum Mill, X!Tandem and Sonar [32].

Other tools exist that perform PMF and PFF; however, their intrinsic al-
gorithms are similar to those already cited here. The performances of the
above-mentioned tools depend not only on their algorithms, but also on the
parameter values and on the content and size of the searched databases. For
example, the correct proteins and peptides (the true positives that should
be ranked first) would appear at the bottom of the resulting list when the
number of sequences in the searched database is very high or when many
missed cleavages are allowed. On the other hand, true positives have better
chances to appear in the top of the ranked list when restricting the search to
the taxonomy of the studied species or group of species. Two metrics are used
to compare the performances of MS and MS/MS algorithms and to give some
hints on how to determine the confidence level of an identification result.
The sensitivity of a tool indicates the ability to make a correct identification
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regardless of the quality of the data and is calculated by:

Sensitivity = TP/(TP + FN),

where TP stands for true positives and FN for false negatives. The specificity
of the tools indicates the ability to calculate low-ranking scores for random (or
incorrect) matches and is calculated by:

Specificity = TN/(TN + FN),

where TN stands for true negatives and FP for false positives. In both cases,
a certain empirical threshold has to be determined to indicate the correctness
of a match. Some of the above-mentioned tools were compared considering
these two metrics [15,46]. Regarding the compared PMF tools, ProFound was
considered more sensitive and specific than MS-Fit. For the compared PFF
tools, Sequest and Spectrum Mill had good sensitivity values, while Mascot,
Sonar and X!Tandem had good specificity. It is important to note that these
results have to be taken with caution, since the comparisons are made with
very specific parameters and databases. In real life, end users submit their
MS and MS/MS data to one or two of these tools, and heuristically interpret
the different results based on their own biological knowledge, experience and
judgment.

Finally, when no matches are found with PMF or PFF, a third alternative
approach can be used to obtain protein information from MS/MS data. It is
called de novo sequencing and consists of inferring the amino acid sequence of
the source peptide from an MS/MS spectrum without searching any database.
This approach can be useful for determining parts (peptide tags) or all of
the sequence of unknown proteins, especially in the case of a proteome from
an incompletely sequenced genome, or of mutated or modified proteins that
failed to be identified by identification software. Since de novo sequencing
algorithms do not use database information during spectrum interpretation,
they work in a search space composed of the set of all possible sequences
that can be represented by the spectrum without any other restriction than the
peak patterns. However, these peak patterns can be of very low quality due to
fragmentation errors, such as the presence of contaminants and noise, and to
missing peptide fragments (noncontinuous signal). Due to these two issues,
the size of the search space and the complexity of MS/MS spectra, de novo
sequencing methods are difficult to automate and current de novo software
tools often fail to extract correct sequence data.

Despite these issues, some tools are available for de novo sequencing.
PEAKS [54] is one of them. It uses a dynamic programming algorithm to
perform the computation and a mathematical model based on the abundance
of ions in the spectra. PEAKS is distributed by Bioinformatics Solutions. Most
other software for de novo sequencing (such as Spectrum Mill, SeqMS [31],
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Sherenga [24] or Luthefisk [81]) use a graph theory approach. The spectrum is
first translated into a “spectrum graph” where nodes in the graph correspond
to peaks in the spectrum and two nodes are connected by an edge if the mass
difference between the two corresponding peaks is equal to the mass of an
amino acid within a given mass tolerance. The software then attempts to
find a path that connects the N- and C-termini, and to connect all the nodes
corresponding to the y ions (or b ions, see Section 2.3 for ion explanations).

Popitam [41], also developed at the Swiss Institute of Bioinformatics, uses a
hybrid approach. Similarly to de novo sequencing programs, it builds a spec-
trum graph, but only searches for paths or partial paths (tags) in the graph that
match the sequence of candidate peptides from the database. The algorithm
specifically allows for identifying modified and/or mutated peptides without
any a priori knowledge about the expected type of modifications.

4.2 Characterization with MS

Even though the analysis of MS and MS/MS mass spectra can lead to the
reliable identification of a protein, a considerable portion of the spectra often
remains unmatched and could potentially represent PTMs. Bioinformatics
plays an important role in this specific proteomics area with the development
of software to help understanding these modifications.

The FindMod tool (http://www.expasy.org/tools/findmod) can be used
for de novo prediction of PTMs in proteins and potential single-amino-acid
substitutions in peptides [88]. It is typically used after PMF identification, and
examines mass differences between theoretical peptide masses of a specified
known sequence and empirical mass values. If such a mass difference cor-
responds to a mass difference known to be induced by a PTM, but not yet
annotated in the Swiss-Prot entry, FindMod uses a set of rules to predict what
amino acid residues in the peptide might carry that modification. FindMod
can currently predict 22 modifications including acetylation, methylation,
palmitoylation, phosphorylation, etc. For each of these modifications, at least
one rule has been established by carefully examining the relevant annotations
in the Swiss-Prot and PROSITE [29] databases as well as the literature, with
respect to the type of organism, position and amino acid at which the modi-
fication can be observed. The same algorithm is applied to suggest possible
single-amino-acid substitutions in peptides. In this way, the tool assists in
characterizing a gene product and its possible interactions, activities and role
in normal and disease states.

Glycosylation is one of the most abundant forms of covalent protein
modifications and one of the most complex ones (see also Chapter 45). The
range of monomers of which carbohydrate structures in glycopeptides can
be composed is broad, and these monomers can be joined in many ways
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to form linear and branching structures. The diversity of carbohydrate
compositions and structures results in a very large number of different
potential PTMs that by far exceeds the relatively small number of mod-
ifications considered in FindMod. This diversity, as well as a variety of
parameters specific to glycosylation, requires a specialized tool, GlycoMod
(http://www.expasy.org/tools/glycomod) [18]. MS of glycopeptides can
provide useful information on the composition of the attached oligosac-
charides: if a peptide is presumed to be glycosylated, the mass of the
oligosaccharide can be deduced as the difference between the experimental
peptide mass and the mass predicted from the peptide sequence. The poten-
tial oligosaccharide compositions corresponding to this mass difference can
be calculated from a combination of the masses of possible monosaccharide
constituents [64]. GlycoMod considerably facilitates this assignment of mass
to composition. The program is linked to Swiss-Prot so that peptide masses
of known proteins can be accessed, screened for potential glycosylation
sites (both N- and O-linked) and used in the identification of potential
glycopeptides.

Other methods directly predict PTMs from the protein sequence, without
any information from mass spectra. Even though they are outside the scope of
pure proteomics, they are at least worth to be named. Usually these methods
use machine learning or probabilistic approaches to predict modification sites
on sequences. The server of the Center for Biological Sequence Analysis (CBS)
in Denmark (http:// www.cbs.dtu.dk/services) proposes various predictors
based on neural networks. These tools predict specific N-linked glycosy-
lation sites in human proteins (NetNGlyc), O-glycosylation sites in mam-
malian (NetOGlyc [45] and YinOYang) and Dictyostelium discoideum proteins
(DictyOGlyc [38]), acetylation sites (NetAcet [47]), and phosphorylation sites
(NetPhos [11]). Myristoylator, a tool developed by the ExPASy team at the
Swiss Institute of Bioinformatics, also uses a neural network model to predict
the addition of a myristate to a glycine in the N-terminal chain [13]. The
Sulfinator on the other hand uses hidden Markov models to localize sulfated
tyrosine residues [59].

5 Proteome Databases

Biological related databases can be classified according to the type of informa-
tion provided, i.e. protein sequences, nucleotide sequences, patterns/profiles,
proteomes, 3-D structures, PTMs, genomic and metabolic data. Historically,
the expression proteome databases was used to only describe databases holding
proteomics data, i.e. the data produced by the technologies described in
the previous sections, mainly 2-DE gel images and mass spectra. However,
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according to a more comprehensive definition of current proteomics, this
expression has embraced other data resources available to the scientific com-
munity. This section briefly describes some of the relevant data resources.
A more extensive list is published on a yearly basis by Nucleic Acids Re-
search. Here we focus on sequence databases, 2-DE and MS, as well as PTM
databases.

5.1 Protein Sequence Databases

The most comprehensive source of protein information is found in protein
sequence databases. These can be divided into universal databases, which
store protein information from all types of biological sources, and specialized
databases, which concentrate their efforts on restricted groups of protein
families or organisms. Universal protein sequence databases can be cate-
gorized into databases that are simple repositories of sequence data, mostly
translated from DNA sequences, and in annotated databases. The latter
requires the assistance of curators who screen the original literature, review
articles as well as electronic archives. Here we mainly describe Swiss-Prot [12],
an annotated universal sequence database, and TrEMBL, an automatically
generated sequence database that supplements Swiss-Prot, as well as their
integration with other proteomics resources.

Swiss-Prot (http://www.expasy.org/sprot) is a protein sequence database
particularly known for its extensive annotation, minimum level of redun-
dancy and maximum level of integration with other databases. Swiss-Prot
is mainly manually curated, whereas the vast majority of TrEMBL entries
are unannotated or automatically annotated. Created in 1986, release 46.4
includes more than 170 000 entries from more than 9000 different species.
Swiss-Prot’s main host is the ExPASy server and its eight mirror sites.

Swiss-Prot entries consist of different line types that are grouped into sec-
tions. The description section includes, among others, the accession number
(a unique entry identifier), the update dates, the protein description (its name),
the gene name and the taxonomic origin. It is then followed by the reference
section, which, for each bibliographical reference, includes the type of exper-
imental work contributing to the entry (sequencing, 3-D structure determina-
tion, mutagenesis studies, etc.), the author list and the literature references.
The comment section follows then with a variety of textual remarks classified
into topics such as function, subunit, similarity, PTM, MS source, etc. The
subsequent section is the database cross-reference that provides active links
to more than 60 different biological databases. The links to other proteomics
databases like SWISS-2DPAGE, PROSITE/InterPro and PDB allow for rapid
access to experimental proteomic data, like position and number of protein
spots on a 2-DE gel, other members of the same family, or the 3-D structure of



5 Proteome Databases 1049

the protein. After a keyword section follows the so-called feature table section.
It describes regions or sites of interest in the sequence as well as documented
PTMs, binding sites, active sites, secondary structures, variants, conflicts, etc.
The entry ends with the amino acid sequence itself, which is the unprocessed
precursor of the protein, before any PTM or processing. Tools that identify
proteins from mass spectra should ideally use the information held within the
feature table. In order to achieve an optimal approximation of the protein in its
mature state, the signal sequence and propeptides should be removed before
computing pI and Mr. ExPASy-based proteomics tools such as Aldente and
FindMod benefit from the annotation of Swiss-Prot to improve their capacities
of identifying and characterizing active chains and proteins annotated with
PTMs.

Since its creation, Swiss-Prot has been developed using high-quality man-
ual and computer-assisted annotation, despite the currently large number of
genome sequencing projects and, as a consequence the increasing number
of sequences that have to be incorporated into Swiss-Prot. This is where
TrEMBL (Translation of EMBL Nucleotide Sequence Database [8]) steps in.
TrEMBL was created in 1996 as a supplement to Swiss-Prot and consists
of computer-annotated entries in Swiss-Prot-like format. It is populated by
protein sequences translated from the coding sequences (CDS) in EMBL. In
a way, it can be considered as a waiting room to Swiss-Prot; indeed, once
annotated, the entries are transferred to Swiss-Prot.

Since 2003, when the maintainers of Swiss-Prot and TrEMBL (the Swiss
Institute of Bioinformatics and the European Bioinformatics Institute) joined
forces with the PIR group at Georgetown University to form the UniProt
Consortium [7], Swiss-Prot and TrEMBL are also known as the “UniProt
Knowledgebase”.

As said in the beginning of this section, there are many specialized protein
sequence databases available. Their contents vary a lot in terms of range of in-
terest, number of entries, type of information and quality of the data. They are
listed and detailed in the special issue on databases of Nucleic Acids Research
as well as on the ExPASy server (http://www.expasy.org/links.html).

5.2 2-DE Gel Databases

Among proteomics databases, those containing 2-DE gel images with iden-
tified proteins, also known as reference maps, are widely used. These
databases, usually freely accessible for academics through the Internet, con-
tain clickable maps. The identified spots are linked to their identification
method and the description of their identified protein. SWISS-2DPAGE [43]
(http://www.expasy.org/ch2d) is the oldest and largest such 2-DE database.
Created and maintained at the Swiss Institute of Bioinformatics in collabo-
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ration with the University Hospital of Geneva, in August 2006 it contained
nearly 40 reference maps of various species including human, mouse, E. coli,
etc. More than 1300 entries document over 4000 identified “spots”. The
proteins represented by these spots were identified by matching with other
gels, by amino acid composition, by Edman sequencing, by immunoblotting
and, mostly, by MS. The text format for each entry is similar to the Swiss-Prot
model. It includes specific fields such as the type of master gel from which
the protein spot has been identified, the list of gel images associated with
the protein entry, as well as other 2-DE specific data, such as the mapping
procedure, the spot identifier, the experimental pI and Mr, the MS data,
and quantitative data about the protein expression (i.e. physiological and
pathological levels, polymorphisms or modifications in specific conditions).
The database has cross-references to Swiss-Prot and when no identified spot
exists in SWISS-2DPAGE for a given entry in Swiss-Prot, an image is generated
highlighting the theoretical position of the corresponding protein. Relevant
literature references are provided with links to PubMed. SWISS-2DPAGE data
are curated following the Swiss-Prot database standards, i.e. experts manually
review the information before making it available. In addition, they follow the
MIAPE (Minimum Information About a Proteomics Experiment) guidelines
for reporting proteomics experiments recommended by the Human Proteome
Organization (HUPO) Proteomics Standards Initiative (PSI) [63]. The MIAPE
data exchange model is named as such by analogy to the MIAME (Minimum
Information About a Microarray Experiment) model.

The 2-D database of the Max Planck Institute for Infection Biology (http:
//www.mpiib-berlin.mpg.de/2D-PAGE) is also among the most frequently
updated proteomic databases, containing over 20 gels of microbial organisms
as well as human, mouse and rat [58]. This database is now part of an
interconnected proteome system containing information such as MS spec-
tra, isotope-coded affinity tag (ICAT)-LC-MS spectra, textual descriptions of
experimental protocols or results of protein identification [67]. The whole
relational database and querying system is implemented in MySQL and uses
other open source software such as R for data analysis and graphics. The
proteomics local databases are extensively linked to other external public
genomic and metabolic databases.

The number of 2-D PAGE databases and related data is slowly but con-
tinuously increasing. An up-to-date list can be found in WORLD-2DPAGE
(http://www.expasy.org/ch2d/2d-index.html), an index of 2-DE databases
and services. More than 25 species are represented in about 300 2-DE maps
all over the world. The databases are established in various formats. How-
ever, an increasing number follows the principle of federated 2-DE databases
[4], according to which the organization of and access to a database must
comply with five simple rules. This set of rules was created to homoge-
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nize the querying and presentation of such proteomic databases and assist
in interconnecting similar data through a cross-reference system, and as a
consequence in sharing and distributing 2-DE data in a more effective way.
Following those guidelines, the Make2D-DB II package was developed to help
research groups to create their own 2-DE databases [60]. This free package
not only helps nonexperts to publish their data on the Internet, but it also
provides a graphical interface with query capabilities. It can be obtained at
http://www.expasy.org/ch2d/make2ddb.html.

5.3 Mass Spectra Repositories

Mass spectra databases are still in their early stages. Three public repositories
exist so far. The Open Proteomics database (http://bioinformatics.icmb.-
utexas.edu/OPD) is a collection that contains approximately 400 000 spectra
representing different experiments from E. coli, Homo sapiens, Saccharomyces
cerevisiae and Mycobacterium smegmatis [71]. The mzXML Data Repository
(http://sashimi.sourceforge.net/index.html) also contains a small number of
collections of MS data obtained with different instruments (mainly Ther-
moFinnigan LCQ and Micromass Q-TOF Ultima) and various mixtures of
proteins. The group that maintains this repertoire also distributes tools for MS
analysis and has created the mzXML format for the representation of MS data.
The third repository, PeptideAtlas (http://www.peptideatlas.org), contains
a collection of identified peptides from LC-MS/MS experiments. Currently
the experimental results contained in these repositories are not very detailed
and data formats are excessively diverse, making their use by other groups
difficult.

5.4 PTM Databases

In an era in which more than 100 complete genomes are sequenced per year,
the issue of understanding proteins and proteomes relies also on understand-
ing protein modifications that cannot be predicted from the nucleic acid se-
quences. Most proteins indeed contain PTMs and are not functional unless
they are modified. While Swiss-Prot, as a universal database, places a consid-
erable emphasis on the documentation of PTMs within the sequence records,
several specialized databases have been set up in recent years to feed this
growing field.

RESID [33] is a general database of protein structure modifications
(http://www-nbrf.georgetown.edu/pirwww/dbinfo/resid.html), maintained
by the National Biomedical Research Foundation in the USA and the PIR
group. The database contains descriptive, chemical, structural and biblio-
graphical information on 424 (Release 46.00, June 2006) types of modified
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amino acid residues. Apart from text-based searches, RESID can also be
queried by molecular weight: an average or mono-isotopic mass can be
entered (together with a mass variance) to search for all modified amino acid
residues in the database with masses similar to the input mass. Unimod
(http://www.unimod.org) can be seen as a complementary database to
RESID [20]. It is a database for verifiable spectrometric mass values of natural
or artificial modifications. It is especially dedicated to mass spectrometric
analysis software.

Other databases that are specialized in one particular type of PTM are
available. For example, two databases have so far been devoted to glyco-
sylations. The public O-GLYCBASE v6.00 contains about 240 descriptions
of glycoproteins that have been experimentally verified to have an O- or
C-glycosylation site [37]. O-GLYCBASE entries show the type of O-linked
sugar involved, the species, the sequence, links to the literature, and cross-
references to sequence and structure databases such as Swiss-Prot and PDB.
GlycoSuiteDB (http://www.glycosuite.com) is an annotated database of gly-
can structures restricted to accredited users and submitted to license fees.
The database is provided by Proteome Systems, and contains information
about most published O- and N-linked glycans [19]. It is cross-referenced to
Swiss-Prot/TrEMBL and it can be queried by mass, by attached protein, by
oligosaccharide composition or different modes of textual queries (taxonomy,
biological source, etc.).

Protein phosphorylations are currently described in at least three databases
differing in the curation levels, details of information and scope of organisms.
Phospho.ELM [25] and Phosphorylation site [90] databases (http://phospho.-
elm.eu.org and http://vigen.biochem.vt.edu/xpd/xpd.htm, respectively)
describe experimentally verified covalent phosphorylations of serine, threo-
nine or tyrosine residues in proteins from eukaryotes (human, mouse, rat and
a thousand other organisms) and prokaryotes respectively. PhosphoSiteTM

(http://www.phosphosite.org) is a curated database dedicated to in vivo
phosphorylation sites, particularly in human and mouse proteins [44]. Lipo-
proteins are the object of DOLOP (http://www.mrc-lmb.cam.ac.uk/gen-
omes/dolop), which is restricted to bacterial lipoproteins only. This server
also has a predictive algorithm for querying unknown prokaryotic sequences
looking for lipoboxes and lists of predicted lipoproteins for multiple com-
pleted bacterial genomes [56].

Although the current number of specific PTM databases is still quite small
considering the number of known PTMs, it has doubled in the last few years.
It is expected that they will multiply because of the increasing amount of data
on PTM structures becoming available.
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5.5 General Considerations on Databases

It is clear that the databases described above do not cover all the aspects of
proteomics. We did not mention databases that use sequence databases to
perform calculation and analysis, such as sequence clustering, phylogeny or
profile searching, and thus create added-value databases. Other databases
report results from functional studies and mutational experiments, or from
3-D structure determination, or describe metabolic pathways. Those were
not mentioned here either. It would be impossible to be exhaustive. Some of
the databases have already been treated in other chapters. Some of them are
permanently updated, some of them have only a short existence, and some
of them are not even publicly available. Proteomics databases, as well as
data formats, are developed in a dynamic, nonorganized way. To overcome
this issue and to facilitate the exchange, dissemination and analysis of the
multitude of proteomics data produced by many laboratories, the HUPO PSI
has been working on generalized standards representations [63]. Among them
are guidelines for reporting proteomics experiments through the MIAPE data
integration model, XML formats for microarray and MS data exchange, a
list of proteomics ontologies, and guidelines for the comparability of search
engine results.

Proteomics information in most databases is accumulated rather than en-
larged to a systemic view. The biology understanding is incomplete without
quantification and chronology. If the goal of accumulating information is to
discover or reveal the function and related biochemical mechanisms, available
information has yet to be interconnected, weighed and ordered. Proteome
databases are moving from the stage of simple repositories to interconnected
systems with intelligent knowledge production means.

6 Conclusion

The development of diagnostic and predictive tools as well as successful
therapies for complex polygenic diseases including diabetes, cancer and car-
diovascular diseases requires the understanding of the fundamental biolog-
ical mechanisms implicated in these disorders. This can be achieved under
defined environmental conditions with strategies that combine genetic and
proteomic tools. Proteome analysis has the ability to detect and identify
polypeptides that correlate with disease states, and further lead to the dis-
covery of potential molecular markers and therapeutic targets. Furthermore,
proteomic technologies can display the pharmacological and toxic effects of
candidate drugs on a disease process. There is a close relationship between
drug treatment, protein expression and resulting physiological effects. Most
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of the time, pharmacological mechanisms entail the secondary regulation
or modulation of gene product expressions, in a similar way that complex
disease processes alter global protein expression. From this, we can assert
that the best drug should be the one that restores global protein expression
of a disturbed organism to a normal state. In addition, it is quite unusual
that a drug only modulates gene products implied in the disorder. Most of
the time, it also causes perturbations in the expression of proteins that are
not involved in the disease. This leads to side effects of drugs. Proteomics
and bioinformatics are deeply implicated in the understanding of disease and
drug effect mechanisms and the design of new drug therapies. This chapter
has just given a brief overview of their joined capabilities.
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Part 8 Protein Function Prediction

29
Ontologies for Molecular Biology
Chris Wroe and Robert Stevens

1 Introduction

This chapter provides an overview of the application of ontologies within the
bioinformatics domain, specifically for the representation of protein function.
We will provide a background of the ontology field and its technical basis as
well as the current developments. We will then link the features of ontologies
with the issues faced in bioinformatics, underscoring how ontologies can
help. Having done this, we will provide some case studies pertinent to
bioinformatics, in general, and protein function, in particular.

Molecular biology currently lacks the mathematical support prevalent in
disciplines such as physics and chemistry. In physics, we have laws based in
mathematics that allow us to predict planetary orbits, behavior of waves and
particles, etc., from first principles. In molecular biology, we cannot yet take
a protein sequence and use the amino acid residues present to calculate the
structure, molecular function, biological role or location of that protein. All
that can be stated is that: “Sequence is related to molecular function and struc-
ture”. Using this “law”, a biologist must compare a novel protein sequence
to others that are already well charaterized. If the uncharaterized sequence
is sufficiently similar to a charaterized sequence, then it is inferred that the
characteristics of one can be transferred to the uncharaterized protein – hence
the sequence similarity search. The characterization of single sequences lies
at the heart of most bioinformatics, even the new high-throughput techniques
that investigate the modes of action of thousands of proteins per experiment.
When performing a sequence similarity search, it is not simply the similarity
statistics that determine biological insight into the uncharaterized protein.
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The bioinformatician uses the knowledge about the proteins already chara-
terized in order to arrive at any insights. Thus, it has been said that biology is
a knowledge-based discipline [3].

Much of the community’s knowledge is contained within its curated
databases. In a database such as UniProt/Swiss-Prot, the protein sequence
data itself is a relatively small part of the entry. Most of the entry is taken
up by “annotation”, which can be considered the knowledge component
of the database. This knowledge is usually captured as stylized natural
language. Even this form of text provides flexibility in the way information
can be expressed. The same function can be described using different terms
in different resources or the same term can ambiguously describe different
concepts in different resources [6, 12]. This semantic heterogeneity is a
perennial problem in integrating bioinformatics resources. Although this style
of representation is suitable for human readers, the current representation of
the knowledge component is difficult to process by machine. Automated
integration of data from different resources is becoming essential because of
the following features of bioinformatics data:

• Large quantity of data. The genome-sequencing projects now imply that data
is being produced at increasingly fast rates; a new sequence is deposited
in the public genome database EMBL every 10 s. Microarray experiments
measuring gene expression and other high-throughput techniques now
imply that other data are also being produced in vast quantity, at petabytes
per year [13].

• Complexity of data. It is difficult to represent most biological data directly in
numeric form. As well as the basic data representation, a characteristic of
biological data is the many relationships held by each entity. For instance,
any one protein has a sequence, functions, processes in which it acts, loca-
tions, a structure, physical interactions it makes, diseases in which it may be
implicated and many more relationships. Not all relationships are present
in a single resource. Information must be integrated to build a complete
picture.

• Volatility of data. The content of bioinformatics databases reflects the current
knowledge of the community and so is constantly evolving.

• Distribution of data. In bioinformatics, each small community of researchers
often takes the initiative for publishing their data and analysis tools. Bioin-
formatics uses over 700 of these data resources and analysis tools found
all over the Internet [9]. They often have web interfaces through which
biologists enter data for analysis, cut and paste results to new web resources
or explore results through rich annotation with cross-links [17].
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Figure 1 A simple illustration of what can constitute an ontology.
Ovals represent concepts, which are classes of instances; the solid
arrows represent “is a” relationships, such that all members of a child
class are also members of a parent class. The dotted arrow shows a
part of relationship between amino acid and protein.

This scene leaves both the maintainers of bioinformatics resources and their
users with significant challenges if they are to integrate knowledge from a
number of distributed databases. Annotations in each database must be cap-
tured in a consistent manner if they are to be comparable to other data. Given
the quantity and volatility of the data, it is no longer tenable to manually sift
through data for novel insights. Some form of automated assistance is needed
to integrate disparate knowledge and filter only relevant data. Therefore,
the knowledge component must also be machine interpretable, i.e. computer
applications must be able to understand to some extent what the data means:
its semantics.

2 Ontologies and their Components

An ontology attempts to capture a community’s understanding of a domain as
a structured collection of vocabulary terms and definitions [38]. An ontology
describes what a community understands and how it communicates about its
domain of interest, e.g. the functions of proteins. It describes, in a conceptual
form, the things that exist in the domain, both concrete and abstract, such
as protein molecule, amino acid, enzyme, α-helix, species, protein function,
process, location, disease, etc. It also describes the relationships between
these concepts. For example, an ontology can describe knowledge such as the
fact that all proteins are comprised of amino acids. Figure 1 shows a simple
ontology of some of the basic components of molecular biology.

The term ontology has its origins with Aristotle and in the philosophical
domain it is the art of describing things that exist in the world. Computer
science has taken this term and altered it. In computer science, an ontology
is a conceptualization of a domain of interest, rather than a description of
reality. Concepts are units of thought that refer to things in the world – protein,
function, sequence [27]. Words are symbols that we use to communicate about
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things in the world and, in an ontology, terms are used to label concepts. It is
these terms that are used by a community to talk about the domain of interest.
If the conceptual model of the world (ontology) and the terms for those
concepts (lexicon) can be agreed upon by the community, then ambiguity in
communication can be reduced. This shared or common understanding of a
domain is one of the primary aims of an ontology. A goal of computer science
research into ontology representation is to make these conceptualizations of
human knowledge processable by computers in a manner that enables them
to make inferences about the knowledge stored in them. In summary, the main
components of an ontology are:

• The concepts representing entities that exist in the domain. A concept can
either be a class that represents a set of instances or a particular instance
itself.

• The terms or symbols that label those concepts and allow humans to com-
municate about those concept or entities in the world.

• The relationships between those concepts. The principle among these is
the “is a” relationship that describes a parent–child relationship, or class–
subclass, where every instance of the child concept is also a kind of the
parent concept. The second major relationship is the “part of” relationship
that describes parts and their wholes [39], such as parts of proteins (active
site, α-helix, amino acid residue) and their relationship to the whole protein.
Other associative relationships are used: causative, nominative, etc.

• Other statements about the concepts and relationships. In logic systems,
for example, it is possible to say that sibling concepts are disjoint – it is not
possible for an instance to be a member of both classes. Other statements
might include equivalence between classes or that the members of child
classes completely covers all the members of the parent class.

Although biologists may not have used the term “ontology", the use of classi-
fication and description as a technique for collecting, representing and using
biological knowledge has a long history in the field. For example, the Lin-
naean classification of species is ubiquitous and the Enzyme Commission
has a classification of enzymes by the reaction that they catalyze [16]. Fam-
ilies of proteins are also classified along axes such as function and structural
architecture [12]. Over the past years there has been a surge of interest in
using ontologies to describe and share biological data, reflecting the surge in
size, range and diversity of data, and the need to assemble it from a broad
constituency of sources.
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2.1 Ontology Representation

The computer science ontology field is a direct descendant of the knowledge
representation (KR) and reasoning work done within the artificial intelligence
community over the last several decades. There is not sufficient space in this
chapter to provide a complete history of KR; however, it is important to under-
stand that a whole range of formalisms have been developed which capture
differing degrees and types of expressivity, computability, and satisfiability,
and each has applicability within a particular problem space. Two key styles
of representation – frame-based and description logics – have relevance to
current ontology work and so we will provide a brief definition.

Frame-based systems are most like object-oriented systems and provide a
high degree of structure. They are centered around the idea of a frame, or
a class, where each frame represents a set of instances of that frame or class.
Each frame has associated slots which represent attributes of the frame. Slots
are filled by specific values or by other frames. Slots may be of various kinds.
So, for example, frames may have an associated “is a” slot, mentioned earlier,
which is used to create a taxonomy within the frame system. The “part of”
slot, another highly important slot or relationship, may also be represented
in a frame-based system. The frame-based representation system is the most
widely used of the KR formalisms and has been used extensively within the
life sciences community, e.g. in EcoCyc described in Section 3.6.1.

Description logics (DLs) allow ontologies to be built in a very different way
from frame-based systems. Rather than making the author build a taxonomy
explicitly (an error-prone task for complex ontologies), a DL provides reason-
ing capabilities, in the form of a classifier, that will build the ontology from
smaller conceptual units. These smaller conceptual units provide sufficient
description, a concept with one or more associated relationships, so that
the DL reasoner can classify the new concept in the proper place within
the ontology. DLs have been of significant interest in the last several years
and provide the underlying representation for the Web Ontology Language
(OWL).

OWL is a KR and transfer language for building ontologies that delivers
vocabularies with a formal semantics. It became a W3C recommendation in
February 2004 and is descended from the earlier language DAML+OIL [14].
OWL has three increasingly expressive sublanguages: OWL-Lite, OWL-DL,
and OWL-Full. It also has a rules language under development for capturing
knowledge that cannot be contained in an ontology [1]. The OWL languages
are:

• OWL-Lite – provides the capability to describe simple taxonomic classifi-
cations and lacks the expressivity to make rich descriptions of classes of
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instances. It provides a migration path for thesauri and simple taxonomies,
such as those commonly seen in current bio-ontologies.

• OWL-DL – an expressive language that is a fragment of first-order logic.
This means that it is amenable to machine reasoning. Ontologies described
in OWL DL can be checked for logical consistency and subsumption hier-
archies (the lattice of “is a” links) inferred from the descriptions of classes
formed from the links made between classes [34,35]. This form of OWL will
be our focus.

• OWL-Full – more expressive than OWL-DL, but is not yet fully amenable to
machine reasoning.

In OWL, classes describe sets of instances or individuals that belong together
because they have properties in common (enzyme function is the class of
all functionality which can catalyze a reaction – lipase, dehydrogenase, etc.).
Classes may be arranged into subsumption hierarchies using the subclass
relationship. By stating that receptor binding is a subclass of signal transducer
activity, we are stating that all instances of receptor binding are also instances
of signal transducer activity. Properties can be used to state relationships
between classes and individuals or from individuals to data values. For ex-
ample, we can say that instances of the class peptide binding act on instances
of the class peptide. In OWL DL, we can place restrictions on how properties
form relationships that make what that relationship means explicit. We can
use existential quantification, to state that all instances of one class have a
relationship to some instance of another class, i.e. all peptide binding acts
on some peptide (but might also bind something else too), or we can use
universal quantification to restrict the target of a relationship to only instances
of a certain class – all peptide binding (if it acts on anything) acts on only
peptide. We can form more complex expressions by saying that all instances of
the class peptide binding acts on some peptide and acts on only some peptide.

OWL-DL is much more expressive than this fragment indicates. For in-
stance, we can describe properties of properties such as transitivity, range and
domain constraints, and form hierarchies of properties. It is also possible
to say that the instances of two sibling classes do not overlap by using a
disjointness axiom – the classes protein and nucleic acid are both kinds of
macromolecule, but being disjoint it is not possible for an individual protein
to also be a nucleic acid. We can also describe a class as being partial or
complete. When the properties of a class are partial, those properties are
necessary conditions of class membership, i.e. an instance must have those
properties. Describing a class as complete means that an instance having
those properties is sufficient to recognize it as a member of that class. So,
labeling our class peptide binding as complete would mean that any instance
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Figure 2 A complex illustration of the detail an ontology can capture.
(i) Human-readable OWL syntax showing the definition for malate
dehydrogenase. (ii) A paraphrase of the definition in English

of binding that acts on peptide would have to be a peptide binding. Figure 2
shows how complex an OWL definition can become by showing a candidate
definition for the concept malate dehydrogenase in OWL abstract syntax and
a paraphrase of the definition in English.

3 Ontologies in the Real World

The previous sections have described the high-level purpose of ontologies and
how the ontology language OWL provides us with a wide range of features
to formally capture the key concepts of a domain. However, it must be
appreciated that building a life science ontology is a significant undertaking.
Formal definitions take time to author, with expertise required both in life
sciences and KR. Definitions must be checked by the community to ensure
they adequately capture their shared understanding. As the communities’
knowledge evolves so must the ontology and so at least as much effort is
needed to maintain an ontology as was required to build an initial version.

Several approaches have been used by existing ontology developers to
mitigate the large amount of effort needed to embark on such a programme.
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• Use of ontology tools. Sophisticated editing tools can greatly improve the
productivity of ontology authors, especially when it becomes necessary to
build large ontologies or ontologies with complex concept definitions.

• Use of existing ontologies where possible. Having multiple ontologies covering
the same areas can be both wasteful and defeat the purpose of a common
understanding.

• Incremental development. By only representing what is currently needed both
in terms of coverage and also the degree to which concepts are formally
defined, it is possible to greatly reduce development and maintenance
effort.

It is important therefore to be aware of current ontology tools, life science
ontologies and the way representational features in ontologies support dif-
ferent requirements. Section 3.1 provides an overview of ontology tools and
Section 3.2 provides an overview of how the bio-ontology community has
begun to support a clearinghouse of community ontologies. To provide both
an overview of current ontologies and of phased development, key ontologies
will be examined from Section 3.3 onwards to illustrate how the features they
include directly support the requirements of that community.

3.1 Ontology Tools

There are now a number of commercial and open source tools for the devel-
opment, maintenance, merging and visualization of ontologies. A compre-
hensive survey of ontology tools was conducted in July 2004 by XML.com [7].
We will not attempt to reproduce that survey here, but it is worth mentioning
some tools and organizations that are notable within the ontology field.

Undoubtedly, the best-known ontology authoring tool is Protege, from the
Stanford Medical Informatics group at Stanford University (http://protege.
stanford.edu) [11]. This tool has been in use for over 10 years and it could be
argued that it has been around longer than that, since it is an outgrowth of
the KR initiatives at Stanford University that have been in existence since the
1970s. Protege has a large and very active user community within a number
of commercial and academic projects, and is open source, so that it can be
downloaded at no cost and is easily installed. There are several mailing lists
to which developers and new users may subscribe, and the tool comes with
example ontologies to help new users get started on a project. Protege has a
core engine which is extended with plugins. There are a number of plugins
and the user community is actively involved with creating new ones. Two
recent plug ins are the “OWL-plugin” for writing ontologies in OWL and the
“Protege Wizards” plugin developed by the Co-ODE project (http://www.co-
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ode.org) for simplifying repetitive tasks while writing a large ontology in
OWL.

Another tool that is widely used in the life sciences community is DAG-Edit
(http://www.geneontology.org/doc/GO.tools.html#dagedit). DAG-Edit was
developed at the Berkeley Drosophila Genome Project (BDGP) to be used
as a part of the knowledge acquisition effort of the Gene Ontology (GO)
Consortium. DAG-Edit was initially limited in its representational capabili-
ties, and has been primarily used to represent simple “is a” and “part of”
relations; however, it is simple to use, and has been a very effective tool in
the development of the very successful GO effort and others. The success of
DAG-Edit is in its ability to rapidly assimilate new content for GO.

In addition to these two tools, there are well over 50 other ontology author-
ing tools, of varying degrees of sophistication and ease of use, from universi-
ties and research organizations around the world. There are a large number
of commercial organizations that offer commercial ontology authoring tools.
Some of the more prominent of these commercial tools are: LinkFactory Work-
bench from Language and Computing, Integrated Ontology Development
Environment (IODE) from Ontology Works, OntoEdit from Ontoprise, Open-
Cyc Knowledge Server from Cycorp and Construct from Network Inference.
Although none of these tools, commercial or academic, yet have complete
support for all of the representational capabilities of ontology languages such
as OWL or DAML+OIL or the reasoning capabilities of DLs, there are a
number of sophisticated tools and a lively marketplace for developing the next
breed of tools.

3.2 Bio-ontology Communities

To be effective, an ontology must comprise the shared understanding of a
community for a particular subject area. It is therefore important once an
ontology has been built to disseminate it so that the effort in building it is
not needlessly repeated; the community can contribute to its maintenance and
other allied communities can build upon it in their work. The organizations
that are promoting the development and the adoption of ontologies in the
life sciences field include the GO Consortium, Microarray Gene Expression
Data (MGED) group, the Bio-Ontologies Consortium, and the Bio-Pathways
Consortium. The GO Consortium (http://www.geneontology.org) brings to-
gether 17 model organism databases (at the time of writing) to develop GO. As
each new organization joins, they commit to using the GO terms to describe
the functionality of gene products in their databases. As a consequence, each
new group drives the development of the GO to make available terms needed
for that species.
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Sequence Ontology (SO) is also part of the GO Consortium. It is a group-
ing of genome annotation centers, including WormBase, BDGP, FlyBase, the
Mouse Genome Informatics group and the Sanger Institute. The aim is to
provide a shared vocabulary for the features described on nucleotide and
protein sequences. It is intended to range from the basic features seen on a
sequence, through interpretations such as “pseudogene” to mutations [8].

The Open Bio-Ontologies effort (OBO) acts as an umbrella under which bio-
ontologies may be developed and disseminated (http://obo.sourceforge.net).
OBO has a set of principles that govern inclusion:

• Submitted ontologies must be open, but cannot be altered and re-distributed
under the same name.

• Use cannot be restricted – ontologies are for sharing.

• A common representation should be used – either the form accepted by
DAG-Edit or OWL.

• Ontologies should be nonoverlapping.

• Namespace identifiers should be used in order that any entity within an
ontology can be identified as to its source.

• All terms should have a textual definition to prevent ambiguity in interpre-
tation by human readers.

OBO offers access to a wide range of ontologies. Prominent amongst these
are several ontologies of anatomy for various species. These are of particular
interest to the community as they can be used to identify the biological source
of material in experiments – “This microarray experiment used mouse lung”,
etc. In addition to anatomies, there are also several ontologies of development
within species. Finally, there are a growing number of phenotype ontologies
available, including traits, disease and behavior.

BioPAX (http://www.biopax.org) is a consortium of pathway databases
that aims to develop an exchange language for biological pathways. Pathways
include the metabolic, regulatory and signal pathways. The BioPAX initiative
aims to overcome the heterogeneity of formats and conceptualizations in the
many pathway databases. Initially, BioPAX has used an ontology, written
in OWL, to develop a schema for describing the entities and their attributes
to be exchanged. Further levels of BioPAX will be developed to provide for
controlled vocabularies for the description of pathway data.

MGED has a similar goal to that of BioPAX in that it aims to develop
both schema and the vocabularies that fill attributes of that schema for the
description of microarray experiments. MGED has been in existence longer
than BioPAX, and has a developed an ontology to provide vocabularies for
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the description of biological samples, their treatments and the experimen-
tal conditions pertaining during hybridizations [36]. This ontology is now
moving away from the world of model organisms to include toxicology and
environmental genomics experiments. As proteomics experimentation devel-
ops, there are efforts being made to share descriptions of experiments across
broader communities.

While BioPAX, GO and MGED are the most prominent and mature molec-
ular biology ontologies, they are not the only efforts within the life sciences
community to develop open-source ontologies. There are also active efforts to
develop ontologies in a number of other areas, including:

• Foundational Model of Anatomy (FMA) [31]: an ontology of human
anatomy.

• Tissue Ontology [32]: offers a controlled vocabulary for describing tissues
across a range of contributing databases.

• Chemical Entities of Biological Interest (ChEBI): a dictionary of small molec-
ular entities that are either products of nature or synthetic products used to
intervene in the processes of living organisms
(http://www.ebi.ac.uk/chebi/).

All of these organizations have common goals. There is a recognition that
this is a community effort and that inclusion of the community will make an
ontology work [2, 21].

3.3 Incremental Development of Ontologies

Specifications for rich ontology languages such as OWL do not demand that
all their features be used. As few features can be used as necessary. Therefore,
most successful life science ontology activities narrow the scope and features
of the ontology to match their essential set of requirements. They then put
in place a procedure to manage the continuing development of the ontology,
to ensure it both keeps pace with changing requirements and the changing
knowledge of the community [2].

The following section details how a wide range of current bio-ontology-like
resources capture different aspects of protein function with different degrees
of formality. Their differing design is a result of different requirements. Each
resource can be placed on a “feature escalator” as shown in Figure 3. Adding
new representational features to the ontology adds more functionality at the
cost of complexity to maintain. Fortunately, the decision need not be fixed.
Later examples will show how an ontology can be moved along the escalator
to meet changing requirements.
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Figure 3 A five-level escalator in which increasing features provide
more advanced functionality, but at the cost of complexity.

As stated earlier, the challenges of bioinformatics dictate that some of the
key uses of an ontology in life sciences are:

• Pooling knowledge based content between databases by use of a shared
vocabulary.

• Supporting database browsing by using the structure of the ontology.

• Aggregating database content by again using the structure of the ontology.

• Supporting the integration or exchange of data by using an ontology to
describe its schema.

3.4 Ontology Features to Manage Database Content

3.4.1 A Controlled Vocabulary with Human Readable Definitions

A controlled vocabulary is a constrained list of classes and associated terms
used to describe qualitative data. When a community agrees on such a list
for aspects of their data, it is possible for computer applications to pool data
across distributed databases. This was one of the primary aims of the GO
Consortium when developing the GO [37].

3.4.1.1 Gene Ontology It is clear that organisms across the spectrum of life,
to varying degrees, possess large numbers of gene products with similar se-
quences and roles. Knowledge about a given gene product (i.e. a biologically
active molecule that is the deciphered end-product of the code stored in a
gene) can often be determined experimentally or inferred from its similarity
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to gene products in other organisms. Research into different biological sys-
tems uses different organisms that are chosen because they are amenable to
advancing these investigations, e.g. the rat is a good model for the study
of human heart disease and the fly is a good model to study cellular dif-
ferentiation. For each of these model systems, there is a database project
employing curators who collect and store the body of biological knowledge
for that organism. This enormous amount of data can potentially add insight
to related molecules found in other organisms. A reliable wet-lab biological
experiment performed in one organism can be used to deduce attributes of an
analogous (or related) gene product in another organism, thereby reducing the
need to reproduce experiments in each individual organism (which would be
expensive, time consuming and, in many organisms, technically impossible).
However, querying these heterogeneous, independent databases in order to
draw these inferences is difficult – the different organism database projects
may use different terms to refer to the same concept and the same terms to
refer to different concepts. Furthermore, these terms are typically not formally
linked with each other in any way. GO seeks to reveal these underlying
biological functionalities by providing a controlled vocabulary that can be
used to describe gene products and is shared between biological databases.
The terminology of GO is used to annotate gene products with respect to three
attributes: the specific molecular functions that these products possess, the
higher-level biological processes in which they participate and the cellular
components in which they can be found. GO has currently been used for
over 1 million annotations of gene products within the various participating
databases. This facilitates querying for gene products that share biologically
meaningful attributes, whether from separate databases or within the same
database. Figure 4 shows how it is straightforward to pool data using GO.
GO does not aim to capture a full description of a particular gene product’s
function. A protein may have a many functions in different circumstances
and the exact nature of that functionality may differ subtly in different condi-
tions. Annotation with a GO term simply states that a gene product has been
demonstrated or inferred to have a certain capability, without describing in
what circumstances.

Appropriate and consistent use of GO concepts requires all annotators to
have a common understanding of what each concept represents. Therefore
the GO Consortium places a great deal of effort in providing a definition for
each concept. The vast majority of GO concepts have a textual definition.

3.4.1.2 MGED Ontology When interpreting biological data it is important to
consider the experimental conditions under which it was obtained. This is
particularly true in microarray experiments where very small variations in
conditions or technique lead to incomparable data. As introduced in Sec-
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Figure 4 Two model organism databases, TIGR and TAIR, both use
GO concepts to annotate the biological processes in which the gene
product has been found to participate. In this case two gene products
ASA1 and F15D2.31 are involved in tryptophan biosynthesis. The GO
browser AmiGO (http://www.godatabase.org) can quickly access this
pooled information.

tion 3.2, MGED facilitates the sharing of microarray data generated by func-
tional genomics and proteomics experiments. The main products of MGED
are the Minimum Information About a Microarray Experiment (MIAME)
guidelines [4] which have been formalized in the Microarray Gene Expression
Object Model (MAGE-OM), markup language (MAGE-ML) and associated
ontology, the MGED ontology. Information about an array experiment is
separated into a number of packages such as array design, experiment and
biomaterial. For each package MAGE-OM and MAGE-ML specify the struc-
ture of relevant information. For example, that one specific kind of biomaterial
“biosource” denotes the initial source of material used in the experiment such
as the specific tissue of an organism. The MGED ontology has a structure
which mirrors to some extent this organization of packages in MAGE. It has
a term that corresponds to “biosource”. However, in this case it does not
provide terms needed to describe the source in detail, e.g. the species of
originating organism. In line with the principles described in Section 3 the
annotator is expected to use an existing controlled vocabulary such as the Na-
tional Center for Biotechnology Information (NCBI) organism taxonomy. In
other cases, where an existing vocabulary is not available, the MGED ontology
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does provide a list of controlled terms. There are a list of 51 terms to describe
the actions that can be performed on a biomaterial, e.g. “dissect”, “harvest”
and “purify”. Each term has an associated text definition to assist annotators
in choosing the appropriate term. There is, however, no organization of these
lists of terms.

3.4.2 A Structured Controlled Vocabulary

If the number of concepts grows, there is a requirement to organize the
concepts into related groups to form a tree, where each concept has a par-
ent. However, the principles by which the concepts are organized can differ
greatly. The Medical Subject Headings (MeSH) [22] is an example of a con-
trolled vocabulary in a thesaurus structure used to assign keywords to life
science publications. In a thesaurus-like vocabulary the relationship between
parent and child concepts is a vague “narrower than, broader than” one.
The shape of the tree is designed to (i) assist manual navigation around
the tree and (ii) help retrieval of items associated with concepts. A parent–
child relationship is added if a search for documents with the parent term
should return documents annotated with the child term. Therefore, Accident
Prevention G03.850.110.060 is a child of Accidents G03.850.110, despite not
being a subclass of the parent term. A computer system can use this structure
to support retrieval of data (publications in the case of MeSH).

3.4.3 A Subsumption Hierarchy

Many ontology-like resources have been used, not just for manual navi-
gation and retrieval, but for statistical aggregation of data. For example,
GO allows scientists to produce statistics of the number of gene products
demonstrating a particular class of function. Figure 5 shows the AmiGO
browser (http://www.godatabase.org) with which it is possible to show that
currently 27% all annotated gene products demonstrate a binding function
(GO:0005488). In order to provide this information a vague “broader than,
narrower than” parent–child relationship is not sufficient. In the example
above if there is an instance of Accident Prevention it does not hold that it is
also an instance of Accidents. If a gene product is annotated with a descendent
of binding such as peptide receptor activity (GO:0001653), it must be true
that the gene product also shows binding functionality. The GO Consortium
call this the “true path rule: the pathway from a child term all the way up
to its top-level parent(s) must always be true”. In KR, the relationship in
which membership of a child class implies membership of the parent class is
called subsumption. OWL uses the subclass keyword to denote a subsumption
relationship. Limiting the hierarchy to just subsumption relationships, whilst
making the structure more amenable to machine processing, makes it more
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Figure 5 Screen shots from the AmiGO browser
(http://www.godatabase.org). The left-hand side shows the
subsumption hierarchy for molecular function. The right-hand side
shows the aggregated statistics for gene products from all databases
annotated with descendants of molecular function terms. In total,
150 732 gene products have been annotated with a molecular function.
Of those, 40 263 (27%) have been annotated with binding.

difficult to navigate by users, because seemingly closely related concepts may
be in distant parts of the subsumption hierarchy.

GO provides two primary hierarchical relationships that provide structure
to the controlled vocabulary, i.e. “is a”, and “part of”. Although these can
both be represented in OWL, or its predecessors, in the spirit of incremental
development, the GO Consortium chose the simplest possible representation,
a directed acyclic graph, and a simple textual format for its storage, the GO
format. “is a” can be interpreted as a subsumption relationship equivalent
to the subclass relationship in OWL. “part of” groups structurally related
concepts, e.g. components of the nucleus such as nucleolus (GO:0005730),
or concepts that are related in terms of subprocesses, e.g. receptor recycling
(GO:0001881) is a “part of” (interpreted as “subprocess of”) signal transduc-
tion (GO:0007165). “part of” is equivalent to an OWL property. Aggregation
is still possible using this structure because although it is not true to say that if
we have an instance of a nucleolus, we have an instance of its “part of” parent
nucleus, it is true to say that a gene product annotated as being localized to
the nucleolus belongs to the class of gene products localized to the nucleus.

3.4.4 Multiple Hierarchies

When the nature of concepts in the ontology becomes complex, there are
multiple ways in which they can be classified using just subsumption re-
lationships. For example, as shown in Figure 6, the concept adrenocorti-



3 Ontologies in the Real World 1077

Figure 6 Extract of the multiple classification of adrenocorticotropin
receptor activity (GO:0004978) in GO. It is classified in at least three
different ways based on the chemical and functional nature of the
chemical it binds, and the functional nature of the receptor itself.

cotropin receptor activity (GO:0004978) in GO is classified both in terms of
(i) the chemical nature of the substance being bound, e.g., it is a subclass
of peptide binding (GO:0042277), (ii) the functional nature of the substance
being bound, e.g., it is a subclass of hormone binding (GO:0042562), and (iii)
the functional nature of the receptor itself, e.g. G-protein-coupled receptor
activity (GO:0004930). Using this more complex structure, protein function
annotations can be analyzed along these different axes of classification. The
term multiaxial denotes classification structures which simultaneously in-
clude different axes of classification. Both OWL and the directed acyclic
graph-based GO format allow each concept to have multiple parent concepts
and so support multiaxial classification.

This added functionality, however, comes at a cost to the maintainers of
the ontology. Maintaining an exhaustive multiaxial hierarchy by hand has
been shown to be difficult, leading to a significant rate of omitted parent–child
links if the ontology becomes large or the number of parents for each concept
becomes significant [30, 40]. Omissions in the classification structure impact
on the validity of results from computer applications using that structure.

3.4.5 Formal Definition of Concepts

As mentioned in Section 2, OWL provides many more features that allow
ontology authors to capture much more of a concept’s definition in a formal
manner. DL applications can then interpret these definitions to actually infer
multiple subsumption hierarchies automatically. This moves the focus of
ontology authors from building the hierarchical structure of the ontology to
formally capturing the definitions for each concept.
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The GO Next Generation project (GONG) (http://gong.man.ac.uk) demon-
strated that, in principle, migrating to a finer grained formal conceptualization
in DAML+OIL (and more recently OWL) will allow computation techniques,
such as DL to ensure logical consistency, freeing the highly trained curators
to focus on capturing biological knowledge [40]. GO is large, so GONG
proposed a staged approach in which progressively more semantic informa-
tion is added in situ. DL reasoning is used early and often, and suggested
amendments sent to the GO editorial team.

To use the DL to maintain the multiple hierarchy automatically, each GO
concept is dissected, explicitly stating the concepts’ definition in OWL. This
provides the substrate for DL reasoners to infer new and remove redundant
subsumption relationships.

Within a large phrased-based ontology such as GO, which contains many
concepts within a narrow semantic range, it is possible to use automated tech-
niques to construct candidate dissections by simply parsing the term name.
For example, many metabolism terms in GO follow the pattern “chemical
name” followed by either “metabolism”, “catabolism” or “biosynthesis”. If
a term name fits this pattern, a dissection can be created from the relevant
phrase constituents as shown in Figure 7. These patterns have to be spotted
by a developer and the scripts that generate the DL representation targeted at
the appropriate regions of the GO. This provides a semiautomated, targeted
approach, which avoids patterns being too general, e.g. confusing “Protein
Expression” and “Gene Expression”, which may fit a general pattern, but
where the former describes a “target” and the latter a “source”.

The process of dissection breaks down the existing concept into more atomic
concepts that are related in a formal semantic manner. These elemental
concepts are then placed in orthogonal taxonomies. Taxonomic information
such as the classification of chemical substances which was previously implicit
and repeated in many sections of the GO ontology is now made explicit
in an independent chemical ontology. The reasoner combines the informa-
tion in these independent taxonomies to produce a complete and consistent
multi-axial classification. The changes reported by the DL reasoner represent
mostly additional relationships hard to spot by the human eye and not errors

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 7 (i) A tangle of subsumption
relationships between GO:0030210
heparin biosynthesis and its ancestor
concepts as shown in the QuickGO browser
(http://www.ebi.ac.uk/ego). The relationship
shown in grey has been added by the
GONG project. (ii) Two distilled views of
this tangle showing ancestors involving
more general classes of chemical and more
general class of metabolic process. Note

that glycosaminoglycan biosynthesis (in
grey) should be a parent, but in the version
of GO prior to the GONG project there
was no subsumption relationship between
heparin biosynthesis and glycosaminoglycan
biosynthesis. (iii) The formal definitions
of these two concepts necessary for
the reasoner to infer this subsumption
relationship.
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in biological knowledge. The effect of adding descriptions and using the
reasoner can be seen in Figure 7. For example, the reasoner reported that
“heparin biosynthesis” has a new “is a” parent “glycosaminoglycan biosyn-
thesis”. These reports can then be sent to the editorial team for comment
and action if necessary. Even at this preliminary stage of migration, the
utility of the approach can be recognized. Many missing and redundant “is
a” relationships have been spotted, making GO more complete and robust.
Members of the GO editorial team have recognized the potential of using such
a logic-based approach to automatically place concepts in the correct location
– a task seen as difficult by the team in GO’s current hand-crafted form.

The use of reasoning to help maintain the structure of the GO is now being
adopted within the GO Consortium [25]. To support the representation of
formal definitions and also communities outside the GO Consortium, the
language used to represent the GO has been significantly extended to become
the Open Bio-ontology Language (OBOL). It now overlaps with the OWL
language and it is possible to convert ontologies between these two represen-
tations where appropriate. The editing tool DAG-Edit is also being extended
to support the formal definition of concepts in this way.

Formal definitions not only support the maintenance of the ontology itself,
but also provides other applications with machine-interpretable information
for each concept. For example, instead of relying on sequence similarity
to retrieve similar proteins, they could be functionally clustered based on
their GO functional annotations. This requires several measures of “semantic
similarity”, e.g. those of Refs. [23, 24] which exploit both the DAG structure
of GO and the frequency of use of GO terms within the various databases
now annotated with GO. The definition of a metric for “semantic similarity”
between GO terms allows us to exploit the machine-interpretable semantics
of GO for large data sets. By comparing these metrics to sequence similarity
measures we were able to isolate a number of issues in either GO or the use of
GO within the annotated databases [23]. We have also investigated the use of
these metrics as the basis for a search tool to allow querying within a database
(http://gosst.man.ac.uk).

3.5 Ontology Features to Manage Data Schemata

The previous sections examined the ontology features required to represent
vocabularies. However, several major life science ontologies describe the
structure of data rather than specific annotations of its content. Here, the re-
quirements on an ontology are different. Ontologies to describe data schemata
are much smaller than vocabulary ontologies. Therefore, less emphasis is
needed on paring down their features to the minimum required. In fact, the
emphasis is on capturing the relationships between a small number of classes
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in as much formal detail as possible. The features of the OWL language which
can capture the nature of relationships are more often used. For example, the
cardinality feature is used to describe the number of instances with which
a relationship holds. Domain and range constraints in OWL describe the
classes of individuals which can form the source and target of a relationship.
Subproperties capture the fact that one relationship can be considered a type
of another, e.g. hasStructuralComponent could be a subproperty of hasPart.

The BioPAX ontology is such a case as introduced in Section 3.2. It defines
the key entities present in pathway databases and the relationships between
them. It complements existing ontologies such as GO. A key class is of course
pathway. BioPAX does not itself provide subclasses to describe all the different
types of pathway. Instead, it is left to other ontologies to provide this detail.
For example, much of the GO biological process taxonomy could be included
under pathway. The pathway class has a pathway-component relationship
with the class interaction. The interaction class defines a single biochemical
interaction with two or more entities. BioPAX does not enumerate a expansive
taxonomy of such interactions, which again could be obtained from GO. In
this way BioPAX is providing a specification of the relationships between high
level classes that span more specific vocabulary ontologies such as GO.

3.5.1 TAMBIS

Once an ontology is available that provides a common understanding of
multiple overlapping database schemata it can be used to build software
applications that guide the scientist in asking a biological question and then
transparently translate that question into a number of queries over distributed
databases. The TAMBIS (Transparent Access to Multiple Bioinformatics
Sources) project built such an ontology-based system [10]. The scientist asks
a question by constructing a novel concept using classes and relationships
that describes the information of interest. A small sample of such queries
are: “Find the active sites of hydrolase enzymes, with protein substrates
and metal cofactors” and “Find all chimpanzee proteins similar to human
apoptosis proteins”. A concept is a description of a set of instances, so a
concept can also be viewed as a query. The TAMBIS system is used for
retrieving instances described by concepts in the model, so for example the
aforementioned example query could be restated as “Find all instances of
the class of chimpanzee proteins similar to human apoptosis proteins”. This
contrasts with queries phrased in terms of the structures used to store the
data, as in conventional database query environments. This approach allows a
biologist to ask complex questions that access and combine data from different
sources. However, in TAMBIS, the user does not have to choose the sources,
identify the location of the sources, express requests in the language of the
source or transfer data items between sources.
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The TAMBIS ontology is described using an early DL called GRAIL [28].
The GRAIL representation has a useful extra property in its ability to describe
constraints about when relationships are allowed to be formed. For example,
it is true that a motif is a component of a biopolymer, but not all motifs are
components of all biopolymers. For example, a phosphorylation site can be
a component of a protein, but not a component of a nucleic acid, both of
which are biopolymers. The constraint mechanism allows the TAMBIS model
to capture this distinction and thus only allow the description of biologically
meaningful concepts.

3.6 Ontologies for Prediction and Simulation

None of the ontologies described above actually represent in any detail all the
communities’ knowledge about how a specific protein functions in any one
context. Schrager [33] has commented on this shortcoming. Currently, most
ontologies only help in the management of information about proteins – pool-
ing information about proteins with similar functions in different species or
helping exchange protein function data between databases. Now researchers
in the emerging field of systems biology are beginning to look to ontologies
to structure much more detailed models at various levels of detail including
protein function, to perform predictive analysis or complex simulations of
biological systems.

3.6.1 EcoCyc

The developers of EcoCyc are a founding member of the BioPAX work group.
EcoCyc uses an ontology to describe the richness and complexity of the path-
way domain, and the constraints acting within that domain, to specify a
database schema [18]. Classes within the ontology form a schema; instances
of classes, with values for the attributes, form the facts that with the ontology
form the knowledge base. EcoCyc is presented to biologists using an ency-
clopaedia metaphor. It covers Escherichia coli genes, metabolism, regulation
and signal transduction, which a biologist can explore and use to visualize
information [19].

The instances in the knowledge base currently include 165 Pathways, in-
volving 2604 Reactions, catalyzed by 905 Enzymes and supported by 162
Transporters and other proteins expressed by 4393 Genes [19]. EcoCyc uses
the classification of gene product function from Riley [29] as part of this
description. Scientists can visualize the layout of genes within the E. coli chro-
mosome of an individual biochemical reaction or of a complete biochemical
pathway (with compound structures displayed).

EcoCyc’s ontology has now been used to form a generic schema MetaCyc,
that is used to form the basis for a host of genomic knowledge bases [19].
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These ontologies are used to drive pathway prediction tools based upon the
genomic information stored in the knowledge base. From the presence of
genes and knowledge of their product’s function, knowledge can be inferred
about the metabolomes of the species in question [20]. Such computations are
not only possible with the use of ontology, but EcoCyc’s developers would
argue that their ontology-based system and the software it supports makes
such a complex task easier.

3.7 The Physiome Project

The Physiome project is an international effort to support the computational
modeling of the human body, incorporating biochemical, biophysical and
anatomical information on cells, tissues and organs [15]. The Physiome Com-
mittee of the International Union of Physiological Sciences is encouraging
the development of common standards through the use of open markup lan-
guages, such as CellML (http://www.cellml.org). Whereas the GO provides
a vocabulary to describe the capability of a protein to perform a function, the
Physiome project is providing a framework to describe mathematical models
of protein function and the contexts within which they apply. Ontologies form
a key part of the framework, providing a consistent terminology with which
to relate simulation model components with the biological entities described
in current bioinformatics databases. They help to describe the context in
which a particular model of function operates. The parameters for a particular
model may change in specific phenotypes or genotypes. For example, the
electrophysiological model of conduction in cardiac cells changes when mu-
tations occur in ion channels within the cell membrane [26]. Capturing these
relationships in a consistent manner will become essential if we are to transfer
the genetic and proteomic information we gather into an understanding of its
impact on a functioning system.

Ontologies are also to be used to relate simulation model components at
different spatial scales [5]. For example, a model of tumor growth at the tissue
scale will be dependent on the outcome of simulations of the cell cycle within
individual cells. Ontologies hold the promise of being an essential inter lingua
between systems built by diverse communities stretching from biochemists to
research clinicians.

4 Summary

Significant progress has been made in the last decade in the creation and
adoption of ontologies in the life sciences. There now exist several prominent
efforts in the field, the GO Consortium and the wider OBO effort, BioPAX
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and the MGED Society. These organizations have successfully defined a
number of key ontologies in molecular biology and are extending their reach
to ontologies in other subdomains within the life sciences. There is strong
evidence of the adoption of these ontologies within the community: we have
seen GO identifiers used by a number of prominent bioinformatics databases
and many of the key conferences in the bioinformatics domain are including
tracks on life science ontologies.

In addition to the adoption of ontologies within the biological community,
there is also significant work going on in the computer science field to develop
richer and more sophisticated ontologies. Adoption of OWL by the W3C is
also a significant step in making ontology languages a key building block of
IT infrastructure components.

While progress has been substantial, there are still challenges for the broad
adoption of biological ontologies in the biological community. The primary
obstacles that remain are:

• Adoption of a common language for the representation and exchange of life
sciences ontologies.

• Creation of standard ontologies that represent the various key domains of
knowledge within the bioinformatics field.

• Improved software tools to assist building ontologies with complex features
such as formal definitions, to support the maintenance of ontologies and to
support the use of ontologies in applications.

With the recent adoption by the W3C of OWL, OWL has strong support from
the Semantic Web community and that community is actively reaching out to
life scientists to assist in its adoption. It also has good prospects for continued
development as the W3C working group that supports it is very active and
comprises some of the top researchers in the field. Most major bio-ontology
groups recognize OWL as a standard, including OBO, MGED and BioPAX, so
the life science community is well on the way to adopting a common standard.

With respect to standard ontologies, it is unrealistic to expect that there
will be a single standard ontology for every domain within the life sciences.
However, even convergence on a small number of ontologies within each
community is a very positive step forward and would mean progress in the
field. The expectation is that leading ontologies such as GO, MGED and others
will dominate their field, and will be adopted by the user community as a
useful tool.

There is a substantial amount of effort dedicated to improving ontology
software tools. Given the standardization and uptake of the OWL language,
the hope is that tools will appear not just from within the bioinformatics
community, but also from other areas such as the Semantic Web community.
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It is heartening to note that bio-ontologies are having an impact within
the life sciences community. There is serious work being performed, with
good results. Active research underway in the computer science field is
planting seeds for the next generation. We can expect bio-ontologies to grow
significantly in the years to come.
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Inferring Protein Function from Sequence
Douglas Lee Brutlag

1 Introduction

Inferring gene or protein function from sequence information has been an
incredibly valuable approach to interpreting genomes without having to per-
form detailed biochemical studies on individual gene products. Learning
conserved families of proteins and representing conserved functional regions
within these families with motifs leverages the known biological attributes
of proteins, permitting one to infer proteins belonging to the same family
and containing the same conserved functional sites. This procedure can
dramatically reduce the amount of experimental work that must be done to
characterize the genes in a new genome or gene products in a new proteome.
Protein families and motifs also form a much more compact representation
of the biological, structural and functional properties of the protein sequence
database.

In this chapter we will discuss various methods for representing and learn-
ing conserved protein motifs. We will discuss these methods within the
standard machine learning paradigms by which motifs can be discovered in a
largely unsupervised fashion, being driven primarily by sequence similarity
and automatic discovery of protein families and conserved regions. We will
also discuss more highly supervised learning of motifs that are driven by find-
ing motifs in smaller subfamilies of proteins defined by biological properties
other than sequence.

The simplest way to infer the function of novel proteins is via a pairwise
sequence similarity search such as Smith–Waterman local alignment or a
BLAST similarity search [1, 2] (see also Chapter 3). Pairwise similarity search,
in effect, uses every known protein sequence as a pattern to compare with
a query protein of unknown function. Sequence-similarity methods require
that one find a protein sequence that is closely related to the query protein
within a database of proteins with known function. It also requires that one
have a database of proteins whose function is known by experiment and not
itself inferred from sequence similarity [32]. Otherwise one develops a chain
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of inferences, each of unknown or dubious significance, often leading to false
and unreliable predictions. Other limits on the accuracy of inferring functional
or structural information via pairwise alignments have been discussed in
depth elsewhere [44, 45, 119, 123].

Another limitation of inferring function from pairwise-similarity search is
that such methods usually employ a dynamic programming algorithm that
permits arbitrary amino acid substitutions or insertion/deletion gaps (indels).
If such substitutions or gaps occur within the functional sites of proteins, then
the inference of a common function may be in error despite a highly significant
overall similarity. The protein in question may, in fact, catalyze a different
reaction with a different substrate or cofactor. Even worse, the protein in
question may not be functional at all as for pseudogenes. Nevertheless,
most users of sequence-similarity search to infer function never check the
experimental validity of the target sequence or the impact of the sequence
changes between the novel protein and known protein sequence.

A more rigorous method for inferring protein function from sequence is
to compare the query sequence with families of sequences (family-wise com-
parisons) rather than pairwise with individual sequences. The first method
for family-wise comparisons was to generate conserved sequence motifs from
protein family alignments (Prosite database [15,69,90]). The first advantage of
using protein families is that they consist of many proteins that can represent a
wide evolutionary or taxonomic range of the functional protein. More impor-
tantly, motifs represent the functionally conserved positions in the protein.
By learning motifs, one discovers which residues are essential for function
and what the range of allowed variation is at each position in the functional
site. In this way, the conserved motif (or consensus sequence) is a much
better representation of the functional sites. When comparing a sequence
motif against a protein of unknown function, only the critical residues are
compared. This increases the signal-to-noise ratio and the specificity of the
motif, and permits inference to be drawn over a much wider evolutionary
or taxonomic range than possible with pairwise sequence comparisons. Con-
served motifs also ensure the validity of the functional inference. Insertions,
deletions or substitutions in the important conserved residues of the motif will
eliminate the inference.

Of course, a major limitation of representing function using sequence motifs
is that biological function is not always encoded in a single contiguous series
of amino acid residues. Often, functional regions are distributed over several
noncontiguous sites in a protein requiring multiple noncontiguous motifs to
represent a single biological function (e.g. binding site, interaction site or
catalytic site). A good example is the catalytic triad in serine proteases in
which each of the three essential residues in the catalytic site is contained
in one of three separate conserved motifs (Figure 1) [37, 77, 78]. Another
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Figure 1 Three conserved motifs containing
the three residues of the catalytic triad in the
serine protease subtilisin BPN′ of Bacillus
amyloliquefaciens. The first conserved
motif is shown in red (residues 135–146;
Prosite PS00136) and contains the active
site aspartate (red spheres). The second
conserved motif is shown in blue (residues
171–181; Prosite PS00137) and contains the

active site histidine (blue spheres). The third
motif is shown in yellow (residues 326–336;
Prosite PS00138) and contains the active site
serine (yellow spheres). Although the three
motifs are widely separated in the protein’s
sequence, the three residues of the catalytic
triad are immediately adjacent to each other
in the three-dimensional structure.

example is the Walker motifs that encode a nucleotide-binding site (a Rossman
fold) and involve two conserved motifs [120]. In such cases one can use a
disjunction of motifs or other more sophisticated representations of multiple
ordered or unordered sets of motifs.

Another limitation of the motif methods described in this chapter is that
biological functions can be conserved without detectable sequence conserva-
tion. Examples include conserved chemistry and conserved structure without
significant conservation of sequence [14,38,39,52,123]. These problems can be
partially addressed by motifs that encode properties of amino acids other than
sequence. In the chapter we will discuss network-based motifs (both neural
network and Bayesian networks) that can represent patterns of hydrophobic-
ity, charge, volume, contacts, bonding and pairwise correlations. These motifs
can represent motifs in a more structural way than sequence based motifs.
Other approaches involving structural motifs themselves will not be discussed
in this chapter [83, 84, 107, 128].
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2 Sequence-based Motif Representations

2.1 Consensus Sequences as Regular Expressions

There are a wide variety of different representations of protein sequence
families. As mentioned above, the first method was a consensus sequence
or a sequence pattern. Consensus sequences are usually derived from a
multiple protein sequence alignment in which the critical functional regions
are detected and aligned. The most common representation of the sequence
pattern is a regular expression defined by the regular expression syntax such
as used in the Unix grep command. The full regular expression syntax can
be used to represent protein motifs or one can limit patterns to just fixed-
length regular expressions. The full regular expression syntax permits one
to represent lists of residues permitted at each position in the consensus
sequence as well as variable length regions of “don’t care” regions. For fixed-
length regular expressions, one has to use multiple regular expressions to
represent variable-length sequence motifs.

Regular expressions have some limitations for representing functional mo-
tifs. The first is that they are deterministic and discrete. A new sequence either
matches or does not match the pattern. Normally there are no approximate
matches or concept of suboptimal matches in the regular expression syntax.
However, the publicly available program agrep does permit one to search
for patterns with a limited number of mismatches [86]. Unfortunately agrep
requires one to sacrifice the linear time performance of the grep algorithm
making the computation time for pattern search polynomial in terms of the
number of variations allowed.

Another limitation of regular expressions is that there are no weights for
different positions in the pattern. Each position is weighted equally to the
other positions. One can have different mixtures of residues permitted at
each position ranging from a single specific amino acid to a “don’t care”
character and one could assign an information content to each position based
on the frequency of residues known at each position; however, apart from
such positional composition, each position is weighted equally.

Another problem with consensus sequences prepared manually from pro-
tein sequence alignments is they often overfit the existing data. The result
of this overfitting is that the motif works well on the existing protein family
from which it was derived (the training set), but it does not work nearly as
well at inferring function from newly sequenced proteins or proteomes. This
overfitting can be evaluated by the cross-validation methods described below.

Finally, the sequence motif pattern, like most of the other motif repre-
sentation methods discussed below, assumes positional independence of the
residues. Sequence variation allowed at one position of a regular expression



2 Sequence-based Motif Representations 1091

is not correlated with positional variation at another position. Positional
dependencies can arise in a number of ways. First, conserved sequences
can represent two or more related sets of proteins that have evolved inde-
pendently from a common ancestor. These paralogous sets will have their
functional positions conserved within each set, but some other positions will
have residues that are distinctive for each subset. The distinctive positions
in each subset will appear to be correlated with each other. The correlation
results from their correlation with their subset.

Another source of covariation between conserved positions could be due
to selection for a particular affinity with a substrate, cofactor or other bind-
ing site. Most biological interactions are meta-stable so that they can easily
associate and dissociate. If a mutation at one position in a binding site over-
stabilizes an interaction, this over-stabilization can be compensated for by a
change at another position to weaken the interaction. Thus, positional corre-
lations in binding sites may reflect the meta-stable nature of an interaction.

A final source of covariation in protein sequences is due to side-chain–
side-chain interactions. These interactions can be van der Waals contacts,
electrostatic interactions, charged pairs, hydrogen bonds and general hy-
drophobic interactions. Changes in one residue in any of these interactions
can often be compensated for by a change in another residue, sometimes at
great distance in sequence, even though close in three-dimensional space.
Positional correlations are often used to detect structural interactions in both
proteins and nucleic acids.

One way to represent positional correlation would be to use several motifs
to represent subfamilies of proteins within the family. One could use any stan-
dard clustering or phylogenetic method to classify all the proteins within a
family and then build a separate motif for each subfamily. Such a group of mo-
tifs could capture both the conserved and correlated residues in a functional
protein motif. One could also apply a minimal length encoding approach to
discovering the requisite subfamilies and then obtain a different motif for each
subclass. More distant correlated changes often have to be represented by
mutual correlations or Bayesian networks or even neural networks.

2.2 Accuracy and Precision of Motifs

Despite their deterministic nature, there are several quantitative measures of
how accurate motif representations are. The most important of these measures
are specificity, sensitivity and positive predictive value (PPV). The sensitivity
of a motif is a measure of what fraction of known members of the functional
family are detected by the motif. If a functional family is very diverse or
contains multiple subfamilies, one often must construct multiple motifs, one
for each subfamily. The sensitivity of each motif is measured relative to its
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subfamily and the sensitivity of the disjunction of these motifs is measured
relative to the entire family.

The specificity of a motif measures the fraction of the nonfunctional proteins
that are correctly classified by not having the motif. A more useful measure is
(1 – specificity) which measures the number of nonfunctional proteins that do
contain the motif. This is a measure of the expected frequency of false-positive
prediction by the motif. The expected frequency of false-positive predictions
is the fraction of the nonfunctional proteins that contain the motif by chance.
The expected frequency of false-positive predictions is usually measured on
a protein-by-protein basis; however, it can also be estimated on a residue-by-
residue basis. Motifs with an expected frequency of 10−3 or less per residue
can be used to detect motifs in individual proteins, but are not useful for
searching entire proteomes. Highly specific motifs (those with an expected
occurrence of false-positive predictions below 10−6 per residue) are needed to
predict functions in entire bacterial proteomes and even more specific motifs
are required for eukaryotic proteomes.

Finally, the PPV of a motif measures what fraction of the sites discovered by
the motif are, in fact, correct. The PPV is the ratio of the true sites divided by
the true sites plus the false positives.

In order to measure the sensitivity, specificity and positive predictive value
of a motif accurately, one must have a “gold standard” set of proteins in which
one knows precisely which proteins have the specific function represented
by the motif (positive set) and another set of proteins that are known not
to have this function (negative set). It is also best if the size of these sets of
proteins approximates the expected size of the sets in the sequence databases
or proteomes being searched. This usually means that the size of the positive
set should be much smaller than that of the negative set. Given these two sets
of protein sequences one can apply the motif to both sets and calculate the
sensitivity, specificity and PPV as:

Sensitivity = TP/(TP + FN)

= fraction of the positive set containing motifs

Specificity = TN/(TN + FP)

= fraction of the negative set not containing motifs

1 - Specificity = FP/(TN + FP)

= expected frequency of false predictions

PPV = TP/(TP + FP)

= fraction of proteins with motifs that are functional,

where:
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TP = true positives, functional proteins with the motif

FN = false negatives, functional proteins without the motif

FP = false positives, nonfunction proteins with the motif

TN = true negatives, nonfunctional proteins without the motif.

The Prosite database analyzes the occurrences of its motifs in the entire
Swiss-Prot database and characterizes each hit as a true-positive or a false-
positive hit [17]. In addition, using the known members of a functional family,
it determines the number of false negatives and true negatives. From these
numbers one could calculate all of the measures described above. However
these measures would be an overestimate of the accuracy of the motifs be-
cause the Prosite motifs were generated from the sequences in the Swiss-Prot
database. This procedure of using the same set for training and evaluation
gives rise to resubstitution estimates of sensitivity and specificity which are
usually an overestimate of the true sensitivity and specificity of the motifs.

In order to obtain an accurate measure of sensitivity, specificity and PPV
for a motif it is essential that the protein set from which the motif is built
(training set) be distinct from the protein set on which the motif is tested (test
set). One example would be to divide the “gold standard” protein sets into
two independent sets – a training set and a test set. Then one would generate
motifs from the training set and measure the accuracy on the test set. One
could, of course, repeat this training and test procedure reversing the roles of
the training set and test sets. This procedure is called cross-validation, and is
used to ensure that training and test sets are truly independent. Alternatively,
if there is not sufficient data in one-half of the “gold standard” set of functional
proteins to build motifs, one can carry out repeated cross-validations using
80 or 90% of the “gold standard” set of proteins and test on the remaining
20 or 10% of the proteins. Repeating this procedure 5 or 10 times so that
every protein has served in the test set once gives accurate measures of the
sensitivity, specificity and PPV for the motifs.

In addition to these direct measurements of (1 – specificity), the expected
frequency of false motifs can also be estimated in a number of different ways.
The simplest way to estimate the expected frequency of a motif on a residue
basis is by calculating the likelihood of each conserved position in the motif
based on amino acid composition alone. This permits one to calculate the
expected number of motifs in a protein or a proteome of any length, giving
a measure of 1 – specificity of the motif. A more sophisticated method for
calculating the expected frequency of a motif in protein sequences which takes
into account Markov dependencies of protein sequences and other properties
of the regular expression syntax have been developed [8]. In addition to
algorithmic methods, empirical methods for estimating the likelihoods of



1094 30 Inferring Protein Function from Sequence

protein motifs have also been generated from random permutations of protein
sequence and examining the background frequency of motifs. To get accurate
measures of the frequency distribution of motifs it is critical to preserve not
only the amino acid composition during the permutation, but also frequencies
of peptides of length two and three (the so-called Markov dependencies of
length 2 and 3) as well during the permutation process.

2.3 Position-specific Scoring Matrix (PSSM) Motifs

A PSSM is a probabilistic representation of a conserved functional region of a
protein [61, 63] (see also Chapter 11). Scoring matrices are generally derived
from multiple sequence alignments of proteins generated by a number of
alignment algorithms, e.g. ClustalW [118], T-COFFEE [96], DIALIGN [89],
PSI-BLAST [2], hidden Markov models (HMMs) [19, 47, 48, 79], etc. (see also
Chapter 3). The most highly conserved ungapped regions of the alignments
are extracted and referred to as blocks. Blocks include contiguous ungapped
regions of the protein sequence. These blocks are then converted to probability
matrices that give the relative probability of each amino acid in each position
in the motif. Finally, the matrix is converted to a log-likelihood form by
dividing the probability of each amino acid at each position by the probability
of the amino acid in the database of proteins being searched and taking the
logarithm of this ratio. If the amino acid is more likely to be found in a
particular position in the matrix than in the background distribution of amino
acids, then the ratio will be greater than unity and the log-likelihood score
will be positive. If the amino acid is less likely to be found at a position
in the matrix than the background, then the ratio will be less than unity
and the log-likelihood score will be negative. One can then use this log-
likelihood scoring matrix to estimate a score for any segment of a newly
sequenced protein or proteome by using the protein sequence as an index
into the log-likelihood matrix and adding up the likelihood of each residue
at each position along the segment. Since we have taken the logarithm of
the probabilities, adding the log-likelihood scores is equivalent to multiplying
the probabilities at each position. Clearly this method assumes positional
independence, just as the regular-expression approach. However, unlike the
regular-expression approach, the PSSM approach is probabilistic. The score
is a measure of the likelihood that a protein segment belongs to the same
functional class as the training set.

2.4 Dirichlet-mixture Prior Probabilities and Pseudocounts

One technical problem occurs when trying to estimate the likelihood of an
amino acid when it has never been observed at a position in an alignment



2 Sequence-based Motif Representations 1095

or motif. If a particular amino acid has never been observed at a position
of a motif, then the frequency and the probability is zero, and one cannot
take the logarithm of zero. To circumvent this problem it is common to add
a small value to every position in the matrix. For example if one were to
add the number 1 to every term in the frequency matrix before taking the
log-likelihood ratio, every entry in the matrix would be nonzero. This is con-
ceptually like assuming an observation that contains a uniform distribution of
every amino acid at every position. These additions are sometimes referred to
as pseudocounts.

Another approach would be to add a small number (not necessarily an inte-
ger) proportional to the known amino acid composition of the protein motifs.
In this way, the average composition of each column of the matrix would tend
toward the average composition of the amino acids. Such probabilities are
referred to as Dirichlet-mixture prior probability distributions. The net effect
of adding either an integer or a probability distribution to each column of
the frequency matrix is to smooth the distribution of amino acids from the
observed frequencies towards the average distribution. Hence, these terms
are also referred to as smoothing or regularizing parameters.

An important question is how much smoothing is appropriate or, put an-
other way, how many pseudocounts are appropriate when building a scoring
matrix. If one has too few protein sequences in the training set, then the
matrix may have statistical fluctuations due to small numbers. Under these
conditions a large number of pseudocounts would be appropriate. On the
other hand, if there are a large number of sequences contributing to the scoring
matrix, then very little smoothing may be needed because one already has
good estimates of the likelihoods of each amino acid. Basic statistical consider-
ations suggest a minimum of five samples for each probability being estimated
which would require 100 sequences in the block to estimate probabilities for 20
amino acids. In fact, scoring matrices are often made for protein families with
as few as 10–20 examples. Clearly background smoothing is needed in these
cases. Some databases of PSSMs just use a fixed number of pseudocounts to
be added to each position (usually 5 or 50); however, it should be clear from
the argument above that their should be a variable number of pseudocounts
based on the size of the training set. Wu and coworkers [127] demonstrated
that the ideal number of pseudocounts can be estimated based on calculating
the minimal risk that one would miss a motif. This approach estimates this
risk based on the size of the training set and the size of the database that is
being searched. By using the number of pseudocounts that minimizes the risk
of missing a motif, the overall sensitivity of the motif is maximal.
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2.5 Sensitivity and Specificity of PSSM Motifs

Since a PSSM yields a score for every overlapping protein segment to be
tested, one must also have a threshold score above which one believes that the
segment is an example of a functional motif. How is such a threshold score es-
timated? Again we usually compare the matrix against a “gold standard” test
set of proteins that are known to either contain a functional site or not. We then
attempt to find a score that every known site will exceed and all nonfunctional
sites will not. However, the scoring matrix will often not cleanly distinguish
sites from nonsites perfectly, especially since there are usually many more
nonsites than sites. Most often some scores for some nonfunctional sites
will exceed the scores for some functional sites. Due to this overlap in the
score distributions for sites and nonsites, any given threshold will have some
false-positive results and some false-negative results. If one wants to just
minimize the number of false calls, one can choose the equivalence point – the
threshold score at which there are an equal number of false-positive and false-
negative results. If sensitivity (finding all sites) is more critical than getting
false positives, then one can lower the threshold score. If specificity is more
critical (not getting any false predictions, as in an entire proteome search), then
one can increase the threshold score. Hence, the threshold is a parameter that
balances sensitivity and specificity.

Because one can vary the score threshold changing the sensitivity and
specificity of a scoring matrix, one usually plots the relationship between
sensitivity and specificity as the function of the threshold value. Such plots are
usually known as receiver operating characteristic (ROC) curves [115]. Each
point on an ROC curve represents a different value of the threshold score. See
Figure 2 for the definition of the threshold and Figure 3 for an example of
an ROC curve for two PSSM motifs. Usually one plots the number of true-
positive sites discovered on the y-axis and the number of false positive sites
on the x-axis for each threshold. An ideal scoring matrix would only find true
sites at high threshold values and then below some score threshold only false
positives would appear.

Such an ROC curve would rise vertically up the y-axis to the maximal
number of true sites and then turn horizontally as false sites were detected
at lower thresholds. More usual ROC curves would show a number of false
sites before all of the true sties were found and the curve would fall away from
the y-axis. The closer the ROC curve is to the y-axis and the further it is from
the x-axis, the more discriminating is the motif. Motifs are often compared by
measuring the area under their ROC curves (AUC). The greater this area, the
more sensitive and specific the motif is. One can also plot the sensitivity and
specificity of discrete motifs (regular expressions) as single points on an ROC
curve. If the curve for a PSSM falls underneath this point, then the regular
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Figure 2 The distribution of motif scores for
the positive and negative classes of protein
sites often overlap leading to both false-
positive and false-negative predictions. The
threshold is the value that best separates
the positive class from the negative class.
Here, we have chosen the equivalence point
for the threshold. The equivalence point is
the threshold at which the total numbers of

false negatives and false positives are equal,
and which minimizes the total number of
misclassified sites. For some experiments,
one wants to maximize the specificity and
will raise the threshold value to minimize
false predictions. In other experiments, one
might want to maximize sensitivity and so will
lower the threshold to maximize the number
of positives found.

expression is a better motif. If the ROC curve passes over this point, then
the matrix is a better motif. An excellent tool for presenting ROC curves is
described by Sing and coworkers [104].

Finally, since the size of the true-positive set is very often much smaller than
the size of the database as a whole, one often only plots the ROC curve up to
a limited number of false positives. One common choice is to plot the ROC
curve until the number of false positives equals the number of known true
positives in the training set. Another choice would be to plot the ROC curve
to some fixed number of false predictions, such as an ROC-50 or an ROC-100
curve [56].
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Figure 3 Typical receiver operating
characteristic curves for two different PSSM
motifs. Each point on each curve represents
the fraction of true-positive and false-positive
predictions made at a specific threshold
(Figure 2). As the threshold score for motif
prediction is lowered, the number of true-
positive predictions increases for both motifs.
However, the motif represented by the upper
curve shows more true predictions and fewer

false predictions than the lower curve at every
threshold. Hence, the AUC for the upper
curve is larger than for the lower curve. An
ideal motif would have all the true predictions
occur before any false predictions and the
curve would go from 0,0 to 0,100 along the y-
axis and then pass along the top of the graph
to 100,100. The area under this ideal motif
would be 1.0.

2.6 HMMs

While position specific scoring matrices are excellent for modeling contiguous
regions of conserved protein sequence, they cannot model protein regions that
have suffered insertion and deletions as can pairwise sequence alignments.
A more general representation for conserved proteins that is more global
in nature and can model longer conserved regions including regions with
variable length insertions and deletions are the HMMs [18, 20, 59, 79]. HMMs
were first used to represent protein families. The use of HMMs to represent
protein families and protein domains is described in Chapter 3, and one
should look there for details on the method. We mention them here only in
comparison with other motif representations.

Unlike the PSSMs, HMMs model longer conserved regions that can include
multiple motifs, entire protein domains and even represent large protein
families [5, 21, 53, 58, 66, 85, 90, 109, 110]. Because of this, they can represent
multiple conserved motifs linked by less highly conserved regions. More
importantly, many HMM models for protein domains and families can have
different likelihoods for insertions and deletions at each position. Such a
powerful representation permits a more biological representation of protein
domains. For example, in highly structured regions such as α-helices and β-
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strands, the likelihood of either an insertion or a deletion is generally very low.
Insertions or deletions in such structured regions would throw the pattern of
hydrophobicity out of register, destroying the structural element. However,
in loops or turns in a protein structure, insertions and deletions are more
likely. Hence, by examining the probability of insertions and deletions along a
protein family represented by an HMM, one can often identify the structured
regions and the loops and turns. Even more critically, tight loops (β-turns)
can often have insertions but not deletions and these regions can also be
recognized.

HMMs are learned from a training set of proteins by an iterative method
of repeatedly aligning each sequence in the training set to the model until the
model converges. During this process, many different transition probabilities
are being estimated at each position, including the likelihood of substitutions,
insertions, deletions, extending insertions and extending deletions, terminat-
ing an insertion and terminating a deletion. A common HMM will have
25–30 probabilities estimated per position. Statistically one would like at
least 150 sequences in the training set in order to estimate all these transition
probabilities. However, as with PSSMs, one can use fewer sequences to train
an HMM if one has an estimate of the prior probability of the distribution
of amino acids. By examining large protein families, a set of distinct types of
amino distributions has been calculated referred to as Dirichlet-mixture priors
(see Section 2.4) [34, 72, 106]. By using these sets of amino acid distributions
that have been seen in previous large HMM models, one can often build an
HMM model from fewer than 150 proteins.

Since HMMs are a more general representation of conserved biological
functions or structures, they can also be used to represent motifs. Since they
are more global in scope, they can also represent structural domains and entire
protein families. Since an entire domain often mediates biological function,
one can consider protein domain assignment as a critical form of functional
assignment. Also, because HMMs are a probabilistic representation, one can
derive measures of the likelihood that a novel sequence is a member of a
protein domain or family.

2.7 Network Models

All of the motif representations discussed so far have made the assumption
of positional independence, i.e. the likelihood of each residue is independent
of any of its neighboring residues. Even the HMMs make this assumption
in order to be able to use dynamic-programming methods for training and
inference. No sequence-based Markov dependencies are permitted. However,
we know that this assumption of positional independence is not valid. For
example, in order to accurately predict the likelihood of a motif, whether
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represented by a regular expression or a PSSM, we must use a measure of
the Markov dependencies within the background protein database [8, 128].
Accurate estimation of prior probabilities of motifs requires measurement of
background Markov dependencies. Also side-chain–side-chain interactions
between distant sites in proteins can result in positional correlations.

Studies of many protein families, domains and motifs have shown very
important positional dependencies required for structure and function. The
most general representation of all positional dependencies would require an
estimation of L2 parameters where Lis the length of the protein sequence.
Generally, one does not have enough examples to estimate this number of
parameters so one has to limit one’s search for positional dependencies to
either local regions or to repetitive regions in a longer structure. Another
approach is to look for positional dependencies in reduced representations
of the amino acids. Instead of looking for correlations between all 20 amino
acids, one can reduce the amino acids into functional or structural subsets
and then look for correlations among these properties [74, 75]. For example,
if one reduces the amino acids into hydrophobic and hydrophilic subsets, one
can discover correlations between these properties along protein sequences.
Other properties such as size or volume can lead to discovery of contacts,
or charge can lead to discovery of charged pairs or ionic bridges in protein
structures. One can also use quantitative methods for search for patterns of
hydrophobicity by assigning a measure of hydrophobicity to each residue.
Some of the early methods for looking for motifs with positional dependencies
involved looking for autocorrelation with protein sequences or performing
Fourier analysis of protein sequences. Eisenberg, for example found patterns
of hydrophobicity that were typical of α-helices or β-strands in protein se-
quences [49, 50]. Such patterns of hydrophobicity are extremely useful for
inferring protein structure.

Other representations that permit positional dependencies explicitly in-
clude network models. Both Bayesian networks and neural networks have
been used to represent structural and functional protein motifs. One of the
first applications of Bayesian networks to protein structure rediscovered the
hydrophobic patterns of helices and strands. Bayesian networks were also
used to discover the motif [Phe Xxx Yyy Zzz His] that terminates α-helices.
Structural analysis of this so-called C-terminal capping sequence shows that
the histidine bends back and interacts with the phenylalanine, terminating
the α-helical structure [46, 75]. Bayesian approaches have also been used to
represent patterns of amino acids in repeating proteins such as coiled coils
or triple helices such as found in many structural proteins (myosin, collagen,
etc.) [27–29, 33, 87, 124]. Chapter 35 also discusses Bayesian networks.
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2.8 Neural Networks

Neural networks permit the examination of local regions of amino acid se-
quence for nonlinear combinations of properties other than just the sequence
itself. Thus, neural networks can learn patterns of hydrophobicity, charge, hy-
drogen bonds and other properties in combination with more classical amino
acid patterns [92, 93, 98]. Due to their extreme flexibility, neural networks can
learn arbitrary quantitative patterns of amino acids that may not be obvious
in the sequence itself. Such powerful methods are ideally suited to examining
regions of proteins that are associated with membranes or with other proteins
and which the association depends more on the physical properties of the
protein than its sequence. Also, the extreme flexibility of the networks permits
one to encode nearest-neighbor information as well as relationships extending
over the entire region of the protein being evaluated. Such methods have been
used to learn motifs that can infer protein structural regions such as helices
and strands, coding regions, transmembrane regions, signal peptides, post-
translation modification signals, nuclear localization and secretion signals,
etc. [24, 30, 40, 51, 70,73, 94,95].

Discovering and training a neural network takes some effort to determine
the factors necessary for recognition. Considerable biological knowledge can
be built into the architecture of the network from the start (width, number of
hidden layers, parameterization of the sequence, specific sequence patterns,
etc.). Some biological insights can also be extracted from the neural network
once it is trained as well (internal periodicities, relative importance of specific
positions, etc.). Being probabilistic, the inference of neural networks can be
measured by their sensitivity and specificity just as other more sequence-
based motifs are.

3 Descriptions of Several Useful Motif Databases

The purpose of the following section on example databases of protein func-
tional motifs is not to be an extensive review, but rather to give a few critical
examples of useful resources for protein functional inference based on motifs.
The web locations of the motif databases and methods is given in Table 1;
however, one can readily find each by a simple Google search.

3.1 The Prosite Database

The Prosite database was one of the first family-based databases of protein
consensus sequences. It was originally built largely by hand from well-
characterized protein families that shared a common structural or functional
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Table 1 Web locations of resources mentioned in this chapter

3MATRIX http://3matrix.stanford.edu
3MOTIF http://3motif.stanford.edu
BLAST search http://www.ncbi.nlm.nih.gov/BLAST
Blocks database http://blocks.fhcrc.org
CATH http://www.biochem.ucl.ac.uk/bsm/cath
CBS prediction servers http://www.cbs.dtu.dk/services
CBS Tools http://www.cbs.dtu.dk/biotools
ClustalW alignment http://www.ebi.ac.uk/clustalw
CODEHOP http://blocks.fhcrc.org/blocks/codehop.html
DIALIGNment http://dialign.gobics.de
eBLOCKs http://eblocks.stanford.edu
eMATRIX http://ematrix.stanford.edu
eMOTIF http://emotif.stanford.edu
ePROTEOME http://eproteome.stanford.edu
Genes3D http://www.biochem.ucl.ac.uk/bsm/cath/Gene3D
HMMer home http://hmmer.wustl.edu
InterPro http://www.ebi.ac.uk/interpro
iProClass http://pir.georgetown.edu/iproclass
ModBase http://salilab.org/modbase
Molecular structure database http://www.ebi.ac.uk/msd/index.html
MultiCoil http://multicoil.lcs.mit.edu/cgi-bin/multicoil
PairCoil http://paircoil.lcs.mit.edu/cgi-bin/paircoil
Panther https://panther.appliedbiosystems.com
Pfam database http://www.sanger.ac.uk/Software/Pfam
Phylogenomics http://phylogenomics.berkeley.edu
PrePrints database http://umber.sbs.man.ac.uk/dbbrowser/prePRINTS
PRINTS database http://umber.sbs.man.ac.uk/dbbrowser/PRINTS
Prints-S database http://umber.sbs.man.ac.uk/dbbrowser/sprint
ProDom http://protein.toulouse.inra.fr/prodom.html
Prosite database http://www.expasy.org/prosite
Protein Data Bank (PDB) http://www.rcsb.org/pdb
SAM home http://www.soe.ucsc.edu/research/compbio/sam.html
SCOP http://scop.mrc-lmb.cam.ac.uk/scop
SMART http://smart.embl-heidelberg.de
SuperFamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY
SWISS-MODEL http://swissmodel.expasy.org/SWISS-MODEL.html
Swiss-Prot database http://www.expasy.ch/sprot/sprot-top.html
T-COFFEE alignment http://www.ch.embnet.org/software/TCoffee.html
TIGRFams http://www.tigr.org/TIGRFAMs
UniProt http://www.ebi.ac.uk/uniprot

site [69]. Protein sequences in the family were aligned using both algorithmic
and manual methods. The conserved patterns were optimized to maximize
their sensitivity on the known family and to minimize the false inferences.
The manual curation of the motifs invariably leads to overfitting of the data.
As mentioned above, the Prosite database gives measures of the sensitivity
and specificity of the motifs derived from the current Swiss-Prot database,
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but these measures are overestimates of the expected performance on future
sequence data. A true cross-validation approach to estimating the sensitivity
and specificity of the Prosite motifs would be very tedious due to the manual
motif generation. Another possible approach would be to examine motifs
constructed several years ago on proteins characterized subsequently using
nonsequence based approaches.

The Prosite database is distinguished by its excellent manual curation and
by its excellent annotations. The Prosite and Swiss-Prot databases were among
the first to have extensive links to other molecular biology databases, even
before the appearance of the Internet.

The Prosite database contains a set of very common motifs for sites of post-
translational modification. Since these motifs are very short and not of high
information content, they may only be used to discover hypothetical modifica-
tion sites which must be validated experimentally. Other, more sophisticated
models of post-translational modification sites involving network and HMM
models given higher confidence inferences [31, 70].

Even many of the Prosite patterns which are not post-translational modi-
fications have a relatively low specificity, on the order of 0.1–1% false predic-
tions. Due to this low specificity, these patterns are most useful when scanning
a single protein to infer functional sites. The Prosite pattern database cannot
be used to infer function on entire proteomes, as they will result in more false
inferences than true ones.

The Prosite database has also developed quantitative models for motifs
called Prosite Profiles [17, 36]. These Profiles are an extension of the original
profile of Gribskov that characterized protein families [54, 55, 57]. Like those
profiles, the Prosite Profiles estimate the likelihood of insertion and deletion
at each position in the motif. Prosite Profiles are intermediate models between
PSSMs and HMMs in that they have both position specific insertion and
deletion penalties, but they do not have the full range of transition proba-
bilities used by the Haussler or Baldi groups. Since the Prosite Profiles are
quantitative, one can use different thresholds to gain sensitivity or specificity
depending on the protein or proteome to be searched.

Recently, the Prosite group had developed a ProRule database in which
functional and structural information is mapped onto the Prosite Profiles
[103]. ProRules are short sequence patterns that identify the most critical
residues for structure or function in the profile. These patterns are often less
specific than Prosite patterns themselves and they are designed to be used to
annotate a positive hit from the Prosite Profile. As such, the ProRule points
out the critical catalytic or functional residue in the site. For example, the
ProRules for the three trypsin family Profiles annotate the active site histidine,
aspartate and serine residues of the catalytic triad (Figure 1). Combining
Prosite Profiles with Prosite-type patterns gives ProRules the power of both
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quantitative and qualitative motifs simultaneously. ProRules also permits a
much greater amount of biological information to be encoded in the motif.

3.2 The Blocks Databases

The Blocks and PRINTS databases are among the first PSSM representations
of conserved protein motifs [10, 11, 62, 64]. Scoring matrices are probabilistic
representations of conserved protein regions, usually derived from ungapped,
multiply aligned protein subsequences. Posfai et al. originally applied the
term block to a conserved, ungapped protein alignments for conserved, func-
tional regions they discovered in families of restriction and modification en-
zymes [100, 101]. Multiple sequence alignments of type II restriction and
modification enzymes from many bacteria strains showed conserved regions
involved in cofactor (SAM) binding and catalytic sites. The DNA-binding sites
were highly variable both in sequence and length – as was expected since the
sequence specificity varied from strain to strain. Posfai et al. discovered that
many of these conserved regions contained three or four positions (columns)
that were completely conserved suggesting that these residues were especially
important for function.

Smith and coworkers used this observation for discovering conserved
blocks in other protein families [108]. They developed an algorithm called
MOTIF that discovered short conserved sequence patterns containing three
different positions separated by zero to eight nonconserved residues in a
contiguous amino-acid region in each member of a protein family. Regions
containing these short three position motifs were aligned and adjacent regions
were examined for conservation as well. Using a heuristic method, they built
up blocks of conserved residues centered on the original three position motifs.

Henikoff and Henikoff then automated this procedure so that they could be
applied to any protein family and built up blocks around conserved func-
tional sites [64, 121]. The initial Blocks database was limited to the same
protein families found in the Prosite database. Later, the automatic Blocks
approach was extended to other protein families including PRINTS, Pfam,
DOMO and Prodom families. This extended database was known as the
BLOCKS+ database [60, 65]. In all cases, the Blocks from these families were
built using the automated method that found a conserved triplet of amino
acids each separated by up to eight residues. This approach limits the diver-
sity of conserved regions that Blocks can discover. Blocks, like its predecessor
MOTIF, requires a large fraction (usually 90% or more) of the sequences to
contain a perfectly conserved triplet of amino acids within a segment three
to 19 amino acids in length. The automated Block discovery program cannot
discover blocks that do not have a perfectly conserved three-amino-acid motif.
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The function of many of these conserved regions is known through studies of
the protein family from which they derive and from other functional studies.

The Blocks website provides several useful functionalities. The most useful
for inference is Blocks Searcher that compares the blocks database against a
protein sequence or a translated DNA sequence. Another function, Block-
Maker and Multiple Alignment Processor, can take a multiple sequence align-
ment and generate a series of conserved ungapped alignment blocks. Finally,
CodeHop can develop the best DNA probe to detect the DNA encoding the
Block function taking into account the sequence variability in the Block and
the codon usage table for the amino acids [102].

The Block Searcher function identifies all regions similar to each Block in
the database and gives the expectation value for each hit. If there are multiple
blocks discovered from the same family, a function called Block-scan will then
calculate the expectation value for finding all the blocks simultaneously. Fi-
nally, Block Searcher prints out the relative position of the blocks in the query
sequence and compares them with the relative positions of the same blocks in
the Block Family database. These statistics are very useful for identifying the
function novel proteins and they overcome the major deficiency that multiple
motifs are usually required to encode a single biological function.

3.3 The PRINTS Database

The PRINTs database was initially constructed in a manual approach similar
to the Prosite database. Initially it began with a database of conserved regions
within signal transduction proteins (G-proteins in particular); however, it
was extended to most other families [9, 10, 13]. An automated method for
taking protein alignments from ProDom and converting them to ungapped
conserved regions and automatically annotating them generates a database
referred to as PrePrints database [11, 35, 42]. Once these regions are curated
and verified, they pass into the PRINTs database. A newer relational version
of the PRINTS database referred to as Prints-S is also available for relational
searches [12]. The ProDom database itself is built up by PSI-BLAST align-
ments of protein families which results in a database of conserved protein
domains.

One of the useful features of the PRINTs database is that it tabulates how
many members of the protein family contain all the conserved regions known
in that family, say N motifs), how many proteins contain N − 1 motifs, N − 2
motifs, etc. Thus one can see which motifs are present in all members of a
protein family and which motifs may add optional functionality.
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3.4 The eBLOCKs Database

The eBLOCKs database contains ungapped sequence alignments of all con-
served regions within the Swiss-Prot protein database [114]. These conserved
regions include functional sites such as catalytic sites, substrate binding site,
cofactor binding sites and protein–protein interaction sites. The eBLOCKs
database is built by running all Swiss-Prot proteins as queries against all other
Swiss-Prot proteins using PSI-BLAST, collecting all family alignments and
then extracting all ungapped conserved regions within each family. Unlike the
Blocks and Motif methods, eBLOCKs does not require three highly conserved
positions in the conserved regions. The minimum requirements for a block
in the eBLOCK database are that the block must be at least 10 amino acids
wide, three sequences deep and contain at least 40 bits of information. These
criteria eliminate common motifs such as post-translation modification motifs,
and ensure that the resulting BLOCKs have enough specificity to be used for
searching entire proteomes.

The eBLOCKs database also contains multiple overlapping blocks for many
conserved regions. This permits having very sensitive motifs that can cover a
wide taxonomic diversity of the functional region, as well as more specific
motifs that cover the same functional site in a subset of species (bacterial,
eukaryotic, vertebrate, primate, etc.). The more general eBLOCKs increase the
sensitivity of motifs inference, while the more specific eBLOCKs can identify
not only the function, but often the taxonomic family containing the motif.
This also results in a redundancy in the eBLOCK output. This redundancy
is minimized by presenting the most specific hit first and then only showing
additional, more general motifs if the user chooses to drill down in the results
page.

About 35% of conserved regions in eBLOCKs are similar to functionally
conserved regions in the Prosite, Blocks, PRINTS and InterPro databases.
About 65% are novel conserved regions whose precise molecular function
is not known, but which may represent protein–protein interaction sites,
protein–ligand interaction sites or other functional sites not yet characterized
in known protein families. Even though the precise molecular function of
these conserved regions is not known, one does know the family of Swiss-Prot
proteins from which the conserved region was derived, thus permitting the
inference of family membership, if not specific molecular function. Unlike
other protein family and domain databases (ProDom, Pfam, TIGRFams,
etc. [21, 35, 42, 58]), eBLOCKs only records the ungapped conserved sites.
However, like Blocks [60] and PRINTS [11], eBLOCKs keeps all the conserved
regions from one family together in a group. The eBLOCK-conserved regions
are converted into both sequence patterns (eMOTIFs) [68, 91] and into PSSMs
(eMATRICES) [126, 127].
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3.5 The eMOTIF Database

The eMOTIF algorithm for building sequence patterns from alignments is
completely automated, and results in multiple motifs for different subsets of
the sequences and also multiple motifs at different levels of specificity [68,91].
Rather than attempting to make a single motif to cover an entire protein fam-
ily, the eMOTIF build algorithm attempts to find a well-conserved subset of
the family where it can construct a highly specific motif that will infer just that
subset. In order to maintain sensitivity, eMOTIF then attempts to find motifs
for additional highly conserved subsets. By using a disjunction of several
motifs, each of which covers a different subset of sequences, eMOTIF can
maintain a high degree of sensitivity and a very high specificity. The eMOTIF
build process effectively subclassifies the protein family and builds motifs that
are specific enough to scan entire proteomes with few false inferences. The
eMOTIF build process generates multiple motifs that span the entire space of
sensitivity and specificity.

In order to minimize overfitting of the training data, eMOTIF is prevented
from using arbitrary subsets of amino acids at any position in the motif. In-
stead, eMOTIF is limited to using only individual amino acids or 20 specified
groups of amino acids that have been determined to the 20 most significant
sets of amino acids found in protein multiple sequence alignments [126].
These groups of amino acids have been determined by examining the sta-
tistical significance of all possible subsets of the 20 amino acids in protein
alignments. Only 20 subsets were significantly overrepresented. These sub-
sets of amino acids include hydrophobic, hydrophilic, charged, basic, acidic,
small, β-branched, hydrogen bond donor and acceptor classes among others.
By limiting the groups of amino acids in motifs to these 20 subsets and the
20 individual amino acids, we prevent the motif from being influenced by
outliers and from overfitting the training set data.

The eMOTIF database was originally built from ungapped conserved align-
ments from Blocks, PRINTS and InterPro protein families [68]. More recently
it is built from the eBLOCKs database, but with links from similar families
in other databases [114]. The eMOTIF database can be used to scan either
individual proteins or entire proteomes. For scanning entire proteomes, one
must choose a set of eMOTIFs with a specificity that will give a low false
discovery rate. eMOTIF scans of all proteomes have been tabulated in the
ePROTEOME database. ePROTEOME is an SQL database of all eMOTIFs
found in all open reading frames in over 180 proteomes (Saxonov, Xu and
Brutlag, unpublished; http://eproteome.stanford.edu).

eMOTIF has several advantages in searching for functional sites in pro-
teomes. (i) One can chose sets of very high specificity motifs to minimize
the false discovery rate, effectively eliminating false predictions. (ii) eMO-
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TIF provides motifs targeted at many subsets of a protein family including
functional subsets as well as taxonomic subsets. eMOTIFs, being discrete
patterns, also indicate the most critical residues for function and the degree
of residue variation permitted at each position. (iii) Since eMOTIFs are fixed-
length regular expressions, eMOTIF search can be implemented in a number
of very rapid search procedures including bitmap compare and trie algorithms
that permit searching for thousands of motifs simultaneously. One can search
an entire bacterial proteome for over 500 000 different motifs in less than an
hour on a single processor machine. eMOTIFs have also been mapped onto all
the structures in PDB so that one can readily see three dimensional examples
of the eMOTIFs is the 3MOTIF database [26].

3.6 The eMATRIX Database

The original eMATRIX database was a database of PSSMs build from protein
alignments in Blocks, PRINTS and InterPro [126, 127]. More recently it in-
cludes scoring matrices built from the eBLOCKs database [114]. The primary
differences between the eMATRIX approach and other PSSM methods are
sensitivity and speed. As mentioned before, eMATRIX calculates its scores
using a variable number of pseudocounts for each matrix. The calculation
of the correct number of pseudocounts is based on the minimal risk criterion
[127]. This approach can increase the sensitivity of eMATRICES over other
PSSMs by as much as 25%.

In addition, the inference procedure used by eMATRIX is 100–500 times
faster than other methods for two reasons [126]. Prior to performing an eMA-
TRIX scan of a protein or a proteome, eMATRIX takes the minimal threshold
probability and converts it to the minimal score that will meet this threshold.
At each point in the scan of a protein segment, eMATRIX can tell if it can
meet this threshold score. Most often, the initial score for the beginning of
a comparison will be so negative that eMATRIX need not finish scoring the
entire segment since it knows it can never exceed the threshold score. In this
way, eMATRIX only calculates the score for protein segments that do, in fact,
meet the threshold. Most protein segments (above 99.9% for a threshold prob-
ability of 0.001) never have their score calculated speeding up the inference
procedure markedly. The second speed-up comes because eMATRIX does not
calculate the segment score in the linear order of the sequence. eMATRIX
sorts the columns of the PSSM in order of information content with the most
highly conserved positions first and the least highly conserved positions last.
By scoring segments in order of conservation; one can tell immediately if a
particular protein segment is going to match the matrix after scoring only one
or two positions. Taken together, using the minimum threshold for stopping
segment scoring early and sorting the scoring matrix by conservation gives a
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100- to 500-fold speed-up depending on the specificity of the matrix and its
overall length. This increased speed is very important both for interactive use
and for the ability to rebuild functional assignment databases as the eMATRIX
database is incrementally improved. The eMATRIX database can scan an
entire bacterial proteome for 156 000 functional motifs in less time than most
other PSSM databases can scan a single protein sequence. Using this method
ePROTEOME has been developed which contains all eMATRIX hits in over
180 proteomes.

Because of its more powerful representation, eMATRIX, like other PSSM
databases (Blocks, PRINTS, Prosite Profile) generally shows a higher sensitiv-
ity at discovering protein functional sites than do eMOTIF or the Prosite Pat-
tern databases. Nevertheless, the use of sequence patterns such as eMOTIFs,
Prosite Patterns and ProRules are very useful for identifying the most critical
residues for function and which residues are permitted at those positions. All
of the eMATRIX motifs have also been mapped onto PDB structures so that
examples of the three dimensional structure of the motifs may be observed
[25].

3.7 HMM Databases

Unlike the sequence pattern and PSSMs, the HMMs of protein families are
more global, representing longer regions and including gapped alignments.
HMMs are often used to represent protein families (Pfam [21], TIGRFams [58])
as well as protein structural domains [3, 35, 53, 97]. Since the function of
a protein is often linked to family membership, if one can find the family
membership of new protein sequence, it will aid tremendously in helping
to determine the function of the novel protein. Many of these HMM-based
databases are built specifically to aide in proteome annotation. As mentioned
above, HMM models have the advantage of linking multiple ungapped motifs
together in a probabilistic framework that preserves the order of the con-
served functional and structural regions, and can discount the less-conserved
regions between them. The ability of an HMM to infer the functional class
of a novel protein usually requires that some members of the training set
be taxonomically close to the target sequence. For instance, if one were to
use HMM models for protein families made from bacterial sequences alone,
the models would not be as sensitive when attempting to infer the function
of eukaryotic proteins. The same can be said of PSSM and sequence motifs.
Ideally, one would like to have multiple HMM models that could span both
the functional and the taxonomic axes. There are significant efforts along these
lines [105, 116, 117].

HMM models can be used to model short motif regions as well as entire
families. By using transition states that represent different regions of a protein,
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rather than different residues, models of signal peptides, transmembrane
helices and even entire transmembrane proteins have been possible [71, 80,
111]. The TMHMM model for transmembrane proteins has different states for
the membrane, cytoplasmic and extracellular segments of the protein.

3.8 The InterPro Database

The InterPro Database [4, 90] is a large integrated protein functional anno-
tation resource. The InterPro database integrates several motif-finding al-
gorithms including Prosite [69], PRINTS [11], SMART [81], ProDom [35],
Pfam [21], TIGRFams [58], iProClass [67] and Panther [88, 116]. InterPro
also contains several structural databases including SCOP [3], CATH [97],
Superfamily [53], Gene3D [97] as well as protein structure modeling appli-
cations including SWISS-MODEL [76] and ModBase [99]. By integrating
these resources into one site, InterPro permits a user to perform many of
the relevant analyses on a single protein sequence in one step. The results
are both tabulated and presented graphically in linear formats that show the
location of the motifs, domains, family and other functional sites along the
protein sequence. The InterPro interface basically takes the query and applies
each inference engine to it independently and then integrates the output into
a single graphical and tabular result. This approach is very attractive because
it shows the relationship between the results of many methods. On the other
hand, it gives the illusion that many of the functional motif-finding methods
are in agreement with each other. The problem is that these methods are
not independent from each other; often they are based on different motifs
made with the same starting families. InterPro publications state that due
to its internal consistency checking it can provide deeper coverage (higher
sensitivity) for detection of functional sites. The current InterPro database
covers 77% of the UniProt [6] protein database.

Many of the methods included in InterPro have associated measures of
specificity, expectation or false discovery rates; however, the user has no
ability to change the thresholds for defining a valid hit. Also several methods
do not have reliable measures of expectation and hence the results must be
examined carefully. Fortunately, the curators have assigned a match status
to each hit of InterPro on the protein sequence database including a match
descriptor of T for a known true hit, F for a known false positive, N for a
known false negative, P for a partial hit and “?” for a match of unknown
status. These match status markers can be valuable adjunct to ones confidence
in the inferred site.
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3.9 Supervised versus Unsupervised Learning of Motifs

Many motif databases have been specifically derived from known protein
families with well-defined functional sites and often structures. This is the
case for the Prosite patterns, Blocks, PRINTS, Pfam, TIGRFams and SMART
motif databases. Many structural domain databases are also built from pro-
teins of known fold, family or subfamily (SuperFamily and Gene3D are two
examples). This procedure of building motifs from a well-defined subset of
proteins is a classic example of supervised learning. Protein sequences are
separated into those that are known to have the requisite function or structure
from those that do not. The goal is to develop motifs that can discriminate
between the two classes.

An alternative approach is to build motifs in an unsupervised way by
comparing all protein sequences to all others, discovering protein families and
conserved regions within these families driven only by sequence similarity.
This data-driven approach has the advantage that it can find families of
proteins and functional motifs for functions that have not yet been discovered
or characterized experimentally. This is particularly important for learning
protein–protein interaction motifs and other functions that have not been well
explored experimentally. Of course unsupervised learning has the disadvan-
tage that many of the conserved regions are anonymous, with their precise
functions unknown. One of course learns the family of proteins containing
the conserved motif, but not the specific function of the motif for that family.

One approach to annotating anonymous motifs is to associate the motifs
with certain descriptors present in the protein sequence annotations. These
descriptors can be functional such as Enzyme Commission (EC) classification
numbers [16,41], Gene Ontology (GO) terms [7,82], substrate or cofactor bind-
ing sites [113], etc., or they could be more general classes such as taxonomic
terms, protein family names or properties, or even uncontrolled vocabulary
terms such as keywords. Some databases, such as InterPro, have assigned GO
terms and other functional descriptors to motifs just based on the GO terms
associated with the sequences identified by the motif.

A better approach is to classify the motifs themselves using standard clas-
sification methods. For example, using support vector machine (kernel meth-
ods) or k-nearest-neighbor classification one can discover which motifs from
a large collection of anonymous motifs are predictive of enzyme mechanism
(EC classification number) [22, 23]. EC numbers are determined experimen-
tally and are assigned manually to each of the enzymes in the Swiss-Prot
database; hence, they form a well-defined functional description that can
serve as a “gold standard” for enzyme function. Classifying both individual
and groups of motifs based on their ability to predict enzyme classification
number overcomes the problem that biological functions may be encoded by
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multiple motifs. Using groups of motifs can also increase the specificity and
sensitivity of motifs for predicting biological function. This classification of
motifs by function also facilitates the annotation of anonymous motifs.

Another example of learning the function of motifs by comparison with
other databases comes from the work of Wang and coworkers [122]. By
examining motifs contained in proteins in an extensive protein–protein inter-
action network, they were able to learn pairs of motifs that were the most
likely to be involved in the protein–protein interaction. The motif pairs
were able to predict the interactions in nearly 70% of the highly significant
interactions in yeast as well as 70% of the yeast protein structures in the
Protein Structure Database. Similar efforts to predict interacting domains
represented by HMMs have also been successful [43, 112].

4 Summary and Conclusions

In this chapter, we have attempted to describe the primary methods for rep-
resenting conserved functional regions, motifs, in protein sequences. Each
method has its own advantages and limitations for representing function
and for inferring function in novel proteomes. One of the most important
considerations when attempting to infer the function of all the proteins in
a proteome is the false discovery rate. As there are so many genes and so
many functional motifs, even a relatively specific motif can yield more false
inferences than correct ones when applied to an entire proteome. This is par-
ticularly true if one is using pairwise sequence similarities to draw functional
inferences. Motifs discussed in this chapter have the advantage of providing
a family-wise comparison that focuses on the most highly conserved regions
and residues in the functional site. By focusing on the conserved residues
one increases the signal-to-noise ratio tremendously and permits much more
accurate functional inference.

In addition to sequence-based motifs, we have also mentioned network-
based motifs and other quantitative motifs that can represent patterns of size,
charge, hydrophobicity and other attributes not necessarily obvious in the
sequences themselves. These network-based motifs are often more flexible at
representing biological function and structural features than sequence based
motifs. They also have the ability to represent correlated changes in protein
sequence and structure that often elucidate features that nature is conserving
that are sometimes hidden by pure sequence representations.

We have discussed two main approaches to learning motifs. The most
common is to discover conserved regions in small sets of proteins known
to have a common structure or function. This is a supervised method for
learning motifs in which biological knowledge is provided via the training
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set of proteins. The unsupervised approach is to run a systematic comparison
of all proteins against all others without regard to function. In such an unsu-
pervised approach one learns the protein families, subfamilies and conserved
regions or blocks. Functional annotation can be assigned to these conserved
regions either through their component sequences or via motif classification
approaches. Unfortunately, due to space limitations, we have not been able to
discuss all the different methods for learning the different types of motifs in
depth.

Finally, motifs are a compact representation of the critical structural and
functional components of proteins. Rather than having to compare new
protein sequences against all other protein sequences which are growing ex-
ponentially, comparison against a much smaller set of well known conserved
regions from protein families is more accurate and much more rapid method
for inferring function.
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Analyzing Protein Interaction Networks
Johannes Goll and Peter Uetz

1 Introduction

Protein–protein interactions are essential for all biological processes [3].
Although protein interactions have been studied for decades, only recent
advances have made them accessible to systematic computational analysis.
(i) Large-scale experimental studies generate genomic and proteomic data
at an ever-increasing rate, permitting us to analyze whole “interactomes”
and related biological information. (ii) Recently established databases of
protein–protein interactions make interaction data easily accessible to the-
oreticians and experimentalists alike. (iii) Increasing numbers of solved
three-dimensional (3-D) structures of proteins and protein complexes enable
us to study such assemblies in atomic detail in silico. However, in contrast to
hundreds of completely sequenced genomes, only a handful of comprehen-
sive interaction studies have been carried out and there is no organism for
which all protein interactions are known. Thus, we are still at an early stage
of computational interactome analysis [114]. The field has exploded since the
first interaction maps were published in 1997 for a subset of yeast proteins
and in 2000 for a genome-wide data set [40, 117]. In addition to the flood of
data, there is an even bigger avalanche of computational studies that analyze
interaction data sets (Figure 1). In this chapter we will describe methods for
the computational analysis of interaction networks and some results from
such studies. We will cover the validation of experimental data sets as well
as the prediction of protein interactions (which is a related topic). We will
describe graph-theoretic approaches as well as the integration of interaction
data sets with other biological information. Finally, we will give a summary
of our current knowledge on the evolution of protein interactions.
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Figure 1 Publications on interactomes and protein networks. Number
of references retrieved per year from PubMed by searching for protein
AND “interaction network” OR interactome and the respective year
(search performed on 18 July 2005).

2 Experimental Methods and Interaction Data

Before interaction data can be analyzed properly, their origin and nature
need to be defined. In the past authors often compiled interaction data from
different experiments into single data sets although the interactions were not
really comparable. Thus, computational biologists need to know at least
the basics about the experimental methods with which their data has been
generated. For example, protein complexes are often treated as if all the
interactions in them are known, although in most cases we do not know any
of them (Figure 2, see also Refs. [35, 103] for further experimental details).

Although there are many experimental methods for analyzing protein inter-
actions (Table 1), the bulk of the data has been produced with just a handful
of them. The two most popular are the yeast two-hybrid system (Y2H [13,
34]) and protein (or complex) copurification in conjunction with tandem mass
spectrometry (MS [88]). Their popularity mostly stems from the fact that
both can be automated to a large extent and therefore carried out in a high-
throughput fashion to produce large data sets of fairly consistent quality.

Y2H was the first to be used for several large-scale studies (reviewed in
Ref. [133]). It uses two fusion proteins (“hybrids”) whose interaction results
in the activation of a reporter gene or enzyme whose activity can be detected
or measured quantitatively [13, 14, 34].

The requirement for two hybrid proteins is one of the reasons why the sys-
tem suffers from false negatives, i.e. physiological interactions that the method
does not detect. The reason are most likely steric effects that prevent the
proteins from interacting because of the fused domains. Another source of
false negatives is the fact that these assays are usually carried out in yeast.
If non-yeast proteins are tested they may not have post-translational mod-



2 Experimental Methods and Interaction Data 1123

Figure 2 Interaction data gained by Y2H and
MS. Skp1 is a protein involved in ubiquitin-
mediated protein degradation, and has been
epitope-tagged for both Y2H screens and
MS analysis. The purified complexes of Skp1
from three independent MS studies (circles)
and the binary interactions from two Y2H
studies (solid and hatched lines) are shown.

Despite the differences in the data sets,
most of the discovered interactions seem
to be plausible: most associated proteins are
known to be involved in protein degradation.
Skp1 is directed to its target proteins via
so-called F-box proteins, which contain a
short peptide motif, the F-box (F). (From
Ref. [127].)

ifications that are necessary for interaction. Y2H has also a reputation of
generating false positives, i.e. interaction signals that do not stem from real
physical interactions. Most cases of false positives are not reproducible and
are therefore not easy to explain. They are probably caused by mutations or
other random events in the yeast cells used for the assay.

Protein complex purification (or copurification) and subsequent analysis by
MS is the other major method for detecting protein interactions. However,
this method is fundamentally different as it does not detect binary interactions
(except in cases where only two proteins are copurified). Instead, a purified
complex contains proteins that are held together by protein–protein interac-
tions whose precise topology is usually not known (Figure 2).

Like Y2H, complex purification is also prone to generate false positives
(proteins unspecifically binding to the complex) and false negatives (proteins
that are lost from the native complex by too stringent washing).

Aloy and Russell [6] presented evidence that MS analysis of purified com-
plexes tends to identify stable complexes while the Y2H assay tends to be biased
towards transient interactions. Although it is difficult to classify experimentally
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Table 1 Features of selected protein interaction detection methods

Class Method Analytical
perspective[a]

Resolution
level[a]

Advantages

Biochemical affinity purification[b] +
MS (MS) perspective

complex in vivo

ELISA analytical protein
filter blot analytical protein
pull-down analytical +

perspective
protein/residues

comigration in non-
denaturing gel

analytical complex in vivo

Far Western[c] analytical protein
chemical cross-
linking[d]

analytical +
perspective

protein

Biophysical X-ray crystallography analytical atomic
NMR analytical atomic
surface plasmon
resonance (Biacore)

analytical protein quantitative,
kinetics

isothermal titration
calorimetry

analytical protein quantitative,
kinetics

scintillation proximity
assay

analytical protein kinetics

Protein com-
plementation

two-hybrid perspective +
analytical

protein in vivo

FRET analytical protein in vivo
location

Array
technologies

protein array perspective protein

pep spot perspective +
analytical

residues

phage display perspective residues

[a] Perspective applies to methods that have currently been used to explore uncharacterized
protein interaction, whereas analytical applies to experimental procedures that investigate known
interactions. Note that the resolution level is meant to be general. When mutants, etc., are used,
the resolution of every method can be at the residue level.
[b] Also called coIP or protein complex purification. Note that copurifications are usually
combined with subsequent mass spectrometric analysis of the copurified proteins.
[c] Far Western blots work like ordinary Western blots except that a blotted protein is detected by
an interacting proteins as opposed to an antibody. The interacting protein can be labeled itself or
detected by a labeled antibody.
[d] In cross-linking experiments proteins are cross-linked by bifunctional chemicals so that they
cannot fall apart when purified. This allows more stringent purification protocols to be applied
and thus cleaner preparations are achieved that can be analyzed more easily for their protein
content.

found interactions as transient or stable, it is clear that the methods detect
different kinds of interactions and are therefore highly complementary (Figure
2).
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Table 2 High-throughput interaction detection experiments

Organism No. purified
complexes

No. binary
interactions

Method Reference

H. pylori – 1465 two-hybrid pooling of frag-
ment library

105

E. coli 530 5254[a] tap tag coIP 21
P. falciparum – 2846 two-hybrid pooling

approach
80

S. cerevisiae – 4549 two-hybrid pooling
approach

62

S. cerevisiae – 1511 two-hybrid array approach 132
S. cerevisiae 589 3757[a] tap tag coIP 41
S. cerevisiae 741 2583[a] flag tag coIP 58
C. elegans – 4624 two-hybrid pooling

approach
85

D. melanogaster – 20676 two-hybrid pooling
approach

45

D. melanogaster – ∼ 2300 two-hybrid pooling
approach

37

H. sapiens 32 1814[a] tap tag coIP 17
H. sapiens – 2800 two-hybrid array approach 111
H. sapiens – 3186 two-hybrid array approach 123

[a] Binary interactions are derived from co-purified complexes only as a set of bait–prey pairs,
according to the “spoke model” (Figure 5).

Y2H screens and large-scale complex purifications have now generated
large data sets (Table 2). Together with manually curated small-scale data,
these interactions can now be downloaded from several protein interaction
databases (Table 3).

3 Validation of Experimental Protein–Protein Interaction Data

Any experimental method suffers from a certain number of false positives and
false negatives. However, high-throughput methods are more prone to such
artifacts as they generate them as systematically as they generate valid data.
Several computational methods have been proposed to evaluate the quality
of interaction data. Critical for any method is the benchmark data set that
is a “gold standard” of interactions that can be considered as reliable and
compared to a new interaction data set. With such benchmarks most methods
can suggest rough estimates of the rate of false negatives/positives. Some
important approaches and benchmarks are summarized in the following sec-
tions.
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3.1 Crystal Structures as Benchmarks

The crystal structure of a protein complex is the “gold standard” for a protein
interaction as the structure provides the most detailed information. Un-
fortunately, there are not many structures available for protein complexes
consisting of three or more proteins. One of the best studied cases is the
crystal structure of yeast RNA polymerase II that consists of 10 subunits
which are connected by 18 interactions [25]. While Y2H studies of a similar
complex (RNA polymerase III and several associated proteins) found only 12
interactions among the 19 proteins [36], the crystal structure of RNA poly-
merase II shows a number of “interactions” where subunits barely touch
each other. It is unlikely that such weak interactions will be detected by
any method except by structure analysis. Of course, the polymerase complex
interacts with many other associated proteins that are not detected when the
purified complex is analyzed by MS because they are lost upon purification.
Edwards and coworkers [30] estimated the false negative rate of various
methods to be between 0% (for chemical cross-linking) and 67% (for Far
Western experiments) based on the crystal structure of RNA polymerase II
(which was treated as a “true gold standard”). Similarly, their estimates
for false positives ranged from 41% (for chemical cross-linking) to 67% (Far
Western).

3.2 Overlap with Protein Complex Data

In addition to structural information, data from purified complexes can be
used for evaluation purposes as well. Edwards and coworkers [30] analyzed
the overlap of various interaction data sets with the MIPS complex catalog [92]
– a set of individually validated protein complexes. Based on the overlap with
this data set, these authors estimated the rate of false negatives to be between
51 and 85% for various high-throughput two-hybrid data sets and to be 50%
for high-throughput complex purification data. Note, however, that estimates
of false positives and negatives heavily depend on the precise methods used,
the biological object and the bioinformatics filtering applied to the raw data.

3.3 Correlation with Expression Data

Deane and coworkers [28] used expression data to measure the overall relia-
bility of a given interaction data set. The idea is to take interacting proteins
and see if their expression is coregulated, i.e. if interactions correlate with
expression levels. Deane called their measure expression profile reliability (EPR)
index. It compares the RNA expression profiles for the proteins whose interac-
tions are found in a screen with expression profiles for known interacting and
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noninteracting pairs of proteins. Based on such correlation studies, Deane and
coworkers estimated the error rates to be roughly 50% among the Y2H interac-
tions in the Database of Interacting Proteins (DIP) [115]. Note that most such
correlations can only evaluate data sets as opposed to single interactions. Similar
studies involving correlations of expression data and protein interaction data
were published by Ge and coworkers [42], Grigoriev [50], and Tornow and
coworkers [128].

3.4 Functional Annotation

Interacting pairs can be also evaluated by means of their annotation in
databases, e.g. Gene Ontology (GO) terms [44]. If two interacting proteins
have the same annotation, e.g. “vesicular transport”, this supports the validity
of their interaction. This method was used by Sprinzak and coworkers [121]
to validate interaction data. Of course, any other type of annotation can be
used in similar ways. Other studies broadened this concept by not limiting it
to annotations in databases, but by using “keyword retrieval” in general, e.g.
from PubMed abstracts (see Section 4.5). However, even truly related proteins
show only a partial keyword overlap and sometimes none at all.

3.5 Localization

Proteins can only interact if they occur in the same subcellular compart-
ment, for example the nucleus. Sprinzak and coworkers [122] used functional
annotation and localization data to estimate the false-positive rate among
high-throughput two-hybrid data to be on the order of 50%.

3.6 Paralogous Proteins and Evolutionary Rate

The paralogous verification method (PVM) of Deane and coworkers [28]
judges an interaction likely if the putatively interacting pair has paralogs that
also interact. In contrast to the EPR index (see Section 3.3), which evaluates
data sets of interactions, PVM scores individual interactions. On a test set,
PVM identified correctly 40% of true interactions with an estimated false-
positive rate of about 1%.

Fraser and coworkers [38, 39] suggested that the correlation between pro-
tein interaction and evolutionary rate may allow one to use sequence compar-
isons to statistically assess the quality of interaction data sets (see Section 8.2.1
for more details).
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3.7 Other Approaches

There are a number of other criteria that can be used to evaluate interactions.
In fact, any kind of information can be used that reflects similarities between
putative interaction partners. In bacteria, genes that are neighbors in the
genome are often organized in the same operon and thus often function
together [26]. Similarly, protein pairs that are conserved throughout evolution
may have been coselected because they are required for a common function
and thus may interact. Pairs or groups of proteins with such shared evolu-
tionary patterns are said to have common phylogenetic profiles [102] (see also
Chapter 32). Finally, genetic interactions, i.e. mutations in two or more different
genes that show a stronger phenotype any of the individual genes support
a physical interaction between them or, in fact, the other way round [73,
142]. Note that genetic interactions provide rather indirect evidence that two
proteins interact physically as opposed to biochemical or physical methods.
Goldberg and Roth [49] exploited the neighborhood cohesiveness property of
small-world networks (see Section 5.4), to assess confidence for individual
protein–protein interactions. By ascertaining how well each protein–protein
interaction fits the pattern of a small-world network, they were able to stratify
even those interactions with identical experimental evidence. Another simple
measure has been introduced by Saito and coworkers [112,113]. Their interac-
tion generality measure is basically the number of proteins involved in a given
interaction. Saito and coworkers found that interactions with low generalities
are more likely to be reproducible in other independent assays. However,
this strategy appears to work only for raw interaction data that have not been
filtered for “sticky” proteins (i.e. proteins that appear to have many unspecific
interactions).

3.8 Combined Approaches

Ideally, several different sources of information should be combined to eval-
uate interaction data, particularly high-throughput data. This approach was
chosen by von Mering and coworkers [137], who demonstrated that the num-
ber of false-positive interactions can be reduced by focusing on the intersec-
tion of interactions generated by different kinds of experimental technologies
[e.g. the overlap between Y2H interactions and coimmunoprecipitation (coIP)
data]. Furthermore they showed that such overlapping data mainly consist of
interactions in which both partners have the same functional annotation and
cellular localization. Similar studies have been carried out by Sprinzak and
coworkers [122] (who combined localization and annotation data) and other
authors [9]. Figures 3 and 4 show examples of data quality evaluations and
how to improve them by integrating several sources.
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Figure 3 The size of the different
genome-wide data sets and their possible
intersections and their consistency with
the MIPS complexes catalog [92]. The
bars (relating to the left y-axis) indicate the
number of interactions in each individual
data set and each possible intersection
of the data sets (e.g. ‘Ito + Uetz’ contains
only interactions that are both within Ito and
Uetz). The line (relating to the right y-axis)
shows what fraction of these interactions
overlaps with protein pairs within the same

MIPS complex. The individual data sets are
arranged on the left, pairwise intersections
of data sets in middle and higher-order
intersections (three or more data sets)
on the right. As the degree of intersection
among the data sets increases, the fraction of
interactions within the same MIPS complex
increases. The different data sets are
complementary and cover more interactions
than each data set individually. (From Ref.
[30].)

However, as long as automated validation methods are not significantly
improved, validation by manual expert analysis remains key.

3.9 Comparison of Specific Data Sets

A lot of effort has been spent on comparing the quality of different data
sets [30]. Such comparisons also serve as cross-validation as shown by the
following example (data from Ref. [24]).

3.9.1 Comparison of Tandem Affinity Purification (TAP) and High-throughput
MS (HMS) complex purification data

Protein complex purification has been used most extensively in yeast and
two main methodological variations have been used: TAP [41] and HMS [58]
protein complex identification (HMS-PCI). The two approaches differ in the
way proteins were expressed (from their natural chromosomal location in TAP
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and from overexpressing plasmids in HMS-PCI) and in the tags that were used
for the purification of the protein complexes. Such technical details can cause
tremendous differences in the resulting interaction data.

On average, the number of proteins common to the TAP and HMS-PCI data
sets is less than 9% of the total number of proteins in both data sets. For
example, employment of Yju2p as a bait identified 15 proteins using TAP
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4 Benchmarked accuracy and extent
of functional genomics data sets and the
integrated networks. A critical point is the
comparable performance of the networks
on distinct benchmarks, which assess the
tendencies for linked genes to share (A)
KEGG pathway annotations [70] and (B)
protein subcellular locations [59]. Each x-axis
indicates the percentage of protein-encoding
yeast genes provided with linkages by the
plotted data; each y-axis indicates relative
accuracy, measured as the agreement
of the linked genes’ annotations on that
benchmark. The “gold standards” of accuracy

(red star) for calibrating the benchmarks
are small-scale protein–protein interaction
data from DIP [115]. Colored markers
indicate experimental linkages; gray markers,
computational. The initial integrated network
(lower black line), trained using only the
KEGG benchmark, has measurably higher
accuracy than any individual data set on the
subcellular localization benchmark; adding
context-inferred linkages in the final network
(upper black line) further improves the size
and accuracy of the network (see Ref. [81] for
details and additional benchmarks).

and 15 using HMS-PCI. Only one protein (Prp19p) is common to both sets.
This shows that experimental details have to be borne in mind when interac-
tion data sets are compared. As another example, there can be considerable
disparity between the size of complexes generated by TAP and HMS-PCI.
Complexes generated using baits Pwp2p and Kap104p contain 54 and four
proteins, respectively, using TAP, compared to seven and 36 using HMS-PCI.

3.9.2 Comparison between Y2H and MS data sets

The largest overlap found by Cornell and coworkers was between the TAP
and the Uetz Y2H data sets [41, 132] where 21% of the interactions found by
Y2H are supported by affinity purification. In contrast, less than 7% of the
Y2H interactions in the Ito data set are supported by TAP.

3.9.3 Comparison of Spoke versus Matrix Models

Cornell and coworkers [24] compared TAP and HMS-PCI complexes using
the spoke and matrix models (Figure 5). The two data sets were validated by
counting coexpressed proteins and by comparing functional annotations of all
proteins in a complex. For example, a protein complex is considered to be of
high quality if all proteins in it are expressed in the same cell at similar levels
and if all proteins have similar functional annotations (Figure 6). According
to Cornell et al. [24], the spoke model generated 3163 protein pairs from TAP
complexes and 3503 pairs from HMS-PCI. The matrix model generates 17 281
protein pairs from TAP complexes and 30 672 pairs from HMS-PCI. Interest-
ingly, Cornell and coworkers [24] found that the experimental approach (TAP
versus HMS-PCI) affected their analysis more than the choice of data model
(here, matrix versus spoke model). This shows that data sets may be more
important than data models!

Thus, the choice of data sets is often critical. This is also true for subsets of
proteins which can be selected by a wide range of fairly arbitrary criteria. For
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Figure 5 Data models for protein interactions in complexes. (A) A
protein complex may consist of five subunits, A–E, hold together by
five interactions. A two-hybrid assay may detect only interaction A–B,
while other methods may detect the other interactions (dotted lines).
(B) The matrix model assumes that each subunit interacts with every
other subunit. (C) The spoke model assumes that the bait protein
interacts with all other proteins.

example, a protein pair that occurs in more than one complex can be defined
as a frequently observed pair (FOP), while those that occur only once may be
defined as singly observed pairs (SOPs). Furthermore, those SOPs in which
each protein occurs only once in that data set have been defined as unique
SOPs (U-SOPs). Analysis of expression profile correlation shows that FOPs
tend to have much greater correlation coefficients than SOPs. The correlation
coefficients for SOPs are similar to those of random protein pairs [24].
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Figure 6 Frequency distribution of
expression profile correlations for pairs of
proteins in affinity-purified protein complexes,
purified using the same bait protein by TAP
and HMS-PCI. Key: black dashed line,
overlap – pairs of proteins common to both

TAP and HMS-PCI complexes; grey dashed
line, HMS-PCI only – pairs of proteins purified
only by HMS-PCI; black solid line, TAP only
– pairs of proteins purified by TAP only; grey
solid line, random pairs – a set of 4010 pairs
of randomly chosen proteins [24].

4 Predicting Protein–Protein Interactions

Predicting interactions is conceptionally similar to validation. While valida-
tion involves the comparison of interaction data to certain benchmarks such
as colocalization data, such criteria can also be used to predict protein–protein
interactions. In other words, potentially interacting proteins can be selected
from the pool of all possible protein pairs of a genome by applying such
filtering criteria.

The maximum number of possible protein–protein interactions in a pro-
teome is approximately:(

n + k− 1
k

)
=

(n + k− 1)!
k!(n− 1)!

with n being the size of the proteome (i.e. the number of proteins) and k = 2
for binary interactions including homodimers, and counting an interaction
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 7 Methods for predicting protein
interaction partners from genomic and
sequence information. The methods are
presented according to the amount of
information they include, ranging from simple
patterns of gene presence in genomes
to detailed sequence information (amino
acids in each position) in protein families.
(a) Phylogenetic profiles [102]. A profile is
constructed for each protein (Prot a–Prot
d), recording its presence (1) or absence
(0) in a set of organisms (Org 1–Org 4).
Pairs of proteins with identical (or similar)
phylogenetic profiles are predicted to
interact (Prot a and Prot c in this case). (b)
Conservation of gene neighborhood [26].
Proteins whose genes are physically close
in the genomes of various organisms are
predicted to interact (Prot a and Prot b).
(c) Gene fusion [31, 89]. Two proteins of
a given organism (Prot a and Prot b of
Org 1) are predict to interact if they form
part of a single protein in other organisms
(Org 2). (d) Similarity of phylogenetic
trees (mirrortree) [46, 101]. To obtain a
quantitative indicator of the interaction
between two proteins (Prot a and Prot b),
the multiple sequence alignments (MSAs)

of both proteins are reduced to the set of
organisms common to the two proteins (Org
1–Org 5). Each of the reduced alignments
is used to construct the corresponding
intersequence distance matrix. These
matrices are commonly used to construct
the corresponding phylogenetic trees. Finally,
the linear correlation between these distance
matrices is calculated. High correlation
values are interpreted as indicative of the
similarity between phylogenetic trees and
hence are taken as predicted interactions.
(e) Correlated mutations (i2h) [100]. The
first step (reduction of the MSAs to a set
of common organisms) is the same as that
described for the mirrortree method (d). A
correlation coefficient is calculated for every
pair of residues. The pairs are divided into
three sets: two for the intraprotein pairs (Caa
and Cbb; pairs of positions within Prot a and
within Prot b) and one for the interprotein
pairs (Cab; one position from Prot a and one
from Prot b). The distributions of correlation
values are recorded for these three sets. The
“interaction index” is calculated by comparing
the distribution of interprotein correlations
with the two distributions of intraprotein
correlations [100].

pair A–B and B–A as a single interaction. For example, a proteome of a small
prokaryote (n = 1000) corresponds to a maximum of 500 500 potential binary
interactions.

Note that interacting protein pairs may behave differently depending on
their “orientation” in an experiment. For example, when an antibody against
protein A precipitates protein B, an antibody against protein B may not pre-
cipitate protein A. For that reason, many experiments have to be carried out
in both “orientations” for full coverage. This leads to exponentially growing
numbers in experiments required for genome-wide studies. For example,
while a small bacterium with 1000 genes has 106 interaction pairs to be tested,
a medium-sized eukaryotic genome requires already 100× 106 pairwise com-
binations to be tested. Given that the number of binary protein combinations
grows exponentially it is unlikely that the interactomes of higher eukary-
otes will be fully covered by experimental means in the near future. Note
that eukaryotes also exhibit variations such as alternative splicing or post-
translational modifications which often affect protein interactions and thus
increase complexity by at least another order of magnitude. In addition,
all experimental methods show a certain degree of false negatives so that
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even experiments rarely identify all interactions. The experimental bottle-
neck motivated the design of algorithms for predicting protein interactions
(Table 3 lists databases of predicted functional associations). It is usually much
more efficient to verify predicted interactions experimentally than just doing
experiments randomly without such preselection. One has to bear in mind,
however, that predictions are often based on experimental limitations. For
example, interactions among membrane proteins are usually underpredicted
because they are also underrepresented in the data sets that are used to make
the predictions.

One can distinguish three main types of algorithms:

(i) Predictions based on functional relationships such as colocalization, ge-
nomic context, etc. Text mining is a special case of such relationships
where protein interactions may be already encoded in the literature.

(ii) Docking of known protein structures.

(iii) Homologous interactions in organism A can be predicted based on exist-
ing interaction data in organism B and vice versa.
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Table 3 Databases and information resources for protein interaction data (this list is available
online at http://uetz.fzk.de)

Name Full name and/or
description

URL

General interaction repositories
BIND biomolecular interaction

network database
http://www.bind.ca

DIP database of interacting
proteins: experimentally
determined protein–
protein interactions

http://dip.doe-mbi.ucla.edu

IntAct open source database
system and analysis tool
for protein interaction data

http://www.ebi.ac.uk/intact

Species specific interaction databases
BioGRID database of protein and

genetic interactions of
most eukaryotic model
organisms

http://www.thebiogrid.org

MINT database of biomolecular
interactions in mammalian
proteomes

http://mint.bio.uniroma2.it/mint

hp-DPI database of protein
interactions in H. pylori

http://dpi.nhri.org.tw/hp

MPPI MIPS mammalian protein–
protein interaction
database

http://mips.gsf.de/proj/ppi

MPact MIPS protein interaction
resource on yeast

http://mips.gsf.de/genre/proj/mpact

CYGD protein–protein
interactions section of
the Comprehensive Yeast
Genome Database

http://mips.gsf.de/proj/yeast/CYGD/interaction

HIV
Interactions

interactions between HIV
and host proteins

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions

HPRD human protein reference
database:
domains, modifications,
diseases

http://www.hprd.org

HPID human protein interaction
database

http://www.hpid.org

PPI Viewer protein interactions in
mouse

http://fantom21.gsc.riken.go.jp/PPI

Databases of predicted functional associations
STRING predicted functional

associations between
proteins

http://string.embl.de

FusionDB database of bacterial and
archaeal gene fusion events

http://igs-server.cnrs-mrs.fr/FusionDB

ALLFuse database of functional
associations of proteins in
complete genomes

http://cgg.ebi.ac.uk/services/allfuse

Prolinks database of protein
functional linkages derived
from
coevolution

http://dip.doe-mbi.ucla.edu/pronav

Predictome predicted functional
associations and
interactions

http://predictome.bu.edu
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Table 3 (continued)

Name Full name and/or
description

URL

Bioverse structural, functional, and
contextual annotations of
proteins and proteomes

http://bioverse.compbio.washington.edu

InterWeaver. protein interaction
predictions based on
various evidence

http://interweaver.i2r.a-star.edu.sg

GeneNet database on gene network
components

http://wwwmgs.bionet.nsc.ru/mgs/gnw/ genenet

OPHID online predicted human
interaction database

http://ophid.utoronto.ca/ophid

POINT2005 prediction of human
protein–protein
interactome

http://point.bioinformatics.tw/intro/intro.jsp

VisANT bio-network visualization
and analysis tool

http://visant.bu.edu

PLEX Protein Link Explorer;
constructs phylogenetic
profiles

http://bioinformatics.icmb.utexas.edu/plex

Structural databases
3DID 3-D structures of

interacting domains
http://3did.embl.de

DDIB database of domain
interactions and binding

http://www.ddib.org

Inter-Chain β−sheets protein– protein
interactions mediated
by interchain β-sheet
formation

http://www.igb.uci.edu/servers/icbs

InterDom putative protein domain
interactions

http://interdom.lit.org.sg

PDZBase protein–protein
interactions involving
PDZ domains

http://icb.med.cornell.edu/services/pdz/start

PSIbase interaction of proteins with
known 3-D structures

http://psibase.kaist.ac.kr

InterPreTS tool to predict protein
interactions using 3-D
information

http://speedy.embl-
heidelberg.de/people/patrick/interprets/index.html

PPI Server analysis of protein–protein
interfaces of protein
complexes from PDB

http://www.biochem.ucl.ac.uk/bsm/PP/server

3D-Dock
Suite

3-D DOCK predicts the
binding geometry of two
biomolecules

http://www.bmm.icnet.uk/docking

PPI interfaces interacting residues in
protein–protein interfaces
in PDB

http://home.ku.edu.tr/∼okeskin/
INTERFACE/INTERFACES.html

Het-PDB
Navi

hetero-atoms in protein
structures (a database for
protein–small molecule
interactions)

http://daisy.nagahama-i-
bio.ac.jp/golab/hetpdbnavi.htm

Location databases
PINdb proteins interacting in

nucleus (human and yeast)
http://pin.mskcc.org

PSORTdb a database of protein
subcellular localizations
for bacteria

http://db.psort.org/docs/documentation.html



1138 31 Analyzing Protein Interaction Networks

Table 3 (continued)

Name Full name and/or
description

URL

Signaling Pathway Databases
aMAZE annotation, management

and analysis of biochemical
and signaling pathways

http://www.amaze.ulb.ac.be

BioCarta online maps of metabolic
and signaling pathways

http://www.biocarta.com/genes/ allPathways.asp

BRITE biomolecular relations in
information transmission
and expression, part of
KEGG

http://www.genome.ad.jp/brite

Reactome a knowledgebase of
biological pathways

http://www.reactome.org

DRC database of ribosomal
crosslinks

http://www.mpimg-berlin-
dahlem.mpg.de/∼ag_ribo/ag_brimacombe/drc

ROSPath reactive oxygen species
signaling pathway

http://rospath.ewha.ac.kr

STCDB signal transductions
classification database

http://bibiserv.techfak.uni-bielefeld.de/stcdb

pSTIING regulatory networks
relevant to chronic
inflammation, cell
migration and cancer

http://pstiing.licr.org

Kinetics
KDBI kinetic data of protein–

protein, protein–nucleic
acid and ligand–nucleic
acid binding.

http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp

PINT Protein–protein
Interactions
Thermodynamic Database

http://www.bioinfodatabase.com/pint/index.html

Other links
Jena Link list protein interaction link

list at the Jena Centre for
Bioinformatics, Germany

http://www.imb-jena.de/jcb/ppi

Pawson Lab information on protein
interaction domains

http://www.mshri.on.ca/pawson/domains.html

4.1 Predictions Based on Genomic Context

Several algorithms predict protein associations on the basis of sequence data
from completely sequenced genomes and are inspired by comparative ge-
nomics techniques (for details see Chapter 32). The main methods are as
follows (Figure 7).

4.1.1 The Rosetta Stone Method

This method is based on the fact that multi-domain proteins found in one
organism may be split in another. It is thus likely that the fused domains
interact within the multi-domain protein and thus the separate domains may
interact as well [89]. Illuminating in this respect are some observations by
Aloy and coworkers [4] who found that SH2 and SH3 domains within a single
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multi-domain protein can “interact” in at least three different ways in a protein
crystal. This indicates that the two domains do not always interact in the
same way, i.e. their interaction surfaces are not strictly conserved. It is equally
possible that they have been oriented in different ways in the crystal because
there are equally different ways to crystallize.

Interestingly, Aloy and coworkers [4] also found several different classes
of successful Rosetta predictions – fused domains can interact similarly or
differently when compared to their separated counterparts. For example, the
enzyme imidazole glycerophosphate synthase is composed of two different
structural domains – a histidine biosynthesis domain and a class I glutamine
amido-transferase domain. These domains are encoded by separate genes in
archaea but fused in eukarya. Despite the huge evolutionary distance between
these organisms, the interaction is conserved. However, for other fusions the
interaction is different. For example, despite significant sequence similarity
(PID = 34%, where PID is the percentage sequence identity, i.e. the number of
identical residues divided by the number of structurally equivalent residues),
the FAD/NAD(P) binding and thioredoxin-like domains interact differently
when separated.

4.1.2 Gene Neighborhood

The gene neighborhood approach rests on the fact that many functionally
related genes in bacteria are organized in operons, i.e. they are gene neigh-
bors. Furthermore, often proteins encoded in one operon interact in a protein
complex, e.g. a multi-protein enzyme complex. Neighboring genes in bacteria
are therefore more likely to interact than proteins encoded in other regions of
the chromosome. Unfortunately this is not true for eukaryotes which usually
do not have operons.

4.1.3 Phylogenetic Profiles

The phylogenetic profile method [102] deduces functional links between
genes that have similar occurrence patterns of orthologs in a set of reference
genomes. In other words, if pairs or groups of proteins are maintained in
many different genomes this may be because they have been selected as
groups and thus may functionally or physically interact. Phylogenetic links
are collected by the STRING database ( [136] and see also Chapter 32) and
other websites listed in Table 3.

The Protein Link EXplorer (PLEX) is a web-based environment that allows
the construction of a phylogenetic profile for any given amino acid sequence,
and its comparison with profiles of approximately 350 000 predicted genes
from 89 genomes [27].
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4.1.4 Similarity of Phylogenetic Trees (SPT)

As we have seen, interacting protein pairs coevolve, e.g. insulin and its re-
ceptors. In such cases, the corresponding phylogenetic trees of the interacting
proteins show a greater degree of similarity (symmetry) than those of non-
interacting proteins. Thus, similar phylogenetic trees of potential interactors
support their interaction. In fact, the phylogenetic profile method is related to
this procedure, but goes even one step further because gain or loss of a gene is
the ultimate step in protein evolution. In other words, while phylogenetic
profiles look for the absence or presence of homologous proteins, the SPT
method quantifies homology. The SPT method is also called the mirrortree
method [101, 134].

4.1.5 In Silico Two-hybrid (I2H)

As a refinement of the previous method, the coevolution of interacting pro-
teins can be followed more closely by quantifying the degree of covaria-
tion between pairs of residues from these proteins (correlated mutations).
These positions may correspond to compensatory mutations that stabilize
the mutations in one protein with changes in the other. The relationship
between correlated residues and interacting surfaces has been used to predict
interacting protein pairs based on the differential accumulation of correlated
mutations between the interacting partners and within the individual proteins
[100].

As in the case of the mirrortree method, the main limitation of the I2H
approach is the need for complete alignments with a good coverage of species
common to the two proteins under study.

4.2 Predictions Based on Known 3-D Structures

If the structures of all proteins were known, their interactions should be
predictable by docking methods. Although docking of rigid structures is
theoretically possible, the problem turned out to be much more difficult to
solve because proteins are not rigid. In fact, many interactions do require
some amount of induced fit for optimal binding [33, 48]. The problem and
methods for solving it are discussed in more detail in Chapter 17.

4.3 Predicting Interaction Domains

Protein–protein interactions are usually mediated by specific protein domains.
Some of the best-characterized domains are indeed interaction domains such
as the SH2 or SH3 domains [84]. Several authors made use of this fact in order
to identify interacting domains computationally [29, 95, 121]. Briefly, when
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certain proteins with a shared domain A interact with other proteins that
share a domain B, this suggests that domains A and B mediate this interaction
(Figure 8).

4.4 Predicting Homologous Interactions: Interologs

Proteins and their functions are usually well conserved throughout evolution.
It has also been known for a long time that protein–protein interactions are
conserved, e.g. in hemoglobins whose heterotetrameric structure is found
throughout all vertebrates. Yu and coworkers [146] found that protein–protein
interactions can be predicted when a pair of homologous proteins has a joint
sequence identity above 80% or a joint E-value lower than 10−70. These
“joint “quantities are the geometric means of the identities or E-values for
the two pairs of interacting proteins. This corresponds to an E-value lower
than 10−10 for each orthologous protein and both having a sequence coverage
of at least 80% of their residues. Similarly, Matthews and coworkers [91] used
interaction data from yeast to predict interaction partners in C. elegans, many
of which were indeed confirmed experimentally.

Thus, given that proteins A and B interact in yeast, we would predict
that homologous proteins A′ and B′ in Caenorhabditis elegans interact as well
(Figure 9). Such homologous, interacting pairs have been called interologs by
Matthews and coworkers [91].

Interestingly, Matthews and coworkers [91] did not find a clear correlation
between sequence similarity and the likelihood of an interaction being con-
served between yeast and worm. However, this may be explained by different
experimental systems and a small sample size. More importantly, given that
interactions are usually mediated by protein domains or even short peptides,
the overall similarity between interologs does not need to correlate with the
propensity to interact.

Several studies used an interolog approach to predict human protein–
protein interactions from model organism interaction data [19, 82, 110]. First,
all reciprocal best BLAST hits were selected in the human and model organism
proteomes (see Chapter 3 for details on BLAST). Then interaction data from
yeast, worm and fly were mapped onto the human proteome. Using this
approach, the three studies predicted between 23 889 and about 70 000 human
interactions, respectively. The differences stem mostly from different starting
interaction data sets and different cutoff criteria for protein similarity although
Rhodes and coworkers [110] also used other criteria such as expression data
and functional annotations.

There are not many attempts to predict interactions in bacteria as there
are only a few systematic studies [21, 87, 105]. Wojcik and coworkers [140]
predicted 1280 interactions in Escherichia coli based on two-hybrid data from
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Figure 8 Computational identification of
interaction domains. In the upper panel,
each row contains the sequences of a pair
of proteins (A,B) whose interaction was
determined experimentally. Each sequence
is characterized by its signatures, denoted
here schematically by colored shapes. In
the lower panel, a contingency table of
the signature combinations is described,
where each entry (i,j) in the table shows
the number of protein pairs that contain
signatures i and j in concert, i.e. where

one protein contains signature i and its pair
mate contains signature j. For example, the
sequence-signature pair represented by an
orange rectangle and a pink triangle appears
in two pairs of interacting proteins. The most
abundant pair of sequence-signatures is that
of a red ellipse and a green trapezium which
appears in four different pairs of interacting
proteins. In the next step of the analysis the
likelihood of the identified sequence-signature
pairs is evaluated. (From Ref. [121].)
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Figure 9 Protein–protein interologs. A–A′ and B–B′ are orthologs
between the two organisms. Interolog mapping can be generalized
when paralogs or whole protein families are considered (as opposed to
single orthologs) (Modified after Ref. [146]).

Helicobacter pylori. However, they considered only 154 interactions to be reli-
able, based on their interacting domain profile pair (IDPP) method (Figure 10).

4.5 Predictions based on Literature Mining

Many protein–protein interactions are buried in the primary literature. In
order to retrieve this information, Natural Language Processing (NLP) algo-
rithms are used. These algorithms use abstracts and/or full texts of articles
to extract links between genes and proteins. Knowledge extraction is not
a trivial task as literature information is extremely noisy, due to insufficient
synonym definitions, synonym variations and gene families with fuzzy nam-
ing conventions. Nevertheless, with the ongoing establishment of synonym
databases and systematic names (HUGO [32], Entrez Gene [86]) for gene or
gene product names, the predictions are getting more and more sophisticated.
Jenssen et al. [66] analyzed over 10 million Medline titles and abstracts, and
identified a cocitation network of almost 14 000 human proteins. Obviously,
such relationships often do not represent physical interactions, e.g. when
several oncogenes need to be mutated to cause cancer. Other attempts to mine
Medline abstracts for protein interactions have been published by Marcotte
and coworkers [90], Bunescu and coworkers [20], LaBaer [79], Oyama and
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Figure 10 The IDPP method (p. 1143).
An abstract domain cluster interaction
map (b) was derived from the initial protein
interaction map of H. pylori (Hp) (a). Domains
were clustered together if (i) they shared
significant sequence similarity and (ii) they
shared a common interaction property with

a third partner (e.g. interacting domains of
proteins B and C both interact with A). Each
domain or profile was then used as a probe
for screening a library of E. coli (Ec) protein
sequences and domain cluster interactions
were transferred (c) (see Ref. [141] for further
details).

coworkers [98], and Hao and coworkers [55]. More details on literature mining
can be found in Chapter 34.

4.6 Validation of Predicted Protein–Protein Interactions

Even more than experimental techniques, predictive methods call for valida-
tion of their results and for assessment of their sensitivity and selectivity. In
fact, validation of predicted protein interactions can be performed the same
way as for experimental interactions (see Section 3).

Again, the first and most important way of validation is the comparison of
predictions with some “gold standard” data set, i.e. manually or automatically
collected data of high reliability, such as subsets of MIPS [92], DIP [115] or
IntAct [56], or specifically collected data [137, 146]. The significance of the
predictions is evaluated by calculating the fold improvement over a virtual
random experiment and/or the correlation between the predicted and the
standard data set.

Huynen and coworkers [61] compared the three methods based on genomic
information. In their analysis, the method based on gene order could be
applied to 37% of the Mycoplasma genitalium genes, whereas the phylogenetic
profile method and the method based on gene fusion could only be applied
to 11 and 6%, respectively. The combination of the three methods yielded
predictions for 50% of M. genitalium genes, with just a small degree of overlap
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in the techniques. With respect to the accuracy of this test set, the percentage of
pairs predicted by the three methods that either present a physical interaction,
belong to the same macromolecular complex, form part of the same pathway
or are implicated in the same process are: 78% for “gene fusion” (with no false
positives), 80% for “conservation of gene order” and 63% for “phylogenetic
profiles”. The percentages for physical interactions only are 56, 30 and 23%,
respectively.

5 Representing Protein–Protein Interactions as Graphs

Protein interactions within a cell form large networks and thus can be repre-
sented by graphs (Figure 11 and Ref. [12]) and be mathematically analyzed
using graph theory [139]. Surprisingly, protein networks and many other
natural networks are governed by a few simple organizing laws.

5.1 Graph Terminology

A graph G is a set of vertices (or nodes or points, here proteins) and edges (or
lines, here interactions) denoted by G = (V,E), where the elements of V are
vertices and the elements of E are edges, two-element subsets of V, with
E ⊆ V × V. Often n is used to represent the number of vertices |V| and m
to represent the number of edges |E|. The usual way to picture a graph is
by drawing a dot for each vertex and joining two of these dots by a line if
the corresponding two vertices form an edge (Figure 12). How these points
and lines are drawn is potentially relevant as the vertices represent different
proteins and the interactions may differ in their nature.

It is the job of graph drawing algorithms to layout and display this infor-
mation optimally. A graph is undirected if its edges are undirected, otherwise
it is called directed (or a digraph). Edges in a digraph are usually represented
by arrowed lines. Vertices joined by an edge are said to be adjacent. A neighbor
of a vertex v is a node adjacent to v. The neighborhood is the set of neighbors of
vertex denoted by N(v).

The closed neighborhood is the set of neighbors including v. A graph G is
complete (or called a clique) if all its vertices are pairwise adjacent.

The degree (or valency) of a vertex v is the number of edges incident with v;
this is equal to the number of neighbors of v. A vertex of degree 0 is isolated.
In directed graphs one has to distinguish between the incoming degree, the
number of edges ending at the node and the outgoing degree, the number of
edges originating at the node.



1146 31 Analyzing Protein Interaction Networks

Figure 11 Yeast protein interaction network
of around 1200 interacting proteins based on
published interactions. Highlighted as dark
nodes are cell structure proteins (a single
functional class). Proteins in this category
can be observed to cluster primarily in one
region. Although interacting proteins are
not depicted in a way that is consistent
with their known cellular location (i.e. those

proteins known to be present in the nucleus
in the center of the interaction map and
those present in plasma membranes in the
periphery), signal-transduction pathways
(or at least protein contact paths) can be
inferred from this diagram. The graph was
generated with the AGD software library
(http://www.ads.tuwien.ac.at/AGD [130]).
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Figure 12 The graph on V = {1,2,3,4,5,6,7} with edge set E = {{1,2},
{1,5}, {2,5}, {3,4}, {5,7}}.

A path in a protein graph is a unique sequence of proteins and interactions
starting and ending with a protein. The path length is the number of vertices
in that sequence. A path which contains k vertices is commonly denoted
by Pk. A graph G is called connected if any two vertices are linked by a
path in G otherwise it is called disconnected. All known protein networks are
disconnected because not all proteins belonging to a proteome are connected
(maybe they are but we do not know all interactions).

The distance d(u,v) in G between two vertices u, v is the length of a shortest
u–v path in G. Here length is measured either by the number of edges on the
path or, if each edge is weighted with a length, as the sum of the lengths of all
edges on the path. The diameter of G is the greatest distance between any two
vertices in G (although it is sometimes defined as the distance between two
vertices averaged over all vertices). If a graph is disconnected, the diameter is
equal to the maximum of the diameters of its connected components.

For an undirected graph the clustering coefficient of a vertex v is defined as
Cv = 2·Ev

kv(kv−1) . It describes the ratio between Ev, the number of observed edges
between the neighbors of v and the number of edges that could possibly exist
between them. It is 1 if every neighbor connected to v is also connected to
every other vertex within the neighborhood, and 0 if no vertex connected to v
connects to any other vertex that is connected to v.

A directed graph with weighted edges is called a network (Figure 13). How-
ever, it should be noted that within network analysis, the definition of the
term network may differ and may often refer to an undirected, unweighted
graph. Actually, this is the case for most protein–protein interaction networks
which often represent unweighted and undirected graphs, and which there-
fore strictly should be called protein–protein interaction graphs. Nevertheless,
in this chapter we will also use the term network.
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Figure 13 A simple network – a directed graph with weighted edges
(cf. Figure 12). In protein–protein interaction networks directed edges
are used to reflect protocols where one protein is used as a bait (arrow
source) and associated proteins are identified as preys (arrow targets;
especially in Y2H and protein complex purifications). Weights are used
to numerically assess an interaction, for example the number of times
it has been reproduced or its coexpression correlation, etc.

The most elementary global features of networks are:

1. The connectivity distribution (or node degree distribution) P(k).

2. The average path length (or average distance) 〈l〉 = 2
n(n−1) ∑u<v d(u, v) defined

by the average of the distances between any two vertices u, v within the
network.

3. The average clustering coefficient 〈C〉 = 1
n ∑n

i=1 Ci defined by the average of
the clustering coefficients of all vertices within the network.

A detailed treatise on graph theory has been published by West [139]. A com-
prehensive online textbook about graph theory can be found at http://www.
math.uni-hamburg.de/home/diestel/books/graph.theory. The MathWorld
online encyclopedia provides more information on graph theory at http://
mathworld.wolfram.com/topics/GraphTheory.html.

5.2 Network Models

Since the 1950s various network models have been proposed. Initially, ran-
dom networks with no apparent design principles were constructed and de-
scribed by Erdos and Renyi [107–109]. These authors simply assigned random
edges to a set of randomly selected nodes. Later, other authors suggested rules
for assigning edges and nodes resulting in nonrandom networks. Although
metabolic networks have been known for decades, they have been treated as
graphs only since the 1990s. Finally, Wagner [138] and Barabási and Albert
[10, 11] introduced the concept of scale-free networks to protein networks.
These models will be described in more detail below.
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Figure 14 Random network. (A) small
random network. The node degrees follow a
Poisson distribution (B), which indicates that
most nodes have approximately the same
number of links (close to the average degree
〈k〉). The tail (high k region) of the degree
distribution P(k) decreases exponentially,
which indicates that nodes that significantly

deviate from the average are extremely rare.
The clustering coefficient is independent
of a node’s degree, so C(k) appears as a
horizontal line if plotted as a function of k (C).
The mean path length is proportional to the
logarithm of the network size, 〈l〉 ∼ log(n),
which indicates that it is characterized by the
small-world property. (From Ref. [12].)

5.3 Random Networks

Random networks were invented by Erdös and Renyi [107–109] and are based
on the principle that the probability p that there is an edge between any pair
of vertices is distributed uniformly (Figure 14). The connectivity distribution
P(k) of a random network follows a Poisson distribution that peaks at the
average vertex degree 〈k〉 (see Figure 14). Nodes that have a significantly
lower or higher degree than 〈k〉 are absent or very rare. Moreover, random
graphs have a relatively short average path length 〈l〉 which is proportional
to the logarithm of the network size 〈l〉 ∼ log(n). The clustering coefficient for
a random graph is expected to be constant with 〈C〉 = p (Figure 14). A detailed
review of random graphs can be found in Bollobás [16].

5.4 Small-world Networks

Although complex networks do not look small at the first glance, there are
many ways to travel from one vertex to another using a path of a few ver-
tices only. This circumstance is also popularly known as “six degrees of
separation” which goes back to a study by psychologist Stanley Milgram in
1967 [93]. Milgram concluded that two randomly chosen people are socially
connected by an average of only five other people (resulting in six “degrees”
between them). Such small-world networks have a short average path length
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〈l〉, a relatively large clustering coefficient 〈C〉, which is independent of the
network size n, and a connectivity distribution P(k), which is similar to that
of a random graph. In a small-world network local perturbations can reach
the whole network very quickly.

5.5 Scale-free Networks

If the connectivity of a network follows a power-law distribution, P(k) ∼ k−γ,
the network is called scale-free. This relationship can also be seen as a straight
line on a log-log plot since the above equation is equal to log(P(k)) ∼
−y · log(k) (Figure 15B). Therefore, unlike that of a random graph, most
vertices have only a few edges whereas a few vertices have a large number
of edges, so called hubs (see light vertices in Figure 15A). However, they are
also highly vulnerable to perturbations of highly connected nodes: when such
hubs are removed the diameter increases rapidly and the network breaks into
many isolated fragments [2]. By contrast, scale-free networks have a high
degree of robustness against random errors.

If a network is scale-free, it is also a small-world. Scale-free networks with a
degree exponent y between 2 and 3 are ultra-small with an average path length
〈l〉 ∼ log(log(n)) which is significantly shorter than 〈l〉 of a random graph
which is proportionate to log(n), indicating that a heterogeneous scale-free
topology is more efficient in bringing nodes close together than the homo-
geneous random graph topology [22, 23]. The clustering coefficient 〈C〉 of a
scale-free network is about 5 times bigger than that of a random graph [1].

Figure 15 Scale-free network. (A) Small network with hubs (light).
(B) Connectivity distribution of the network shown in (A). (C)
Distribution of the clustering coefficient as a function of the vertex
degree. For a large scale-free network see Figure 11 (From Ref. [12].)
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5.6 Connectivity Distributions of Protein–Protein Interaction Networks

Several authors demonstrated that the connectivity distribution of the Sac-
charomyces cerevisiae protein–protein interaction network follows a power-law
distribution [12]. They also determined that the interaction map of H. pylori
[105] shows a heterogeneous scale-free network topology with a few highly
connected and numerous less connected proteins. Furthermore, it has been
shown that the interaction networks of Drosophila melanogaster [45] and C.
elegans [85] proteins exhibit a distinct scale-free behavior.

This demonstrates that although the protein–protein interaction data sets
have been derived from different sources and methods, the emergence of
the scale-free property appears to be a robust feature [145]. However, several
authors have argued that the scale-free nature of protein interaction networks
may be an artifact of sampling and that these networks may be equally well
described by other models [53, 124].

5.7 Error Tolerance and Attack Vulnerability

An important consequence of the scale-free connectivity distribution is the
network’s tolerance to random errors, coupled with fragility against the re-
moval of the most connected nodes [2]. In fact, Jeong and coworkers [67]
showed that highly connected proteins are 3 times more likely to be essential
than proteins with only a small number of links to other proteins. In other
words, when highly connected proteins are deleted the deletion is likely to be
lethal. Similarly, Przulj and coworkers [104] demonstrated that nonessential
proteins have a degree that is half that of essential proteins, whose deletion
causes lethality. Interestingly, lethal mutations were not only found in highly
connected proteins but also in proteins whose removal caused a disruption
in network structure – removal of essential proteins disconnected one part
of the network from the other. The importance of hubs is further validated
by their evolutionary conservation. Fraser and coworkers demonstrated that
highly interacting S. cerevisiae proteins have a smaller evolutionary distance to
their orthologs in C. elegans than less-connected proteins [38], and Krylov and
coworkers showed that yeast hubs are more likely to have orthologs proteins
in higher organisms [78] (see also Sections 8.1 and 8.2).

Many cellular networks are fairly tolerant to random perturbations such
as mutations, but they collapse when hubs are disrupted (by mutations or
drugs). Network topology will also have an impact on drug development.
For instance, highly connected proteins of pathogens may be suitable targets
for an antibiotic therapy, whereas proteins which are less interconnected may
be more appropriate targets for a highly specific drug in humans. A small
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degree is favored in human drug targets because it is more likely to avoid side
effects (see also Chapters 18, 19 and 36).

5.8 Modules and Motifs in Networks

Another topological feature which reflects biological behavior is the hierar-
chical organization of scale-free networks [106]. Biological functions in a
cell are organized in functional modules. Each module contains a group of
physically or functionally linked molecules that work together to achieve a
distinct function. For example, cells produce ATP via a set of modules, such
as the glycolytic pathway, the Krebs cycle and the protein complexes involved
in oxidative phosphorylation.

In networks, subgraphs (subsets of interconnected vertices) form triangles,
squares, pentagons, etc. [94, 119]. Interestingly, some subgraphs, which are
known as motifs, are more common in real networks than in randomized
versions of the same network [94]. For example, triangle motifs are over-
represented in both transcription-regulatory and neural networks and four-
node subgraphs are overrepresented in electric circuits. Each network is
characterized by its own set of distinct motifs [63, 119].

A study on the evolutionary conservation of motif constituents within a net-
work of yeast protein interactions uncovers a trend towards the preferential
retention of highly cohesive motifs [144] (Figure 16).

Furthermore, empirical observations indicate that specific motif types ag-
gregate to form large motif clusters. A number of algorithms have been
developed to identify such modules (complexes or pathways) using either
the network’s topology [120] or combining it with functional genomics data
[8,65,128]. Spirin and Mirny developed an algorithm that was able to recover
many previously known modules such as the anaphase-promoting complex
and the yeast pheromone response pathway [120] (Figure 17). The systematic
identification of these modules provides essential knowledge linking pro-
teome dynamics to cellular function and phenotype.

5.9 Comparing Protein Interaction Networks: Pathblast

Kelley and coworkers took the concept of interologs one step further by
not only finding homologous interactions, but homologous pathways, here
defined as paths of proteins that are connected by protein–protein interactions
[71, 72] (Figure 18).

Pathblast can be used to compare, i.e. align, whole interaction networks.
By using pathways even protein pairs with very weak sequence similarities
can be identified because their position in the network provides additional
information for the unambiguous identification of homologies. Thus, Kelley
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Figure 16 The evolutionary conservation
of motif constituents in yeast. Orthologs
in five higher eukaryotes have been used
to rate the conservation of yeast motifs
(subgraphs of two to five nodes). The number
in yeast is the absolute number found in a
network of 3183 proteins taken from the DIP
database [115]. The natural conservation rate
is the fraction of yeast motifs that consists
of proteins with orthologs in the five higher
eukaryotes used. If the topology of motifs

does not interfere with the conservation
rate of its constituting proteins, a random
ortholog distribution should give the same
motif conservation rates as seen in the
natural sample. The random conservation
rate therefore represents the fraction of motifs
that is fully conserved for the random ortholog
distribution. The conservation ratio is the
ratio between the natural and the random
conservation ratios, indicating that all motifs
are highly conserved. From Ref. [144].

and coworkers were able to compare protein interaction maps of yeast and
H. pylori, i.e. between eukaryotes and prokaryotes. Completely unexpected
similarities were found among the homologous pathways, e.g. membrane
proteins in Helicobacter that are homologous to yeast proteins which are in-
volved in transport through the nuclear pore (Figure 18).



1154 31 Analyzing Protein Interaction Networks

Figure 17 Computer algorithms can deduce molecular modules
(protein complexes and pathways) directly from the topology of protein
interaction networks. (From Ref. [120].)

6 Integrating Multiple Protein–Protein Interaction Evidence

Integrating protein interaction data means combining them with and relating
them to other data (see also Chapter 42 for biological data integration).

There are two main reasons why integration of interaction data is useful:

• Integration aims at collecting all available data on certain proteins or groups
of proteins, even whole genomes. Databases collect nonredundant informa-
tion that is made available in machine-readable form so that computational
analysis and relating data is possible. Such databases are also required for
visualization, i.e. display of multidimensional information for human users
(Figure 19; see also examples in Section 10).

• Integration of multiple data sets improves annotation, function prediction,
validation and experimental design significantly. High-throughput data is of-
ten 1-D, i.e. a certain study may collect only information on protein in-
teractions. In order to interpret this information it is necessary to add
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Figure 18 An example from Pathblast
[71, 72]. The protein–protein interaction
networks of H. pylori (left network) and S.
cerevisiae (right network) were globally
aligned to reveal conserved network regions.
Proteins with above-threshold sequence

similarity are placed on the same row of the
pathway alignment (e.g. HP1114 and Dbp8).
Direct protein interactions appear as solid
links, and gaps or indirect interactions are
dotted (From Ref. [71].)

information about expression, protein structure, localization, etc. Even
previously uncharacterized proteins can be annotated fairly well from high-
throughput data if all information is compiled and related [43, 129].

High-throughput data is also 1-D in the sense that it rarely provides in-
formation on the temporal and spatial dynamics and regulation of protein
function. For example, in the endoplasmic reticulum so-called SREBP pro-
teins form a complex with another membrane-embedded protein called SCAP,
which escorts the SREBPs to the Golgi apparatus. Here, the SREBPs are se-
quentially cleaved by two Golgi-specific proteases. This releases a soluble
fragment that travels to the nucleus where it interacts with other transcription
factors to regulate its target genes (which are required for cholesterol syn-
thesis). When cholesterol levels are low, SCAP escorts SREBPs to the Golgi,
where processing takes place. When cholesterol levels are high, SCAP retains
SREBP in the endoplasmic reticulum, processing is prevented and cholesterol
synthesis is curtailed [96]. High-throughput studies (HTS) that analyze pro-
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Figure 19 Integration of information. Shown are proteins involved in
yeast chromatin remodeling, with several uncharacterized genes (red
labels). This network was visualized with LGL (From Ref. [81], see
Table 4).

tein interactions may only find nuclear interaction partners of SREBPs, HTS
localization studies may only find their ER localization and expression studies
may find that they are expressed at low levels – unless these assays are carried
out under various cholesterol conditions.

Thus, high-throughput studies data will rarely give complete answers to
biological problems. However, such data usually suggest further experiments
and thus provide hypotheses for hypothesis-driven research. Protein interaction
networks are particular informative because they often link proteins to other
proteins whose function may suggest certain regulatory mechanisms. Even
second-level protein interactions may be helpful, that is interactions of direct
interactors.

Many studies integrated protein interaction data with other sources. Here
we can present only a few examples:

• Lee and coworkers [81] reconstructed an extensive, high-quality functional
gene network for yeast, consisting of 4681 (around 81%) of the known
yeast genes linked by around 34 000 probabilistic linkages including ex-
pression data, gene linkage, phylogenetic profiles, cocitation and protein
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interaction data (Figure 19). The integrated linkages distinguish true- from
false-positive interactions in earlier data sets; new interactions emerge from
gene network contexts, as shown for genes in chromatin modification and
ribosome biogenesis.

• Jansen and coworkers [65] used expression profiles, interaction data, and es-
sentiality and localization information in order to predict protein complexes
in yeast. Each of these data sources individually contains some weakly
predictive information with respect to protein complexes, but Jansen and
coworkers show how this prediction can be improved by combining all of
them.

6.1 Protein Interactions and Gene Expression Data

Protein interactions and gene expression data have been correlated by a num-
ber of studies [15, 42, 50, 51, 128]. Although most of these studies found a
correlation between interacting proteins and their gene expression levels, the
correlation was not very strong. In fact, a few studies did not find a significant
correlation or only did so when filtered data set were used [24,64]. Obviously,
it is not necessary that expression levels are correlated in order to allow
proteins to interact. See also Section 3.3.

6.2 Integration for Predicting Protein Function

Kemmeren and coworkers [75] analyzed 3.7 million yeast gene relationships
(protein interactions, coexpression, colocalization, phenotypes, GO annota-
tion) to predict the functions of yeast proteins or to improve their annotation.
Integrated data were also used to cross-validate different interaction data
sets which have different quality, different properties, etc. [74, 76]. See also
Chapter 35 for further information on integrating heterogenous information
to predict protein function.

7 Predicting Protein Functions from Protein Networks

Annotating uncharacterized proteins is still one of the most challenging prob-
lems of the post-genomic era [97]. However, assigning new functions to previ-
ously characterized proteins is equally important as hardly ever everything is
known about a certain protein. Predicting protein function from sequence
is discussed in Chapter 30. Inference of function from genomic context is
described in Chapter 32 and predictions from structure in Chapter 33. Finally,
Chapter 35 deals with information integration for protein function prediction.
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We refer the reader to these chapters and only briefly discuss the role of
protein interaction networks for protein function prediction.

Detecting a physical interaction between proteins is considered as one of
the most powerful approaches for inferring the function of uncharacterized
proteins [97].

Samanta and Liang [116] presented a network-based statistical algorithm
that overcomes the presence of false positives in many interaction data sets
and predicted functions of unannotated proteins from large-scale interaction
data. Their algorithm uses the insight that if two proteins share a significantly
larger number of common interaction partners than random, they have close
functional associations. Analysis of publicly available data from S. cerevisiae
revealed more than 2800 reliable functional associations, 29% of which involve
at least one unannotated protein. By further analyzing these associations,
Samanta and Liang derived functional predictions for 81 unannotated pro-
teins with high certainty.

Vazquez and coworkers [135] presented an improved method for the assign-
ment of protein functions based on global connectivity patterns of a protein
network. In contrast to a simple majority rule [117], Vazquez and coworkers
also used second-degree functional information, that is not only stemming
from direct interactors but also from interactors of interactors.

Letovsky and Kasif [83] developed yet another method based on a proba-
bilistic analysis of graph neighborhoods in a protein–protein interaction net-
work to predict functions. The method exploits the fact that graph neighbors
are more likely to share functions than nodes which are not neighbors. A bino-
mial model of local neighbor function labeling probability was combined with
a Markov random field propagation algorithm to assign function probabilities
for proteins in the network.

8 Evolution of Protein–Protein Interactions

The evolution of protein networks can be studied from two different perspec-
tives: (i) the network perspective where the loss and gain of interactions are
counted for individual proteins, pathways or whole networks, and (ii) the
protein sequence perspective, where the constraint of interactions on the rate
of protein sequence evolution is measured. The former aspect is difficult to
study because we do not have sufficient interaction data for different pro-
teomes. Thus, most published studies concentrate on the sequence level.
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Figure 20 The effect of gene duplications
on gene products that interact with proteins.
Shortly after a gene duplication, the products
P and P′ of the duplicate genes will interact
with the same proteins. Eventually, some or
all of the common interactions will be lost,
and new interactions may be gained by either
protein. In the rightmost panel, protein P has

lost one interaction (dotted line) and gained
a new interaction partner, whereas protein
P′ has lost two interactions. If the number of
common interaction partners is taken as a
measure of functional overlap, then one of the
functions of P is also covered by P′ and vice
versa. (Redrawn after Ref. [138].)

8.1 The Network Level

Wagner [138] tried to estimate how fast the interaction network of yeast
evolves, using gene duplicates (i.e. paralogs) in the yeast genome and the
interaction partners of each duplicate (Figure 20).

Wagner found that genes with duplicates appeared slightly more highly
connected. The reason is unclear. This difference in degree was not significant
if more closely related duplicates were considered, i.e. duplicates with Ks < 1,
where Ks is the fraction of synonymous (silent) substitutions per silent site.

More interestingly, Wagner’s analysis indicated that duplicate gene prod-
ucts generally do not retain common interaction partners long after du-
plication. Only 57% (4/7) of the most closely related duplicate gene pairs
(0 < Ks < 0.5) for which both genes interact with other proteins share any
protein interaction partners. For all 380 gene pairs with Ks > 0.5, the fraction
of duplicate partners with shared interactions is below 20%. For Ks > 1.5,
it dwindles to a value close to the expected number of shared interactions
between two proteins chosen at random from within the network.

Strikingly, already for 0.5 < Ks < 1, only 20% of duplicate gene pairs share
an interaction partner. That is, if one applies this criterion of functional
overlap, 80% of genes have no functional overlap with their duplicates ap-
proximately 100 million years after the duplication (assuming a mutation rate
of 10−8 per year per nucleotide).

8.1.1 The Rates of Interaction Loss and Gain

There are 127 duplicate gene pairs with Ks < 2 where both duplicates engage
in protein–protein interactions. Assuming that all of the diversification ob-
served between these duplicates is due to lost interactions, Wagner arrived at
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a total estimate of 920 interactions immediately after duplication, 429 of which
have been lost since.

New interactions evolved at a rate of 2.88 × 10−6 per protein pair per
million years according to Wagner. This may seem small. However, if extrap-
olated to all 1.97 × 107possible pairwise interactions in the yeast proteome,
one arrives at an estimate of 57 newly evolving interactions per million years.
Even when restricting oneself to the 985 proteins known to interact with
other proteins, one arrives at an estimate of (2.88 × 10−6)(4.84 × 105) ∼ 1.4
newly evolved interactions per million years. The true value is likely to lie
somewhere in between.

Based on the assumption that the divergence in protein interactions after
gene duplication is largely due to interaction loss, Wagner estimated the lower
bound of the rate at which interactions get lost to be 2.2× 10−3 per interaction
per million years. If a comparable rate holds for interactions between single-
copy genes, Wagner [138] estimated that 50% of all interactions may get lost
every 300 million years.

8.2 Sequence and Interaction Divergence in Proteins

Interacting proteins have complementary surfaces that have evolved in a way
that optimizes their affinity for the particular biological process they are in-
volved in. Such interaction surfaces contain about 20 amino acids per partner
(on average), although in most cases not all of these amino acids are involved
in the interaction. Each protein loses about 800 Å2 of contact area with the
solvent when it is binding to its partner. It is intuitively obvious that the
evolution of surface residues is constrained by protein–protein interactions, at
least when the interaction is important for the cell. However, since the contact
area comprises only a small fraction of the whole protein sequence, we will see
an effect on the overall sequence only when the protein has many interactions
with many different surface sites. Unfortunately, for most protein interactions
we do not know their interaction sites. Thus, for simplification, the problem
can be reduced to the question of how sequence conservation and the number
of interactions are related.

Teichmann [126] found that proteins not known to be involved in inter-
actions have an average sequence identity of 38% (between homologs of
budding and fission yeast), while this value is 46% for proteins in stable com-
plexes. Proteins that have transient interactions are intermediate between the
two, with an average sequence identity of 41%. Thus, highly connected pro-
teins (such as proteins in complexes) do appear to be more highly conserved
than proteins with fewer connections. Indeed, Teichmann found that proteins
belonging to small, medium and large complexes have average identities of
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42, 44 and 51%, respectively (complexes were binned into groups with 1–14,
14–66 and 66–239 subunits).

8.2.1 Protein Evolution Rate and Protein–Protein Interactions

Fraser and coworkers [38] investigated the relationship between the evolu-
tionary rate of protein sequence and the number of interactions these proteins
have.

To estimate the evolutionary rates of these proteins, Fraser and coworkers
compared putatively orthologous sequences between yeast and the nematode
C. elegans. For each pair of orthologs, these authors estimated the evolutionary
distance (K) that separates the two sequences, where Ka is defined as the
number of substitutions per amino acid site that have taken place since the
fungi–animal split. There were 164 yeast proteins for which the number of
interactors and a well-conserved ortholog in the nematode was available.

If such coevolution is indeed an important mode of change in proteins
constrained by interactions, then interacting proteins should evolve at similar
rates. Fraser and coworkers tested this prediction by examining all 411 protein
interactions in which each protein had a putative ortholog in C. elegans and
showed no significant sequence similarity with its interaction partner. For
each interaction, Fraser and coworkers calculated ΔK, which is the difference
between the evolutionary distances separating the yeast proteins from their
respective orthologs in the nematode. They then averaged these differences
across all 411 interactions to find the mean difference in evolutionary rate
between interacting proteins, ΔK* = 1.3 substitutions per site. To assess the
significance of this difference, Fraser and coworkers repeatedly permuted the
list of 411 interactions 10 000 times into random protein pairs and calculated
the mean difference in evolutionary rate between arbitrarily paired proteins:
In all but 44 of the 10 000 permutations, the observed averages of ΔK* < ΔK,
indicating that interacting proteins evolve at rates significantly closer than is
expected to occur by chance (p = 0.0044).

A protein’s fitness effect F, estimated as the reduction in relative growth rate
of the organism due to deleting the gene that encodes the protein, is positively
correlated with that protein’s number of interactors I [38].

In summary, proteins with more interactors appear to evolve more slowly
not because they are more important to the organism, but because a greater
proportion of the protein is directly involved in its function. Interacting
proteins evolve at similar rates.

The results by Fraser and coworkers [38] were not generally accepted. Jor-
dan and coworkers [69] found only a very weak negative correlation between
the number of interactions and evolutionary rate of a protein. In contrast
to Fraser and coworkers, who used comparisons between yeast and worm
proteins, Jordan and coworkers compared both budding and fission yeast as
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well as H. pylori and Campylobacter jejuni, both of which allow more reliable
inference of homologous proteins than comparisons between yeast and worm.
In addition, when the proteins from yeast were assorted into discrete bins
according to the number of interactions, Jordan and coworkers found that
only 6.5% of the proteins with the greatest number of interactions evolved,
on average, significantly slower than the rest of the proteins.

While the correlation found by Fraser and coworkers was confirmed by
Jordan and coworkers, even though it was weak, the result was dependent
on the data set used: when only the most conserved (above 40% sequence
identity), and thus most reliably identified, pairs of orthologous proteins were
considered, the slope of the linear trend line decreased and the statistical
significance disappeared.

As a conclusion, only a small fraction of yeast proteins with the largest
number of interactions (the hubs of the interaction network) tend to evolve
more slowly than the bulk of the proteins.

8.2.2 Phylogenetic Relationships between Families of Interacting Proteins

Goh and coworkers [46] and Goh and Cohen [47] reasoned that a ligand–
receptor pair should occupy related positions in their phylogenetic trees if
they coevolve. Previous results have shown that for ligand–receptor pairs that
are part of large protein families, the correlation between their phylogenetic
distance matrices is significantly greater than for unrelated protein families.
An example of coevolving families is shown in Figure 21.

Following this logic, insulin sequences from different species should have a
similar phylogenetic tree as the insulin receptor, because they coevolve.

As a consequence, the binding specificity of an uncharacterized protein
may be inferred by comparing its phylogenetic tree to the trees of potential
interaction partners. Results of the analysis show that binding partners can be
quantitatively identified for proteins in diverse homologous protein families
with approximately 58–100% sensitivity (predicted true binding pairs/all true
binding pairs) and 82–100% specificity [1 – (predicted false binding pairs/all
false binding pairs)] for a correlation score above 0.8 [47]. Similar results were
obtained by Pazos and Valencia [101].

Hahn and coworkers [52] searched the genome of S. cerevisiae for the nearest
paralog (if any) of each gene in the yeast protein-interaction network (that
is an intragenome search) and used the ratio Ka/Ks, to measure selective
constraint (Ka/Ks is the rate of amino acid replacement substitutions for each
pair of orthologs divided by the rate of silent substitutions [77]). Furthermore,
orthologous genes in the genomes of Schizosaccharomyces pombe and Saccha-
romyces paradoxus were identified.

Using the identified paralogs and orthologs, Hahn and coworkers calcu-
lated the correlation between evolutionary distance and the degree of protein
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Figure 21 Coevolutionary analysis reveals
insights into protein–protein interactions.
Phylogenetic trees of the (a) syntaxin family
and the (b) Unc-18 (Sec1) family. Members
of the syntaxin family interact with members
of the Unc-18 family and each family shows a
similar tree structure. The area encompassed

by the dotted circle indicates the search
space for a potential KEULE binding partner.
The filled circle outlines the known binding
partner, Knolle, and an ortholog from
Capsicum anuum (Knolle-CAPAN). (From
Ref. [47].)
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connectivity (D). For the S. cerevisiae paralogs and orthologs in S. paradoxus,
they also calculated the correlation coefficients (both Pearson and Spearman)
between Ka/Ks for the closest paralog and D using only unsaturated duplicate
pairs with Ks < 3.

The study showed that there is a weakly significant Pearson’s correlation
between protein degree D and Ka/Ks, but no significant Spearman’s correla-
tion (Pearson’s r = −0.187, p = 0.047; Spearman’s s = −0.151, p = 0.12). There
was a weak but highly significant correlation between D and the selective
constraint (Ka/Ks) experienced by a gene.

Analyzing 1175 gene pairs from S. cerevisiae and S. pombe with this data set,
Hahn and coworkers indeed found a correlation similar in magnitude to that
obtained by Fraser and coauthors.

Hahn and coworkers were thus able to explain the discrepancy in results
between Jordan and coauthors [69] and Fraser and coauthors [21,22] by using
slightly different protein-interaction data sets. The reference taxon used by
both of these groups, S. pombe, is less than ideal because it is only a distant
relative of S. cerevisiae, with a most recent common ancestor 0.3–1.3 billion
years ago. Thus, the analysis was repeated with the much more closely related
S. paradoxus as the outgroup.

The relationship between the number of interacting partners and evolution-
ary constraint is highly dependent on a gene’s function. Genes involved in
metabolism, transport and the cytoskeleton show no significant relationship
between D and Ka/Ks (always above 0.05). However, genes involved in the
cell cycle and transcriptional processes show a significant, although weak,
effect.

Pagel and coworkers [99] took a slightly different approach to investigate
the relationship between interactions and evolution. They showed that inter-
acting proteins in yeast have a much higher chance of possessing orthologs
in other fungal genomes than randomly selected S. cerevisiae proteins. The
number of species with orthologs was used here as a measure of conservation.
This finding is compatible with the notion that highly connected nodes of the
protein–protein interactions network are essential for survival.

Wuchty [143] also confirmed that there is a strong propensity of essential,
highly connected proteins to be evolutionarily conserved, but he also found
that this trend does not have an equivalent for nonessential proteins. Note
the limitation to essential genes: only this subset of proteins shows corre-
lation, not the complete set of interacting proteins. In order to guarantee
balanced sampling for all connectivity (i.e. “k”) values, Wuchty [143] used
logarithmic binning of the k-axis, a procedure that corrects for the skewed
nature of the scale-free distribution. In summary, Wuchty’s results clearly
indicate that highly connected proteins are far more likely to be essential and
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(simultaneously) conserved as orthologs in higher eukaryotes than are their
less-connected counterparts.

Related studies have been published by Hurst and Smith [60], Hirsh and
Fraser [57], Jordan and coworkers [68], and Fraser and coworkers [39].

8.3 Structural Aspects of Conserved Interactions

In addition to docking interacting proteins whose individual structure is
known, one can study how interactions evolve on the structural level. For
example, Aloy and coworkers [4] approached the problem by collecting all
instances of the same domain pairs interacting in different complexes (from
the SCOP database [7]), and then compared them with a simple geometric
measure (interaction RMSD). When plotted against sequence similarity they
found that close homologs (above 40% sequence identity) almost invariably
interact the same way.

Aloy and coworkers defined contacting domains as those from the same
Protein Data Bank (PDB) entry that had at least 10 Cα–Cα contacts smaller
than 8 Å. The difference between domain orientations was described by the
purely geometric interaction measure iRMSD. It does not require an interac-
tion surface, interacting residues or residue equivalences to be assigned, and
is thus readily applicable to remote similarities in sequence and over a wide
range of differences in domain orientation. For identical domain interactions
the expected iRMSD is 0, with values increasing with differences in domain
orientations.

For some domain–domain interactions, interactions are preserved even at
very low sequence identities, whereas for others the situation is reversed. For
example, if one considers PID < 20% for the P-loop ATPase superfamily in-
teracting with the ubiquitin-like superfamily, all four studied interactions are
similar (iRMSD < 7 Å). In contrast, only two of the eight interactions between
the P-loop ATPases and PH domains with PID < 20% have iRMSD < 10 Å,
with the others showing great differences, their iRMSD being as high as 18 Å
with clearly different binding surfaces.

This shows that interactions between weakly conserved proteins cannot
always be predicted reliably (Figure 22). Additional experimental information
may be required to construct realistic models in such cases.

9 Databases and Other Information Sources

Databases are critical for protein network analysis. A number of databases
have been established over the past years. However, it is foreseeable that
not all databases will continue to receive funding and thus we expect that
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Figure 22 Homologous interactions are not always predictable. The
same protein [here, cyclin-dependent kinase (CDK)] can have many
different modes of interaction. This complicates both the prediction of
homologous interactions and the relationship between connectivity and
evolutionary constraint. See text for details. (From Ref. [5].)

some of theses databases will merge, while others may cease to exist. A list of
databases is provided in Table 3.

10 Analysis and Visualization Tools

It is impossible to describe all available tools for protein network analysis and
visualization in this chapter. In addition, new tools are constantly published
and older tools improved or discontinued. We have collected some fairly
widespread tools and their main features in Tables 4 and 5. Figure 23 shows a
few screenshots from some of the packages we have used. We recommend
visiting the websites of the academic or commercial suppliers for further
information. New tools are regularly published in specialist journals.

11 Outlook/Perspectives

This chapter provides only a snapshot of a rapidly developing field in which
many challenges remain. An increasing flood of data requires dynamic in-
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Figure 23 Protein–protein interaction network visualization tools. (A)
Osprey 1.20 [18]. (B) WebInterViewer [54]. (C) Cytoscape 2.1 [118].
For details see Tables 4 and 5.

tegration into existing databases and constant re-evaluation of predictions
and models. Integration of various data sources will be critical for biological
interpretation. Some experimental approaches such as structural genomics
are only now entering production levels and have barely been exploited for
interactome analysis. Finally, comparative interactomics will only be possible
with several completed interactomes. This is especially true for prokaryotic
systems which are far more diverse than the few eukaryotes that can be
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Table 4 Visualization and analysis tools

Name Description URL
Cytoscape[b] visualization of protein–

protein interactions
networks and data
integration

http://www.cytoscape.org

Graphviz graph visualization software http://www.graphviz.org
Bioverse
Viewer

Java applet interface for
visualizing interactomes

http://bioverse.compbio.washington.edu/viewer

WebInterViewer visualization and analysis of
protein–protein interactions

http://interviewer.inha.ac.kr

Osprey network visualization
system

http://biodata.mshri.on.ca/osprey/servlet/Index

ProViz protein–protein interaction
graph visualization tool

http://www.ebi.ac.uk/intact/doc/html/proviz/
proviz.html

BioGraphNet biological network
visualization

http://llama.med.harvard.edu/BioGraphNet.html

Pajek network visualization http://vlado.fmf.uni-lj.si/pub/networks/pajek
Bind Viewer network visualization http://www.bind.ca
Graphbrowse visualization system for

interactive browsing of
network diagrams

http://cvs.sourceforge.net/viewcvs.py/gmod/
graphbrowse/graphbrowse_project_page.html
?rev=1.3

Tulip library[b] system dedicated to the
visualization of huge graphs

http://www.tulip-software.org

JGraph
library[b]

Java graph drawing and
layout component

http://www.jgraph.com

yWorks[a] Java, .NET libraries that
provide algorithms to
analyze, view, and draw
graphs, diagrams and
networks

http://www.yworks.com

Gravisto[b] graph editor and
visualization tool

http://www.gravisto.org

Wilmascope[b] Java3D application which
creates real time 3-D
animations of dynamic
graph structures.

http://www.wilmascope.org

GLuskap software tool for displaying
graphs in 3-D

http://www.cs.uleth.ca/∼vpak/gluskap

Walrus[b] handles large directed
graphs in 3-D space

http://www.caida.org/tools/visualization/walrus

LGL[b] large graph layout;
visualization tool dedicated
to biological networks

http://bioinformatics.icmb.utexas.edu/lgl/

PathCalling protein–protein interactions
analysis and visualization

http://curatools.curagen.com/pathcalling_portal/
index.htm

PimRider[a] protein–protein interactions
data and tool, H. pylori; free
academic license available

http://pim.hybrigenics.com/pimriderext/common/

AiSee[a] graph layout software http://www.aisee.com/
Oreas[a] C++, Java (over JNI), NET

and COM. layout libraries
and diagram editor

http://www.oreas.com/index_en.php

[a] Commercial.
[b] Open Source.

thoroughly studied experimentally. At the time of this writing not a single
prokaryotic interactome was available (i.e. providing more than a small sam-
ple of interactions such as those published by Rain and coworkers and Malek
and coworkers [87, 105]).



11 Outlook/Perspectives 1169

Table 5 A comparison of selected protein network visualization tools

Cytoscape 2.1 [118] Osprey 1.2.0 [19] WebInterViewer [54]

URL http://www.cytoscape.org http://biodata.mshri.on.ca/
osprey/servlet/Index

http://interviewer.inha.ac.kr/

Operating
system(s)

all platforms for which a Java
runtime environment (JRE)
exists; Cytoscape 2.1 requires a
1.4.2 JRE

Windows XP, Red Hat Linux,
Mac OS X

all platform for which a Java
runtime environment (JRE)
exists; WebInterViewer requires
a 1.4.2 JRE

Source code Open source under GNU LGPL not freely available not freely available
Import Simple interaction file (.sif); a

tab separated file with three
columns (Node1↔ Interaction
Type↔Node2)

custom Osprey network
(.ocf .txt); a tab separated
text file with up to seven
columns (Node1↔Node2↔
Alias1↔ Alias2↔
Experimental Method↔
Source↔ PubmedId)

a pair of interacting molecular
names, separated by space
or tab, in each line (.pnm)
(Node1↔Node2)

plugin to import PSI-MI, level
1xml files (.xml) (other levels
will be provided in the future)

GeneList (.gl .txt); a tab
separated text file with one
column containing gene names

a pair of interacting molecular
indices, separated by tab, in
each line (.pid)

interactions from the GRID
database via the Internet

a pair of molecular index and
its name, separated by tab, in
each line (.pid_label)
an ordered list of molecular
index and its position (x-, y-
and z-coordinates) separated by
tab, in each line (.pid_pos)
data in xin format from DIP
(.xin)

Network layout
format

graph markup language (.gml) Osprey files (.osp) graph markup language (.gml)

Import
node/edge
attributes

node and edge attribute files
containing node annotations
or numerical edge values, e.g.
confidence values or expression
data

experimental method, source
and PubmedId via custom
Osprey network (.ocf .txt)

data on molecule, domain, and
function in XML format (.xml)

Navigation zoom in/out zoom in/out zoom in/out
zoom selected region graph rotation
navigation panel with an a
bird’s eye view

Layout spring embedded layout auto relaxation F-D layout
circular circular RSFDP
organic concentric circles
hierarchic dual ring

Adjustable visual
styles

color, shape and size/ thickness
of nodes and edges

color and size of nodes and
edges

color, shape and size of nodes

color gradient on numerical
edge attributes

font type and size of node
labels

node size proportional to its
degree

mapping colors/shapes onto
specific interactiontypes

color nodes by GO process font type and size of node
labels

color edges by experimental
system or source

labeling nodes by their node
degree

Network editing drag and drop of network
segments

drag and drop of network
segments

drag and drop of nodes

squiggle feature to mark up the
network

change node name and add
node comments

selection of connected groups

hiding nodes and edges hiding nodes and edges hiding nodes and edges
aligning and rotating of groups
of nodes

remove loner nodes

Multiple
networks

multiple networks can be
loaded at a time

one network can be loaded at a
time

multiple networks can be
loaded at a time

new network from selected
nodes and edges

superimposing of another
network

new network from selected
nodes and edges
find common nodes within two
or more networks
union with two or more
networks
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Table 5 (continued)

Cytoscape 2.1 [118] Osprey 1.2.0 [19] WebInterViewer [54]

Global filters filter node labels using * and ?
as wildcards

filter nodes based on their
source or experimental method

filter nodes, based on the edges
that they are connected to

filter nodes based on their GO
process or processes

>, = and < filtering
operations on numerical edge
attributes

filter nodes based on the
number of edges connected
to them

filter nodes based on the
number of edges to other nodes

filter nodes until the remaining
nodes have a certain number of
interactions

combine filters together using
AND, OR and XOR operators

Information
through
annotation server

This feature is currently only
for S. cerevisiae:

available for all organisms in
BioGRID database

connection to dataserver
failed

SGD ORF names and gene/alias
names

Google Go Component, Go Process and
Go Function

AmiGO experimental system/sources
GenomeNet (Pathway, KO,
Genes, Genome, Ligand,
Compound, Glycan, Enzyme,
Reaction, Swiss-Prot, GenBank,
Ref-Seq, EMBL)

PubMed ID: a link to any
PubMed listing on a given
interaction

Image export encapsulated postscript (.eps,
.epi, .epsi, .epsf)

scaleable vector graphic (.svg) Joint Photographers Expert
Group format (.jpg, .jpeg)

graphics interchange format
(.gif)

Joint Photographers Expert
Group format (.jpg, .jpeg)

portable network graphics
format (.png)

Joint Photographers Expert
Group format (.jpg, .jpeg)

portable network graphics
format (.png)

MacroMedia flash file format
(.swf)

matrix (.txt)

portable document format
(.pdf)
portable network graphics
format (.png)
postscript (.ps)
RAW image (.raw)
scaleable vector graphics (.svgz,
.svg)

Advantages can handle large networks GO annotation and clustering can handle large networks
fast and good layouting with
high clarity

direct import of interactions
from BioGRID

easy navigation

can handle large networks fast layouting
high graphical network
solution

3-D navigation

integration of expression data easy selection of connected
groups

highly adjustable (plugin
framework)

Disadvantages slow layouting, low-resolution
graphics

no filters, connection to
dataserver failed

Documentation detailed detailed documentation scarce

With increasing amounts of experimental data, analysis and visualization
tools will be increasingly important. In particular, such tools need to be
user-friendly enough to be used by experimental biologists. Eventually this
will hopefully allow us to do “real” systems biology, i.e. representing and
simulating biological systems in all their 4-D complexity in silico [125, 131].
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Inferring Protein Function from Genomic Context
Christian von Mering

1 Introduction

1.1 Genomic Context – Genomes, Genes and Gene Arrangements

For function prediction, the most challenging proteins are those for which
neither homology searches nor published experiments reveal any useful infor-
mation. These functionally uncharacterized (“unknown”) proteins are usually
not known from actual observations, but instead merely inferred to exist based
on sequence data from genome projects. They constitute a significant fraction
of sequence databases today (uncharacterized open reading frames cover a
large part of any given genome, ranging from about 20% in small, well-
studied prokaryotes [17, 55] to more than 60% in large viruses [47]). While,
in the future, homology searches with such uncharacterized sequences will
increasingly recover at least some genes from related organisms (given the
tremendous growth of genomic sequence data), these related genes will often
lack functional annotation themselves.

In the absence of any other data, fully sequenced genomes remain the only
useful source of information to begin characterizing such proteins (and the
genes that encode them). Genome sequences can tell us a lot: which organisms
do contain a gene from a particular family and which do not; how do the genes
evolve; what sequences appear in physical proximity on the genomes, and
much more. With genome sequences expected to be a widespread commodity
soon, this information can often be remarkably useful for function prediction.

For example, the simple information on the presence or absence of similar
sequences in other genomes may already narrow down the putative function
of a gene to some extent: is gene X consistently found in any and all genomes
queried? This may well mean that the gene performs an essential function,
such as in information processing or central metabolism. Is gene Y found in a
number of genomes, but never in more than a single copy per genome? This
could be an indication that its function is sensitive to dosage effects. Gene Z
has homologs, but its sequence appears to be changing faster than is the case
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for most other genes? This could be indicative of a function under changing
selective pressures, such as in defense or reproduction.

Likewise, the immediate neighborhood of a gene within its chromosome
can also be informative. Does a particular set of genes consistently appear
next to gene W, even in phylogenetically quite distant organisms? This may
indicate that the genes need to be coregulated, forming a jointly transcribed
operon (in microbes), or that their consecutive order along the genome is
somehow important for spatio-temporal expression regulation (as is the case
for the hox gene cluster in eukaryotes). Regardless of the mechanisms respon-
sible, a conserved neighborhood can often be taken as an indication that a
group of genes are working together towards a common function.

Collectively, such purely genome-derived information forms the “genomic
context” of a gene family. In its broadest sense, genomic context may be
defined as any information on a gene that is contained in genome sequences,
with respect to the occurrence and arrangement of the gene and its relatives
in these genomes. Genomic context information implicitly reflects the past
history of gene families and, as such, it has been shaped by a multitude of
evolutionary events (mutation, selection and neutral drift). To make maxi-
mum use of genomic context for function prediction, it is essential to keep
in mind that genomic context is of course relevant only when at least some
aspect of its appearance can be assumed to have been under selection.

In the following, we will focus on the use of genomic context information to
predict functional links (“associations”) between genes; a conserved neighbor-
hood of genes is one example for a genomic context link of this type. Predicted
associations between genes are particularly useful in function prediction, be-
cause they are straightforward to interpret – if an uncharacterized gene is
predicted to be associated with a better characterized gene, it is predicted to
share (or contribute to) that gene’s function.

It should be noted that genomic context analysis is of course not limited to
function prediction of uncharacterized proteins – it can also be used to predict
a functional role for proteins that do have at least a vague annotation (e.g.
“likely methylase” or “transporter”), but still lack a clear functional context
such as a pathway or process in which they might be involved.

1.2 Genome Comparisons Reveal Protein–Protein Associations

Three basic types of genomic context information are currently used for pre-
dicting functional associations between proteins (Table 1). They are all based
on the assumption that functional partnership between proteins leaves de-
tectable traces in the genomes during evolution. Several variations of these
basic principles have been devised; these will be discussed in detail in the
following sections.
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Table 1

Type of genomic context Basic principle References
Genomic neighborhood gene neighborhoods which are

conserved, i.e. withstand the shuffling
of genomes over time, are indicative
of coregulation (often as operons) and
may encode common functions

11, 42

Gene fusion analysis genes that occasionally fuse to encode
a single polypeptide chain (instead of
two) may function together even in
organisms in which they are not fused

14, 36

Gene co-occurrence presence/absence analysis: genes
that are consistently present in the
same sequenced genomes (and absent
together in others) may require each
other for function

25, 45

The use of genomic context for predicting an association between genes
can be generalized as follows. It should always begin with a systematic
comparison of fully sequenced genomes, focused on the gene families of
interest. One should then list all observations of the desired type (e.g. gene
neighborhoods involving the families). The results should then be compared
with those of other gene families (and with randomized data) in order to
assess the relevance of the observation. As the three basic types of genomic
context information are to some extent overlapping (shared function will often
leave evolutionary traces of several types), the analysis should simultaneously
employ several genomic context methods, if possible.

Generally, genomic context methods will increase in predictive power as
more and more genomes become available, and they are applicable to any
class of gene regardless of the type of proteins they encode (enzymes, struc-
tural proteins, regulators, etc.). Various implementations exist for each type
of genomic context, and these differ significantly in technical and conceptual
detail, and in computational cost.

1.3 Prerequisites for Genomic Context Analysis

Most proteins, but not all, are amenable to genomic context analysis. For a
successful prediction, a number of prerequisites must be met: (i) the protein in
question should be from an organism whose genome sequence is known, (ii)
other sequenced genomes must be available (the more the better) at various
phylogenetic distances relative to the query genome, (iii) all those genome
sequences should ideally be finished, i.e. consist of high-quality contigs with
little mis-assembly or gaps, and (iv) the gene in question must have counter-
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parts in at least some of the other genomes (genomic context is not applicable
to “molecular orphans”, i.e. genes without any detectable relatives [18]).

Defining counterparts of a gene in other genomes is a key step for genomic
context analysis. This is because it only makes sense to compare genomes if
we can assign which part in one genome corresponds to which part in the
other. What exactly is meant by a “counterpart” of a gene in another genome?
Since genomic context analysis is based on detecting the long-term effects of
shared function on genome evolution, the gene and its counterpart should be
defined as having the same function. However, how can we know whether
two genes have the same function – since function is what we aim to predict
in the first place?

Luckily, we do not have to know the actual function of either gene to check
whether they may be functionally equivalent; it is enough to test whether
they are homologous or, better, orthologous. Generally, if two genes are ho-
mologous (i.e. of common descent), then they have a certain likelihood of
performing the same function, especially if their sequence similarity is high
(for low similarities, this is of course less certain – the actual percent iden-
tity cutoffs that should be applied are under debate [50, 56]). One particular
subtype of homology, called orthology [15, 16], leads to the most reliable as-
signments of functional equivalence and it is often used in annotating newly
sequenced genomes. Two sequences in two different organisms are defined to
be orthologous if they trace back to a single sequence in the last common an-
cestor organism, as opposed to being paralogous for the case when they were
already separate entities in the last common ancestor (see also Chapter 4).
Because orthologs trace back to a single sequence at the time of speciation,
they have a higher chance of having retained an identical function, even if
their actual sequence similarity is low.

Orthology of two genes is always merely a hypothesis, and it can be difficult
to decide which, if any, among the many homologs is the true ortholog. Fortu-
nately, several databases exists that contain globally precomputed orthology
predictions for a range of complete sequenced genomes [40, 55]; where such
data is not available, homology can still be used instead (see Chapter 30).

1.4 How Specific are the Inferred Functions?

Genomic context analysis works by searching for putative effects of selection.
A conserved gene arrangement, for example, may have been formed and
retained because it provides a selective advantage for the organism to keep
functional partners in close vicinity. Likewise, if one gene is lost from a
genome because it is apparently no longer selected for, then many of its
immediate functional partners may also be no longer under selection and they
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might be lost as well (the latter assumption forms the rationale behind the
“gene co-occurrence” approach).

At the molecular level, the vast majority of large-scale genomic features are
shuffled randomly, but those that are under selection can be made to stand
out when enough genomes are being compared. As selection, ultimately,
works at the level of the entire organism (or population), the specificity of the
function prediction for any particular gene is inherently limited. A genomic
context association prediction should always be thought of as “genes X and Y
apparently share a common selection pressure”. This is then translated into
“genes X and Y participate in the same functional process”. This translation is
a leap of faith – it assumes that selection can indeed act on specific, separable
functional processes and that these will somehow coincide with our definition
of pathways or processes (or protein complexes, regulons, etc.). In some
cases, the situation is pretty obvious, e.g. the biosynthesis of a complex
organic molecule may involve several specific enzymes whose only purpose is
catalyzing one step each of the reaction. The final pathway product is what is
actually needed by the organism and is presumably what is being selected for
– so that all enzymes needed to produce it share indeed a similar spectrum of
selection during genome history. They form a unit and this may be detectable
by inspecting genomes.

Of course, genomic context analysis will not normally be able to uncover the
molecular detail of the actual enzymatic reactions. In other instances, it may
not even be possible to identify clear functional units that could be selected
for – some proteins may function in more than one pathway or may function
autonomously without any direct partners. Nevertheless, the evolutionary
approach taken in genomic context analysis has the great advantage of being
independent of human classifications and biases – whatever evolution deems
important enough to be selected for as a unit, will potentially be detectable as
a group of genes, and can be interpreted as functional partners.

2 Gene Neighborhood

2.1 Conserved Neighborhood versus Simple Synteny

The physical proximity of genes in the genome (gene neighborhood) is the
simplest form of genomic context information – it is routinely used in mi-
crobiology, even since long before the advent of the first complete genome
sequences. In prokaryotes, gene neighbors often form operons [26]; operons
represent the first recognized example of genes neighboring each other for
functional reasons. In operons, several neighboring genes located on the
same strand of the DNA form a polycistronic transcription unit (i.e. they are
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transcribed together as a single mRNA), presumably because they can be
regulated more efficiently in this way. Usually, the genes in an operon will
work together towards a common function – in microbiology, this has often
been exploited for placing uncharacterized genes into their functional context
(e.g. Ref. [22]).

However, not all genes that are found in physical proximity will be part
of a polycistronic operon. Some genes may be neighbors simply because
of a recent genome rearrangement which happened to place them next to
each other. To some extent, the intergenic distance between genes can be
used to distinguish true operon members from accidental neighbors, but this
alone is not very reliable (having a roughly 20% error rate [38]). Fortunately,
comparative genomics can help: true operons should have a higher chance of
being observed in other genomes as well, whereas “chance” neighbors should
be separated as fast as they are formed. Thus, any gene neighborhood that
is observed in several genomes (a “conserved neighborhood”), leads to the
prediction that its genes are forming a true coregulation unit and are thus
likely to function together.

Unfortunately, the above is true only when the genomes in question are
sufficiently distant phylogenetically – otherwise even chance neighbors can
be observed repeatedly because of genome synteny. Genome synteny is defined
as a broad similarity between homologous genome segments in two species,
and it usually occurs simply because insufficient time has passed to shuffle
the genomes and their gene arrangements through random events such as
inversions or translocations. The timescale of genome synteny “decay” is an
important factor for neighborhood analysis (because within that timescale,
repeated observations of a neighborhood cannot be considered independent).
For prokaryotes, synteny is usually restricted to species of at least the same
phylogenetic order, e.g. within the Vibrionales, or the Enterobacteriales, but
not between these two (Figure 1). For all types of gene neighborhood analysis,
it is essential to determine and exclude the effects of genome synteny. Since
synteny is usually assumed to evolve (and decay) neutrally with time, it
can best be measured by tracking the fate of genes that lack any reasonable
functional link – if they are neighbors, they are expected to be shuffled away
at random. Such neutral neighbors could be, for example, well-characterized
genes working in totally unrelated cellular functions, or gene neighbors ar-
ranged in a tail-to-tail orientation (Figure 1). Tail-to-tail arrangements are
thought to be least likely coregulated, or functioning together, since they are
transcribed from opposite strands and from distant promoters.
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Figure 1 Decay of genome synteny with
increased phylogenetic distance. Each dot in
the graph represents a comparison between
two fully sequenced prokaryotic genomes.
The x-axis describes the phylogenetic
distance between the two genomes [32]
and the y-axis indicates how many gene
neighborhoods are still detectable in
both organisms (plotted separately for
each of the three possible gene-to-gene
orientations). The letters on the x-axis
indicate the approximate time points of some
representative evolutionary events (A: split
between Escherichia and Salmonella; B:
time point at which synteny is largely lost;
C: split of main bacterial groups, such as

Gram-positive or Gram-negative; D: Split of
domains Bacteria and Archaea). The tail-to-
tail orientation decays quickly with time (red
dots); whereas in particular the codirectional
neighbors (black dots) can be conserved
over very large phylogenetic distances. This
difference indicates that the three possible
gene-to-gene arrangements are under
different levels of purifying selection. If one
assumes that tail-to-tail gene arrangements
are not selected for at all, then these provide
a background measure for the level of
neighborhood that is expected simply due
to genome synteny. (Modified from Ref. [31],
with permission.)

2.2 Operons and “Über-Operons”

Operons are the most stable gene arrangements in prokaryotic genomes; how-
ever, even operons do occasionally break up, re-form or change the relative
order of their constituent genes. Any given conserved gene neighborhood,
therefore, even when found in a wide array of species and clearly selected
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for, can be “broken” in a particular species – the genes may be present in the
genome, but in scattered locations, no longer forming a gene neighborhood.
This does not necessarily mean that the genes are no longer sharing a function;
it may simply be the result of an episode of extensive genome shuffling or
of relaxed constraints on the regulation of the pathway. Over time, and
with more and more genomes available, this leads to a situation in which
only very few operons remain totally unchanged in all organisms studied.
However, many of the changes in gene neighborhoods are conservative [34],
i.e. operons are often re-formed (although possibly with differences in gene
orientation or composition). For any given functional system, various partial
or complete gene neighborhoods can be observed in fully sequenced genomes
today; these can be thought of as variants of a prototypic, often larger, “über-
operon” [34] (Figure 2). If each subpart of an über-operon is well-supported by
repeated observations, then the entire über-operon can be assumed to encode
functionally associated proteins.

This generalization is very valuable for function prediction – it means that,
for any given species, a large number of functional links can be predicted,
even for gene pairs that are not actually neighbors in the query species itself.
For example, the arginine biosynthesis genes argB and argC are not neighbors
in the genomes of cyanobacteria, yet they can be linked functionally, based
on their recurring neighborhood – in various orientations – in many other
bacterial clades.

The über-operon concept also implies that neighborhood analysis is not
restricted to immediate neighbors: the two gene families argJ and argF, for
example, are from a conserved neighborhood in most genomes, even though
they are never direct neighbors (i.e. there is always at least one intervening
gene between them in the genomes we know so far). In fact, if one assumes
that neighborhood relations are fully transitive, this could even lead to as-
sociation predictions for gene pairs that are never close to each other in any
of the genomes: if gene A consistently forms a neighborhood with gene B
and gene B with gene C, but genes A and C are never neighbors, then they
could still be predicted as functional partners. Of course, as is the case with
neighborhood analysis in general, any such observation needs to be carefully
checked against two null-hypotheses: (i) that the observed scenario may have
arisen by pure chance and (ii) that the observed scenario is merely due to
genome synteny (see Section 2.1). Fortunately, both null-hypotheses can be
tested: (i) gene arrangements can be randomized in silico to verify that it is
unlikely to observe a given neighborhood by chance and (ii) the genomes to
be analyzed can be made nonredundant, such that closely related genomes
displaying remnants of synteny are considered as a single item only.
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Figure 2 Typical genomic arrangements of
functionally associated genes. Each colored
section symbolizes one gene (i.e. an open
reading frame) in a prokaryotic genome.
Genes are shown as neighbors wherever they
are encoded on the same DNA strand and
are in close proximity (separated by fewer
than 300 bp). Genes that are not neighbors
are shown separated by break symbols,
denoting a large area of intervening DNA
that may contain many unrelated genes.
The top panel shows the simplest case of
informative neighborhood – a conserved
neighborhood, found in identical composition

and arrangement in many diverse bacterial
genomes. These genes are likely to form
a cotranscribed operon in many of the
organisms. In contrast, the lower panel
shows a more complex gene neighborhood,
where the genes are neighbors in various
different arrangements, forming one or
several operons. This is more frequently
observed than the ideal situation shown in
the top panel; it is nonetheless indicative of
a larger system of genes sharing a function
(in this case, a Ni,Fe-hydrogenase is shown
with its associated regulators and maturation
factors).

2.3 Divergently Transcribed Gene Pairs

When scanning genome databases for repeatedly occurring gene neighbor-
hoods, the most frequently observed arrangement is the collinear arrange-
ment, in which the conserved neighbors are located on the same DNA strand
and are transcribed in the same direction. This is not surprising – at least
in prokaryotes, most genomes are enriched in stretches of consecutive genes
transcribed in the same direction (partly because of operons, but also in
part because of simple strand biases [49]). Thus, even a randomly selected
gene pair has a higher chance of being observed repeatedly, if its arrange-
ment is collinear. Apart from the collinear arrangement, two other arrange-
ments of gene neighbors are possible: divergent (i.e. neighbors oriented in
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Figure 3 Example of a conserved,
divergently arranged gene neighborhood.
The two gene families (red, green) are
found next to each other, in a divergent
orientation, in three microbial genomes.
The family shown in red contains previously
uncharacterized genes weakly homologous to
members of the TetR family of transcriptional
regulators. The family shown in green
contains genes encoding ribosomal proteins
of the S2 type (rpsU). This observation
leads to the suggestion that genes of the red
gene family serve as regulators of ribosome

production and of protein S2, in particular.
The red gene family has orthologs in higher
eukaryotes (including humans). These are
not in any divergent gene neighborhood, but
they may still perform the same function in
humans (possibly in mitochondria, which
are derived from prokaryotic ancestors).
Thus, we have here an example of a genomic
context prediction relevant to human biology,
although the initial observation was made in
prokaryotes. (Simplified from Ref. [31], with
permission.)

a head-to-head fashion, transcribed away from each other) and convergent
(i.e. neighbors orientated in a tail-to-tail fashion, transcribed towards each
other). Interestingly, among repeatedly observed neighborhoods, the diver-
gent arrangement is much more frequently seen than the convergent arrange-
ment (Figure 1), although both are per se about equally frequent in any given
genome. This suggests that, to some extent, even divergent gene neighbors
are preferentially retained during genome evolution – presumably because
some of them are functional partners maintained by selection. Indeed, this
observation forms the basis for a recent extension [31] of the conserved neigh-
borhood method: not only collinear neighbors, but also divergent neighbors
are predicted to encode functional partners, if their arrangement is observed
sufficiently often (see Figure 3 for an example).

It is not yet fully understood why divergent arrangements should provide
a selective advantage, but one possibility is that they facilitate coordinated
regulation, either through shared promoters or through mechanistic “cross-
talk” between the neighboring loci [48]. Indeed, analysis of expression data
for neighboring gene pairs suggests that divergent pairs have a higher chance
of being coexpressed than convergent gene pairs [31]. Coregulation through a
shared promoter might have the advantage of being very “immediate” (no in-
termediate steps are required for the regulation to take effect); tightly coupled
coregulation might be particularly advantageous if one of the partners were a
regulator itself, controlling the other partner (e.g. in a feedback loop). Korbel
and coworkers have observed that the latter might indeed occur frequently: in
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many of the pairs, one gene encodes a transcription factor, regulating the other
gene [31]. Divergent gene pairs may be a widespread phenomenon – they
have been observed not only in prokaryotes, but also in higher eukaryotes
such as humans [1].

2.4 Gene Neighborhood in Eukaryotes

Analyzing gene neighborhood has long been routine in prokaryotes – both
in bacteria and in archaea. Prokaryotes have very compact genomes, thus
their genes are naturally in very close proximity, and the known prevalence of
operons shows that tight coregulation of neighboring genes is commonplace
in prokaryotes. But what biological meaning does gene neighborhood have in
eukaryotes?

In particular, multicellular eukaryotes can have a very low gene density,
with noncoding sequences vastly outnumbering coding sequences (genes)
in the genome. Eukaryotic genes are usually transcribed separately, each
forming a single transcription unit, and not as longer, polycistronic transcripts
covering several genes at once (operons). However, many unicellular eukary-
otes do have quite high gene densities, and some basal eukaryotes, as well
as nematodes, even have polycistronic transcripts [5, 58]. Does this mean that
neighborhood analysis can easily be extended to eukaryotes?

There are certainly some well-characterized examples of genes whose ori-
entation and neighborhood on the genome is important, and presumably
maintained by selection. A famous example is the “hox cluster”, a set of
homologous transcription factors usually found in a strict spatial ordering
on the genome of animals. Each gene serves as a molecular switch for pro-
viding “identity” to a particular body part during development and the body
parts in question are often arranged in the same spatial order as the genes
on the genome. This gene arrangement bears all the hallmarks of a con-
served gene neighborhood, potentially useful for genomic context analysis:
the genes are present in a wide range of organisms (from insects to man),
their neighborhood is consistently observed (with only a few exceptions) and
the neighborhood is far more conserved than most other neighborhoods at
equivalent phylogenetic distances. Indeed, had the hox cluster not already
been appreciated through genetics experiments, genomic context analysis and
the current availability of genomes would have easily revealed it as a special
gene arrangement.

Unfortunately, only very few other examples seem to exist (in eukaryotes)
of genes apparently maintained in each others’ neighborhood. These include
genes encoding histone subunits, as well as certain immunoglobulin gene
clusters. In general, however, gene neighborhood in eukaryotes appears free
to evolve, with few apparent evolutionary constraints. This is bad news for ge-
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nomic context analysis: only when evolutionary constraints can be presumed
to exist, does genomic context hold information about gene function. At least
for higher eukaryotes, there seem to be too few constraints for neighborhood
analysis to be useful at large – for basal eukaryotes, however, the jury is still
out (because not many genomes have been analyzed so far).

That notwithstanding, neighborhood analysis can still be informative for
eukaryotes, albeit indirectly – for all those eukaryotic genes for which clear
orthologs can be identified in prokaryotes, any neighborhood that is observed
in prokaryotes allows a prediction for the eukaryotic genes as well: functional
partnerships are presumably maintained for much longer time than a partic-
ular gene neighborhood. A particular metabolic pathway, for example, might
be recognizable through genomic context analysis in prokaryotes – then the
genes will most likely form a pathway even in eukaryotes, although their
mode of regulation may have changed. This can lead to the discovery of the
function of hitherto uncharacterized genes, in higher eukaryotes and even in
humans (e.g. Ref. [6]).

3 Gene Fusion

3.1 Gene Fusions and Gene Fissions

Among the many types of mutations that can affect genes and genomes, some
are capable of changing where a gene starts or ends. A point mutation that
introduces a stop codon, for example, might accidentally shorten a protein,
whereas the inverse event (a stop codon changing to a valid codon) may
lengthen it. Often, length changes will effectively destroy the gene, but in
some instances the gene will remain functional. In extreme cases, a gene
can even break up into two or more pieces that each remain functional (gene
fission) or it may occur that two genes that have so far been separate become
one entity, encoding a single polypeptide chain (gene fusion).

With respect to present-day genome sequences, successful gene fusions
or fissions in the past led to very similar observations: two or more gene
families that appear as separate genes in some of the genomes, but as longer,
single genes in other genomes. Whether the underlying event was a gene
fusion or gene fission is often difficult to discern and can sometimes only
be inferred through careful phylogenetic analysis. Such analyses have been
executed systematically [33, 51], and it has been observed that both events
indeed occur during evolution and that fusions “survive” noticeably more
often than fissions.

For genomic context analysis, both types of events hold information about
protein function: in the case of the fission, the two separate gene families were
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once a single family (and thus were presumably part of the same function). In
the case of the fusion, the two gene families apparently can occur together,
i.e. they can tolerate being “tied” to each other; this means that the encoded
proteins do not hinder each other sterically, are capable of working in the same
cellular localization, and can function under the same transcriptional and
translational regulation. This tolerance of course merely means that the fusion
architecture is not selected against. However, a fused gene that lasts over long
evolutionary time is probably not only neutral in the above sense, but may
even be beneficial for the cell – otherwise it would have a high likelihood
of breaking apart again into its constituents. Thus, whatever the underlying
scenario, two separate gene families that are observed as a composite gene
in some genomes can be predicted with some certainty to function in the
same process or pathway. This basic observation was soon realized after the
advent of the first complete genomes and is the basis for one of the three major
genomic context techniques – the gene fusion method [14, 36].

For the gene fusion method, genomes are systematically scanned for open
reading frames that seem to encompass more than one gene family. The gene
families in question should be clearly defined as separate entities in other
genomes, i.e. they should appear as distinct genes and they should not be
homologous. If a candidate for a fused gene is found, it should be verified that
the observation is not simply due to a sequencing error or a mistake in genome
assembly. Next, it should be checked whether the fusion can be confirmed
independently, i.e. rediscovered in another genome. This strengthens the case,
because a single observation could be due to a chance event, such as a recent
translocation or inversion (even when correctly sequenced). In addition, one
should search for other fusion scenarios involving one of the two families: in
real-world cases, a gene that undergoes fusions often will do so with more
than one partner – usually all from the same pathway (e.g. Figure 4). Once
a gene fusion (or fission) is observed and confirmed, a prediction ensues
that the gene families in question have a functional relationship, even in
all those genomes where they occur separately (not fused). This prediction
is particularly strong when it can be demonstrated that the fused parts are
orthologous to the distinct parts in the other genomes (as opposed to being
merely homologous). This usually is the case when the fused parts are the
only instances of the respective gene families in the genome containing the
fusion gene.

3.2 Functional Implications

Gene fusions are distinct from all other types of gene context information,
in that they entail a covalent link between two (or more) normally separate
proteins. This implies a close, physical partnership between the proteins
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Figure 4 Gene fusion scenarios within
a metabolic pathway. (A) The shikimate
pathway is a biosynthetic metabolic pathway
employed by plants and bacteria to generate
aromatic amino acids (from precursors
taken from carbohydrate metabolism). The
colored symbols denote enzymes needed to
perform the reactions in the pathway. (B) A

selection of gene fusion scenarios observed
for this pathway in completely sequenced
genomes. Note that fusions occur in various
combinations and do not necessarily involve
direct pathway neighbors. (C) Association
network derived from the fusion architectures.
Note that the network connects all but four of
the enzymes subunits of the pathway.

even when they are not part of a fusion; they possibly form part of a larger
protein complex. In the cell, many important functions are performed by
large complexes consisting of several tightly bound protein subunits (e.g.
the ATP synthase complex, the fatty acid synthase complex or the pyruvate
dehydrogenase complex). In many cases, the individual subunits of such
complexes cannot function at all on their own – only the fully assembled
complex is functional. In other cases, the individual subunits can to some
extent fulfill their role in isolation, but do so more efficiently in a complex
(where they may pass on substrates, akin to an assembly chain [61], or be
more efficiently transported or integrated into a particular cellular location).
For genes encoding the proteins in such macromolecular assemblies, it may be
beneficial to fuse, enabling a tighter coupling and better coregulation. On the
other hand, the synthesis of proteins may become costly and error prone when
they become too large, especially in organisms under extreme conditions
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[51], which may effectively limit the process. These balancing forces lead
to a situation where many complexes or functional systems contain a certain
number of fusion genes, but not necessarily the same fusion architectures in
each organism (Figure 4).

Surprisingly, some protein complexes exhibit very few gene fusions (e.g.
the ribosome) and it is unclear why this is the case. It could of course be
due to special requirements in protein folding or complex assembly, or it
may indicate that the complex is highly optimized and cannot tolerate many
changes (consistent with this is the fact that the ribosome shows a very high
level of sequence conservation). In general, gene fusion events are most often
observed for metabolic enzymes, e.g. in Escherichia coli three-quarters of the
total gene fusions affect metabolic genes [57].

3.3 Gene Fusions versus Domain Analysis

Some gene families are extremely prolific with respect to gene fusions. They
participate in a large variety of fusion events, often with a diverse array of
partners. Many of these promiscuous families are involved in signal transduc-
tion (e.g. histidine kinases or methyltransferases). Not only do they frequently
participate in gene fusions, but they are also widespread in general, being
present in several copies in most genomes. For the gene fusion method, these
gene families pose a challenge. Due to their fast evolution and high copy
number, it can be difficult to trace their phylogeny and to decide which of
the genes within such a family are orthologous, for a given set of genomes.
Without clear orthology information, however, a single fusion event involving
such a gene family would lead to a prediction concerning all members of
the family. For example, a fusion event involving a histidine kinase (such
as the fusion of a certain histidine kinase to a likely Na+/proline symporter
in Rhodopseudomonas palustris) would lead to the prediction that all histidine
kinases function in the respective process (proline import), which is clearly
not the case.

In fact, these gene families are seldom seen in isolation, which is why
they are sometimes not referred to as genes in their own right, but instead
as fragments of larger genes; they often encode so-called domains. Domains
are autonomously folding building blocks of proteins, which are frequently
rearranged to form multi-domain proteins of significant architectural flexi-
bility. They are frequently observed in areas such as signal transduction or
immunity, in which novel proteins are quickly formed and changed during
evolution.

Conceptually, the rearrangement of domains in order to form new proteins
is of course simply a series of gene fusion and fission events – this is why
the distinction between “domain analysis” and “gene fusion analysis” is not
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always clear. In general, the difference between both approaches lies in the
precision of the phylogenetic information sought after: for gene fusions, we
would like to know precisely, which genes (in which organisms) led to the
fusion event; the goal is to be able to describe the phylogenetic relation of the
various players. In contrast, for domain analysis this is usually not of interest,
one does not ask what role the domains played before the fusion or where
they came from. This is because domains are assumed to carry a certain basic
molecular function, but are thought to take on a specific biological role only
in conjunction with other domains, in a concrete protein.

4 Gene Co-occurrence

4.1 Phylogenetic Profiles

The gene complement in any given genome is subject to change over evolu-
tionary timescales. Some genes may turn into pseudogenes and eventually be
lost completely; others may newly enter the genome (for example through
horizontal gene transfer from other species). Genes may also be invented
de novo from previously non-coding genetic material; others may mutate
beyond recognition and take on a new functional role, effectively becoming
“new” genes. However, all of these changes are obviously constrained, and
limited, by the effects of selection – leading to the general picture where
changes in genome content are known to occur, but are not frequent enough
to completely scramble genome identity [52].

As the gene complement is constrained by selection, changes in gene con-
tent are to some extent informative about changes in biological function. Any
gene that is permanently lost, for example, indicates that a function may no
longer be needed by an organism (such as the loss, in mammals, of genes to
make a hard egg-shell; presumably this is a consequence of the internalization
of their embryos [24]). The same is true for genes that are newly gained: many
bacterial pathogens have recently acquired “new” antibiotics resistance genes,
in a clear response to selection pressures mounted by humans. In the long run,
the presence or absence of a gene in a genome thus appears to depend on, and
reflect, its function.

As many genes work in teams, one would expect the same to be true
for entire groups of genes – their presence should depend on their shared
function and they should tend to be either present together or absent together
in any given genome. Indeed, the presence of any particular gene increases
the likelihood of finding its functional partners in the same genome: the
presence/absence pattern of a gene among fully sequenced genomes (its phy-
logenetic profile) is often similar to the profile of its functional partners. This
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has been exploited as the basis of one of the major genomic context prediction
methods: the gene co-occurrence approach. In this approach, phylogenetic
profiles of all genes are compared, and if two or more genes show similar
profiles, then they are said to “co-occur” and are predicted to be functional
partners [25, 45]. This is a very powerful approach, because it does not
depend on the actual genomic arrangement of genes or on their mode of
transcriptional regulation – the simple presence of the gene anywhere in the
genome provides the signal.

In real-world applications of this principle, it is important to take a close
look at the phylogenetic profile of a gene family of interest before conducting
a search, because not all profiles are equally “informative”. For example,
a gene family that is known to be present in all genomes has a profile of
“full presence”. Such a profile is not very specific; many other gene fam-
ilies have this profile. It presumably merely signifies that the gene family
has an essential function needed by all organisms; however, because there
are several essential functions (replication, transcription, translation, energy
metabolism), it does not mean that all proteins with a “full presence” profile
have the same function. Another pattern which is not very informative is the
case that a gene occurs only in a single genome, i.e. it is a “molecular orphan”.
Usually, every genome has a number of such rare or fast-evolving genes, but
this does not mean they are all functionally related. Another class of patterns
that carry only little information encompasses those patterns that fully cover
a single clade (or phylum) of organisms. For example, a gene that is present
in all archaea, but nowhere else, has a phylogenetic profile that is neither “full
presence” nor “molecular orphan”. Yet, it is still not very informative, because
many genes are known to have such a pattern (there is a significant length of
evolution preceding the last common ancestor of extant archaea, during which
a number of genes were invented that are now common to all archaea).

What, then, is an informative pattern for phylogenetic profile analysis?
Basically, any pattern that appears “patchy”. Ideally, the gene family should
cover wide range of organisms, but it should not cover them completely,
such that there are many instances in which the genes were presumably
lost and/or transferred. In cases where such a “patchy” presence/absence
pattern is matched by a second gene family, then a confident prediction for a
functional link between the two families can be made, because the observation
is unlikely to have arisen by chance (e.g. Figure 5). With more and more
genome sequences known, the number of gene families that have a somewhat
“patchy” profile is rising – fewer and fewer families show a “full presence” or
otherwise entirely uninformative pattern.
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Figure 5 Two proteins known to function
together and the “phylogenetic profiles” of
their genes. (Top) The two subunits of the
tryptophan synthase enzyme are known to
tightly bind each other and to jointly perform
their function in tryptophan biosynthesis.
(Bottom) The genes encoding these two
proteins are usually either both present in a
genome or both absent (i.e. their phylogenetic

profiles are similar). Profiles can be either
shown as discrete presence/absence profiles
(left) or as continuous profiles (right, showing
in this case the sequence similarity of the
closest homolog in BLAST searches). Notice
that the profiles of the two proteins are quite
similar, even though the profiles are nontrivial
(“patchy”) and even though the proteins are
not evolutionarily related.

4.2 Discrete versus Continuous Profiles

For the gene co-occurrence technique, it is particularly critical to have a re-
liable assignment of whether or not a gene family is present in a particular
genome. Mistakes in this assignment will affect this method more than the
gene-neighborhood or gene fusion methods, because the latter rely on gene-
to-gene arrangements that are detectable even when the occasional gene copy
is overlooked or erroneously included. In contrast, the co-occurrence tech-
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nique relies on the gene presence itself as the signal and any error in assigning
gene presence will introduce noise into the phylogenetic profiles.

Even when restricting the analysis to genomes that have been carefully
finished and are of high quality, it can still be difficult to judge whether
a functional counterpart of a gene is present or absent in a genome. As
discussed in Section 1.3, the most reliable indicator for functional equivalence
is “orthology”, i.e. the situation that the genes in question presumably all trace
back to a single ancestral sequence in the last common ancestor organism.
However, orthology is always merely a hypothesis and can be difficult to
assign in an automated fashion; possible errors are accidental oversight of
true orthologs or unnecessary inclusion of paralogs (i.e. genes related through
a gene duplication event, instead of a speciation).

An alternative measure of functional equivalence is simply the degree of
sequence similarity between two genes – the higher the sequence similarity,
the more likely the two genes have retained their function and are equivalent.
While this measure clearly is not a good substitute for orthology, it is much
easier to automate and just requires an arbitrary similarity cutoff below which
a gene family is assigned as “absent”.

Due to the general difficulties in reliably assigning gene presence, two types
of phylogenetic profiles have been introduced: “discrete” profiles and “con-
tinuous” profiles. Discrete profiles are those that simply mark the presence
or absence of a gene family in each genome; they essentially take the form
of a vector with two types of elements: 0 (for absence) and 1 (for presence).
Continuous profiles, in contrast, do not attempt to decide whether or not a
gene is presence, but simply provide a measure that is thought to correlate
with functional equivalence (e.g. sequence similarity). Continuous profiles
take the form of a vector with values ranging from 0 to 1; a value of 0.8
might for example signify a sequence identity of 80% or any other quantitative
measure pointing towards a high chance of functional equivalence.

4.3 Profile Distance Measures

With more and more genomes being sequenced, very few gene families are
found to be present in exactly the same set of organisms (i.e. to have the same,
discrete phylogenetic profile). This is true even for gene families known to be
tightly associated functionally. In part, this lack of agreement can be attributed
to technical limitations such as occasional gaps in genome sequences (or
errors in orthology assignment), but it is also due to the stochastic nature of
genome evolution itself: phylogenetic profiles are shaped by the inheritance,
loss and/or horizontal transfer of genes in and between genomes. For genes
sharing the same function, the overall outcome of this will be roughly similar
(due to selection), but the individual evolutionary events are still stochastic.
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A group of genes forming a metabolic pathway, for example, may become
dispensable and will be eventually lost from a genome, but the loss takes
time and may proceed in steps, and many of the genes may initially still be
detectable as pseudogenes. Any phylogenetic profile observed at a given
point in time thus contains a certain measure of biological and technical
“noise”.

This necessitates the use of distance measures in comparing profiles, in
order to assess which profiles are most similar to a given query profile. A
variety of different distance measures can and have been used, and since there
is no formal and fully parameterized model of genome evolution, the choice
of distance measure is determined empirically. The choice is guided mainly
by the performance of the various distance measures in recovering known
functional associations from the comparisons, and the choice may depend on
the set of known reference associations, the number of genomes analyzed and
the type of question asked.

For discrete profiles, a suitable distance measure is mutual information, a
measure from information theory that describes the amount of information
one profile contains about the other profile; two identical profiles have a
large mutual information, whereas random, independent profiles will have
a mutual information of zero. Another useful measure for discrete profiles is
the hamming distance, i.e. the simple count of the positions in which the two
profiles disagree. In the case of continuous profiles, useful distance measures
are the Euclidian distance or the Pearson correlation coefficient and vectors
may be normalized before the distance is assessed.

In any case, the distance measure will provide a ranking, for any given
query profile, of other profiles that best resemble it. Among those, known and
novel functional partners should be enriched. Distance measures in general
also enable the design of a scoring system, because they provide a quantitative
measure which can be benchmarked with regard to its predictive power,
using previous knowledge. This predictive power can then be expressed as
a confidence estimate – a certain distance is assigned a certain likelihood of
corresponding to a useful prediction.

4.4 Tree-based Methods

Conceptually, any simple distance measure between two phylogenetic profiles
is ignorant of the evolutionary relationships between the species. However, it
is the evolution of species (and the ensuing changes in their genome content),
that forms the conceptual basis for the gene co-occurrence method. Essen-
tially, the “unusual” evolutionary events within the history of a gene family
are what make its profile unique: gene loss, gene duplication and (horizontal)
gene transfer.
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Ideally, therefore, it should not be the phylogenetic profiles themselves
that are compared, but the inferred evolutionary events that happened in the
past of the two gene families: did these events have some influence on each
other (preferentially happening in concert) or did they occur independently?
Focusing on past evolutionary events would automatically provide a way to
recognize “uninformative” profiles: uninformative profiles would be those
that can be explained with very few evolutionary events. A “full presence”
profile, for example, requires only a single event (a single gene birth before the
last common ancestor). Apart from that event, the profile can be explained by
standard vertical inheritance. A single event, however, is certainly not enough
to propose a shared function for any other family sharing that event.

Unfortunately, it is difficult to infer with some certainty what happened
during the evolution of a gene family, and when it happened. Usually, this
involves the alignment of the sequences, and the generation of a phylogenetic
sequence tree (see Chapter 4). This tree is then compared to the previously
known organismal tree, and any deviation is taken as an indicator for an
unusual evolutionary event. Parsimony analysis is then used to determine
the minimum number of events necessary to explain the observed patterns.
This whole process is difficult to automate, however, and unsupervised pro-
cedures are unlikely to result in accurate alignments and reliable evolutionary
inferences. Nevertheless, including tree-based information represents a very
promising avenue for analyzing gene co-occurrence and early attempts to do
this are promising: trees can be used to reduce the bias and redundancy in
completely sequenced genomes, before comparing profiles [59], or the trees
can be compared directly to infer the interaction specificity for interactions
involving large multigene families (such as receptors and their ligands [46]).

4.5 Anti-correlated Profiles

Remarkably, gene co-occurrence is not the only way in which functionally
associated gene families can manifest themselves in terms of genome content.
In some instances, functionally associated genes do not co-occur at all, but
actually appear to avoid each other. This can happen when the two families
in question are not merely functionally associated, but indeed have the very
same, identical function. In this case, the reason for the apparent avoidance is
simple: having the same function, the genes can effectively replace each other
and a situation where both of them would be together in the same genome
is of no evolutionary advantage, so usually only one of them is kept. Which
family ends up in which genome is probably largely random, but the overall
outcome is that the two families have phylogenetic profiles that are essentially
complementary to each other.
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In order to appear as two distinct families in the first place, the involved
proteins should have distinct sequences, and display little or no sequence sim-
ilarity. If the families are not similar in sequence, how can they still have the
very same function? This is usually attributed to a process called convergent
evolution, in which a certain molecular function has most likely evolved twice,
independently, from unrelated sequences (or at least from sequences that have
diverged significantly before converging again functionally).

Well-known examples of anti-correlated profiles have been described, such
as the case of the complementary occurrence of class I and class II lysyl-
tRNA synthase genes [19]. In principle, anti-correlations can provide a way to
extend the usefulness of phylogenetic profiles: for any given query gene, one
should not only search for the best-matching profile, but also for the profile
that best complements it. In this way, gaps in metabolic pathways can be
closed and new functions assigned to previously uncharacterized sequences
acting as analogous enzymes (e.g. Ref. [39]). Overall, of course, convergent
evolution and functional replacement are rare events, giving the exploit of
anti-correlated profiles a low coverage.

In general, anti-correlation in phylogenetic profiles is also more difficult to
detect, because of one additional complication: while the genes may be nicely
complementary in their occurrence and not be observed present together,
they may very well be absent together. This is because the function they
both represent may be entirely dispensable in some genomes, making both
genes superfluous. The shared absences may to some extent mask the anti-
correlation and usually need to be filtered away by only considering genomes
known or suspected to encode the respective function [39].

5 Outlook

5.1 Methods based on Sequence Evolution

Interaction prediction based on genomic context is usually not concerned with
the actual nucleotide sequences of the genes in question (or with the amino
acid sequences of their encoded proteins). Sequences are only of interest
inasmuch as they allow the delineation of orthology relations across genomes.
Apart from that, mainly the arrangement and occurrence of the various genes
relative to each other are of interest, as well as their presence in certain genome
subsets.

However, at least in the case of proteins interacting directly through phys-
ical contact, the sequences themselves may also hold valuable information
about the interaction. This is because of an effect termed correlated mutations
[20, 44]. Correlated mutations may arise at the interaction interface between
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Figure 6 Contact interfaces between
proteins may lead to dependencies
in their amino acid sequences. (A)
Possible outcomes of a mutation that
compromises/weakens a binding interface.
Scenario 1 is by far the most frequent; the
mutation is selected against and removed
from the population. Scenario 2 happens

only rarely; a second mutation, in the other
protein, has compensated for the adverse
effect of the initial mutation. (B) Multiple
events of the latter type may lead to weak
dependencies between some alignment
columns of the proteins (physicochemical or
sterical properties of the residues may have
to remain compatible).

two proteins and are basically the result of mutations in one binding partner
compensating the effects of mutations in the other binding partner. For
example, if one residue at the interaction interface mutates from an amino
acid with a small side-chain to an amino acid with a bulky side-chain, this may
have negative effects on the strength and specificity of the binding: the bulky
side-chain may cause a steric hindrance for the binding. In such a situation,
two scenarios are conceivable: either the mutation causes a decrease in fitness,
is thus selected against and eventually removed from the population, or it
may occur that a second mutation (in the other protein) happens to have
a compensatory effect in the binding surface and restores the quality of the
binding (Figure 6). The first scenario is much more likely to happen, but even
if events of the second type occur only occasionally, they have the potential
to cause a weak correlation between the sequences of the two gene families.
In principle, this “dependency” in sequence evolution can be detected and
exploited for interaction prediction, using tools from information theory.

This approach may roughly qualify as a genomic context approach, because
it relies on nothing more than protein sequences available from complete
genomes, grouped into families according to orthology relations. It is po-
tentially a very powerful approach: not only does it predict the exact type
of a functional association (physical binding), but it may also predict binding
interfaces and the topology of protein complexes.
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Unfortunately, the correlated mutation signal in protein sequences is quite
weak. Apart from correlated mutations, many other factors shape protein
sequences: simple drift due to neutral mutations, selective constraints due to
folding (folding often happens independently of a binding partner), as well as
sequence conservation due to functional requirements such as active sites or
substrate binding. The weak signal in correlated mutations means that a large
number of sequences need to be analyzed and confounding signals/noise
removed before a confident interaction prediction can be made. Currently, the
method’s power as an interaction prediction tool is still somewhat limited [44];
however, it is bound to improve with more genomes and, just like the other
genomic context approaches, it is probably best used in combination with
other prediction tools.

5.2 Web-based Implementations of Genomic Context Tools

Genomic context studies involve a considerable amount of work: hundreds
of genomes need to be analyzed, orthology relations and gene families iden-
tified, and observations tested systematically for their relevance. Fortunately,
much of this work recurs repeatedly for any type of genomic context analysis
and most of it is well-suited for automation. For this reason, databases
have been created that contain the results of many of the necessary compu-
tations and comparisons, and that hold large numbers of predicted protein–
protein associations. These databases are periodically updated, to accommo-
date newly sequenced genomes. The predicted interactions may be available
for download, and the databases often have web-accessible front-ends allow-
ing the convenient browsing and comparison of prediction results (Table 2).

The last step in any genomic context analysis is the least amenable to
automation. The predicted interactions need to be assessed for plausibility;
they need to be integrated with expert knowledge and considered in the
context of accessory information such as protein localization data or in-house
experimental data. This last step needs to be done manually, but even for
this task it is advantageous to have access to a database with a large number
of predictions: The judgment on relevance is most useful when it is done
globally – by ranking all the predictions for an organism according to score
or “signal strength”, then comparing them to previous knowledge and to
reference data sets, and deciding which range of predictions is likely to be
reliable. For this type of final judgment, a formal framework does not yet exist:
no fully parameterized quantitative model for genome evolution is available,
which would enable the estimation of an a priori likelihood or relevance of a
certain observation. This means that any scoring system for ranking genomic
context predictions is necessarily somewhat “ad hoc” and can provide only
a rough estimate of the prediction accuracy. However, a scoring system is
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Table 2 Genomic context databases and web tools (as of July 2005)

Name Methods Genomes
(July
2005)

Comments Ref. URL

N F P O

ERGO √ √ √ √ 330 a complex genome annotation
and pathway discovery system,
includes genomic context
analysis modules; only available
commercially

43 ergo.integratedgenomics.
com

FusionDB √ 89 dedicated specifically to gene
fusion analysis; for each fused
gene, detailed evidence including
alignments and phylogenetic
trees of the protein sequences is
displayed

54 igs-server.cnrs-
mrs.fr/FusionDB

GeConT √ 238 focused on neighborhood
analysis; compact and informative
display of genomic situation; no
scoring/ranking of predicted
partners

9 www.ibt.unam.mx/
biocomputo/gecont.html

Nebulon √ 229 specifically designed to allow
“operon walking”, i.e. to study
the rearrangement of operon
fragments in larger functional
systems

27 http://tikal.cifn.unam.mx/
nebulon

Phydbac √ √ 150 focused on the analysis of
phylogenetic profiles; genes are
not simply assigned as “present”
or “absent”, but represented by
their score in similarity searches

13 igs-server.cnrs-
mrs.fr/phydbac

PLEX √ √ √ 89 main focus is on analysis of
phylogenetic profiles; genes
are represented by their score
in similarity searches; the
neighborhood module only
inspects one genome at a time

12 bioinformatics.icmb.
utexas.edu/plex

Predictome √ √ √ 71 one of the earliest integrated
genomic context analysis tools;
cooperates with the VISANT
network visualization tool; maps
GO annotations to network

37 predictome.bu.edu

PROLINKS √ √ √ 163 Integrates genomic context
predictions into a network of
interactions; individual methods
can be turned on and off; includes
a text-mining module

8 dip.doe-
mbi.ucla.edu/pronav

SEED √ √ √ 314 a comprehensive system for
genome and pathway annotation,
includes genomic context tools;
complex user interface, can be
installed and maintained locally
by users

41 theseed.uchicago.edu/FIG/
index.cgi

STRING √ √ √ √ 179 focused on scoring the predicted
interactions and on inter-species
knowledge transfer; apart from
genomic context tools, includes
text mining and imported
experimental data, as well as
coexpression information

60 string.embl.de

Available analysis methods are abbreviated as follows: N = conserved neighborhood; F = gene fusion analysis;
P = phylogenetic profiles (gene co-occurrence analysis); O = other data and methods.
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quite essential when dealing with genomic context predictions. A single query
gene can have a multitude of predicted partners, especially when analyzing
several types of genomic context simultaneously. Without a score providing
the ranking of predictions, it can be very difficult to discern false positives
from likely true positives.

Another advantage of globally precomputed databases is that they enable
the presentation of a large number of predicted interactions in a graphical
summary. Often, this is done in the form of an interaction network: nodes
in the network represent proteins (or orthologous groups of proteins) and
edges in the network represent predicted interactions. This enables the user
to discover higher-order dependencies in the data, such as dense clusters of
interactions that may represent functional subsystems (modules). Some web
tools will also display associated information in the networks: experimental
data, previous knowledge and detailed protein features such as their domain
composition.

When using web tools and databases for genomic context analysis, it is
generally prudent to have a look at the documentation. Each tool will follow
its own philosophy and procedures, and results can therefore be quite differ-
ent. The documentation should allow the user to understand what procedures
were applied, and the user can then assess why differences may arise and how
they can affect results in a particular area of interest. At the end of a genomic
context analysis, the user might even want to follow-up with a manual, in-
depth analysis – especially if initial results are promising. This may be needed
because the databases and web tools are necessarily never quite up to date;
there will usually be more data available in the form of newly sequenced
genomes, which can be added to strengthen the analysis.

5.3 Scoring and Integration

As is the case with other bioinformatics prediction techniques, it is crucial in
genomic context analysis to provide users with a score for each prediction, so
that they can roughly judge its reliability. Scoring systems can take advantage
of the fact that each genomic context technique produces a quantitative mea-
sure that its correlated with the “signal strength” of the predicted associations:
in the case of gene neighborhood, for example, the quantitative measure lies
in the number of genomes in which a particular gene neighborhood is found
– the more genomes, the stronger the signal. For gene co-occurrence, the
signal strength roughly corresponds to the degree of similarity between the
phylogenetic profiles and for gene fusion it is the number of genomes that
contain a given fusion architecture. To convert signal strength into an estimate
of reliability, the predictions are usually benchmarked against a reference
set of known functional associations or pathways. Such reference sets are
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typically based on externally provided expert annotations that group proteins
into pathways, complexes, or otherwise similar functional “roles”. Refer-
ence sets that are frequently used include the pathway maps of the KEGG
database [29], functional classification schemes such as the Gene Ontology [21]
or the COGs database [55], or matches in Swiss-Prot keyword assignments
[3]. Benchmarking itself is relatively straightforward: the predictions are
binned according to genomic context signal strength, and the amount of false-
positive and false-negative predictions is assessed for each bin. This leads
to statements such as: “a gene neighborhood observed in more than three
distinct bacterial phyla has a likelihood of above 95% of correctly indicating a
functional link”.

It should be noted that such benchmarked scoring systems still provide
only a rough approximation of the actual reliability of a prediction. This is
due to the incomplete and possibly biased nature of the various reference
sets. For example, a given reference set may be focused on a particular
functional area only (e.g. metabolism in the case of KEGG); this may lead
to overly confident predictions if a methods works particularly well in that
area, but less well in other areas. Furthermore, some classes of genes may
be lacking almost entirely from reference sets, for example fast-evolving or
rarely occurring genes. Reference sets are often available for a limited number
of model organisms only – providing scores for other organisms requires the
assumption that a method works equally for these, which may or may not be
true.

After scoring each individual prediction, it is often necessary to integrate
the scores, e.g. when a particular interaction is supported by more than one
type of prediction method or if there is additional experimental information to
take into account. This type of integration across prediction methods and data
sets is usually done in a probabilistic fashion, using Bayesian statistics [28,35].
In doing so, it is important to assess whether or not the different data sets are
independent of each other. When full independence can be assumed, naïve
Bayesian integration is sufficient – otherwise more sophisticated approaches
are needed. It can be difficult to estimate the relative dependence (correlation)
between the various data sets, so heuristic approaches are sometimes taken,
in order to globally assign the relative weight of multiple evidence (e.g. Ref.
[35]).

5.4 Genome Sequencing Strategies: Impact on Genomic Context Analysis

Genomic context techniques, like many other bioinformatics approaches, will
become more and more powerful with the advent of further genome se-
quences [7]. Hopefully, genome sequencing will remain a mainstay of biology
for some time to come – each newly completed genome has an intrinsic
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value that goes far beyond the initial applications foreseen at the time of
sequencing. Only complete genomes can provide the molecular basis for a full
understanding of organisms. For comparative genomics in particular (with
all its applications in evolution and molecular function), a continued flux of
genome sequences is essential.

However, given limited resources, there is always the question of how
to prioritize sequencing, and at what level of precision and completeness
to be satisfied in each individual sequencing project. Currently, there is
an increasing trend for genome projects to be specifically designed for low
coverage and precision – an approach termed “survey sequencing” (e.g. Refs.
[30, 53]). While such projects provide valuable early characterizations of
genomes (and give a welcome head start in the race to publication), they
also run the danger of postponing indefinitely the necessary finishing work.
In fact, many of the prominent animal genomes available today are still not
finished, to the extent that some are not more than a large collection of
incomplete fragments (e.g. Ref. [2]). To some extent, this de-values the initial
investments – by effectively limiting the usefulness of genome data for studies
in areas such as genome synteny, gene structure, duplication polymorphisms
or gene content.

For genomic context techniques, it is important to be aware of the comple-
tion status of the genome sequences used. Phylogenetic profiles, for example,
suffer a loss in resolution and predictive power when there are many sequenc-
ing gaps – any gene missed in sequencing will have the same effect as a gene
loss, i.e. it will appear as an evolutionary event carrying a selective signal.
This can lead to high levels of noise in phylogenetic profiles, especially for
gene families that are rarely lost biologically, or for organisms in which gene
loss constitutes a dominant part of the signal (such as higher eukaryotes). In
addition, sequencing gaps can lead to problems when assigning orthology
relations between species. Many orthology approaches rely on finding the
“most similar” relative of a gene in the other organism, but this can lead to
wrong results when the best relative has been missed in sequencing.

Another important issue is the selection of genomes to include in a genomic
context analysis; with many more genome sequences expected, it may soon
be no longer feasible to include all genomes for an analysis. In that case, it
is important to select genomes that cover as widely as possible the known
phylogenetic ranges of life. The goal should be to cover as much evolutionary
time as possible, in order to maximize the cumulative impact of selection
on the sequences studied. Formally, this can be achieved by maximizing
the cumulative branch lengths of a whole-genome phylogeny, while at the
same time minimizing the number of genomes considered. Effectively, one
wishes to select against “redundant” (i.e. closely related) genomes, which do
not provide much new signal in genomic context analysis. For comparative
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genomics in general, it would be desirable if genome sequencing projects
were to follow this principle as well, trying to focus on deeply branching,
underrepresented phyla. However, sequencing priorities of the scientific
community are, necessarily, driven not only by phylogenetic considerations,
but also by medical, economical and feasibility questions. This leads to a
strong bias in available genomes: some parts of the tree of life are strongly
underrepresented (certain bacterial phyla may be difficult to cultivate and
do not have a single sequenced representative), whereas others are covered
redundantly (of E. coli alone, several strains have been sequenced). For-
tunately, future sequencing projects seem to be increasingly directed also
by evolutionary and phylogenetic considerations [10], leading to a better
representation of biodiversity and evolution.

5.5 Environmental Context

Each time a new genome is sequenced, we learn more about the metabolic and
cellular capabilities of a particular organism. However, genomes also provide
another type of information: they allow inferences about the environments in
which the organisms live. For example, if a genome harbors photosynthesis
genes, we can assume that the organism lives – at least occasionally – in an
environment exposed to light; conversely, if a genome lacks certain genes
(e.g. genes needed to produce an essential metabolite), we can assume that
the metabolite in question is somehow available from the environment. Thus,
genome sequences reflect environmental demands and opportunities – an as-
sumption that is frequently the basis for interpreting novel genome sequences
(e.g. Refs. [4, 23]).

Taking this a step further, we may not even need fully sequenced genomes
to learn something about an environment – instead, sequencing directly DNA
that has been isolated from the environment should be almost as informa-
tive. Data of this type is increasingly becoming available through so-called
environmental genomics or metagenomics projects, which are an alternative to
traditional genome sequencing. In metagenomics, DNA is isolated directly
and indiscriminately from an environment of interest (e.g. soil, water or even
air), and is subjected to shotgun sequencing – irrespective of the complexity of
the species mixture in the sample. Metagenomics data provide a very compre-
hensive and unbiased view on the coding potential of a biological community
in an environment, much better than what can be achieved through traditional
genome sequencing (traditional sequencing requires clonal growth of a single
isolated organism in the lab, but a surprisingly large fraction of organisms in
nature resist cultivation in a laboratory setting).

The increased availability of metagenomics data may soon enable an ex-
citing extension to genomic context techniques – through an approach that
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might be termed “environmental context”. Here, the presence and absence
of a particular gene family in various environmental metagenomes (i.e. its
“environmental profile”) is assumed to depend on the gene’s function – and
this in turn means that functional partners should have similar environmental
profiles. In the future, dedicated databases could hold such information
(e.g. environmental presence/absence profiles) for all known gene families
– updated with new information each time a novel metagenomics data set
becomes available. Systematic searches in this database would then identify
sets of genes that have higher-than-random similarities in their profiles and,
thus, predict that they function together.

References

1 ADACHI, N. AND M. R. LIEBER. 2002.
Bidirectional gene organization: a
common architectural feature of the
human genome. Cell 109: 807–9.

2 APARICIO, S., J. CHAPMAN, E. STUPKA,
et al. 2002. Whole-genome shotgun
assembly and analysis of the genome of
Fugu rubripes. Science 297: 1301–10.

3 BAIROCH, A., R. APWEILER, C. H. WU, et
al. 2005. The Universal Protein Resource
(UniProt). Nucleic Acids Res. 33: D154–9.

4 BENTLEY, S. D., K. F. CHATER, A.
M. CERDENO-TARRAGA, et al. 2002.
Complete genome sequence of the model
actinomycete Streptomyces coelicolor A3(2).
Nature 417: 141–7.

5 BLUMENTHAL, T. 2004. Operons in
eukaryotes. Brief. Funct. Genomics
Proteomics 3: 199–211.

6 BOBIK, T. A. AND M. E. RASCHE.
2001. Identification of the human
methylmalonyl-CoA racemase gene
based on the analysis of prokaryotic gene
arrangements. Implications for decoding
the human genome. J. Biol. Chem. 276:
37194–8.

7 BORK, P., L. J. JENSEN, C. VON MERING,
A. K. RAMANI, I. LEE AND E. M.
MARCOTTE. 2004. Protein interaction
networks from yeast to human. Curr.
Opin. Struct. Biol. 14: 292–9.

8 BOWERS, P. M., M. PELLEGRINI, M. J.
THOMPSON, J. FIERRO, T. O. YEATES

AND D. EISENBERG. 2004. Prolinks: a

database of protein functional linkages
derived from coevolution. Genome Biol.
5: R35.

9 CIRIA, R., C. ABREU-GOODGER, E.
MORETT AND E. MERINO. 2004. GeConT:
gene context analysis. Bioinformatics 20:
2307–8.

10 COUZIN, J. 2003. Genomics. Sequencers
examine priorities. Science 301: 1176–7.

11 DANDEKAR, T., B. SNEL, M. HUYNEN

AND P. BORK. 1998. Conservation of
gene order: a fingerprint of proteins that
physically interact. Trends Biochem. Sci.
23: 324–8.

12 DATE, S. V. AND E. M. MARCOTTE.
2005. Protein function prediction using
the Protein Link EXplorer (PLEX).
Bioinformatics 21: 2558–9.

13 ENAULT, F., K. SUHRE, O. POIROT, C.
ABERGEL AND J. M. CLAVERIE. 2004.
Phydbac2: improved inference of gene
function using interactive phylogenomic
profiling and chromosomal location
analysis. Nucleic Acids Res. 32: W336–
9.

14 ENRIGHT, A. J., I. ILIOPOULOS, N. C.
KYRPIDES AND C. A. OUZOUNIS. 1999.
Protein interaction maps for complete
genomes based on gene fusion events.
Nature 402: 86–90.

15 FITCH, W. M. 1970. Distinguishing
homologous from analogous proteins.
Syst. Zool. 19: 99–113.



References 1209

16 FITCH, W. M. 2000. Homology a personal
view on some of the problems. Trends
Genet. 16: 227–31.

17 FRASER, C. M., J. D. GOCAYNE, et al.
1995. The minimal gene complement of
Mycoplasma genitalium. Science 270: 397–
403.

18 FUKUCHI, S. AND K. NISHIKAWA. 2004.
Estimation of the number of authentic
orphan genes in bacterial genomes. DNA
Res. 11: 219–31, 311–3.

19 GALPERIN, M. Y. AND E. V. KOONIN.
2000. Who’s your neighbor? New
computational approaches for functional
genomics. Nat. Biotechnol. 18: 609–13.

20 GOBEL, U., C. SANDER, R. SCHNEIDER

AND A. VALENCIA. 1994. Correlated
mutations and residue contacts in
proteins. Proteins 18: 309–17.

21 HARRIS, M. A., J. CLARK, A. IRELAND,
et al. 2004. The Gene Ontology (GO)
database and informatics resource.
Nucleic Acids Res. 32: D258–61.

22 HEATH, R. J. AND C. O. ROCK. 2000.
A triclosan-resistant bacterial enzyme.
Nature 406: 145–6.

23 HESS, W. R. 2004. Genome analysis of
marine photosynthetic microbes and their
global role. Curr. Opin. Biotechnol. 15:
191–8.

24 HILLIER, L. W., W. MILLER, E. BIRNEY,
et al. 2004. Sequence and comparative
analysis of the chicken genome provide
unique perspectives on vertebrate
evolution. Nature 432: 695–716.

25 HUYNEN, M. A. AND P. BORK. 1998.
Measuring genome evolution. Proc. Natl
Acad. Sci. USA 95: 5849–56.

26 JACOB, F. AND J. MONOD. 1961. Genetic
regulatory mechanisms in the synthesis of
proteins. J. Mol. Biol. 3: 318–56.

27 JANGA, S. C., J. COLLADO-VIDES AND

G. MORENO-HAGELSIEB. 2005. Nebulon:
a system for the inference of functional
relationships of gene products from the
rearrangement of predicted operons.
Nucleic Acids Res. 33: 2521–30.

28 JANSEN, R., H. YU, D. GREENBAUM, Y.
KLUGER, et al. 2003. A Bayesian networks
approach for predicting protein–protein

interactions from genomic data. Science
302: 449–53.

29 KANEHISA, M., S. GOTO, S.
KAWASHIMA, Y. OKUNO AND M.
HATTORI. 2004. The KEGG resource for
deciphering the genome. Nucleic Acids
Res. 32: D277–80.

30 KIRKNESS, E. F., V. BAFNA, A. L.
HALPERN, et al. 2003. The dog genome:
survey sequencing and comparative
analysis. Science 301: 1898–903.

31 KORBEL, J. O., L. J. JENSEN, C. VON

MERING AND P. BORK. 2004. Analysis
of genomic context: prediction of
functional associations from conserved
bidirectionally transcribed gene pairs.
Nat. Biotechnol. 22: 911–7.

32 KORBEL, J. O., B. SNEL, M. A. HUYNEN

AND P. BORK. 2002. SHOT: a web
server for the construction of genome
phylogenies. Trends Genet. 18: 158–62.

33 KUMMERFELD, S. K. AND S. A.
TEICHMANN. 2005. Relative rates of
gene fusion and fission in multi-domain
proteins. Trends Genet. 21: 25–30.

34 LATHE, W. C., 3RD, B. SNEL AND P.
BORK. 2000. Gene context conservation
of a higher order than operons. Trends
Biochem. Sci. 25: 474–9.

35 LEE, I., S. V. DATE, A. T. ADAI AND E.
M. MARCOTTE. 2004. A probabilistic
functional network of yeast genes. Science
306: 1555–8.

36 MARCOTTE, E. M., M. PELLEGRINI, H.
L. NG, D. W. RICE, T. O. YEATES AND

D. EISENBERG. 1999. Detecting protein
function and protein–protein interactions
from genome sequences. Science 285: 751–
3.

37 MELLOR, J. C., I. YANAI, K. H.
CLODFELTER, J. MINTSERIS AND C.
DELISI. 2002. Predictome: a database
of putative functional links between
proteins. Nucleic Acids Res. 30: 306–9.

38 MORENO-HAGELSIEB, G. AND J.
COLLADO-VIDES. 2002. A powerful non-
homology method for the prediction of
operons in prokaryotes. Bioinformatics 18
(Suppl. 1): S329–36.

39 MORETT, E., J. O. KORBEL, E. RAJAN,
et al. 2003. Systematic discovery



1210 32 Inferring Protein Function from Genomic Context

of analogous enzymes in thiamin
biosynthesis. Nat. Biotechnol. 21: 790–
5.

40 O’BRIEN, K. P., M. REMM AND E. L.
SONNHAMMER. 2005. Inparanoid: a
comprehensive database of eukaryotic
orthologs. Nucleic Acids Res. 33: D476–
80.

41 OVERBEEK, R. 2005. The SEED – an
annotation/analysis tool provided by the
Fellowship for Interpretation of Genomes.
http://theseed.uchicago.edu/FIG/index.cgi.

42 OVERBEEK, R., M. FONSTEIN, M.
D’SOUZA, G. D. PUSCH AND N.
MALTSEV. 1999. The use of gene clusters
to infer functional coupling. Proc. Natl
Acad. Sci. USA 96: 2896–901.

43 OVERBEEK, R., N. LARSEN, T. WALUNAS,
et al. 2003. The ERGO genome analysis
and discovery system. Nucleic Acids Res.
31: 164–71.

44 PAZOS, F. AND A. VALENCIA. 2002. In
silico two-hybrid system for the selection
of physically interacting protein pairs.
Proteins 47: 219–27.

45 PELLEGRINI, M., E. M. MARCOTTE, M.
J. THOMPSON, D. EISENBERG AND T.
O. YEATES. 1999. Assigning protein
functions by comparative genome
analysis: protein phylogenetic profiles.
Proc. Natl Acad. Sci. USA 96: 4285–8.

46 RAMANI, A. K. AND E. M. MARCOTTE.
2003. Exploiting the co-evolution of
interacting proteins to discover interaction
specificity. J. Mol. Biol. 327: 273–84.

47 RAOULT, D., S. AUDIC, C. ROBERT, et al.
2004. The 1.2-megabase genome sequence
of Mimivirus. Science 306: 1344–50.

48 RHEE, K. Y., M. OPEL, E. ITO, S. HUNG,
S. M. ARFIN AND G. W. HATFIELD. 1999.
Transcriptional coupling between the
divergent promoters of a prototypic LysR-
type regulatory system, the ilvYC operon
of Escherichia coli. Proc. Natl Acad. Sci.
USA 96: 14294–9.

49 ROCHA, E. P. 2004. The replication-
related organization of bacterial genomes.
Microbiology 150: 1609–27.

50 ROST, B. 2002. Enzyme function less
conserved than anticipated. J. Mol. Biol.
318: 595–608.

51 SNEL, B., P. BORK AND M. HUYNEN.
2000. Genome evolution. Gene fusion
versus gene fission. Trends Genet. 16:
9–11.

52 SNEL, B., M. A. HUYNEN AND B. E.
DUTILH. 2005. Genome trees and the
nature of genome evolution. Annu. Rev.
Microbiol. 59: 191–209.

53 STRONG, W. B. AND R. G. NELSON. 2000.
Preliminary profile of the Cryptosporidium
parvum genome: an expressed sequence
tag and genome survey sequence analysis.
Mol. Biochem. Parasitol. 107: 1–32.

54 SUHRE, K. AND J. M. CLAVERIE. 2004.
FusionDB: a database for in-depth
analysis of prokaryotic gene fusion events.
Nucleic Acids Res. 32: D273–6.

55 TATUSOV, R. L., N. D. FEDOROVA, J. D.
JACKSON, et al. 2003. The COG database:
an updated version includes eukaryotes.
BMC Bioinformatics 4: 41.

56 TIAN, W. AND J. SKOLNICK. 2003. How
well is enzyme function conserved as a
function of pairwise sequence identity? J.
Mol. Biol. 333: 863–82.

57 TSOKA, S. AND C. A. OUZOUNIS.
2000. Prediction of protein interactions:
metabolic enzymes are frequently
involved in gene fusion. Nat. Genet. 26:
141–2.

58 VON MERING, C. AND P. BORK. 2002.
Teamed up for transcription. Nature 417:
797–8.

59 VON MERING, C., M. HUYNEN, D.
JAEGGI, S. SCHMIDT, P. BORK AND

B. SNEL. 2003. STRING: a database of
predicted functional associations between
proteins. Nucleic Acids Res. 31: 258–61.

60 VON MERING, C., L. J. JENSEN, B. SNEL,
et al. 2005. STRING: known and predicted
protein–protein associations, integrated
and transferred across organisms. Nucleic
Acids Res. 33: D433–7.

61 WELCH, G. R. AND J. S. EASTERBY.
1994. Metabolic channeling versus free
diffusion: transition-time analysis. Trends
Biochem. Sci. 19: 193–7.



Bioinformatics -- From Genomes to Therapies Vol. 3. Edited by Thomas Lengauer
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31278-8

1211

33
Inferring Protein Function from Protein Structure
Francisco S. Domingues and Thomas Lengauer

1 Introduction

It is well known that structure dictates function in many aspects of reality.
This observation holds for the machines and buildings that we engineer. It
also holds for the anatomy and physiology of the diverse types of organisms
studied in biology, as well as to the molecular biology underlying the living
processes of these organisms. Nevertheless, the determination of the protein
function given its structure is not a trivial problem. The current chapter
presents the recent developments in this field of structural bioinformatics.

So far, most of the investigation on the relationships between the structure
and function of proteins has centred on the analysis of single case experimen-
tal results. Only recently have there been attempts to develop computational
methods in order to find general rules behind these relationships and to
generate predictions and testable hypotheses. There are two challenges at the
center of these efforts: the localization of functional sites in proteins, and the
identification of the molecular function of a protein. A considerable number
of approaches have been proposed recently to address these challenges. Some
of these approaches are still very new and untested, but others are more
mature and have been successfully applied in the functional characterization
of several proteins. This new field is now making its first contributions to
the understanding of living processes at the molecular level, a necessary step
along the path from genomes to therapies.

Structural models provide vital information as we seek to comprehend how
proteins function at the molecular level. In this section we first address the
different notions of protein function and the different kinds of functional
information that is provided by the structure of a protein. We then focus on
the structure–function relationships.
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1.1 Different Levels of Protein Function

Function is not a simple concept. For a comprehensive definition, several lev-
els have to be taken into account [13, 97] (see also Chapter 29). The molecular
or biochemical function pertains to the chemical interactions and reactions in
which the protein participates. Function can also be defined on a broader level
in terms of the biological processes in which the protein is involved, including
its cellular and physiological roles.

In general, proteins bind to other molecules in order to perform their func-
tion. Therefore, binding can be regarded as a fundamental molecular func-
tion [97]. For example, proteins bind to other proteins to regulate their
function or to transmit information along signal cascades, they bind to DNA
in order to control gene expression, enzymes bind to the respective substrates
as well as to cofactors and effectors in order to catalyze certain reactions, and
transporters and receptors bind to the respective ligands in order to afford
molecular transport or cellular communication.

1.2 Structural Models

Structural models can be determined experimentally by X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy or predicted using dif-
ferent computational approaches (see Chapters 10–12). Experimental models
are much more reliable than predicted models, but in general the experimental
approach is more costly and time consuming. Fortunately, over the past years
there have been significant improvements both in the automation of experi-
mental structure determination and in the quality of the predicted models.

Structural models provide the three-dimensional (3-D) coordinates of the
protein atoms. From these coordinates it is possible to characterize the protein
in terms of geometry and chemistry. In particular, it is possible to identify
the secondary structure elements and the organization of the polypeptide
chain in 3-D (fold). Surface and buried atoms can also be identified, as well
as the overall protein shape and surface chemistry. It is also possible to
analyze the local arrangement of the atoms in any part of the model and
characterize their local chemical environments. Many experimental models
include several polypetide chains – from these models it is possible to identify
and characterize the protein–protein interactions. Other models include small
molecules bound to the proteins, either as natural substrates/ligands, or as
artificial inhibitors or modified ligands. These protein–ligand complexes pro-
vide information regarding the location of the functional sites, the nature of
the protein–ligand interactions and possibly even the molecular mechanisms
underlying the protein function. Obviously, these structural models provide
valuable information regarding molecular function [120]. Nevertheless, it is
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not trivial, at least with current methods, to infer the biological, cellular or
physiological role of a protein based on structure data.

1.3 Homology and Function

Searching for homology has been a predominant approach in bioinformatics.
This is understandable given that sequences are easily determined, and that
the resulting data are suited quite well for a wide range of computational and
statistical approaches for homology detection. This has produced important
evolutionary insights and also provided functional information indirectly (see
Chapters 3, 4, 11, 30 and 37).

An evolutionary relationship between two proteins indicates a possible
function relationship, where the confidence for functional relationship in-
creases with the percentage of sequence identity. It has been found that
function is conserved between two enzymes when they share more than
40% of sequence identity (close homology) [121, 134]. Structure is more con-
served in evolution than sequence. Therefore, methods for backbone structure
comparison have been applied to detect remote homology between proteins,
where the sequence similarity is not significant. Nevertheless, fold similarity
does not necessarily imply homology, as proteins can share similar folds in the
absence of homology. Backbone structure comparison methods are usually
combined with other approaches (including functional information) in order
to predict remote homology [35]. Functional variation is significant in the
case of remote homology [121, 134], therefore inferring function relationship
between remote homologous proteins is even more challenging than in the
case of close homology. In addition, proteins can share similar molecular
function in the absence of homology [42].

Despite these difficulties, methods for the comparison of protein structures
in terms of backbone geometries are now routinely used in the functional char-
acterization of newly determined structures. The process is not automated
and relies extensively on human expertise for the interpretation of results.
Usually a query structure is compared to all the structures in the Protein Data
Bank (PDB) [16], and the entries with the most similar backbone structure
to the query are identified. In general, most similar structures correspond
to the homologous proteins (if any). Most of these methods also generate a
structural alignment between the two proteins compared. Detailed analysis of
this structure alignment, particularly of the aligned functional sites, is of great
value for inferring functional relationships. The success of this approach is
demonstrated by the considerable list of proteins functionally characterized
using backbone structural comparison [136]. Severall backbone structure
comparison methods are available and have been recently reviewed [66, 111].
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Figure 1 General properties of functional sites. Complex of Ras
(blue) with RalGDS (yellow), PDB code 1lfd [51]. Protein–protein
binding sites in light blue and orange. Substrate-binding site in dark
blue, with bound substrate analog. Graphics produced with PyMOL
(http://www.pymol.org).

1.4 Structure and Function

Functional sites share geometric and physicochemical properties [97], (Fig-
ure 1). These properties provide the basis for different computational methods
for function prediction.
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As mentioned before, binding is a common theme in protein function.
Binding usually takes place in a localized region at the protein surface, which
typically corresponds to a relatively small fraction of the total surface. It
consists of several key chemical groups from some residues that cluster at the
protein surface independent of the position along the sequence. The rest of
the protein serves as a structural framework that provides both the stability
and flexibility necessary for shaping the functional region. Complementarity
of shape and chemistry contributes to specific binding (lock-and-key model).
However, proteins are flexible, so this complementarity is not always evident
before binding, as proteins can adjust their conformation upon ligand binding
(induced-fit model).

In general, the binding sites at the protein–protein interfaces display a
high degree of complementarity with respect to shape and chemistry. This
complementarity is achieved with different shapes, varying from flat surfaces
to interfaces consisting of a protruding surface binding a cavity. Different
physicochemical environments are also observed in different types of protein–
protein interactions [86]. Hydrophobic residues tend to cluster at the inter-
faces of obligate interactions. These obligate interactions are required for the
stability of the proteins that form the complex. In non-obligate interactions,
the participating proteins can fold and form stable structures independently.
These interfaces tend to include polar residues.

If the ligand is a small molecule, the interactions are usually located at
surface clefts. These clefts provide easy accessibility for the ligand. In addi-
tion, high complementarity and increased binding specificity can be achieved
by enveloping the ligand. These are general rules, but it is not difficult
to find exceptions – a common theme in biological systems. For example,
some ligands are found deeply buried inside the protein, requiring large
conformational changes for the ligand to move in and out.

Functional sites are subjected to selective pressure different from the rest
of the protein surface, as their structural and chemical integrity is required in
order to preserve molecular function. In particular, functional-site residues are
less tolerant to mutations than the rest of the surface residues. If the molecular
function is preserved in two homologous proteins, the functional sites tend
to display higher sequence conservation than the rest of the protein surface.
Functional sites have also been found to be destabilizing (energetically unfa-
vorable) [107,108]. The rest of the protein structure has to compensate for this
effect in order to guarantee overall stability. In addition, analysis of residue
interaction graphs, where protein residues are the nodes and interactions are
edges, has revealed that active-site residues tend to have a relatively low
average distance to all other residues in the graph (high closeness) [3].

Functional sites of different proteins exhibiting similar molecular function
have also been found to share conserved geometry and chemistry. This
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property is quite relevant for the prediction of protein function. If two proteins
have similar functional sites, it is likely that they have similar molecular func-
tion. This is valid independently of the overall fold or sequence similarity, or
whether the proteins are homologous or not. The conserved ATP recognition
in different types of enzymes is one such example [34]. Defining function
similarity in this respect is not trivial. For example, enzyme similarity can be
observed at the level of the substrate or cofactor binding site, the catalytic site,
or the mechanism of catalysis.

Finally, it has been observed that the locations of small-molecule ligand-
binding sites are conserved among some protein folds [101]. This conservation
of binding sites can be observed even between nonhomologous proteins with
the same fold.

1.5 Why Predict Function from Structure

The current motivation for function prediction based on structure informa-
tion involves several factors. (i) The increasing availability of structural data
results in many opportunities for computational analysis. (ii) The many hy-
pothetical proteins whose structures are becoming available via structural
genomics projects need to be characterized functionally. (iii) Improving the
understanding of protein function based on available structural information
is expected to generate deep biological insight. (iv) A rising interest in more
direct approaches for characterizing proteins functionally.

Over the past 20 years the improvements in the techniques for protein
structure determination have resulted in increasing numbers of experimen-
tal models being made publicly available in the PDB [16]. The amount of
structural data achieved a certain level of critical mass, in the sense that it is
now possible to train and test statistical learning and computational methods
for characterizing structures and generating predictions in an automated fash-
ion. Knowledge-based approaches and statistical learning methods are at the
center of the new field of structural bioinformatics.

The current structural genomic initiatives (Chapter 13) are another factor.
As an outcome of these initiatives we now have many structures available for
proteins with uncharacterized function and many more are to be expected.
This creates a demand for computational tools for functional characterization
that make use of the available structural information.

We should not assume that these tools are only applicable to the structural
models of hypothetical proteins. When applied to already annotated proteins,
such methods can provide additional functional information. In particular,
many proteins are known to have multiple functions [32, 55]. It is reasonable
to think that this is the case for many more proteins which are yet to be
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identified. New and exciting functional insights can be expected, as these
tools are applied to structures of partially characterized proteins.

Finally, one can observe a growing interest in more direct approaches for
function characterization than the traditional homology detection methods.
An important development has been Gene Ontology (GO), a systematic on-
tology for gene function [9]. An example of this new focus on functional
characterization was the development of genomic context methods to predict
which proteins participate in common biological processes. These methods
are based on the comparison between genomes of different species (see Chap-
ter 32). Approaches to functionally characterize proteins based on structural
information are also part of this trend.

1.6 The Challenges of Automatic Prediction of Function from Structure

The two main challenges in prediction of function from structure are the
localization of functional sites and the characterization of molecular function.
Different approaches have been proposed in order to locate functional sites:
structure comparison, quantification of structural features, and a combination
of structural information and evolutionary conservation. They will be de-
scribed in the Section 2. Characterization of molecular function is the other
great challenge and is described in Section 3. The field is still in a highly
experimental stage, and many different approaches are being proposed and
tested. Among these alternative approaches we find several based on local
structure comparison. Their goal is to find similar local structures (motifs) in
different proteins. If these structural motifs correspond to functional sites,
the functional information can be transferred between the matching proteins
independent of the evolutionary relationships. An important element in the
search for structural motifs is the availability of a database of functional sites.

1.7 Structure of the Chapter

It is possible to describe bioinformatics approaches from either the method-
ological or the application point of view. In this chapter we try to cover
both. The two main sections of the chapter address each of the two main
challenges (application): site localization (Section 2) and function character-
ization (Section 3). Each of these sections is subdivided according to the
different approaches (methodology). We then mention preliminary efforts to
address both challenges (Section 4). We also provide a list with the main
tools currently available (Section 5) and apply them to a concrete example.
We then describe some of recent successes in structure-based functional char-
acterization (Section 6). We complete the chapter with a look at the future
developments (Section 7).



1218 33 Inferring Protein Function from Protein Structure

2 Localization of Functional Sites

As described above (Section 1.4), functional sites have several unique features.
These are explored by different approaches to locating functional sites in the
protein structure.

2.1 Supersites

Structure comparison and structure classification are well-established fields
of structural bioinformatics. Superfolds correspond to frequently observed
folds which are shared by different nonhomologous proteins [89]. Russell and
coworkers have investigated the localization of ligand-binding sites among
proteins with the same fold [101]. They have identified supersites, which
correspond to conserved structural regions within different superfolds with a
significant tendency to bind ligands. Different supersites have been identified,
each associated with a different superfold. If the fold of a given protein
corresponds to one of these superfolds, the ligand-binding site is likely to
match the corresponding supersite.

2.2 Electrostatics

Functional sites are quite unique in terms of local structure [96] – they are
generally strained and destabilizing. This strain can become apparent in the-
oretical estimates of stability based on continuum electrostatics calculations.
Two methods have been proposed based on this principle. One of the methods
identifies the location of general functional sites [37], while the other focuses
on the identification of active sites of enzymes [15]. A related approach uses
computed titration curves for the same purpose [64, 88].

Nucleic acid-binding sites are a special case of protein functional sites, in
which charge complementarity plays an important role. Two methods have
been proposed for the identification of nucleic acid-binding sites. They are
based on the identification of positively charged patches with electrostatic
potentials [57, 118].

2.3 Surface Geometry

The shape of a site binding a small ligand has unique features in comparison
to the remaining protein surface. It has been observed that ligands tend to
bind to the largest surface cleft [70]. The SURFNET program locates protein
surface clefts or pockets and computes their volume [74]. SURFNET can be
used to locate functional sites by identification of the largest surface clefts. To
locate these surface clefts, “gap spheres” of a certain radius (4 Å) are placed
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midway between each pair of atoms and the size of the sphere is reduced until
all clashes to other nearby atoms are removed. The sphere is retained if the
radius is larger than 1 Å. A contour surface is generated around the clusters
of overlapping spheres, which represent the surface clefts and cavities in the
protein. The volume of each surface cleft is calculated and the cleft with largest
volume is predicted to be the ligand binding site.

Other approaches rely on the α shape algorithm to detect protein surface
clefts. The α shape is derived from the weighted Delaunay triangulation of
the point coodinates of the atom centers, where Voronoi edges and vertices
outside the protein define empty tetrahedra and are excluded. In the APRO-
POS [95] method, α shapes are used to describe the protein surface at two
different resolutions. The higher-resolution α shape includes surface details
like cavities and the lower resolution just provides the global shape of the
protein. The surface pockets or clefts are identified by determining the regions
with the largest differences between the two representations. A single α shape
representation is used in the CASTp [75] method and pockets are identified
from the collection of empty tetrahedra. CASTp is an analytic method and,
in comparison to other methods, has the advantage that it does not depend
on discretization, iterations or any heuristic parameters. Nevertheless, unlike
SURFNET or APROPOS, CASTp cannot identify clefts corresponding to shal-
low depressions where the openings are wider than any cross section of the
interior. CASTp is available as a web service [20]

SURFNET, APROPOS and CASTp are not the only methods for finding
surface clefts. Other methods such as LIGSITE [49] and PASS [25] have been
proposed.

2.4 Structure and Evolutionary Information

Several methods have been proposed for the localization of functional sites
based on the principle that these sites are subject to a different selective
pressure than the rest of the protein along the evolutionary process. The
approach has its origins in methods based purely on sequence [31]. More
recently, several methods have been proposed that combine evolutionary and
structural information in different ways.

2.4.1 Evolutionary Trace (ET)

The ET method was one of the first approaches combining evolutionary and
structural information for the purpose of localizing functional regions in pro-
teins [78]. The method is based on several hypotheses. (i) If function is
conserved between an ancestral and its descendant proteins, the respective
functional sites retain their localization. (ii) If the function is conserved within
a subgroup of homologous proteins, the sequence of that functional site will
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be also be conserved in that subgroup. (iii) If the functions diverge between
two subgroups of homologous proteins, one can expect that the functional
divergence arises mostly from substitutions at the functional sites. (iv) The
functional residues (binding or catalytic sites) are expected to cluster, forming
patches along the protein surface.

The ET method consists of several steps. First, given a query protein with
known structure, a set of homologous sequences is collected by pairwise
sequence comparison. Then, a multiple sequence alignment is generated
and a corresponding phylogenetic tree is constructed. The tree is used as
a guide to partitioning the set into subgroups of homologous proteins at a
certain evolutionary distance. Different partitions can be made at different
evolutionary distances. For a given partition, the consensus sequences are
determined for each subgroup, describing conserved and nonconserved posi-
tions. The evolutionary trace of the entire partition is obtained by aligning the
consensus sequences. A position in the trace is neutral if it is nonconserved
in any of the consensus sequences. The position is conserved in the trace if
it is invariant over all consensus sequences. The position can also be class
specific in the trace if it varies between the different subgroups, but is constant
within each subgroup. The rank of a residue is the minimum number of
subgroups into which the tree has to be divided in order for a residue to be
class specific. Residues with low rank number are conserved over most of the
tree and residues with high rank number tend to vary even between the most
related proteins. Finally, the residues can be mapped into the structure and
labeled according to the trace: neutral, conserved or class specific. Functional
sites are expected to correspond to conserved and class specific trace residues
clustering on the surface of the protein.

Some improvements have been proposed more recently in order to facilitate
the use of the method at a large scale. In particular, the method now implicitly
takes gaps into account, and calculates a statistical estimate of the significance
of the spatial clusters of trace predictions [79, 137]. The method has been
applied successfully to the regulators of G-protein signaling (RGS) family of
proteins (see Section 6).

2.4.2 ConSurf

Several approaches related to the ET method have been proposed. The Con-
Surf [7,68,100] method tries to improve over ET by weighting amino acid sub-
stitutions according to differences in physicochemical properties and by calcu-
lating residue conservation scores based on maximum likelihood or empirical
Bayesian algorithms. These residue conservation scores are then mapped
onto the corresponding structural models. In general, the functional sites
correspond to surface patches with high conservation scores (Figure 2). The
initial implementation did not provide an objective criterion for defining
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Figure 2 ConSurf results for glutaminyl-tRNA synthetase from
Escherichia coli complexed with tRNA, PDB code 1gts [94]. Most
conserved surface regions match the activation site (top) and
the anticodon recognition site (bottom). Graphics produced with
RasMol [17,104] based on a script generated by ConSurf.

the functional region. The authors have now implemented a complementary
method (PatchFinder) to automatically identify functional regions [85]. The
predicted functional sites correspond to statistically significant clusters of
conserved surface residues.

2.4.3 Residue Conservation and Structural Information

Other methods are based on more simplistic models for the conservation of
residues while making direct use of structural information [1,22,69]. Sternberg
and coworkers proposed a method based on the identification of Cβ spatial
clusters of conserved polar residues [1]. The predicted functional site residues
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are defined within a sphere centred at the geometric centroid of the conserved
spatial cluster. The radius of the sphere is the distance between the centroid
and the most distant Cβ atom of the clustered residues. The approach is
only applicable to functional sites with conserved polar residues. This is
expected to be the case in most enzyme active sites and in many protein–
protein interaction sites.

Landgraf and coworkers have proposed a method for locating functional
sites based on two principles [69]. (i) Between functionally conserved proteins
the residue conservation of the structural neighbors of a residue at a functional
site is larger than the global residue conservation. This is measured by the
regional conservation score of a residue. (ii) The global sequence similari-
ties between functionally conserved proteins changes significantly when the
same type of analysis is restricted to the structural neighbors of functional
site residues. The authors proposed a so-called similarity deviation score of
a residue to measure this effect. These scores are calculated from a multi-
ple sequence alignment that includes a protein with known structure and a
number of corresponding homologous sequences. From this alignment, two
matrices are calculated – the global similarity matrix and the residue-specific
regional similarity matrix. The first matrix consists of the pairwise sequence
similarity scores between all homologous proteins. The regional similarity
matrix includes the same of type of data as the global similarity matrix, but
is restricted to the similarity scores of the structural neighbors of the residue.
The regional conservation score of a residue amounts to the magnitude of the
differences between the two matrices. The similarity deviation score is the
correlation between the two matrices.

2.5 Network Centrality

Protein structures have been represented as networks, where nodes corre-
spond to amino acid residues and edges represent interactions. Each residue
in the protein can then be characterized in terms of network centrality (close-
ness centrality), as measured by the inverse of the mean geodesic distance
(shortest path) between the node and all other nodes. Amitai and coworkers
have shown that enzyme active-site residues tend to have high closeness
values [3], which means such residues interact with the other residues directly
or by relatively few intermediates. Based on this observation, they proposed
SARIG (Structural Analysis of Residue Interaction Graphs) – a method to
predict active site residues using closeness and relative solvent accessability.
A SARIG web server has been implemented to predict the active site residues
and to visualize the distribution of closeness values on the protein structure.
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2.6 Combined Approaches

Several methods combine these different approaches in order to locate func-
tional sites. In particular, combined methods have been proposed to identify
active sites of enzymes and protein–protein interaction sites.

2.6.1 Catalytic Sites in Enzymes

Catalytic residues constitute a special group of functional residues. They are
generally conserved, they tend to be found in the largest clefts, but at the same
time, they tend to be buried (low relative solvent accessibility). They tend to
be located in coil regions and usually are charged or polar [14]. Based on
these observations, Gutteridge and coworkers devised a method for locating
active site residues [46]. The following parameters were used to train a neural
network: residue conservation, solvent accessibility, localization on a surface
cleft and relative size of the cleft, type of secondary structure, and residue
type. The neural network score obtained for each residue is used to define
a list of possible active-site residues. Then, spatial clustering is performed
and the cluster with the best scoring residues is predicted to be the catalytic
site. Ota and coworkers addressed the same problem with a related method,
based on identification of conserved residues, estimation of destabilization
effect and location (cleft versus surface or buried) [90].

2.6.2 Protein–protein Interactions

Protein–protein interactions can be classified into different types, regarding
composition (homo-oligomers, hetero-oligomers), autonomy of the protomers
(obligate, non-obligate) or lifetime (permanent, transient) [86]. Protein–
protein binding interfaces have been characterized regarding different prop-
erties: solvation potential (preference for being buried or exposed to solvent),
surface residue propensity, hydrophobicity or protrusion. Different trends
were observed for the different types of interactions (homodimer, large or
small heteroligomers, or antibody–antigens). These observations were the
basis for devising different scoring functions for the identification of certain
types of interactions [58, 59]. More recently, Neuvirth and coworkers [84]
tested the combination of different measures in order to predict transient
protein–protein binding sites. The authors found that the most successful
combination includes secondary structure, atom distribution, patterns of
neighboring amino acids, residue conservation, chemical character of surface
atoms (charge, aromaticity, hydrophobicity), position of water in crystal
structures, sequence distance and hydrophobic patches. This problem has
now been addressed in the PPI-Pred method, using statistical learning ap-
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proaches in order to find the best combination of properties for each type of
interaction [23].

A related problem is to distinguish the native protein–protein interactions
(so-called biological interactions) from crystal contacts in structural models
determined by X-ray crystallography. The latter contacts are a result of the
crystallization process and do not occur natively in solution. This problem has
been addressed in the Protein Quaternary Structure database (PQS) [50]. PQS
is based on a method that empirically combines different interface physical
measures, particularly the contact area, in order to discriminate biological
from nonbiological contacts. It provides as a result the predicted quarternary
state for each PDB entry. Other approaches have combined interaction size
and residue conservation with a neural network predictor [124]. More re-
cently, the NOXclass classification method has been proposed (NOXclass:
non-obligate, obligate and crystal-packing classification). Different interface
features have been combined in NOXclass with a support vector machine
(SVM) implementation to classify a given protein–protein interface into crys-
tal contacts, non-obligate or obligate interactions [140].

3 Characterization of Molecular Function

Characterization of molecular function based on protein structure is a consid-
erable challenge. Direct comparison of functional sites provides a more direct
approach to function prediction than methods based on homology detection
(Section 1.3). The general strategy is to identify similarities between a query,
an uncharacterized functional site and a functional site corresponding to a
protein of characterized molecular function. The similarities are measured in
terms of geometry or physicochemical environment. Based on this similarity,
an attempt is made to infer aspects of the molecular function of the query
protein.

We start this section by presenting some general concepts regarding func-
tional characterization based on structure and then we describe several meth-
ods. First, we focus on the approaches based on comparison of atom coor-
dinates, and then we describe methods that take into account surface shape
and the local chemical environment. Finally, we briefly mention different
databases of functional sites.

3.1 General Principles

3.1.1 Homology versus Nonhomology

There are different application scenarios in the prediction of function based
on structure. A possible application is the identification of homologous pro-



3 Characterization of Molecular Function 1225

teins with similar function and, therefore, with conserved functional site. As
described in Section 1.3, homology can be identified by sequence-based meth-
ods and by backbone structure comparison. The sequence-based methods
have been combined with rule-based approaches for automated functional
annotation of uncharacterized proteins [21, 41]. In addition, an automated
method for functional prediction of homologous proteins has been proposed,
which combines measures of backbone structural similarity and sequence
conservation in the structural alignment [98]. Sequence-based methods lack
information regarding the geometry and the distances between the functional
groups, and methods based on backbone structural comparison do not center
on the functional site. In contrast, methods for function prediction based on
local structure similarity take into consideration the particular chemistry and
geometry of the functional sites. One can expect that applying such methods
to compare the functional sites of homologous proteins will further improve
the quality of the functional annotations.

In another application scenario, the goal is to identify common function
independent of homology. It is known for some cases that function and func-
tional sites can be conserved regarding chemistry and geometry even in the
absence of homology. A classical example is the Ser–His–Asp catalytic triad,
found in peptidases with different folds (trypsin-like and subtilisins) [127].
Another example is provided by the similar ATP-binding sites in different
ATP-dependent enzymes [34]. The comparison of functional sites can help
in the characterization of molecular function, even if the query protein and
characterized protein are not homologous.

3.1.2 Uncertainty and Flexibility in the Structural Models

When comparing functional sites one has to take into account that similar
molecular functions can correspond to similar functional sites, but one can
only expect similarity, not exact conservation of geometries and chemistry.
In this respect, uncertainties in the coordinate values should be taken into
account first. They correspond to atom vibrations, disorder in the crystal or
errors in the structure determination process. Experimental methods always
have a certain degree of uncertainty associated with the resulting coordinates,
although the actual error estimates might not always be easy to obtain. The
resolution and the free R factor (Rfree) are common indicators for the quality
of the crystallographic models. The RMSD across the ensemble of solutions
has been used as a measure of quality for NMR structures, but other measures
have also been proposed [73]. The quality of predicted structural models has
been improving over time, but they still cannot compete with experimental
models.

Apart from the flexibility resulting from atom vibrations, proteins are also
flexible as a result of collective motions of atoms and residues. One can
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often observe considerable differences between backbone conformations in
alternative structural models of the same protein [36]. Often, the changes
comprise the functional sites, as structural changes are generally associated
with function. Binding of a ligand, nucleic acid or protein is often associated
with structural changes in the functional site.

Ultimately, one can always expect some degree of dissimilarity between
different proteins with similar functional sites and molecular function. The
challenge is to define a similarity measure and a threshold that can be used to
identify the sites with similar molecular function.

3.1.3 Functional Descriptors, Comparison and Scoring

Within the set of known protein structures, one can observe conserved re-
gions regarding structure and chemical environment. These recurrent struc-
tural/chemical environments correspond to structural or spatial motifs or
structural patterns. Some of these motifs are purely structural; others cor-
respond to functional sites.

In order to characterize functional sites, a descriptor is often used that
encapsulates the corresponding conserved geometry and/or chemical envi-
ronment. A comparison between two sites or between a site and a structure is
carried out using these descriptors. A functional relationship is then inferred
if the sites are significantly similar.

An algorithm for comparing the descriptors is required that identifies ge-
ometrical/chemical similarities. Generally, this involves finding equivalent
regions in the functional sites (alignment) and scoring the similarities. Finally,
a measure of statistical significance is needed in order to identify relevant hits.

There are different possibilities to compare functional sites. The query
structure can be either a functional site or a complete protein. This query
is compared to each entry in a database, consisting of functional sites or alter-
natively of complete structures. Databases of functional sites can be defined
either manually (more reliable, slow, not reproducible) or with automated
methods (faster, reproducible, not restricted to functional sites, problematic
data quality).

Different types of descriptors have been proposed. Some are purely geomet-
ric, including the atom coordinates, or pseudo-atom coordinates representing
the side-chain position, or a surface representation. Others include a descrip-
tion of the chemical environment, either indirectly by considering the amino
acid types or, more directly, by considering the chemical functional groups.
There are many possible ways to classify these different descriptors. For
convenience we define two types; descriptors based on atom coordinates, and
descriptors based on chemical environment and surface. Other classifications
would be equally valid.
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Different applications require different types of descriptors. For example,
if side-chain atoms are considered for each residue, the comparison is more
specific for a given functional site than if only the coordinates of the Cα atoms
are used. On the other hand, the former is less robust regarding structural
flexibility, vibration, disorder or model quality. When searching for functional
similarity between homologous proteins, sequence similarity restricted to the
functional site should be taken into account. If the identification of functional
similarity on nonhomologous proteins is the goal, then the method should
be independent of sequence similarity and the match should rely on the
equivalences of chemical functional groups.

When the descriptors are based on atom coordinates, a simple measure
like RMSD after optimal rigid-body superposition of the local structures can
provide a similarity score for sites with the same size (same number of atoms).
Nevertheless, a threshold for the identification of the significant hits is still
required. In addition, if the results correspond to matches of different sizes, a
measure of statistical significance (p-value or E-value) is necessary in order to
compare the results. This is the case when comparison results include partial
matches to a descriptor or when they include matches to different descriptors.

3.2 Descriptors based on Atom Coordinates

The most obvious way to represent a functional site is by the coordinates
of atoms that constitute the residues making up the functional site. The
descriptors vary in terms of whether they use atoms or pseudo-atoms and
with respect to the type of chemical information considered. In addition,
different search algorithms have been proposed for this type of descriptors.

3.2.1 ASSAM

The Willett group was among the early pioneers in the field when they pro-
posed ASSAM in 1994 [8]. The descriptor consists of two or three pseudo-
atoms per residue, representing both ends and the midpoint of the side-
chain. The query descriptor is searched against a structural database using
a standard subgraph-isomorphism algorithm [123]. In the implementation of
ASSAM, the pseudo-atoms correspond to nodes in the graph and the distances
between the coordinates of these pseudo-atoms correspond to the edges.
The method has been successfully applied in the identification of enzymes
that include the classical catalytic triad. The triad consist of a conserved
serine, histidine and aspartate in the active site of some hydrolases (pepti-
dases and lipases) in different families (nonhomologous, parallel/convergent
evolution) [12, 26].

A new version of ASSAM has been proposed that features several im-
provements [113]. In particular, the amino acids have been grouped into
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different classes according to their chemical properties and matches are al-
lowed between different amino acids of the same class. Secondary structure
information has also been added, as well as solvent accessibility, disulfide
bridge information and distances to known binding sites.

3.2.2 SPASM

Kleywegt has proposed a related descriptor for the structural comparison
of structural motifs [63, 81]. The descriptor is used in SPASM (Spatial Ar-
rangements of Side-chains and Main-chain) to search for matches of a given
structural motif in a protein structure database. Each residue is represented
by the coordinates of the Cα atom and by the pseudo-atom coordinates cor-
responding to the side-chain center of mass. The method is flexible with
respect to the matching of amino acid types. Several options are available; all
amino acid substitutions can be allowed, or only some types of substitutions
can be allowed, or the substitutions can be scored with a substitution matrix
and selected according to a certain cutoff. Additional restrains can be used
regarding conservation of sequence directionality, residue neighboring and
conservation of gap size.

To search for a functional site in a protein structure, a recursive depth-
first search algorithm is used. The candidate residues that match the correct
residue type or the allowed substitutions are identified. Then the possible
combinations of residues are generated and the distance between atoms (or
pseudo-atoms) are compared to the the distances in the query site. If the
distances match (differ less than a given cutoff) then the atoms (and pseudo-
atoms) are superimposed and the RMSD value is calculated. Results are
reported for matches bellow a given RMSD threshold. SPASM reports the
possible matches of a query descriptor in a given structural database. RIGOR
is a related program that performs the reverse type of search, comparing a
query structure to a database of sites.

3.2.3 PINTS

The methods above require that a putative functional site definition is avail-
able for the query protein (ASSAM, SPASM) or that a database of charac-
terized functional sites is available (RIGOR). Russell proposed a method for
identifying common functional sites between two proteins, without requiring
a previous localization of the functional site [102]. He addresses both chal-
lenges: localization and characterization. The putative functional site residues
are selected according to the established principle of residue conservation
and by selection of interacting residues (small inter-atomic distances). In
addition, the comparisons are restricted to nonhydrophobic residues and
disulfide bridges are ignored. A depth-first search algorithm is used and
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inter-atomic distances are compared. Unlike SPASM, the proposed method
enforces a match of residue types. Cα, Cβ atoms and a single functional atom
(predefined according to the residue type) are used in the distance compari-
son. The matching residues are superimposed and the RMSD calculated. The
method also includes a measure of statistical significance (p-values) for the
RMSD values. The p-values are calculated based on RMSD values for random
matches of side-chain patterns.

An improved model for the statistical significance of RMSD values for local
structure comparison has been proposed more recently [116]. The model takes
into account the geometry of a match for a given RMSD value, as well as the
frequency of residue types and the dependency of the covalently linked atoms
in the different side-chains. The derived cumulative distribution functions
were shown to fit the observed distribution of the RMSD values for matches
between random structural motifs and a background structural database. This
model has been included into the search method PINTS (Patterns in Nonho-
mologous Tertiary Structures). PINTS compares a query site to a structural
database, or a protein structure to a database of functional sites [117]. The
current limitations of this method are the restrictions to nonhydrophobic
residues and the enforcement of exact matches of residue types. Despite these
restrictions, PINTS constitutes a reference tool for local structure comparisons
and for functional site characterization.

3.2.4 SuMo

The SuMo method has been proposed to compare a given query structure to a
structural database in order to find similar substructures [53]. The method
relies on matching triples of chemical groups. In the comparison of two
structures (A, B), a graph of triplets is defined for each structure (SA, SB),
where triplets TA

1 , TA
2 with two common functional groups form connected

vertices in the graph. To compare sites in different proteins, the triples are
first matched according to the relative postion, local atomic density and type
of the chemical groups, resulting in pairs of matching triplets (TA

1 , TB
1 ). Then

a comparison graph is defined (GAB), where vertices correspond to pairs of
matching triplets (TA

1 , TB
1 ) and edges connect two consistent pairs of triplets

[(TA
1 , TB

1 ), (TA
2 , TB

2 )]. For the pair of triplets to be consistent, TA
1 must be

connected by an edge to TA
2 in SA and TB

1 must be connected by an edge to
TB

2 in SB, and the angles between the planes of TA
1 and TA

2 must be similar to
the angle between TB

1 and TB
2 . The independent subgraphs in GAB correspond

to similar substructures. As the structure graphs S for all structures in the
PDB can be precomplied, it is possible to perform a fast search for all common
substructures between a given query and all entries in the PDB. Given a
query structure, or a ligand-binding site, the SuMo server [54] can search
for all common substructures in the PDB or in a database of ligand-binding
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sites. Results are sorted by the number of matching functional groups or by
RMSD. SuMo does not provide (yet) an estimate of significance of a match.
One should also keep in mind that SuMo is a purely structural method;
therefore, a match of two substructures does not necessarily imply that they
are functional sites, but one can expect that functional sites with significant
structural similarity will be detected. The great advantage of SuMo is that it
does not require a predefined definition of sites in the query or in the structure
database and that the results are provided within seconds or minutes. SuMo
relies on matching chemical functional groups, instead of amino acid residues,
and does not depend on fold or sequence similarity; therefore, it is suitable to
find similar functional sites in the absence of homology.

3.2.5 TESS and Jess

The Thornton group has proposed a method for deriving consensus structural
motif descriptors, called templates [127]. The approach was exemplified in
the derivation of a template for the classical Ser–His–Asp catalytic triad found
in different hydrolases. The template was derived using the coordinates of
a known functional site as seed. In particular, the side-chain atoms of the
histidine residue were used as reference, and the relative position of the func-
tional oxygens Asp Oδ2 and Ser Oγ were considered. Then candidate enzymes
(serine proteases, subtilisin-like serine proteases, serine carboxypeptidases
and lipases) were selected. Interacting Ser, His and Asp were collected and
superimposed to the seed. Matching triples (RMSD < 2.0 Å) were used to
derive a new consensus functional template. The outcome is a consensus de-
scriptor for the functional site. The method requires some human intervention
for the selection of seed structure, the reference and the functional atoms, and
the RMSD cutoff for the match. The derived Ser–His–Asp template describes
the conserved catalytic triad in the three different types of nonhomologous
hydrolases. An additional template that includes the orientation of all side-
chain atoms of aspartate and serine (and not only the functional oxygen
atoms) was derived for each type of enzyme. The relative orientation of the
functional oxygen atoms are conserved across these different enzyme types,
but not the overall conformation of the relevant side-chains. Therefore, it was
not possible to obtain a consensus template for all enzyme types using all
side-chain atoms.

The authors have subsequently proposed TESS – a faster geometric hashing
algorithm for the comparison of a functional site template to a structure [126].
To derive a TESS template, a grid is placed around a set of reference residue
atoms and the relative positions of the functional atoms are mapped to the
grid. In addition, a TESS hash table is obtained for a structural database.
This table includes for each occurrence of the reference atoms in the database,
the relative positions of the neighboring atoms. The comparison between the
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query template and the TESS table just requires matching the relevant grid
positions, atom types and residue types. If a hit is identified, the coordinates
are extracted, and the RMSD of the superimposition is calculated. The method
was applied in the identification of different types of catalytic triads involving
histidine (including the Ser–His–Asp). TESS allows some flexibility regarding
the matching of atom and residue types. The new improved search method,
Jess [11], is very flexible regarding the type of descriptor that can be used.

The group has also been compiling a new set of templates for enzyme cat-
alytic residues in the Catalytic Site Atlas (CSA) [99,122] (see also Section 3.4.3).
A CSA family has been defined for each group of homologous proteins with
a conserved active site. Two different templates were created for each protein
family – one based on Cα/Cβ atoms and another based on the functional
atoms (that play an active role in the catalysis). The templates allow for
matching of chemically similar residues or atoms. The representative template
for a family corresponds to the catalytic site with the lowest mean RMSD
from all other members of the family. The authors analyzed the diversity of
templates within these families. They found that the templates within the
homologous families tend to differ by less than 1 Å RMSD and this effect was
independent of sequence similarity. The authors also found that templates
based on Cα/Cβ atoms tend to be more discriminating than those based
on the functional side-chain atoms in the identification of similar catalytic
sites within protein families. This is an indication that Cα/Cβ templates are
more strongly conserved over homologous families and more robust with
respect to structural flexibility than templates based on functional side-chain
atoms. Different results might be have been obtained if the analysis had been
performed over nonhomologous proteins.

More recently, the authors have derived additional sets of templates in
an automated way [71]. Ligand- and DNA-binding templates have been
generated from PDB based on the interactions between amino acid residues
and small ligands or nucleic acids. In addition, an alternative template search
strategy has been implemented. Instead of comparing a query structure
to a template library, three-residue templates are extracted from the query
structure and compared to a set of representative structures from PDB. This
reverse template strategy provides a much higher coverage for matching
functional sites than is possible with CSA templates of ligand/nucleic acid
templates. The disadvantage is that not all matches correspond to functional
sites. The authors have also proposed a new estimate of significance of a
match that takes into account the relative positions of the matching residues
in protein sequences. This measure is expected to identify similar functional
sites in homologous proteins, but is not applicable to compare functional sites
in nonhomologous proteins.
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3.3 Descriptors based on Chemical Environment and Surface

So far we have described methods that define functional sites in terms of atom
or pseudo-atom geometries. An alternative approach is to view the functional
site as an environment with certain chemical and physical properties, and
with a certain shape. After all, binding is the basis for the molecular function
of proteins, and binding specificity is determined by complementarity in
terms of shape and chemistry. If the atom coordinates are not taken into
account directly, one can expect the descriptors to be more robust with respect
to local structural changes and to structural flexibility, and better suited for
describing the general molecular function independently of homology.

3.3.1 FEATURE

FEATURE is a method for characterizing the micro-environments surround-
ing the functional sites in terms of chemical and physical properties [10,
131, 132]. Typical properties are atom types, hydrophobicity, charge, residue
types, chemical groups, secondary structure or solvent accessibility. A 3-D
grid is used as reference in each protein structure. Each protein atom is
mapped to the grid and the values of the corresponding physicochemical
properties are stored for each grid cell. Then the spatial distribution of the
properties over a certain site can be calculated by summing the property
values of all gird cells within a certain radial distance from the center of
the site. In this way, a collection of adjacent grid cells is united to a radial
shell. The properties pertaining to certain types of sites can then be compared
to background properties. If a certain property has a significantly different
radial shell distribution in the given site type than in the background (to
be determined by a rank-sum test), then this property is considered to be
characteristic of that given type of site. In this way the set of property
distributions for different radial shells can be identified that are characteristic
of a certain type of functional site. These characteristic property distributions
can be used as a descriptor in the identification of similar sites in query
proteins. In order to compare a query site to a descriptor, a Bayesian scoring
function is used to score the likelihood that the property value for a given
radial shell in the query site matches the distribution in the site descriptor.
The probability values calculated for each property can be combined to give
an overall likelihood that the query site matches the site descriptor. A web
site is available (WEBFEATURE) to scan a query protein for the occurrence of
severall precompiled functional site descriptors. Particularly interesting is the
availability of RNA magnesium-binding site descriptors.

A promising development is the use of established sequence motifs as seeds
for the definition of the structural-based FEATURE descriptors [76]. In this
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way it is possible to generate a large number of FEATURE descriptors that are
expected to correspond to functionally relevant sites.

3.3.2 CavBase and SiteEngine

The Klebe group has proposed a descriptor for ligand-binding sites that com-
bines physicochemical interaction properties and the surface geometry of the
binding site [106]. The ligand-binding sites are extracted using LIGSITE [49],
in combination with Relibase, a structural database of protein–ligand interac-
tions [48] (see Section 3.4.1). The physicochemical properties of the binding
site are represented as a set of pseudocenters (pseudo-atoms) defined in terms
of the atom coordinates of the different chemical functional groups on the
protein side-chains and backbone. Five properties are considered: hydrogen-
bond donor, hydrogen-bond acceptor, mixed donor/acceptor, aliphatic and
aromatic. The binding site descriptor consists of the set of pseudocenters and
a grid surface representation. In this surface representation, each grid point is
associated with the physicochemical property of the adjacent pseudocenter.

A graph-based approach is used for the comparison of two sites. The
problem is reduced to the detection of a maximum common subgraph of
the pseudocenters in the two descriptors and solved by a clique detection
algorithm [27, 65]. The spatial arrangement of the pseudocenter is viewed
as a graph with nodes corresponding to the pseudocenters and edges corre-
sponding to the distances between them. Given two descriptors represented
by two graphs, A and B, all pairs of nodes from A and B are collected into
a product graph G. In this product graph the nodes correspond to pairs of
pseudocenters with compatible properties. In the product graph G, the edges
join nodes that correspond to pairs with similar pseudocenter distances in
A and B (difference less than 2 Å). In G, the maximum cliques (completely
connected subgraphs) are enumerated. Each clique corresponds to a choice
of equivalent pseudocenters from both sites with compatible properties and
a similar geometry. The size of the clique (number of nodes) is the num-
ber of equivalent pseudocenters in each site. The clique solutions are then
ranked according to the surface similarity in both descriptors, as measured
by the superposition of the surface representation (surface grid points). For
each clique, the superposition minimizing the RMSD between the equiva-
lent pseudocenters is calculated. The resulting transformation is applied to
the surface grid points and the overlap of surface patches with compatible
properties is calculated. Nonoverlapping surface patches and corresponding
pseudocenters are filtered out. A new transformation is calculated and the
final overlap of compatible surfaces is used to rank the comparisons solutions
between two sites. The process is repeated each time a query site descriptor is
compared to each entry in a database of binding sites descriptors (CavBase).
The surface overlap score and an additional measure are used to compare the
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search results of different sites. This additional measure takes into account not
only the overlap of compatible surface grid points, but also the RMSD of the
final superposition of the surface grid.

This group has recently proposed a more efficient similarity search method
[133] combining geometric hashing with clique detection. In particular, the
method uses a modified product graph in which the nodes correspond to
larger matches of local subsets of pseudocenters. This reduces the graph size
and the possibility of false matches. The implementation results in consider-
able speed up of detection with a small sacrifice in coverage.

SiteEngine is a related method developed by the Wolfson group [109, 110].
They also use pseudocenters corresponding to different physicochemical
properties and a surface representation. For the comparison they do not use a
clique detection algorithm, instead they rely on an efficient geometric hashing
implementation. Figure 3 show a comparison of two similar nucleotide
binding sites in proteins with different folds. The group also implemented
I2I-SiteEngine – a related method for the comparison of protein–protein inter-
faces [110]. The implementation is similar to SiteEngine, but it additionally
relies on predefined patterns of pseudocenters. These patterns correspond to
the different types of noncovalent interactions that are expected to be found
in protein–protein interfaces.

3.3.3 eF-site

The Nakamura group developed the eF-site database, consisting of surface
descriptors for different functional sites. The descriptors consist of representa-
tions of surface geometry and electrostatics [60–62]. The group also proposed
a graph-theoretic based approach for site comparison. Each site is represented
as a graph in which each node corresponds to a vertex in the triangular mesh
of the molecular surface representation. The product graph corresponds to
pairs of nodes from the two sites with similar values for surface curvatures
and electrostatic potential. Edges in the product graph represent vertices at
similar distances in both functional sites (differing by less than 1.5 Å). A clique
detection algorithm [27] is applied to find the similar surface regions.

3.3.4 pvSOAR

The pvSOAR (pocket and void surfaces of amino acid residues) method com-
pares protein pockets or cavities regarding sequence, spatial arrangement
and orientation [18]. Pockets and cavities are detected by CASTp [75] (see
Section 2.3). For each pocket residue, the geometric center of the atoms
that contribute to the walls of the pocket is selected. The statistical sig-
nificance of a match of two pockets or cavities is assessed by aligning the
patterns of amino acid pocket residues. The sequence similarity score is
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Figure 3 Finding similar small-ligand-binding
sites with SiteEngine. The cAMP-dependent
protein kinase (blue, PDB code 1atp [139]),
and the D-Ala–D-Ala ligase (yellow, PDB code
1iow [39]) have different folds. The kinase
binds to ATP (blue) and the ligase binds
to ADP (orange). The bound ligands have
similar conformations. SiteEngine identified

14 equivalent pseudocenters at the ligand-
binding sites. The ligands and pseudocenters
are shown enlarged on the left, with the
kinase pseudocenters in blue and ligase
pseudocenters in yellow. The two structures
are shown superimposed according to the
transformation from the SiteEngine solution.
Graphics produced with PyMOL.

used to compute an E-value using a background distribution of similarity
scores of randomly shuffled pocket sequences. Two additional measures of
significance of match are computed based on the geometry of the match-
ing pockets/cavities. One measure is based on the calculation of the atom
coordinate RMSD (cRMSD) after optimal superposition of the atoms in the
pocket according to the alignment of the sequence patterns. The second
measure is based on the orientation RMSD (oRMSD), which is less sensitive to
outliers. The oRMSD is calculated after optimal superposition of coordinate
unit vectors defined along the direction of the pocket geometric center. To
evaluate the significance of the structural match, p-values are computed for
both cRMSD and oRMSD, using matches of randomly generated pockets as a
background distribution. The amino acid type and position in the sequence
is used to compute the sequence-based E-value and to define the equivalent
residues in the superposition. As the method depends on sequence similarity
of the pocket residues, it is expected to perform better in identifying similar
functional sites between homologous proteins than between functional sites in
nonhomologous proteins. A pvSOAR web server is available [19], where users
can compare a given structure to the database of pockets and cavities extracted
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from the PDB structures. Results can be sorted by sequence based E-value,
and by cRMSD or oRMSD p-values, and the aligned pockets are visualized
interactively with Jmol (www.jmol.org).

3.3.5 Enzyme Classifier

The development of an enzyme classifier based on self-organizing maps
(SOMs) trained with surface cleft properties [114] is an application of statisti-
cal learning methods to function prediction based on structural information.
Surface clefts were detected with a grid-based method and solvent-accessible
surfaces were computed for each cleft. Each surface point was assigned
to a chemical type according to the nature and direction of the closest
chemical group. Five types were considered: aliphatic, hydrogen-bond donor,
hydrogen-bond acceptor, aromatic face and aromatic edge. A set of surface
cleft points was used for the generation of topological correlation vectors.
Each vector consists of 150 elements; each element corresponds to a certain
type of interaction between two chemical types (15 possible interactions),
within a certain distance interval (10 equal distance bins of 1.5 Å). Each
vector element stores the sum of occurrences of pairs of surface points of
the corresponding chemical types and within the corresponding distance. A
SOM was then trained using the topological correlation vector and applied in
the classification of different types of metalloproteinases.

3.3.6 3D Shape Descriptors

An efficient approach based on spherical harmonics has been proposed for
the description of ligand and binding site shape, and for their comparison.
The method was applied to virtual drug screening [28] (see Chapter 18).
More recently, a similar approach has been proposed for the comparison of
ligand-binding sites [82]. The surface is treated as a linear combination of real
spherical harmonics. The corresponding expansion coefficients can be used
as a description of the shape of the surface cleft and the Euclidean distance
metric is used as a measure of similarity between the shapes of the sites. The
computation of the expansion coefficients is very fast. Sets of sites can be
clustered according to shape similarity using this metric. The approach is
quite promising, but there are some limitations. In particular, performance
is poor for flat or solvent-exposed binding sites and local matches, where the
similarity is restricted to a subregion, cannot be detected. Structural flexibility
is not taken into account directly, but it is possible to generate descriptors
and perform comparisons for all alternative site conformations given the
efficiency of the implementation. Currently, the method is restricted to shape
comparison and does not take into account physicochemical properties, but
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the authors proposed the future inclusion of electrostatic potentials in the
descriptor.

3.4 Databases of Functional Sites

Data tend to accumulate dramatically during the process of discovery. Large
data volumes can be reached as a result and then it becomes difficult to capture
the underling principles from the detailed analysis of single cases. At this
point annotated databases and classification methods become valuable, allow-
ing the extraction of the relevant information in a systematic and organized
way.

Databases for classification of protein structures [4, 93] fulfilled that im-
portant role for the structural data available in the PDB [16]. They provide
structural and evolutionary classifications of the known protein structures.
However, structures can also be classified based on other principles. A func-
tional classification of protein structures is under way by linking the structural
models to functional terms [30, 125]. As mentioned in Section 1.4, molecular
function can usually be mapped to a set of localized functional sites. An
additional classification database is desirable in this respect, which groups the
different types of functional sites according to the underlying molecular func-
tion. This will provide a basis for the better understanding of the structure–
function relationships and for the development of prediction methods.

Most of the methods for functional characterization described here provide
a match between a query protein and a characterized protein. The comparison
can be performed between a query structure or site descriptor and a structural
database or a database of functional sites. For performance and methodolog-
ical reasons, it is usually necessary to use a precompiled database of site
descriptors, particularly if the query is a complete protein structure. This
creates a need for a database of classified functional sites, from which a set of
functional descriptors can be compiled. In addition, a database of functional
sites can be used to extract the characteristic properties of different functional
sites in order to develop new strategies and methods for function prediction.
It also affords training, testing and comparing of different methods.

3.4.1 Relibase

Relibase is a database of binding sites, ligands and protein–ligand inter-
actions [48]. Structural motifs can be defined and searched for, which is
especially interesting in the search for particular protein–ligand interactions
motifs. CavBase (see Section 3.3.2) has been integrated into Relibase. The
database has been specially targeted to drug design, but it also constitutes a
useful resource for general-purpose structural analysis of ligand-binding sites.
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3.4.2 MSDsite

The Macromolecular Structure Database Group (MSD) at the European Bioin-
formatics Institute (EBI) provides the community with different types infor-
mation services for macromolecular structures. One such database is MSD-
site [44], an alternative database to Relibase, for the analysis of ligands and
ligand-binding sites. Each ligand-binding site in the PDB is extracted and
extensively characterized regarding chemistry of the ligand, interacting atoms
and residues, and types of interactions. This information is provided for
any given PDB structure and the results can be displayed within a molecular
viewer. All PDB entries with a given ligand can be easily retrieved. More
elaborate queries are also possible, where a given ligand-binding environment
is specified and all matching PDB entries retrieved. The environment can be
defined by the interacting residue or atom and by the type of interaction (bind
length and bond type). In addition to MSDsite, the MSD group provides an
extensive set of resources for protein structure analysis [45]. For example,
MSDmotif provides extensive search capabilities for structural motifs given
sequence patterns, secondary structure patterns or by φ, ψ angles and MSD-
Chem allows to search for ligands in the PDB according to given chemical
properties.

3.4.3 CSA

Enzyme catalytic sites are a particularly relevant type of functional sites. The
CSA provides a set of manually curated enzyme catalytic sites, and a set of
computed annotations inferred by sequence homology and alignment [99].
CSA includes Jess descriptors (see Section 3.2.5) for some of the homologous
families.

3.4.4 SURFACE

The SURFACE database (Surface Residues and Functions Annotated Com-
pared and Evaluated) [40] lists the surface clefts on each structure from a
nonredundant PDB subset. The clefts are determined with SURFNET [74]
(see Section 2.3). Interactions between residues and any bound ligands are
identified. The proteins are also annotated with GO terms [29] and with
matches to PROSITE [38] sequence motifs. In addition, the authors performed
an all-against-all structure comparison of the cleft residues from the different
representative structures. Matches are identified according to the residue sim-
ilarity given by a substitution matrix, as well as according to the Z-score of the
RMSD of structural superposition of the clefts. The Cα atoms and the average
coordinate of the side-chain atoms was used in the superposition. Each PDB
structure is associated with the closest representative in the nonredundant
set. Users can query the database giving a PDB code, and the information on
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surface clefts, cleft compassion results, ligand interactions, GO and PROSITE
annotation is provided for the representative structure.

3.4.5 Databases of Structural Motifs

Ligand-binding sites can be extracted automatically from the PDB if the ligand
is present in the protein structure, as in Relibase or MSDsite, and active sites
have been manually compiled in CSA. However, these databases will not
include the sites which do not include the ligand in the structural model or
which are not yet annotated. Additional databases and approaches are needed
to cover these functional sites. A possible strategy is to automatically extract
conserved structural motifs from the PDB [24, 47, 53, 87, 128]. The resulting
structural motif database is then used to search for similarities to a given query
protein structure. It is expected that some (but not all) resulting matches will
correspond to functional sites that are not yet included in Relibase, MSDsite or
CSA, therefore extending the coverage of functional sites. The disadvantage
is that many matches will correspond to purely conserved substructures,
without a direct relationship to function. Another possible strategy is the
reverse template search [71] described in Section 3.2.5. In this case, structural
motifs are extracted directly from the query, therefore avoiding having to
define a database of functional/structural sites.

3.4.6 Protein–protein Binding Sites

Apart from ligand-binding sites and the active sites of enzymes, protein–
protein binding sites constitute the other major type of functional sites.
SCOPPI [135] is a database for protein–protein binding sites and interfaces.
In this context, interfaces correspond to the interacting surface regions found
on each protein in the complex. Proteins are modular entities composed
of domain units. Therefore, the interfaces are characterized at the domain
level. Structures are obtained from PDB [16]. The structure of the biologically
relevant protein complex is derived from PQS [50] (Section 2.6.2) and domain
definitions are obtained from SCOP [4]. SCOPPI classifies the different bind-
ing sites within SCOP families into different types (face types). PIBASE and
3did are related protein–protein interaction databases [33, 119].

4 Integration Efforts

As described above, different tools and databases are currently available for
locating and characterizing functional sites. Thus, it is natural to ask at
this point for the best strategy/protocol to apply given the structure of an
uncharacterized protein. Recently, two groups have addressed this question
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and proposed pipelines for protein function prediction: ProKnow [91] and
ProFunc [72].

ProKnow [91] is a pipeline for the annotation of query protein structures
with GO [9] functional terms. At the center of the method is the ProKnow
knowledgebase which associates protein features with GO terms. Different
types of features are extracted from a given query structure: homologous
sequences, homologous structures, sequence motifs, interacting proteins and
structural motifs (using RIGOR [63], see Section 3.2.2). Then weights for dif-
ferent functional terms are computed using the knowledgebase, by mapping
the identified features in the query to functional likelihoods.

The ProFunc pipeline [72] performs three types of analysis for a given
query structure: sequence scans, structural features and template searches.
In the first type of analysis different sequence-based methods are applied to
characterize the query protein. Homologous proteins in UniProt [5] and the
PDB are collected based on sequence similarity using BLAST [2]. The resulting
alignments are combined to generate a multiple sequence alignment which is
used to compute residue conservation scores [124]. The target sequence is also
scanned for the occurrence of sequence motifs with InterProScan [138] and
for matches in SCOP [4] structural superfamilies with SUPERFAMILY [80].
Gene neighborhood analysis is also performed in order to identify genes
functionally related to the target (see Chapter 32). Different structural fea-
tures are analyzed in parallel. Secondary structure matching (SSM) [67] is
used to identify similar folds in the PDB. Surface pockets are located using
SURFNET [74] (see Section 2.3). The results from SURFNET together with
the residue conservation scores are mapped onto the protein structure for
visualization and identification of putative functional sites. A nest search is
also performed on the query structure. Nests correspond to a certain type
of structural motif associated with anion-binding sites and found often at
functional sites [129]. In order to characterize the possible functional sites,
Jess [11] is applied to detect matches to different types of templates [71], as
described previously in Section 3.2.5. The sets of templates correspond to
the manually derived catalytic site descriptors from CSA [99], and to the
automatically generated sets of templates for ligand- and nucleic acid-binding
sites. A reverse template search is also performed, where the templates are
automatically extracted from the target structure and compare to a represen-
tative set of PDB structures. Most of the ProFunc computations run in parallel,
so that results from the different methods are made available as soon as they
are finished.
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5 Resources for Structural Characterization

5.1 Available Tools and Databases

Table 1 lists some of the available methods for predicting protein function
based on structural information. The methods are freely available, either as
software for download or as web services.

Table 1 Tools and databases for structure-based function prediction

Type Name Web site Availability[a]

Functional site
localization

SURFNET [74] www.biochem.ucl.ac.uk/∼roman/
surfnet/surfnet.html

S

CASTp [20] cast.engr.uic.edu/cast W
ConSurf [43] consurf.tau.ac.il W
SARIG [3] www.weizmann.ac.il/SARIG W
PPI-Pred [23] www.bioinformatics.leeds.ac.uk/

ppi_pred
W

PQS [50] pqs.ebi.ac.uk W
NOXclass [140] noxclass.bioinf.mpi-inf.mpg.de W

Molecular
function
characterization

SPASM [81] portray.bmc.uu.se/cgi-bin/
spasm/scripts/spasm.pl

S, W

PINTS [116] www.russell.embl.de/pints W
SuMo [54] sumo-pbil.ibcp.fr W
FEATURE [10] feature.stanford.edu/index.html S
WEBFEATURE [77] feature.stanford.edu/webfeature W
SiteEngine [110] bioinfo3d.cs.tau.ac.il/SiteEngine S, W
pvSOAR [19] pvsoar.bioengr.uic.edu W
I2I-
SiteEngine [110]

bioinfo3d.cs.tau.ac.il/
I2I-SiteEngine

S, W

MSDsite [44] www.ebi.ac.uk/msd-srv/msdsite W
CSA [99] www.ebi.ac.uk/thornton-srv/

databases/CSA
W

SURFACE [40] cbm.bio.uniroma2.it/surface W
SCOPPI [135] www.scoppi.org W
PIBASE [33] alto.compbio.ucsf.edu/pibase W
3did [119] 3did.embl.de W

Integrated ProFunc [72] www.ebi.ac.uk/thornton-srv/
databases/ProFunc

W

ProKnow [91] nihserver.mbi.ucla.edu/ProKnow W

[a] S = Software, W = Web site.
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5.2 Characterizing a Protein

In order to demonstrate how these different methods can be used for func-
tional characterization, we applied them to the structure of protein MJ0882.
Protein MJ0882 from Methanococcus jannaschii has been functionally charac-
terized based on the analysis of the structural model (PDB code 1dus) [52].
Backbone structure comparison revealed that 1dus is structurally similar to
several S-adenosylmethionine (AdoMet)-dependent methyltransferases, al-
though there was no significant sequence similarity. Manual comparison of
the cofactor AdoMet-binding site in methyltransferases and the equivalent
region in 1dus revealed considerable similarities. In particular, 1dus displayed
the conserved four motifs (motifs I–IV), characteristic of the AdoMet-binding
sites. The binding of MJ0882 to AdoMet was then experimentally confirmed,
indicating that MJ0882 is an AdoMet-dependent methyltransferase.

First, we applied several methods for functional localization to the 1dus
structure. In particular, CASTp identified the AdoMet-binding site as the
largest surface cleft. Consurf and SARIG also identified the the cofactor-
binding pocket residues. All these web resources for functional site localiza-
tion provided results within seconds.

Then 1dus was compared to a database of ligand-binding sites with PINTS
and the results were also obtained within seconds. The three top ranking
hits (lowest E-value) are all AdoMet-dependent methyltransferases with sig-
nificant E-values < 0.01 (see Figure 4 for the result with lowest E-value).
The matching residues correspond to the conserved motifs in the AdoMet-
binding site. The fourth-best hit is not a methyltransferase, but its E-value
(0.02) does not indicate high significance. SuMo rovided results within a
few minutes, but does not provide a measure of statistical significance for
the hits; therefore, results were not as easy to interpret as with PINTS. When
the results are ranked by the number of residues or by volume of the match,
among the top three ranking hits there is a match to an AdoMet-dependent
methyltransferase. In this solution the AdoMet-binding motifs II and III are
aligned. The other hits seem to be false positives. The SiteEngine web service
allows the comparison of a structure to a ligand-binding site. 1dus was com-
pared to the AdoMet-binding site of the TaqI DAN methyltransferase, PDB
code 2adm chain A [105]. SiteEngine correctly aligned the four motifs in the
cofactor-binding site. The entry in the CSA database for 1dus listed residues
in motifs I, II and IV, based on homology to the functionals site of another
AdoMet-dependent methyltransferase. Within a few hours ProFunc provided
a large array of results for the functional characterization of 1dus. Matches to
methyltransferases were reported in InterPro [83] and Superfamily [80] using
sequence-based methods and by SSM (backbone structure comparison). The
nest search method identified the AdoMet-binding motif I, and the AdoMet-
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Figure 4 Comparsion of protein MJ0882 (PDB 1dus) with a
database of ligand-binding sites with PINTS gives isoflavone O-
methyltransferase (PDB code 1fpx) as the best result (E-value
3.1× 10−5). The side-chains of the three matching residues in 1dus
(blue) and 1fpx (yellow) are shown superimposed. The three residues
correspond to the conserved AdoMet-binding motifs I, II and III. The
cofactor AdoMet from 1fpx is represented in orange.

binding pocket was identified by the residue conservation analysis and by
SURFNET.

To summarize, the methods for functional site localization correctly iden-
tified the cofactor-binding site. In addition, both PINTS and (less clearly)
SuMo results indicate that the protein has a functional site typical of AdoMet-
dependent methyltransferases. This was further confirmed by the comparison
of 1dus to the TaqI methyltransferase with SiteEngine and by the combined
results from ProFunc.

6 Current Applications

There are now documented examples for the application of structure-based
function prediction methods in generating valuable hypotheses for function
assignment. Some of these results have been used to guide further experi-
ments, which eventually confirmed the original predictions.

The application of the ET method to the RGS signaling family constitutes
an early documented success of function prediction. The predicted functional
site location was later confirmed by targeted mutagenesis and by structure
determination of the protein in a complex [112].

Another example is the functional characterization of the E. coli BioH pro-
tein [103]. The crystal structure of the uncharacterized protein was deter-
mined by X-ray crystallography. Backbone structural comparison results
revealed similarities to proteins with different enzymatic functions. TESS
was used to compare the structure to catalytic site descriptors compiled from
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CSA, resulting in a significant hit to the lipase catalytic triad and indicating
hydrolase activity. The protein was subjected to different enzymatic assays in
order to test for different types of hydrolase activity. The results indicated that
BioH is a carboxylesterase.

PINTS has been applied to structural genomics models, for which sequence-
based methods failed to identify any homology to known proteins [115].
The authors compared 157 uncharacterized structures to a database of de-
scriptors corresponding to ligand-binding sites and PDB SITE records. For
17 cases with significant overall fold similarity to a characterized protein,
PINTS confirmed the backbone structure comparison result with significant
structural matches to functional sites. For 12 query structures corresponding
to new folds, new functional hypothesis were suggested. The process is fully
automated and can be reproduced as more uncharacterized structures become
available.

7 Future Perspectives

In this chapter, we have reviewed a rather young and exciting field in bioin-
formatics, as can be demonstrated by the fact that more than two-thirds of the
references have been published within the last 5 years. The methods available
are rather diverse and the approaches quite exploratory. One can expect that
as function prediction tools based on structure are more routinely applied and
more thoroughly tested, a set of mature procedures will start to emerge. The
newly proposed pipelines ProFunc and ProKnow constitute a promising start.

We can also expect that standard test sets and evaluation procedures will
be introduced, analogously to the developments in the structure prediction
field (see Chapters 10–12). Particularly important in this respect is the further
development of databases of functional sites. They are essential for method
development, training, testing and application. As we have seen, several
functional site databases are already available but, in general, they include
a subset of functional site types: catalytic residues (CSA), ligand binding
sites (Relibase) or protein–protein interfaces (PIBASE, 3did). There is still a
real need for a comprehensive and accurate database of functional sites. In
principle, such a database could be implemented manually, but it would be
desirable to rely on automated approaches as much as possible in order to
reduce the time of data processing, increase coverage and guarantee consis-
tency. In this respect some promising strategies have been proposed to extract
conserved structural motifs [24, 47, 53, 87, 128]. The difficulty is then is to
distinguish between functional sites and nonfunctional/structural motifs.

A particularly important development is the integration of established
sequence-based approaches (Chapter 30) with structure-based methods. These
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methods go one step further than the identification of homology and directly
associate functional terms to the query protein [92, 98].

One can also expect that developments in the fields of structural genomics
and structure prediction will boost the range of targets for function prediction.
In this respect it is particularly relevant to ask how useful are predicted
structural models for functional annotation. The perspective some years
ago was not very optimistic [130], but the situation is changing [6]. It is
noticeable that predicted models are now being used together with other types
of information for the functional annotation of different genomes (see Chapter
12).

It is also reasonable to expect significant contributions to drug design and,
conversely, that methods developed for drug discovery to be applied in func-
tional characterization. As an example for the interplay between the two
fields, we start to see that application of virtual screening methods (Chapter
18) to the identification of potential natural ligands in functional character-
ization [56]. Better methods for characterization of protein functional sites
will have an impact in the development of new drugs, and in the better
understanding and prediction of side-effects.
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34
Mining Information on Protein Function from Text
Martin Krallinger and Alfonso Valencia

1 Introduction

In general, research discoveries made by means of experiments are commonly
published in the form of free text in peer-reviewed articles. These articles,
stored in scientific literature repositories, are a fundamental data resource for
research in molecular biology and biomedicine, and most current research
projects start with an extensive trawl through the literature. The scientific
literature is consulted by database curators to extract functional annotations,
by biologists to obtain information relevant to planning, set-up and interpre-
tation of experiments, and by pharmaceutical companies to aid in the selection
of new drug targets. In addition, most current knowledge about the functional
aspects of proteins was either directly (by manual annotation during study of
the literature) or indirectly (using electronic annotation, i.e. based on sequence
similarity to previously annotated proteins) derived from the biomedical lit-
erature. Therefore, most bioinformatics tools using functional annotations
stored in databases depend on prior extraction of functional descriptions from
the literature.

The rapid growth of entries and abstracts in biomedical literature databases
such as PubMed (Figure 1), the rapid discovery and analysis of new genes and
proteins, and the development and extension of biological ontologies (Chap-
ter 29) have increased interest in ways of extracting functional descriptions
automatically from text. Pointers from protein database entries to their cor-
responding literature, linking sequence information to textual descriptions,
are needed. The increasing number of characterized genes together with the
growth and accumulation of published biomedical articles makes it difficult
for biological databases to cope with the current flow of data.

Additionally the process of populating and updating annotations with in-
formation manually extracted from the literature implies considerable delay
between the publication and the entering of the annotations in biological
databases. Moreover, the curation process is itself very time consuming and
costly, requiring highly qualified domain experts.
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Figure 1 PubMed growth. Growth of the biomedical literature
database PubMed in terms of number of total accumulated entries
and abstracts for each year retrieved from PubMed using Entrez.

In model organisms such as the mouse genome, a more focused effort
is being made to keep existing annotations as complete and up to date as
possible (especially for disease-related genes and in some systems such as
the immune system), while for other organisms resources are insufficient to
keep annotations to the same level, even in cases in which articles providing
functional characterizations have been published.

Functional descriptions deposited in the form of database entries therefore
represent only a small fraction of existing functional information provided in
scientific publications.

Due to the existence of large collections of electronically available articles,
computational techniques such as text mining and information extraction (IE)
offer the possibility to not only speed-up database curation, helping in the task
of converting textual information into structured database entries, but also
to provide biologists with better access to functional descriptions extracted
from scientific publications. The use of IE techniques during the annotation
process can be very useful for maintaining the links between facts stored in
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databases and the underlying information extracted from the literature, which
in turn provide information on the experimental conditions supporting those
descriptions, which is usually not incorporated in database annotations.

Text mining and Natural Language Processing (NLP) systems are used for
target selection in the case of genomics projects, e.g. FungalWeb [14], and drug
discovery [56], complementing traditional bioinformatics strategies to extract
those enzymes which are potentially interesting for commercial purposes,
for example. In the case of commercial applications in the pharmaceutical
industry, text mining has additionally been used in the context of competitive
intelligence to monitor competitor information, mine patents, newswire and
scientific articles relative to information on drugs, diseases, gene products
and chemical compounds, as well as their respective associations. A range
of text mining and NLP systems have been recently developed, specifically
adapted to the demands and characteristics of biomedical literature, for a
review see [56].

This chapter covers basic aspects of data in the form of free text, the most
relevant features of information retrieval (IR), text mining and NLP systems
designed to provide functional information for proteins and genes. The au-
tomatic extraction of different types of text-based functional information is
discussed, such as extraction of protein annotations, interactions and subcel-
lular locations from the literature. The most significant resources and methods
are introduced briefly. Some of the evaluation metrics and performance as-
sessments currently in use to estimate the performance of existing applications
are also introduced.

2 Information Types of Protein Function Descriptions

Different types of biological information can be linked directly or indirectly
to protein function. A range of diverse experimental data served to deter-
mine protein functions – a considerable number of them are related with
the more traditional biochemical and molecular genetics techniques. More
recently a full range of technologies in genomics and proteomics (e.g. gene
mutation/knockout, coimmunoprecipitation of protein complexes, yeast two-
hybrid experiments, gene expression studies with DNA arrays and Chip-on-
Chip experiments) have become able to provide additional information on
protein function of a substantially different nature. The interpretation and
combination of all this information related with protein function can greatly
benefit from the use of IE techniques. Information on basically all kinds of
experimental results relevant to characterizing protein function is contained
in the literature.
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Most of the approaches are centered on the analysis of protein sequences
and structures (Chapters 30 and 33), and, more recently, on the analysis of
gene expression data obtained by microarray experiments (see Chapters 24–
27).

Database curators extract annotations supported by experimental evidence
from the literature. In the case of Gene Ontology (GO) annotation entries, an-
notators extract functional information from the literature, providing for each
record also the type of experimental information supporting the functional
annotation [15]. They thus convert information in the form of free text into
entries in structured databases [21]. To populate those database entries it is
crucial for annotators to retrieve and extract functional descriptions efficiently
from the vast amount of free text. IR, text mining and IE are becoming crucial
to save time and effort in manual human curation by providing better access to
functional information in biology. For this reason, the GOA database recently
included text mining as one of their evidence types for annotation (see also
Chapter 29 for more information on biological ontologies).

Humans transmit information by means of natural language expressions
to define, communicate and exchange descriptions of functional properties.
The way these expressions are formulated often depends on their context, e.g.
whether they are designed for annotation records or are embedded in scien-
tific literature. Textual data types often used to describe protein function are
basically free-text descriptions, functional keywords and concepts contained
in ontologies.

3 Literature Databases in Biomedicine

In order to carry out computational processing of textual data, as is done by
NLP, text mining and IR approaches, it is necessary to obtain free text available
in a digitally encoded format which can be read by electronic means. One
of the first efforts to construct a library of resources available in a machine-
readable format was Project Gutenberg. It is still one of the most successful
digital library projects, carried out by volunteers who digitize, archive and
distribute full-text data, mostly public domain books. Digital libraries are
closely associated with the Internet, often being accessed remotely via com-
puter networks. It was, in fact, the introduction of the world wide web and
the Internet, where users navigate hyperspace searching for information of
interest, which pointed out the importance of efficient IR and web and text
mining strategies. Efforts have been made to develop search engines which
deal with textual data specifically for academic literature (e.g. books, reports
and articles). In this context Google has made an important effort developing



3 Literature Databases in Biomedicine 1257

Google Scholar, which allows searching the scholarly literature for relevant
research articles, theses or books [13].

Digital libraries have also been constructed for life sciences, especially for
the biological and biomedical domain. The most significant of them is the
National Library of Medicine (NLM) from the US National Institutes of Health
(NIH), consisting of bibliographic databases covering the fields of life sciences,
biomedicine as well as other health care and preclinical sciences-related fields.

In life sciences, common knowledge, in contrast to the latest scientific dis-
coveries, is stored in books. The National Center for Biotechnology Informa-
tion (NCBI), a division of the NLM offers Bookshelf – a collection of biomedi-
cal books available online (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
?db=Books). In addition to books related to medical and clinical subjects,
this collection also includes standard biochemistry, molecular and cell biology,
developmental biology and immunology books.

The main attention has been paid to processing articles which contain new
scientific discoveries (at the time of publication). Citation entries of scientific
articles are stored in the PubMed/Medline database developed at the NCBI.
This digital library contains more than 15 million citations from over 4800
biomedical journals, most of them (over 12 000 000) articles in English (April
2005). Each entry is characterized by a unique identifier, the PMID. For more
than half of them (over 7 000 000), abstracts are available (Figure 1) and often
links to the full-text articles are displayed. In the case of old records (before
1975), only relatively few abstracts have been digitized and are provided by
PubMed. The PubMed abstracts are currently the most important data source
for text mining applications in Biomedicine [53]. According to our estimations
over million entries with abstracts contain information relevant to describe
important aspects of gene products, such as their function, expression or
relationships to diseases. Among the other elements contained in PubMed
records are author, journal and title information of the publication. For a
(small) number of records gene symbols and molecular sequence databank
numbers such as GenBank accession numbers are provided.

In order to characterize articles contained in PubMed, entries have been
associated to terms contained in a controlled vocabulary thesaurus with a
hierarchical structure – the Medical Subject Headings (MeSH) – allowing
searches with those terms at various levels of specificity [71]. There are
over 20 thousand descriptors in MeSH and it is used by the NLM to index
the entries in PubMed. The use of MeSH terms for text mining purposes
is a relevant subject of study in the medical informatics community, as they
provide associations of articles to a set of biomedical terms which characterize
them.

The PubMed database can be accessed online using a text-based search
query system called Entrez and offers additional programming utilities, the
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Entrez Programming Utilities (eUtils), to provide a stable interface to this
query system. The NLM also leases the content of the PubMed/Medline
database on a yearly basis, enabling download of the PubMed records in
eXtensible Markup Language (XML) formatted form.

Although some attempts have been made to process full-text biomedical
articles [22], the limitations imposed by accessibility and formatting have so
far prevented extended processing. Nevertheless, new initiatives related to
free and open access of scientific publications are increasing interest in the
mining of full-text articles. To provide free access of life science full-text arti-
cles, the NIH launched the PubMed Central (PMC) archive in 2000. It contains
a few hundred thousand full-text articles as well as book reviews. Efforts are
being made by the NIH to digitize older articles, to include new electronic
full-text articles and to develop a common format for archiving diverse con-
tent provided by different journals in the form of a Journal Archiving and
Interchange XML document type definition (DTD). Future developments of
PMC will allow searches using the entire body of full-text articles, promoting
integration of literature data with other resources such as sequence databases.

4 NLP

NLP methods are being used to handle large collections of electronic articles
contained in biomedical literature repositories. NLP is an interdisciplinary
research field concerned with the analysis, processing, understanding, mod-
eling and retrieval of natural language. The overall aim of NLP strategies
is, despite the complexity of human language, to explore the grammatical,
morphological, syntactical and semantic features of well-structured language,
in order to process, understand and model natural language by means of
computational tools [35].

The statistical analysis of large text collections regarding those features is
generally the basic approach used by NLP techniques. Those features are
inter-related and often combinations of different features are explored by NLP
strategies.

4.1 Grammatical Features

In NLP, grammar refers to the exploration of rules governing a particular
language, often referring to those rules which (by convention) are consid-
ered to determine the correct formulation of a specific language, such as
English. Among the grammatical features studied in NLP is the part of
speech (POS) of a word in a given sentence, the role it has in the context
of this sentence, whether it is for instance a noun, verb, adjective, adverb
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or preposition. Programs which automatically label words with their cor-
responding part of speech in a sentence are called POS taggers. A sample
output of a POS tagger corresponds to: Caspase-3 <Proper noun, sing.>
was <Verb, past tense> partially <Adverb> activated <Verb, past part.> by
<Prep. or subord. Conjunction> IFN-gamma <Proper noun, sing.>. [PMID
12700631], where each word in the sentence has been assigned automatically
to its corresponding POS label.

POS taggers are usually based on machine learning strategies previously
trained using a set of manually POS-tagged sentences. POS information has
been shown to be relevant for the identification of gene symbols, which often
correspond to nouns or for the extraction of protein interactions from text,
where proteins are often associated through a set of interaction-describing
verbs.

In order to account for differences in the use of POS for a given word in the
case of biomedical texts when compared to generic literature, the Medpost [88]
tool has been developed. It is a freely available POS tagger program specifi-
cally adapted to biomedical texts. The Medpost authors claim that this system
reaches an accuracy of 97% when applied to labeling the corresponding part
of speech of words from PubMed abstracts (compared to 86.8% when using a
POS tagger trained using generic texts), increasing accuracy over 10%.

4.2 Morphological Features

In the case of morphological features of natural language, word structures are
analyzed and rules of how words relate to each other are derived. Those rules
include, for instance, plural formation rules (e.g. gene and genes or caspase and
caspases are singular–plural pairs or the same entity) or verb inflection rules
(e.g. phosphorylate, phosphorylates and phosphorylating all refer to the same verb
root). Stemmer algorithms are used in this context to normalize word forms
to a common stem (word root), providing a way to link different words to
the same entity. After applying a stemmer algorithm [78], in the case of the
plural formation example, both word forms would map to the same stem, i.e.
‘caspas’.

A common problem associated with stemming algorithms is that they
sometimes collapse two words which are semantically different into the same
stem (e.g. for gallery and gall).

4.3 Syntactic Features

In order to understand the meaning of a sentence it is necessary to previ-
ously identify the relationships between its words, i.e. its syntactic structure.
Programs known as shallow parsers analyze such relations at a coarse level,
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focusing on the identification of phrases (groups of words which function as a
syntactic unit) [1]. A sample output using the commercial Connexor shallow
parser of the previous example sentence would be:

Caspase-3 <nominal head, noun, single-word noun phrase> was <auxiliary verb,
indicative past> partially <adverbial head, adverb> activated <main verb, participle
perfect> by <preposed marker, preposition> IFN- <premodifier, noun, noun phrase
begins> gamma <nominal head, noun, noun phrase ends>.

Each word is hence labeled according to its corresponding phrase. In partic-
ular, phrases where the head is a noun [noun phrases (NP)], “Caspase-3” and
“IFN-gamma” in the case of the example, and where the head is a verb [verbal
phrases (VP)] are often relevant for NLP applications.

Other useful features include the identification of subject–object relation-
ships from sentences [52]. A sample sentence of this approach, of sentence
type NP-VP-NP was: ’Smith and Mitchell (1989) found that [overexpression of
<Gene>IMEl</gene>] induced [an <GO>early meiotic event (recombina-
tion)</GO> in rich medium], but later meiotic events did not occur (i.e., they
detected [no spore formation])’. In this case the subject is represented by the
’IMEl’ gene and the object by the Gene Ontology term ’early meiotic event’.

Needless to say, any incorrect identification by the taggers tends to produce
a chain of errors during the posterior identification of the syntactic relations.

4.4 Semantic Features

An important issue for NLP strategies is the discovery of associations of
words with their corresponding meaning in a given context. To know the
semantics (meanings) of a word is a prerequisite to understanding the overall
meaning of a sentence. Dictionaries and thesauri provide such associations
of words with their corresponding meanings. In the case of the biomedical
domain, GO [32] (see Chapter 29) provides a set of concepts which are useful
to describe relevant biological aspects of gene products. Also, the collections
of gene names and symbols contained in SwissProt and other databases are
useful to discover whether in a given sentence a symbol might correspond to
a gene or protein. In the case of the following sentence:

Caspase-3 <GENE PRODUCT> was partially activated <INTERACTION VERB>

by IFN-gamma <GENE PRODUCT>.

the associations of words to their corresponding meanings are labeled. Caspa-
se-3 and IFN-gamma are identified as being gene products, and the verb
activated in this context refers to a verb which is used to express a certain type
of interaction between those two gene products. Gene dictionaries together
with the context of occurrence are often indicative of whether a given word or
symbol corresponds actually to a gene.
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4.5 Contextual Features

When words cooccur significantly often together within a certain textual con-
text (e.g. within the same document, abstract or sentence), they usually
display some kind of association. For instance, the cooccurrence of Caspase-
3 and IFN-gamma within the same sentence indicates that there is some
relationship between them.

To determine whether two documents are similar or whether two proteins
are mentioned in texts which are overall similar, the list of words (bag of
words) which build up those documents and their associated frequencies
(how often they occur within those documents and within the whole set
of documents) can be used. The statistical analysis of word frequencies or
patterns of word frequencies using large text collections is the base of learn-
ing statistical properties of natural language, and characterizing lexical and
structural preferences.

As discussed previously, these features are clearly inter-related and the
NLP analysis tends to explore the potential of these relations. For example,
words which were POS tagged as verbs and which often occur between
(connect) gene symbols with functional terms in sentences can indicate a
protein description. Similar approaches are commonly used to build patterns
of language expression that combine features at different levels. A sample
of such language expressions indicating a protein functional description is
“protein is involved in”.

5 Main NLP Tasks

NLP strategies have been applied to many different tasks, ranging from ma-
chine translation (automatic translation of texts from one language into an-
other) to the detection of typing errors in documents. Among the main tasks
addressed in NLP as applied to biomedical literature are IR, IE, question
answering (QA) and natural language generation (NLG), which will be pre-
sented in this section. General techniques and basic terminology used in NLP
are described in Table 1.

5.1 IR

To obtain documents related to a certain biological information, such as the
interaction between the caspase-3 protein and IFN-gamma, usually in a first
step literature databases are consulted to retrieve all the documents which
describe this interaction. Thus, all documents which are relevant to this
information demand should be retrieved. This is actually the overall aim of
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Table 1 General NLP terms and techniques

Corpus: collection of textual data or documents
Indexing: providing terms in textual documents with indices to allow formulation of queries

using those terms
Information extraction (IE): analysis of texts to identify entities, relationships and facts in text
Information Retrieval (IR): return relevant documents from a collection of documents according

to a predefined information need
Part of speech (POS) tagging: providing each word given a sentence with its corresponding POS

label, e.g. whether it is a noun, verb, preposition, article, etc
Question answering (QA): application of computational techniques to generate automatically

answers from text collections in response to user queries
Shallow parsing: process of identifying phrasal chunks in sentences like noun phrases, but

without providing a deeper grammatical structure
Stemming: process of removing affixes of words transforming them to their corresponding

morphological base form or root
Syntax parsing: process of returning the grammatical structure for a given sentence, often in the

form of a syntax tree
Tokenization: process of dividing a given text into predefined units, such as words or sentences
Vector space model (VSM): model to calculate the similarity between documents and queries

based on the weighted word vectors for terms comprised in the documents
Word sense disambiguation (WSD): process of determining the sense for a word given its

context, e.g ATM can refer to the ataxia telangiectasia disorder or the ATM gene,
depending on the context used

text IR systems – to retrieve from large documents collections as many rele-
vant documents as possible while retrieving as few as possible nonrelevant
ones. To provide relevant documents, those that satisfy a given information
demand must be previously identified. In practice, the information demand
is formalized or defined in the form of a query. Queries in IR are basically
formulations of user demands in the form of words or regular expressions
which contain semantic information related to the information need [6]. For
instance in our example, a sample query would contain the words “caspase-
3” and “IFN-gamma”, but it is easy to imagine that users would ideally like
to formulate more sophisticated queries such as: “all the documents about
capase-3 and IFN-gamma that describes an experimental interaction done in
vivo”.

To know which documents contain the words matching a given query it is
necessary to know previously which words build up each document. One
of the first steps towards building up an efficient IR system is indexing a
collection of documents, locating terms in text [101] and extracting documents
in which each term appears. Several strategies exist for locating these terms.
The steps common to most of them are:

• Word tokenization (splitting the text into words, e.g. using white spaces for
splitting).
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• Stop word removal (removing high-frequency words with low information
content, e.g. the, a or it).

• Case folding (transforming all upper-case letters to lower-case letters).

• Stemming (transforming words into their basic form by removing affixes).

• Term weighting (assigning a weight to each term according to its relative
importance, often based on term frequencies).

These steps help to reduce the vocabulary of terms and the number of query
formulations: e.g. the queries Glycogenin AND binding, as well as bind AND
glycogenin, would retrieve the same documents. The most common strategy
used when building the index is based on inverted file indexing, in which an
index structure that comprises for each term a list of references to documents
which contain this term is created [101].

The most widespread information retrieval models are the Boolean model
and the vector space model (VSM) – a detailed discussion of different IR mod-
els including some probabilistic IR models can be found in Ref. [6]. In the case
of the Boolean model, the query is based on the combination of terms using
Boolean operators (e.g. AND, OR and NOT). A sample Boolean query would
be “caspase-3 AND IFN-gamma”, which should retrieve all the documents
containing both query words. These query terms are matched against the
terms comprised in the inverted file index and a list of documents that satisfy
the query expression is returned. The IR system used in PubMed allows
such query types [85]. Nevertheless, this type of query usually returns large
collections of documents, a considerable number of which are not relevant to
the information requested. In addition, relevant documents that do not satisfy
exactly the query expression will be absent.

To retrieve documents that are similar to a given list of query terms or
that are similar to a given query document, methods based on the VSM are
commonly used. In the VSM approach, each document is represented by a
vector of terms derived from the document. Each term is weighted according
to its relative importance (frequency) within the document and/or within the
whole document collection [60]. In addition, the query is represented as a
vector of weighted terms. Several different weighting schemes for terms have
been developed, but the most widespread are the tf × idf strategies, which
include information on term and document frequencies. The term frequency,
t fi,j, is the frequency of occurrence of the term j in the document i, whereas
the document frequency d fj is the frequency of occurrence of that term in the
whole collection of documents. The resulting weight wi,j of term j in document
i, given N documents, is obtained by:

wi,j = t fi,j × id fj , (1)
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where id fj is the inverse document frequency:

id fj = log

(
N

d fj

)
. (2)

As in the case of term weighting, different ways of calculating similarity
measures for the term document vectors have been proposed [60]. The cosine
measurement is often used to calculate the similarity between the term vector
obtained for the query Q and the term vector obtained for each document D in
the document collection. Most of them include a normalization factor to avoid
the influence of document length. In the cosine measurement, the similarity
sim(Q, D) between the query and a given document is:

sim(Q, D) =
∑V

j=1 wQ,j ×wi,j√
∑V

j=1 wQ,j ×∑V
j=1 w2

i,j

. (3)

The query and the document vectors are represented in a V-dimensional
Euclidean space, with V being the number of all terms.

The retrieval strategy behind the related article search in PubMed is based on
the idea behind the VSM [100], i.e. to provide for a given query document a list
of documents ranked according to their similarity to the query document. It
allows PubMed document-based queries, returning those records which share
relevant terms (words) with the query document on the basis of the frequency
of those terms in the whole document (PubMed) collection. The eTBLAST
search engine [97] carries out similarity searches using user-provided input
text, e.g. paragraphs, whole articles or even proposals, and retrieves similar
ones from PubMed.

In practice, not only the calculation of similarities between a single doc-
ument and each of the documents in the document repository might be of
interest. It is also possible, given a set of documents which mention proteins
belonging to the same protein family [3] or genes sharing the same cluster
derived from a microarray experiment [75], for instance, to automatically
extract relevant keywords for this set of documents when compared to the
background frequencies of these terms (in the whole document collection).

The performance of IR systems is usually evaluated by means of two rele-
vant feedback parameters, precision and recall. Precision amounts to the num-
ber of relevant documents retrieved divided by the total number of documents
returned, while recall is the proportion of relevant documents returned by the
system divided by the total number of relevant documents. IR performance
is often expressed in terms of precision–recall curves. In addition, the f -score,
the harmonic mean of precision and recall, is sometimes used to score IR
performance [6].
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5.2 IE

Although retrieval of relevant articles is one of the first steps to obtain rel-
evant information, these methods do not provide fine-grained identification
of specific entities such as genes and proteins, and their respective functional
descriptions. For instance, when searching for articles mentioning functional
aspects of a specific gene such as the Drosophila gene peanut [74] using IR
systems, many nonrelevant articles are usually retrieved which are related to
other topics such as peanut allergy. This is due to the fact that IR techniques
do not disambiguate the meaning of words – they are centered merely on
the presence or absence (i.e. frequencies) of words and terms. Moreover,
most of the genes have a range of synonyms or can be mentioned using the
full name or one of their corresponding gene symbols [19]. Therefore, to
retrieve all the articles describing functional aspects of genes would imply
first searching using all the different combinations of gene names, symbols
and typographical variants of these gene symbols, and then selecting those
documents which actually are related to the gene of interest. IE methods
are useful to avoid this time-consuming process and automatically mine sen-
tences or text segments containing specific entities of interest (e.g. proteins,
genes, drugs). For instance, an efficient IE system would identify that the
first of the following sentences mentions the peanut gene, while in the second
sentence the peanut plant (Arachis hypogaea) is mentioned:

(i) The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to
yeast putative bud neck filament proteins [PMID 8181057].
(ii) In this study, we identified a novel PLD gene in peanut (Arachis hypogaea), encoding a
putative phospholipase D (PLD, EC 3.1.4.4) [PMID 16200410].

IE refers to the automatic identification of entities [named entity recognition
(NER)] of relationships between those entities, as well as facts and events from
unstructured text. IE methods applied to generic or newswire texts have been
used to identify company names, persons, locations or events such as terrorist
attacks from text. In fact, the identification of entities (NER) in text has been
addressed by IE systems for years [39]. In the pharmaceutical industry, IE
systems are being used not only to identify textual passages referring to gene
names and drugs, but also extract information relative to competitor compa-
nies and their current research interests from scientific articles, newswire texts
and patents.

In the case of academic IE applications developed for the life science litera-
ture, they are mainly related to the identification of biological entities such as
genes, proteins, cell lines and chemical compounds, as well as the extraction
of protein interactions and protein functional annotations [9].
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IE strategies exploit all kinds of features of natural language, including syn-
tactical, lexical and contextual features to identify and characterize relevant
biological information. Among the most frequently used NLP techniques in
IE are POS tagging, shallow parsing and stemming (Table 1).

Often, certain additional features (e.g. use of capital letters and hyphens)
are explored by IE systems designed to identify entities such as gene names
[39]. Some IE strategies use rule-based approaches to detect certain word
patterns which are often encountered within gene names [34], or language ex-
pressions indicating protein interactions [76], phosphorylation [46] or protein
functions [25].

Although some strategies generate rules automatically [92], most of them
rely on rules generated manually by domain experts [10, 52].

Domain-specific knowledge is used by IE systems to account for linguistic
properties that are characteristic of the scientific literature. Many IE proce-
dures take advantage of knowledge representations such as ontologies (e.g.
GO) for the extraction of functional descriptions or annotations of proteins
from texts [80, 91].

In the case of the identification of gene names, IE methods can rely on the
availability of gene lists provided by biological databases [34] or use machine
learning techniques (trained on manually gene-tagged texts) such as support
vector machines (SVMs) [67] (see also Chapter 26) or hidden Markov models
(HMMs) [50] (see also Chapter 3), identifying also gene names which are not
yet included in existing biological databases.

A more detailed discussion of different applications of IE systems is pro-
vided in Section 6.

5.3 QA

To obtain information, humans formulate questions using natural language
expressions such as: “(i) What are the molecular functions of Glycogenin ?” or
“(2) Which organisms express glycogenin?”. The field of QA addresses the
automatic generation of answers to specific user queries formulated as natural
language expressions to large document collections [31]. Most of the existing
QA techniques are limited to general literature or newswire texts and have not
yet been tailored to the biology-specific literature. In the best of the cases they
are only effective for questions that can be answered with few words derived
directly from text passages. The development of QA systems in biomedicine
and molecular biology is especially cumbersome because these are poorly for-
malized, very heterogeneous domains and new scientific terms are constantly
created. Question parsing is one of the steps used by QA systems, consisting
of the analysis of the query sentence with respect to its semantic structure
(semantic representation). In the first example question, two elements are



5 Main NLP Tasks 1267

significant, i.e. the entity glycogenin (protein) and its molecular function. The
next step would involve question analysis of the input question to obtain the
relevant content words to perform IR, e.g. the words glycogenin and functions.
In this step, the words or tokens to be used for IR searches are determined.
Then, the actual document retrieval using those words is carried out, yielding
a (ranked) list of relevant documents. In this case, the actual query could
consist of glycogenin AND function. The retrieved documents are then split
into segments or passages to avoid processing of long documents and to
operate by using only the relevant segments (document segmentation step).
To extract those segments which might contain the desired answer (which
contain the query entities), the segments are ranked and each segment is
further processed at the sentence level to identify relevant entities. Then,
the question and the potential answer segments are compared (word overlap)
and ranked according to their word usage similarity to the input question.
Words can also be weighted taking into account their background frequency
within the whole document collection. Finally, the potential answers are
ranked, visualized and presented to the user. In the case of the used example,
the following PubMed abstract sentence could be presented: Glycogenin is a
glycosyltransferase that functions as the autocatalytic initiator for the synthesis of
glycogen in eukaryotic organisms [PMID 15849187].

One of the few QA systems in the biomedical domain was developed by
Galitsky [30]. This system is based on the use of semantic skeletons (SSK),
which consist of matching the semantic representations of a given question
to that of the set of potential answers. It thus tries to match the formal
representation of a question with the formal representation of an answer.
By introducing logical programming strategies it was also able to handle
semantic rules.

Many of the existing QA systems for the genomics domain were developed
in the context of the Text REtrieval Conference (TREC) Genomics track – a
contest to evaluate information retrieval and QA techniques applied to the
biology literature. The Genomics track is one of the areas addressed at TREC
– a periodically organized workshop where previously posed tasks of IR and
QA for different areas (including spam filtering and IR at a terabyte level) are
evaluated. At the ad hoc retrieval task of the TREC Genomics Track 2005 [37],
a collection of sample topics containing a topic title, information need and
topic context (formulated as natural language expressions) was given to the
participating systems, which had to return the PubMed documents relevant
to this information need. For instance, one of the topic titles was: “Find
information about base sequences or restriction maps in plasmids that are
used as gene vectors”.
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5.4 NLG

The output of QA systems consists of those sentences in text collections that
hold relevant information to the question formulated. There is increasing
interest in the construction of natural language texts as output of QA sys-
tems, to facilitate to the end user with the interpretation of the information
provided. Displaying database contents or the results of gene annotation
efforts as automatically generated reports or summaries is also attracting some
attention.

NLG is concerned with the development of natural language texts by com-
puter programs based on a semantic input, i.e. providing a computer-internal
representation of the information [24]. NLG systems show different degrees
of complexity, ranging from canned text systems, which return unaltered sen-
tences without any change, to complex feature-based systems. NLG has also
importance for automatic generation of summaries. Kang and Park developed
a system for automatically constructing gene summaries from articles by
selecting and ordering those sentences which contain gene related facts [48a].
Therefore they also took into account aspects related to the arrangement of
sentences to provide a coherent discourse of the summary. Currently, NLG
tools are only efficient in the case of very specific applications. In the case of
biology-related texts, the additional difficulty of modeling domain language
has to be considered.

Only a limited number of NLG systems have been applied in the biolog-
ical domain. The Simpathica/XSSYS trace analysis tool combines a natural
language query system and a story generation system in a bioinformatics
tool devoted to the analysis of biological data such as those resulting from
microarray time course experiments [4]. It uses prepositional temporal logic
and generates sentences of biologically relevant facts using a set of heuristics.

6 Difficulties when Processing Biological Texts

Computer programming languages are aimed at providing a standardized
way of unambiguously expressing instructions to a computer using well-
defined syntactic and semantic rules. In contrast, human language is char-
acterized by complex grammatical constructions, and both semantic and syn-
tactic ambiguity. In the case of semantic ambiguity, a given word can have
different meanings (polysemy) depending on the context it is used in or
even on the background knowledge of the person who is interpreting it.
An example would be the previously mentioned case of the word “peanut”,
which depending on the context could refer to a Drosophila gene, a plant or
a plant seed. To automatically identify the correct meaning of words (word



6 Difficulties when Processing Biological Texts 1269

sense disambiguation) is especially cumbersome in cases where these words
are used in a similar contexts (e.g. protein symbol and the associated disease
name). There is also a significant semantic variability in natural language,
meaning that two different words (synonyms) or even text fragments (tex-
tual entailment) can have the same meaning. The words apopain and Yama
correspond to synonyms of the same human gene, i.e. CASP-3. For the
identification of gene synonyms most methods rely on the synonym lists
provided by biological databases, which are often incomplete. Also, novel
names and terms are constantly created and used in the literature which are
not included in any of the existing dictionaries.

Human language allows us to express the same meaning in a range of
different ways. To infer (entail) that one text fragment has the same meaning
as another text fragment is especially cumbersome [23]. This scenario is one of
the main challenges for systems which try to associate proteins to functional
terms such as GO terms, as a variety of different language expressions may
display the same meaning of a single GO term. The following two sentences
illustrate this difficulty:

(i) Fim1 is involved in cell division.
(ii) Fim-1 function in cytokinesis.

In this case both sentences have essentially the same meaning, but only in the
second case is the standard GO term cytokinesis used.

Another difficulty is syntactic ambiguity, i.e. sentences can be interpreted
in different ways depending on how the reader interprets the syntactic con-
nections between words and arranges them into sentences. The sentence “We
analyzed the protein with a functional complementation” could be interpreted as:

(i) The protein was studied using the functional complementation technique, or
(ii) The protein which displays functional complementation was studied

To avoid repetitions and to improve writing style, pronouns are commonly
used to refer to previously mentioned nouns. For instance the word “These”
refers to the proteins Bax and Bad in:

(i) Bcl-2 and Bcl-xL expressions were down-regulated after paclitaxel treatment in
FHIT-expressing cells, whereas Bax and Bad expressions were up-regulated.
(ii) These were reversed by siRNA treatment.

To identify those relationships between pronouns and nouns, known as
anaphora resolution, can be arduous, especially in long and complex sen-
tences, and when the noun and pronouns are located far from each other
within the text. Authors of anaphora resolution systems developed for
biomedical literature claim that they reached a precision of 77% and recall
of 71% [16].
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Another difficulty arises because most words in texts occur extremely in-
frequently (data sparseness) and have an uneven distribution. Only a small
number of words, known as function words, like prepositions, appear with
high frequency and are very common. Zipf’s law describes this characteristic
of frequency distribution of words in human language, where a few words
appear very often, a middling number corresponds to medium frequency
words and the majority are low-frequency words [63, 82]. It is difficult to
make predictions of word behavior when relevant words are rare or often not
picked up in the data set used to derive the statistical language models, but do
appear in data used to test the model. Word frequency distributions are not
only affected by the size of the dataset used, but also by the corresponding
domain language.

Most of the currently available NLP technologies were developed using
generic texts and word frequency distributions differ depending on the do-
main. Thus, the performance of generic tools is lower when used for biomed-
ical literature.

The majority of life science articles published since the 1950s are in English,
but more than half of the corresponding authors have a different native lan-
guage. The writing style of authors has been shown to depend upon their
native language, resulting in variations of word and phrase usage as well
as writing style and average sentence lengths. In some cases, this lack of a
standard scientific English can reduce the understanding and processing of
scientific communications [73].

Mining of biology literature is especially challenging, as it is a rapidly
evolving, poorly formalized domain with ambiguous and flexible naming
of entities. Often, new gene names are created which are not contained in
gene lists of any biological database. The domain is characterized by a great
deal of domain-specific terminology (over 12% consists of domain-specific
terms) [89], but existing dictionaries are incomplete and standard terminology
is rarely used. Some systems tried to circumvent this drawback by developing
automatic term recognition systems [72]. NLP tools, which process biomedical
literature, have to be adapted taking into account knowledge and features
which characterize texts of this domain.

Low-level processing, even tokenization, i.e. dividing texts into units such
as words or sentences, is cumbersome in scientific texts due to the heavy use
of punctuation marks and special characters. Anyhow, an increasing number
of strategies are being developed to solve the important task of extracting
functional information from life science texts. Performance of such systems
is increasing not only due to adoption of more sophisticated approaches,
but also due to the availability of new textual training data which allows
the training and comparison of alternative methods. The following section
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provides an overview of the different applications which have been developed
in this field.

7 Strategies of Extracting Functional Information from Text

A variety of strategies have been devised to associate proteins with functional
information derived from scientific text elements which can be processed by
computational tools.

There are two basic types of text mining approaches supplying functional
information through literature analysis. The first comprises direct function
extraction methods that identify functional annotations from text, i.e. associa-
tions of proteins with functional expressions (keywords, concepts, phrases)
using IE, heuristics, statistical and machine learning techniques and rule-
based strategies. The second type of approach comprises indirect function
extraction methods that discover characteristics of proteins related to the
biological context in the whole cell. These indirect methods include the text-
based discovery of protein interaction partners and networks, the cellular
localization of proteins [90] and the extraction of kinetic parameters [33]. Both
methods, as well as the previous tagging of proteins in text, are discussed
here.

7.1 NER and Protein Tagging

After retrieval of an initial set of documents that might hold relevant infor-
mation for proteins, it is crucial to precisely identify those entities within
the articles and to link them to entries in biological databases. The second
step is called NER. While the first step of name identification is generic,
i.e. basically the same in a wide variety of domains, the second step differs
between domains. In biology it requires the precise identification of the
individual gene (and not the generic name of a family) and the corresponding
organism.

NER has been studied by the IE community for years. In the case of entities
such as corporate names and locations, NER techniques achieve an f -score of
over 0.9 [105]. The recognition of biological entities is far more complex and
the results in protein tagging are clearly worse than in the identification of
other entities like corporate names.

Difficulties in identifying correctly protein names in texts are of various
types. Authors who refer to genes and proteins in articles often do not use the
official gene symbols, but express those entities using synonyms or full gene
names instead [19, 41]. The disambiguation of gene names that correspond
to medical terms or common English words, such as many fly genes, e.g. 18-
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wheeler or amnesiac, and the existence of alternative typographical variants of
gene names constitute additional hurdles. Even associating genes with the
corresponding source organism is cumbersome, as 14% of genes are estimated
to display inter-species ambiguity [19]. Finally, the ambiguity between dis-
tinct protein names and their protein family names lowers the performance of
NER systems in the biology domain [56] [e.g. protein kinase C (PKC) family
and individual members such as PKC-α, -βI or ζ]. Also new gene names
appear in texts which are still not contained in any biological database – to
identify those novel gene symbols is only possible using methods which are
able to use inference from the context.

The performance of top-scoring NER systems that tag protein and gene
names ranges from f -scores of 0.7 to 0.9 depending on the organism source
of the gene names [38], the method used as well as if distinction between
identification of proteins, DNA and RNA was made [50]. Nevertheless, this
performance was reached using documents which had been previously fil-
tered and were known to be associated to certain model organism genes.
Therefore, when randomly selecting a document from the PubMed database
and tagging gene and protein names, the overall performance of these systems
would be lower.

When addressing the NER of proteins, two basic perspectives can be dis-
tinguished. The bioinformatics perspective (gene dictionary based) focuses
on the exploration of typographical variants of gene names and symbols
extracted from biological databases and the use of approximate string match-
ing [57]; whereas the computational linguistics perspective (NLP based) uses
linguistic aspects such as POS information [29]. Most of the currently available
tools are hybrid systems combining characteristics of both approaches. They
integrate methods such as statistical analysis, machine learning techniques,
rule-based strategies, morphological features, context and lexical exploration.
A sample case of the first perspective is the ProMiner system [34] – a rule-
based strategy which also integrates a disambiguation procedure to associate
a detected gene to its database entry. To associate genes to database entries,
the contextual words in which these gene names occur as well as infor-
mation about the organism source of the gene symbol is generally used.
The disambiguation between mouse genes and human genes is in practice
especially difficult, as many homologous genes have the same symbols in both
organisms; additionally, often within a given text passages both organisms
are mentioned. In the case of machine learning strategies the PowerbioNE
system is one of the most effective systems to detect biological entities [107]. It
uses morphological, grammatical and syntactic features which are integrated
into an hidden Markov model (HMM) entity recognizer. Although a number
of NER systems have been constructed for the biology domain, only few
of them are available and used in practice. Some of them are available as
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online taggers such as GAPSCORE [17], a SVM-based system which scores
each word of an input text based on statistical models and permits a cutoff
setting different degrees of stringency to be defined. Some NER systems can
be integrated into local text mining systems. The ABNER open-source tool
[86] uses machine learning techniques, i.e. conditional random fields (CRFs),
to tag biological entities. It identifies protein DNA, RNA, cell lines and cell
types (Figure 2). This system provides an easy-to-use graphical interface and
incorporates routines to train new modules on other text collections. Another
system which has been used to identify bio-entities is the AbGene system [92]
– a program which uses POS information, manually generated rules, and
suffix and context information to identify potential gene names. In addition,
it applies naive Bayes learning to analyze the whole document context for
the likelihood of whether it contains gene names. The drawback of these
two systems is that they lack a linking procedure for connecting identified
proteins to existing database entries. A useful tool which also carries out the
database-linking step and can be run locally is called NLProt [67]. It combines
SVMs with dictionary and rule-based filtering to identify protein names in
biomedical articles, but lacks identification of other entities such as cell types.
A sample output of the NLProt system would be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<abstract id="">
<protname score="1.023" method="SVM" dbid="ICE3_HUMAN" idreliab="100%"
org="homo sapiens">Caspase-3</protname> was partially activated by <protname
score="1.105" method="SVM" dbid="ING_HUMAN" idreliab="100%" org="homo
sapiens">IFN-gamma</protname>.
</abstract>

NLProt also provides a reliability score for the identification and linking of the
recognized proteins.

Other useful biological entities are chemical names. useful biological enti-
ties are chemical names. The identification of chemical concepts in text was
studied by Wilbur and coworkers [99]. They tested various strategies and
implemented a statistical method that could reach 97% classification accuracy.

Users often like to search for related articles by means of a query protein
sequence rather than protein symbols. MedBlast is a literature-mining tool
which allows both search strategies for retrieval of relevant articles, i.e. search-
ing with a query sequence or using gene symbols [93]. It integrates a BLAST
search of GenBank and then retrieves the relevant articles for genes with a
significant sequence similarity directly from PubMed. It thus integrates both
sequence searches with protein name identification.
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Figure 2 ABNER. NER system of biological entities such as genes,
proteins, DNA and cell lines based on CRFs.

7.2 Associating Proteins with Biological Features from Databases
and Ontologies

Database curators extract functional protein annotations manually through a
time-consuming and labor-intensive process of scientific literature analysis.
Due to the vast amount of literature currently available and the increasing
number of genes studied, humans are only able to review a small fraction of
the existing publications. Thus, the manual annotation process lags behind
the information that accumulates in biomedical articles. Text mining and
IE methods have been developed. to avoid this bottleneck and to assist
in the identification of functional descriptions of proteins and in automatic
annotation extraction.

Procedures extracting functional descriptions of proteins rest upon charac-
teristics of IE and IR methods, and exploit all the different features of natural
language, especially grammatical, syntactic and semantic features.



7 Strategies of Extracting Functional Information from Text 1275

There are two basic types of text mining strategies designed for functional
annotation extraction, although many tools combine aspects of both:

• Identification of annotation-relevant sentences: methods which automati-
cally classify text passages or sentences according to whether they contain
functional descriptions of proteins.

• Identification of protein-term associations: extraction of relations between
proteins and predefined terms, such as concepts from biological ontologies
(e.g. GO) or functional keywords from biological databases (e.g. Swiss-Prot
keywords).

In the first approach, the context information provided by text passages or
sentences in which the proteins are mentioned aids in the appraisal and inter-
pretation of the descriptions. In addition, as descriptions are not limited by
a predefined set of functional terms, they account for the variety of language
expressions involved in functional descriptions. The main drawback of these
strategies is their limitation when inferring function from electronic annota-
tion (i.e. based on sequence similarity) as they do not provide associations
between proteins and controlled vocabulary concepts (e.g. GO terms) as well
as the implicit difficulty while dealing with certain uninformative words. This
means that the extraction of annotation-relevant sentences requires human
interpretation.

The system developed by Andrade and coworkers [3] extracts functional
information from PubMed sentences by means of statistical analysis of the
word frequencies of sentences related to each protein family compared to the
background frequencies of those words for the whole set of protein families.
It thus detects biologically significant words useful to describe functional
aspects of protein families. An inherent difficulty of this approach is the
existence of words which are statistically associated to a protein group, but
are not useful for describing functional aspects.

Beyond the level of single words, the identification of consecutive word pat-
terns, which are often used in functional descriptions of proteins in abstracts,
has been studied [55]. In the presence of protein names, these patterns indicate
that a functional description is provided, e.g. “gene is essential for”. Such
approaches are useful in combination with NER systems to classify whether
sentences correspond to functional descriptions. The main limitation of such
techniques is related to the construction and evaluation of extensive lists of
word patterns, which is a time-consuming process and requires domain expert
knowledge.

A more sophisticated approach was used by the BioIE system – a rule-
based method for identification of informative sentences [25]. For a given
query term (e.g. gene names) it returns a list of sentences which match a
set of manually defined templates and rules for the extraction of informative
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sentences. The identified templates are highlighted within those sentences
and information of the word distributions is also provided. This system
(available as an online server), focuses on the extraction of sentences with
information related to predefined categories, i.e. structure, function, diseases
and therapeutic compounds, localization and familial relationships. BioIE
has been integrated into a web-based annotation tool called METIS. METIS
performs for a given query sequence a BLAST search against the Swiss-Prot
database. Then, for the retrieved entries, a structured report is generated and
informative sentences are extracted from PubMed using BioIE as well as a
SVM-based sentence classifier.

The use of a curated set of concepts and functional terms with established
value for protein annotation is one of the main advantages of the second strat-
egy. These concepts can be used to transfer function by electronic annotation
and, in the case of terms derived from ontologies, even allow inference of
other functional terms taking into account the ontology structure. However,
the use of a limited set of concepts is a restrictive approach, as the concepts
only correspond to a fraction of the possible ways of expressing function in
text due to the semantic variability of natural language. Moreover, concepts
derived from ontologies or thesauri often do not resemble natural language
expressions (which implies lower recall).

The implemented systems that extract protein–concept associations show
different degrees of complexity, ranging from simple cooccurrence of gene-
and concept-indexed sentences to complex pattern matching and machine
learning techniques. In addition, the unit chosen as context for the associ-
ations may vary – some use single sentences, others use passages or whole
abstracts.

The simplest approach is concerned with cooccurrence extraction, i.e. min-
ing those text fragments in which gene products and functional terms cooccur
[47]. The Gene Information System (GIS) selects sentences containing func-
tional information by indexing abstracts with genes and functional terms
contained in a domain-specific lexicon (lexicon analysis). The iHOP [40] appli-
cations offer the possibility of extracting sentences with genes and functional
terms such as GO or UMLS terms (Figure 3).

Most of the term-association extraction tools derive their functional concept
lexicon from GO [5] or UMLS [11], or use Swiss-Prot keywords. GO concepts
are principally constructed for annotating gene products unambiguously and
consistently, regardless of their use for NLP tasks. Therefore, only a fraction
of these terms can be mapped directly to biomedical abstracts [65]. Krallinger
and coworkers [54] analyzed the compositional structure of GO terms to
construct a rule-based system which generates natural language variants for
certain GO terms. They also considered the individual word tokens that build-
up these terms to retrieve annotation-relevant text passages.
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Figure 3 iHOP. The iHOP application allows for the automatic
extraction of annotation-relevant sentences by identifying links
between proteins and functional terms.

GoPubMed is a useful online resource which carries out an ontology-based
literature search for a given PubMed query (e.g. using gene names) [26]. It
utilizes a GO term extraction method based on morphological features (word
stemming) and alignment of words forming GO terms to words which build-
up PubMed abstracts. The terms forming the actual query as well as GO terms
are highlighted in the retrieved abstracts and for each GO term an accuracy
value as well as the definition of the term is provided.

Koike and coworkers followed a more NLP-based approach. They describe
the association between genes/proteins/protein families and the functional
concepts in the form of an Actor (which performs the action) and Object (which
receives the action) relationship. To extract these relationships, they used
shallow parsing and sentence structure analysis techniques. Terms which are
semantically related to GO concepts are semiautomatically generated through
literature-based term cooccurrence analysis and rules that result in morpho-
logical and syntactic variations of GO concepts.

The Medical Knowledge Explorer (MeKE) tool uses a different approach to
creating synonyms for GO terms. It applies stemming and flexible matching
before indexing the word tokens forming GO terms in the corresponding
PubMed sentences. Then it extracts new GO synonyms by calculating the
edit distance between the candidate synonyms and the actual GO terms. Via
alignment of words forming sentences, MeKE also learns sentence motifs
(consecutive words) relevant to functional descriptions. Finally, a naive Bayes
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classifier is used to estimate the overall likelihood of a given sentence corre-
sponding to a gene–product–function description.

A statistical analysis of words appearing in Medline records is the basis of
the GO engine [104], which calculates the frequency of association between
terms derived from the literature and distinct GO concepts. The GO engine
combines this text analysis with sequence similarity information and protein
clustering to annotate proteins automatically.

A machine learning approach to the annotation of proteins with GO con-
cepts based on whole abstracts was explored in Ref. [80]. They classified the
documents associated with a given query protein according to their associa-
tion with GO concepts by using a maximum entropy algorithm. The query
protein is then annotated by combining the GO classifications from all the
documents by means of a weighted voting scheme.

Regular expressions are often used to map biological concepts to the lit-
erature. The Textpresso system [68] consists of a text mining tool available
online developed to support the process of WormBase database curation. It
also operates on full-text articles, and includes classes of biological concepts
and relations that include genes, alleles, cells and phenotypes as well as
GO concepts. Additionally, classes which relate objects to each other (e.g.
associations) are used. To tag these concepts, an extensive list of regular
expressions was integrated into Textpresso.

Many of the tools which extract functionally relevant sentences or associa-
tions of proteins to functional terms are at an early stage and constitute recent
developments, and therefore need further evaluation by the user community.

7.3 Mining Interactions and Relations from Text

Proteins instantiate their biological function by interacting with other biomol-
ecules in the context of biological systems. For instance, enzymes which
function as protein kinases catalyze the transfer of phosphate from ATP to
the hydroxyl side-chains of the interacting proteins, and are part of important
signaling pathways. The assembly of interaction networks of single proteins
into a complex pathway is crucial to generalize function for a set of proteins
(biological process) and to understanding the mode of operation of whole
biological systems.

Large-scale techniques such as the yeast two-hybrid system or protein pull-
downs are used to experimentally identify protein interactions. The biomed-
ical literature holds information on both interaction partners and interaction
types. II and IR methods are used to automatically identify these interactions
from articles. One of the main advantages of text mining techniques with re-
spect to the high-throughput experimental approaches (i.e. yeast two-hybrid
or pull-down approaches; see Chapter 31) is their capacity of characteriz-
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ing the nature of the interactions and their directionality, and not only the
pure presence of an interaction. Interestingly, the structure of the interac-
tion networks derived from the literature is similar to the one determined
experimentally and both follow a characteristic power-law distribution with a
scale-free topology [18, 42].

The extraction of protein interactions has attracted special attention within
the biomedical text mining community. It is currently one of the most popular
topics, and several online applications devoted to protein interaction extrac-
tion are currently available.

A straightforward strategy for extracting protein interactions is based on
simple cooccurrence of previous gene- and protein-indexed articles. These
approaches assume that, if two proteins frequently appear together in docu-
ments, they display a biological relationship. The PubGene system exploits
the cooccurrence idea by indexing PubMed abstracts and titles with human
proteins, and then constructing an interaction network based on all the binary
interactions retrieved between cooccurring proteins [47].

Co-occurrence analysis alone does not permit the type of relationship be-
tween the interacting proteins to be determined. This was addressed by
the SUISEKI [10] system, which is based on the use of frames, i.e. patterns
which correspond to language expressions used to describe protein interac-
tions within single sentences. Each interaction is scored on the basis of the
frequency of repetition of cooccurring proteins within frames as well as on
the individual reliability score calculated for each frame type.

The Internet-based Chilibot application [18] includes NLP methods such
as POS tagging and shallow parsing, as well as a set of rules to extract rela-
tionships between biological entities, i.e. genes, proteins and drugs. This tool
defines the directionality of interactions and classifies sentences into five basic
types: in addition to abstract cooccurrence, it defines stimulatory, inhibitory
and neutral interactions, as well as negative interactions (noninteractions).

The Biomolecular Interaction Database (BIND) contains information about
curated molecular interactions. Extracting these interactions manually from
the literature is very time consuming. To speed-up the discovery process, a
machine learning technology called PreBIND [27], based on SVMs, was devel-
oped. This online tool is able to classify whether articles describe biomolecular
interactions.

iHOP consists of an application that automatically links proteins detected
through their cooccurrence in the literature. It offers an easy-to-use web
interface that highlights in text functional terms and interaction patterns of
proteins, allowing navigation between concepts by jumping from protein to
protein in hyperlinked space. The interaction network for a given protein
query is visualized as a graph and allows for navigation through the associ-
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Figure 4 Interaction graph provided by iHOP.

ated proteins. Interactions supported by experimental evidence are ranked
higher in the returned list of interaction sentences (Figure 4).

The Genomics Information Extraction System (GENIES) [84] uses a knowl-
edge base to organize and structure information about molecular pathways
derived from the literature, and also considers the extraction of complex
nested expressions referring to interactions.

One of the main difficulties encountered in protein interaction extraction
strategies has been the lack of large, well-curated training and test data sets
consisting of sentences of text passages referring to protein interactions. Al-
though a recent community-wide evaluation addressed this issue [70], many
tools are evaluated using information provided by interaction databases such
as DIP [103]. These databases contain well-curated protein interactions gen-
erally extracted by domain experts from full-text articles [18]. As protein
interaction extraction tools in general only have access to abstracts rather than
full-text articles, many of the interactions contained in other sections of the
articles are missed. Also, the prior protein-tagging step is crucial to identify
potential protein interactions [10].

A commonly accepted formalization of interaction types which can be de-
rived from the literature is missing. Therefore different tools define interac-
tions (relations) at different degrees. Some consider interactions at a rather
coarse level [44], focusing more on extraction of relationships between pro-
teins than on extraction of physical protein interactions. Those tools are able
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to also extract relationships based, for instance, on homology, e.g. the mention
of to homologous genes from different organism. Other methods are more
centered on extraction of very specific interaction types, e.g. inhibitory or
stimulatory relations [18] or even phosphorylation [10]. Even if the different
existing online approaches provide complementary information to each other,
it is still far from possible to connect them in useful workflows. Although the
most common interactions studied are those between proteins, some effort has
been done for the analysis of the interactions between proteins and drugs.

7.4 Discovering Information Associated with Groups of Proteins

The coordinated expression of a certain gene within a group of genes studied
in microarray experiments provides important information about coregula-
tion within biological processes (for a detailed description of microarray tech-
nologies, see Chapter 24). Text mining tools have been developed to assist in
the interpretation of microarray data. These techniques characterize groups
of genes by extracting words with functional meaning that are statistically
associated to the corresponding literature [8] and use this information to score
the coherence of gene clusters [81]. Moreover, text mining techniques are
used to complement the description of the relationships between genes within
gene clusters obtained through the similarity of their expression patterns by,
for example, pointing out genes that are coexpressed, but do not share a
known biological function. These genes can be detected by the associated
functional terms extracted from the literature) and can therefore correspond
to the discovery of a new biological association. Jenssen and coworkers [47]
superimposed gene expression data on a literature-based network, detecting
gene relationships which were not previously identified by clustering tech-
niques. Another study showed that, in general, there is a correlation between
the similarity of the expression patterns and the significance of functional
information derived from the literature [75]. The GEISHA system [8] uses
terms extracted from the literature with a given significance value to charac-
terize the functions potentially associated to each cluster of genes. GEISHA
additionally uses double-words and sentences to increase the interpretability
of the extracted information in biological terms.

The ConceptMarker algorithm has been applied to integrate analysis of
gene expression data associated to juvenile arthritis with biomedical literature
analysis [59]. It uses the ProMiner protein tagger to the detect genes in ab-
stracts – mapping the genes studied in the microarray experiment with articles
mentioning them [34]. To aid in the interpretation of information associated
to the experimental gene clusters it identifies a set of literature terms, which
describe consistently these clusters using VSM-based term weighting and
singular value decomposition (SVD) methods.
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A number of systems have been developed that instead of using literature
mining directly, exploit associations of genes to GO terms provided in anno-
tations databases like GOA. The corresponding terms are used in ways that
are similar to the above methods to characterize functions common to genes
with similar expression profiles and to discover new potential associations.
An example of this type of systems is FatiGO, that uses statistical tests to
identify relevant GO terms for groups of genes based on GOA associations [2].

An advantage of approaches based on IE methods are that the amount
of functional information contained in the scientific articles is clearly more
complete than incorporated in databases and ontologies, and they can also
benefit from a richer expressivity regarding functional characteristics. In
contrast, the GO-based approaches are easier to implement and have very
simple interpretations since they use a controlled vocabulary.

Even if it is clear that both literature- and GO-based approaches have ad-
vantages that can be complementary, a full documented study of their possible
combination has not yet been performed.

7.5 Other Applications

Although the majority of IE and IR tools for life science literature are con-
cerned with the identification of biological entities, interactions, functional
descriptions and functional terms describing gene clusters, other biological
problems have also been considered.

Chromosome aberrations are known to be associated in many cases to hu-
man pathologies and cancer conditions. To extract the corresponding break-
point manually from the literature is a labor-intensive task. The HCAD
database contains information on human genomics breakpoints and chromo-
some aberrations automatically extracted from the literature [40].

For the detection of genomic variations, especially in the context of cancer-
specific texts, a tool named VTag based on machine learning methods is
available [66], with an f -score of 0.8192.

The regulation of gene function in higher organisms is subjected to tissue-
specific control mechanisms. In fact, transcript diversity is especially impor-
tant for tissue-specific gene expression. NLP methods have been developed
to identify alternative transcripts of genes detected in PubMed [87].

Although most gene and protein sequences are stored in biological databases,
short sequence patterns with significant functional properties like binding
sites or epitopes are frequently mentioned directly in texts. An information
extraction method based on Markov models to locate such sequence patterns
in large text collections has been implemented. For the identification of
peptide epitopes, this system is able to reach a considerable level of precision
(precision of 67% with a recall of 85%) [102].
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The efficiency of reactions carried out by enzymes can be expressed through
kinetic parameters. Although databases such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) contain extensive descriptions about enzymes,
existing information about kinetic aspects is still often hidden within articles.
A text classification system based on SVMs tackles this problem and assists
researchers in the search for information relevant to kinetic aspects of enzymes
[33].

Eukaryotic cells compartimentalize certain biological processes. The sub-
cellular location of proteins gives additional clues about certain functional
aspects, e.g. transcription factors display their molecular function in the nu-
cleus. Not only bioinformatics methods are able to classify protein sequences
according to their subcellular location, but also literature associated to a given
protein is useful to infer its subcellular location [69, 90].

Protein sequence similarity searches are the base for automatically anno-
tating protein function or finding suitable templates for protein structure
prediction methods. To determine if two proteins are remotely homologs in
cases where sequence similarity is in the twilight zone often requires human
intervention and manual consultation of annotation database records. The
combination of sequence search methods such as PSI-BLAST with standard
text similarity method such as the VSM has been used in the SAWTED system
to enhance remote homology searches [62, 94].

8 Evaluation of Text Mining Strategies

The importance of community-wide evaluations has been realized by both the
bioinformatics and NLP communities. In the case of the bioinformatics field,
open evaluations have been carried out for tasks such as protein structure
prediction microarray data analysis [48] and gene finding [83]. Evaluations
of NLP strategies for IE systems (MUC) and IR end-document classification
methods have also been performed for several years [39, 95].

Each of the first IR, IE and text mining tools developed for the biomedical
domain used their own evaluation data sets and strategies, which hindered
performance comparison and determination of the state art. The construction
of suitable textual test and training data requires involvement of domain
experts and is labour intensive. Therefore, many systems evaluated perfor-
mance using small data sets that were not sufficiently representative.

“Gold standard” data sets provided by human experts are used to consis-
tently score performance of different text mining systems. The agreement of
these experts is evaluated by means of inter-annotator agreement. The lower
this agreement, the more difficult the task. In order to ensure objective eval-
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uation metrics, comparing cross-system performance and producing “gold
standard” data sets community-wide evaluations are crucial.

The retrieval of documents with relevant information for a given biological
problem is the first step in the processing of text collections. To assess docu-
ment categorization and retrieval systems in the biomedical domain was the
main goal of the TREC Genomics [37] track. In the case of the TREC Genomics
track 2004, one of the main challenges was related to retrieval of PubMed
abstracts relevant to previously defined topics. These topics consisted basi-
cally of information needs formulated by biologists and which should reflect
common information demands encountered in this domain. The average
precision of the top-scoring systems was around 43% of the retrieved articles
containing correct information. The second task of TREC 2004 was organized
into subtasks. One of them, the triage subtask, focused on the classification
of full-text articles regarding the presence of experimental evidence useful
for database curators to extract annotations. The annotation subtask had the
goals of identifying, given an article and gene name, which GO categories
(i.e. molecular function, biological process and cellular component) were used
in the articles to annotate gene products. These two subtasks actually reflect
some of the initial steps undertaken by database curators to derive documents
relevant for further manual curation.

A similar task was posed at the The KDD challenge cup [106], concerned
with the retrieval of papers containing experimental evidence for a given set
of Drosophila gene products (relevant to extract annotations).

The task of indentifying entities (gene and protein names) was addressed
by the BioCreative comunity [105]. A total of 15 teams participated in this
experiment (subtask 1A), trying to locate precisely gene names within full-
text articles provided by the annotators as valid references for those genes.
Top-scoring groups reached an f -score (balanced precision and recall) of 0.8,
which is a promising result, but still far below the 0.9 f -score for detection of
other names such as company names of locations tagged in newswire texts.

A similar challenge was held at the shared task of the JNLPBA [50]. In this
contest the recognition of different biological entities included protein names,
DNA, RNA, cell line and cell type. The introduction of additional entities
decreased the overall performance when compared to BioCreative task 1A,
reaching an f -score of 0.76. The ABNER protein tagger ( f -score of 0.703) [86]
and a system based on PowerbioNE were among the top scoring strategies
[107].

For biological applications the tagging of protein names in text is not suf-
ficient and it is additionally necessary to link them to the corresponding
sequence database entries. Subtask 1B of the BioCreative challenge [38] ad-
dressed this point, requiring the identification of protein/gene names and
their corresponding database links in examples from three model organisms:
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yeast, fly and mouse. Among the best-performing systems was the rule-based
ProMiner approach [34]. The differences between the results in the three
organisms were interesting – whereas yeast genes were rather easy to identify
( f -score of 0.92), fly genes ( f -score of 0.82) and mouse genes ( f -score of 0.79)
were more complicated to link to database entries. An explanation for this
difference could be that yeast genes are commonly mentioned in articles using
short names or well-defined unambiguous symbols, whereas fly and mouse
genes are mentioned often using ambiguous or long gene names.

Many applications relating to the recovery of protein interactions from the
literature were implemented. The Genic Interaction Extraction Challenge [70]
supplied a training and test set to benchmark the state of the art in text-based
protein interaction extraction. In this case, the best-performing teams could
reach an f -score of 0.518.

In the KDD cup and Genomics TREC contests, articles which contain
relevant information for curators are retrieved, but the annotations and
annotation-relevant text passages must be identified manually by domain
experts. The second task of the BioCreative community addressed a more
advanced step in text mining – the automatic identification of functional
annotations associated to genes and proteins [7]. In subtask 2A, a protein
identifier (Swiss-Prot Id), a GO concept and a full-text article selected by
the GOA annotators as representative of the protein–GO association were
provided to the participants, and they were asked to highlight significant
passages of the text demonstrating the protein–GO relation. In this case, in
addition to the difficulty of tagging gene names common to task 1, references
to the GO terms had to be identified, and both had to be correlated within
the same passage – a difficulty of considerable magnitude given the large
semantic variability in which GO terms can be expressed in texts. Top-scoring
systems submitting results for all the posed queries reached a precision
of 0.28, while participants only submitting results for a small number of
high-confidence cases reached a precision of 0.8. Subtask 2B was even
more challenging as only protein–full-text article pairs were provided and
participants were asked to predict the GO term useful for annotating the
proteins together with the text passage containing the evidence supporting
the annotation.

9 Resources for Text Mining

A range of resources is available to develop text mining and NLP applications
suitable to extract information from biology literature, including text reposito-
ries and databases, annotated text corpora for training and testing purposes,
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gene dictionaries as well as generic and domain specific NLP tools. Table 2
gives a detailed list of resources and resource types.

9.1 Literature Databases

The biomedical literature and especially abstracts from the PubMed database
constitute the primary data resource. Interestingly systems developed for
processing generic texts are increasingly being adapted to biomedical text
processing. A more detailed of description of existing biomedical literature
databases is provided in Section 3.

9.2 Annotated Text Corpora

Tagged biomedical text corpora are essential to train text classifiers, machine
learning techniques and to extract text patterns. Although there is increasing
interest in producing open access corpora for biomedical text mining applica-
tions, only a few large data sets are currently available.

The GENIA corpus [49] consists of a collection of biomedical abstracts
which have been semantically annotated and which has been used as a bench-
mark set for biology NER tools [50]. The annotation of biological entries is
based on a predefined ontology (GENIA ontology). GENIA Corpus Version
3.0x consists of 2000 abstracts related to human, blood cells, and transcription
factors.

The BioCreative challenge resulted in data sets useful for tagging protein
and genes in articles to protein database entries. Additionally, it produced
a data set of text passages describing protein–GO associations evaluated by
GOA database curators as positives and negatives (Blaschke et al.).

Another data set used for protein entity tagging is the Yapex corpus, which
has been used to test the NLProt tool [28]. The Genic Interaction Extraction
Challenge has provided both a training and test set for protein-protein inter-
action discovery from text [70].

A list of other text data sets useful for different text mining task is contained
in Table 2.

9.3 Generic NLP Tools

A vast amount of existing online tools and software can be found for process-
ing generic literature or newswire texts. It is beyond the scope of this chapter
to provide a complete list of different applications and only a small number
of systems will be mentioned. In principle, when developing NLP tools for
biomedical literature, existing software for generic texts could be adapted.
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Table 2 Tools and databases for biomedical text mining

Type Name Web site Availability[a]

Literature
databases

PubMed [98] www.ncbi.nlm.nih.gov/PubMed D,W

Annotated text
corpora

Biocreative [38, 105]
[7]

www.pdg.cnb.uam.es/BioLINK/workshop_
BioCreative_04/results

D

GENIA corpus [49] www-tsujii.is.s.u-
tokyo.ac.jp/ genia/topics/Corpus/

D

Yapex corpus [28] www.sics.se/humle/projects/prothalt/#data D
PASBio [96] research.nii.ac.jp/ collier/projects/PASBio D
LLL05 dataset [70] genome.jouy.inra.fr/texte/LLLchallenge/

#task1
D

Medstract
corpus [79]

www.medstract.org/gold-standards.html D

FetchProt corpus fetchprot.sics.se D
Generic NLP
tools

Stanford Lexical
Parser [51]

nlp.stanford.edu/software/lex-
parser.shtml

S

Nice stemmer ils.unc.edu/iris/irisnstem.htm W
Bow [64] www.cs.cmu.edu/ mccallum/bow S
GATE [12] gate.ac.uk S
NLTK [61] nltk.sourceforge.net/index.html S
CCG tools l2r.cs.uiuc.edu/ cogcomp/tools.php S

Dictionaries
and ontologies

GO/OBO [5] obo.sourceforge.net D

UMLS [11] www.nlm.nih.gov/research/umls/
umlsmain.html

D

MeH [71] www.nlm.nih.gov/mesh/meshhome.html D
Biomedical
NLP tools

NLProt [67] cubic.bioc.columbia.edu/services/nlprot S

AbGene [92] ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/
AbGene

S

ABNER [86] www.cs.wisc.edu/%7Ebsettles/abner S
PowerbioNE [107] textmining.i2r.a-

star.edu.sg/NLS/webdemo/
bioner.html

W

iHOP [40] www.pdg.cnb.uam.es/UniPub/iHOP W
EBIMed www.ebi.ac.uk/Rebholz-

srv/ebimed/index.jsp
W

eTBLAST: [97] invention.swmed.edu/etblast/index.shtml W
GoPubMed [26] www.gopubmed.org W
iProLINK [45] pir.georgetown.edu/iprolink W
METIS [108] umber.sbs.man.ac.uk/cgi-

bin/dbbrowser/precis/metis_precis.cgi
W

PreBIND [27] www.blueprint.org/products/prebind/
prebind_search.html

W

Chilibot [18] www.chilibot.net W
Textpresso [68] www.textpresso.org W
XplorMed [77] www.ogic.ca/projects/xplormed W
MedPost [88] 3did.embl.de W

∗: Software S, Web site/server W, Data set D.
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For statistical text analysis, the Bow Toolkit is very useful [64]. It is written
in the C programming language, and provides libraries for text retrieval
(arrow), classification (rainbow), and clustering (crossbow) tasks.

Generic tools for analyzing all the different features of natural language
are available. To explore the grammatical and syntactical characteristics of
language, toolkits such as GATE [12], NLTK and CCG integrate many text-
processing applications such as POS tagging and parsing [61].

Morphological features (e.g. stripping off suffixes of words) can be analyzed
by stemmer algorithms and are a useful step in IR. Among the existing stem-
ming algorithms for English texts are the Porter stemmer [78], which carries
out a rather deep analysis, and the Krovetz system, which can be mentioned
as an example of “light” stemming [58].

9.4 Dictionaries and Ontologies

Collections of gene and protein names, symbols and synonyms stored in bio-
logical databases such as Swiss-Prot are valuable resources, providing the base
for name identification and linking of text to database identifiers. Thesauri
and ontologies are also essential for building the background knowledge in
which to map the information extracted from text. In the biomedical domain,
the two larger collections are GO and UMLS. w

GO consists of a controlled vocabulary of concepts which are relevant to
biological aspects such as molecular function, biological process and cellular
location [5]. GO is part of a repository of ontologies, called Open Biomedical
Ontologies (OBO), which contains additional ontologies such as the Human
Disease Ontology and the Sequence Ontology. GO contains more than 16 000
concepts, and for some of them synonyms and definitions are also provided.
There are over 200 000 annotations of gene products using GO terms, con-
tained in annotation databases such as GOA (see also Chapter 29).
Although GO is currently the most widespread vocabulary resource for an-
notation purposes, it lacks ways of quantifying similarities between concepts.
Also, the relationships between terms are mainly restricted to “is a” and “part
of” relations. Finally, for text mining purposes, many terms have a limited use
because they do not correspond to language constructs or expressions used in
the literature.

The UMLS Metathesaurus [11] contains more than 1 million concepts in
biomedicine and health science as well as the relationships between them.
As it focuses on medical terms rather than molecular biology vocabulary, it
has been shown to be more useful for medical than for biology text mining.
Finally, the MeSH thesaurus provides a set of controlled vocabulary terms
organized in a hierarchical structure which is used to index PubMed records
[71]. It contains more than 22 000 terms ranging from very broad ones such as
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“Anatomy” to more specific ones like “Ankle”. As in the case of the UMLS,
MeSH is tailored towards medical literature rather than biology.

9.5 Biomedical Domain NLP Systems

A considerable number of biomedical NLP applications have already been
mentioned throughout this chapter. Some of them are useful for very specific
tasks, such as the MedPost [88] tool – a POS tagger adapted to biomedical
texts. A range of protein name taggers is available either as a downloadable
software or as online servers. The NLProt tagger, a SVM-based tagger, also
links the identified proteins to database entries [67], while the ABNER tagger
identifies additionally cell lines, RNA and DNA.

Providing graphical representation of information useful for the human
interpretation of knowledge is an essential challenge for the text mining field
and will ultimately influence its perception in the large community of poten-
tial users. iHOP facilitates the understanding of extracted protein relation-
ships by highlighting the identified entities, allowing a graph representation
of the interaction network, and facilitating the navigation between different
concepts and databases [40]. Other systems that provide comprehensive
graphical web interfaces are EBIMed and Chilibot [18] (Table 2).

10 Concluding Remarks

Processing of scientific text is a challenging task due to the complexity of
human language. Nonetheless, there is growing interest in text mining and
IE technology applied to biomedical literature as a considerable fraction of
existing biological information is only available in the literature. This tech-
nology will play an important role in the exploration of high-throughput
experiments, in the annotation of biological databases and in the analysis of
complex biological problems.

The biological database community was perhaps the first with defined
expectations towards the development of NLP tools which could assist hu-
man experts in accessing relevant functional descriptions or helping in the
extraction of relevant annotations. Collaborations of databases including
Mouse Genome Informatics (MGI), FlyBase, Swiss-Prot, NCBI and annotation
databases like GOA with biomedical text mining groups have resulted in
fruitful community-wide evaluations where practical tasks were posed. The
GO consortium has even considered text-based computation as one of the
strategies for its annotation process. There are already some examples of text
mining tools assisting biological databases, as is the case of iHOP, and the
interaction database IntAct [36] or PreBIND and the BIND database [27]. Inte-
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gration of NLP tools will increase efficiency of data acquisition and traceability
in the future.

Still, the construction of suitable data sets for the development and assess-
ment of NLP systems in this domain will require further efforts of collabora-
tion with databases and biology domain experts. A particularly crucial aspect
for the development of this field would be the availability of domain ontolo-
gies and thesauri. The rapid advance of technologies in molecular biology
and biomedicine is producing large and complex collections of data, for which
we essentially lack the appropriate formalized structures and terminologies.
All these developments have a clear incidence in text mining technologies
that use structured field knowledge as platform. Finally, the assessments of
NLP strategies applied to biology literature have been revealed as a powerful
natural way of creating community, focusing on key biological problems and
fostering developments. They also provide a comprehensive view of the
status of the field.

The first NLP systems applied to molecular biology and biomedicine were
initially developed 10 years ago, and centered on identifying protein names
and interactions. Meanwhile, they have diversified to larger a set of applica-
tions. This diversification was partially promoted by the fact that very specific
functional information was missing in many of the existing databases, but was
relevant to the needs of different areas of biomedicine and molecular biology.
These NLP developments included extraction of information about kinetic
parameters, chromosome aberrations or alternative transcripts.

Although PubMed is the central literature repository for biologists, it does
not facilitate specific retrieval or extraction of gene-related information. When
querying PubMed, it is necessary to browse through large lists of abstracts
until information of interest is detected. New systems like iHOP or Chilibot
allow more efficient access and visualization of gene-relevant textual data, and
constitute alternatives to traditional PubMed searches.
The possibilities for complementing traditional bioinformatics approaches
with NLP methods, creating hybrid systems, are still largely unexplored.
Initial attempts have been restricted to enhance sequence searches with infor-
mation extracted from abstracts. The development of new hybrid approaches
integrating a larger diversity of data types such as diseases, phenotypic in-
formation or experimental conditions remains as a challenge for the years to
come.

Acknowledgments

The work of our group was supported by grants of the European Commission
(ENFIN LSH6-CT-2005-518254 , Biosapiens LSHC-CT-2003-505265). Thanks



References 1291

to Burr Settles for providing Figure 2, to Robert Hoffmann for providing
Figures 3 and 4, to Boris Galitsky for additional information about his QA
system, and to Ana Divoli and Thomas Lengauer for useful comments and
suggestions.

References

1 ABNEY, S. 1991. Parsing By Chunks.
Principle-Based Parsing. The MIT Parsing
Volume, 1988–89, Center for Cognitive
Science, MIT.

2 AL-SHAHROUR, F., R. DIAZ-URIARTE

and J. DOPAZO. 2004. FatiGO: a web tool
for finding significant associations of Gene
Ontology terms with groups of genes.
Bioinformatics 20: 578–80.

3 ANDRADE, M. AND A. VALENCIA. 1997.
Automatic annotation for biological
sequences by extraction of keywords from
MEDLINE abstracts. Development of a
prototype system. Proc. ISMB 5: 25–32.

4 ANTONIOTTI, M., I. LAU AND B.
MISHRA. 2004. Naturally speaking:
a systems biology tool with natural
language interfaces. TR2004: 853.

5 ASHBURNER, M., C. BALL, J. BLAKE

et al. 2000. Gene ontology: tool for the
unification of biology. The Gene Ontology
Consortium. Nat. Genet. 25: 25–9.

6 BAEZA-YATES, R. and B. RIBEIRO-
NETO. 1999. Modern Information Retrieval.
Addison Wesley, Reading, MA.

7 BLASCHKE, C., E. ANDRES LEON, M.
KRALLINGER and A. VALENCIA. 2005.
Evaluation of BioCreative assessment of
task 2. BMC Bioinformatics 6: S16.

8 BLASCHKE, C., J. OLIVEROS and A.
VALENCIA. 2001. Mining functional
information associated with expression
arrays. Funct. Integr. Genomics. 1: 256–
68.

9 BLASCHKE, C., L. HIRSCHMAN and A.
VALENCIA. 2002. Information extraction
in molecular biology. Brief Bioinform. 3:
154–65.

10 BLASCHKE, C. and A. VALENCIA. 2002.
The frame-based module of the Suiseki
information extraction system. IEEE Intell.
Syst. 17: 14–20.

11 BODENREIDER, O. 2004. The Unified
Medical Language System (UMLS):
integrating biomedical terminology.
Nucleic Acids Res. 32: 267–70.

12 BONTCHEVA, K., V. TABLAN, D.
MAYNARD and H. CUNNINGHAM. 2004.
Evolving GATE to meet new challenges
in language engineering natural language
engineering. Natural Language Eng. 10:
349–73.

13 BUTLER, D. 2004. Science searches shift
up a gear as Google starts Scholar engine.
Nature 432: 423.

14 BUTLER, G. 2005. Workflow scenarios for
a semantic web for fungal genomics. In
Proc. NETTAB, Naples, Italy: 101–4.

15 CAMON, E., M. MAGRANE, D.
BARRELL, et al. 2003. The Gene
Ontology Annotation (GOA) project:
implementation of GO in SWISS-PROT,
TrEMBL, and InterPro. Genome Res. 13:
662–72.

16 CASTANO, J., J. ZHANG and J.
PUSTEJOVSKY. 2002. Anaphora resolution
in biomedical literature. In Proc. Int.
Symp. on Reference Resolution, Alicante,
Spain.

17 CHANG, J., H. SCHUTZE and R. ALTMAN.
2004. GAPSCORE: finding gene and
protein names one word at a time.
Bioinformatics 20: 216–25.

18 CHEN, H. and B. SHARP. 2004. Content-
rich biological network constructed
by mining PubMed abstracts. BMC
Bioinformatics 5: 147.

19 CHEN, L., H. LIU and C. FRIEDMAN.
2005. Gene name ambiguity of eukaryotic
nomenclatures. Bioinformatics 21: 248–56.

20 CHIANG, J., H. YU and H. HSU.
2004. GIS: a biomedical text-mining
system for gene information discovery.
Bioinformatics 20: 120–1.



1292 34 Mining Information on Protein Function from Text

21 COHEN, K. and L. HUNTER. 2005.
Natural language processing and
systems biology. In Dubitzky and Pereira,
Artifical Intelligence Methods and Tools
for Systems Biology, Springer-Verlag,
Heidelberg, Germany.

22 CORNEY, D., B. F. BUXTON, W.
LANGDON and D. JONES. 2004. BioRAT:
extracting biological information from
full-length papers. Bioinformatics 20:
3206–13.

23 DAGAN, I., B. MAGNINI and O.
GLICKMAN. 2005. The PASCAL
recognizing textual entailment challenge.
In Proc. First Recognizing Textual
Entailment Workshop, Southampton,
UK: 1–9.

24 DALE, R., E. HOVY, D. R¨OSNER and O.
STOCK. 1992. Aspects of Automated Natural
Language Generation. Springer, Heidelberg.

25 DIVOLI, A. and T. ATTWOOD. 2005.
BioIE: extracting informative sentences
from the biomedical literature.
Bioinformatics 21: 2138–9.

26 DOMS, A. and M. SCHROEDER. 2005.
GoPubMed: exploring PubMed with the
Gene Ontology. Nucleic Acids Res. 33:
W783–6.

27 DONALDSON, I., J. MARTIN, B.
DEBRUIJN, et al. 2003. PreBIND and
Textomy – mining the biomedical
literature for protein-protein interactions
using a support vector machine. BMC
Bioinformatics 4: 11.

28 FRANZEN, K., G. ERIKSSON, F. OLSSON,
L. ASKER, P. LIDEN and J. COSTER. 2002.
Protein names and how to find them. Int.
J. Med. Inf. 67: 49–61.

29 FUKUDA, K., T. TSUNODA, A. TAMURA

and T. TAKAGI. 1998. Toward information
extraction: identifying protein names from
biological papers. Pac. Symp. Biocomput.
3: 707–18.

30 GALITSKY, B. 2001. A natural language
question-answering system for Human
Genome domain. 2nd IEEE Intl
Symposium on Bioinformatics and
Bioengineering, Rockville, MD, USA.

31 GALITSKY, B. 2003. Natural Language
Question Answering System. Advanced
Knowledge International, Adelaide.

32 GENE ONTOLOGY CONSORTIUM. 2004.
The Gene Ontology (GO) database and
informatics resource. Nucleic Acids Res.
32: D258–61.

33 HAKENBERG, J., S. SCHMEIER, A.
KOWALD, E. KLIPP and U. LESER. 2004.
Finding kinetic parameters using text
mining. OMICS 8: 131–52.

34 HANISCH, D., K. FUNDEL, H. MEVISSEN,
R. ZIMMER and J. FLUCK. 2005.
ProMiner: rule-based protein and gene
entity recognition. BMC Bioinformatics 6:
S14.

35 HAUSSER, R. 1999. Foundations of
Computational Linguistics: Human-
Computer Communication in Natural
Language. Springer, Berlin.

36 HERMJAKOB, H., L. MONTECCHI-
PALAZZI, C. LEWINGTON, et al. 2004.
IntAct: an open source molecular
interaction database. Nucleic Acids Res.
32: D452–5.

37 HERSH, W., R. BHUPATIRAJU, L. ROSS, P.
JOHNSON, A. COHEN and D. KRAEMER.
2004. TREC 2004 Genomics Track
Overview. In Proc. Text Retrieval Conf.
Gaithersburg, MD, USA.

38 HIRSCHMAN, L., M. COLOSIMO, A.
MORGAN and A. YEH. 2005. Overview
of BioCre-AtIvE task 1B: normalized gene
lists. BMC Bioinformatics 6: S11.

39 HIRSCHMAN, L. 1998. The evolution of
evaluation: lessons from the message
understanding conference. Comput.
Speech Language 12: 281–305.

40 HOFFMANN, R., J. DOPAZO, J. CIGUDOSA

and A. VALENCIA. 2005. HCAD, closing
the gap between breakpoints and genes.
Nucleic Acids Res. 33: D511–3.

41 HOFFMANN, R., M. KRALLINGER, E.
ANDRES, J. TAMAMES, C. BLASCHKE

and A. VALENCIA. 2005. Text mining for
metabolic pathways, signaling cascades,
and protein networks. Sci. STKE 283:
pe21.

42 HOFFMANN, R. and A. VALENCIA.
2003. Protein interaction: same network,
different hubs. Trends Genet. 19: 681–3.

43 HOFFMANN, R. and A. VALENCIA.
2004. A gene network for navigating the
literature. Nat Genet. 36: 664.

44 HOFFMANN, R. and A. VALENCIA.
2005. Implementing the iHOP concept



References 1293

for navigation of biomedical literature.
Bioinformatics 21: ii252–8.

45 HU, Z., I. MANI, V. HERMOSO, H.
LIU and C. WU. 2004. iProLINK: an
integrated protein resource for literature
mining. Comput. Biol. Chem. 25: 409–16.

46 HU, Z., M. NARAYANASWAMY, K.
RAVIKUMAR, K. VIJAY-SHANKER and C.
WU. 2005. Literature mining and database
annotation of protein phosphorylation
using a rule-based system. Bioinformatics
21: 2759–65.

47 JENSSEN, T., A. LAEGREID, J.
KOMOROWSKI and E. HOVIG. 2001.
A literature network of human genes
for high-throughput analysis of gene
expression. Nat. Genet. 28: 21–8.

48 JOHNSON, K. and S. LIN. 2001. Critical
assessment of microarray data analysis:
the 2001 challenge. Bioinformatics 17:
857–8.

48a KANG, C.-G. and J. C. PARK. 2005.
Generation of coherent gene summary
with concept-linking sentences.
Proc. Int. Symp. Languages in
Biology and Medicine (LBM).
Daejon, Korea: 41–5.

49 KIM, J., T. OHTA, Y. TATEISI and J. TSUJII.
2003. GENIA corpus – semantically
annotated corpus for bio-textmining.
Bioinformatics 19: i180–2.

50 KIM, J., T. OHTA, Y. TSURUOKA and Y.
TATEISI. 2004. Introduction to the Bio-
Entity recognition task at JNLPBA. Proc.
JNPBA: 70–6.

51 KLEIN, D. and C. MANNING. 2002. Fast
exact inference with a factored model for
natural language parsing. Advances in
NIPS 2002 Westin, Canada.

52 KOIKE, A., Y. NIWA and T. TAKAGI. 2005.
Automatic extraction of gene/protein
biological functions from biomedical text.
Bioinformatics 21: 1227–36.

53 KOSTOFF, R., J. BLOCK, J. STUMP and
K. PFEIL. 2004. Information content in
Medline record fields. Int. J. Med. Inform.
73: 515–27.

54 KRALLINGER, M., M. PADRON and A.
VALENCIA. 2005. A sentence sliding
window approach to extract protein
annotations from biomedical articles.
BMC Bioinformatics 6: S19.

55 KRALLINGER, M., M. PADRON, C.
BLASCHKE and A. VALENCIA. 2004.
Assessing the correlation between
contextual patterns and biological entity
tagging. Proc. In NLPBA/COLING,
Geneva, Switzerland: 36–43.

56 KRALLINGER, M., R. ALONSO-ALLENDE

and A. VALENCIA. 2005. Text-mining
approaches in molecular biology and
biomedicine. Drug Discov. Today 10: 439–
45.

57 KRAUTHAMMER, M., A. RZHETSKY, P.
MOROZOV and C. FRIEDMAN. 2000.
Using BLAST for identifying gene and
protein names in journal articles. Gene
259: 245–52.

58 KROVETZ, R. 1993. Viewing morphology
as an inference process. In Proc. 16th
ACM SIGIR Conf., Pittsburgh, PA, USA:
191–202.

59 KUFFNER, R., K. FUNDEL and R.
ZIMMER. 2005. Expert knowledge without
the expert: integrated analysis of gene
expression and literature to derive active
functional contexts. Bioinformatics 21:
ii259–67.

60 LEE, D., H. CHUANG and K. SEAMONS.
1997. Document ranking and the vector-
space model. IEEE Software 14: 67–75.

61 LOPER, E. and S. BIRD. 2002. NLTK: the
natural language toolkit. In Proc. ACL,
Philadelphia, PA, USA.

62 MACCALLUM, R., L. KELLEY and M.
STERNBERG. 2000. SAWTED: structure
assignment with text description–
enhanced detection of remote homologues
with automated SWISS-PROT annotation
comparisons. Bioinformatics 16: 125–9.

63 MANNING, C. and H. SCHUETZE. 1999.
Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA.

64 MCCALLUM, A. 1996. Bow: A toolkit
for statistical language modeling, text
retrieval, classification and clustering.

65 MCCRAY, A., A. BROWNE and O.
BODENREIDER. 2002. The lexical
properties of the gene ontology. In Proc.
AMIA Symp., San Antonio, Texas: 504–8.

66 MCDONALD, R., R.WINTERS, M.
MANDEL, Y. JIN, P. WHITE and F.
PEREIRA. 2004. An entity tagger for
recognizing acquired genomic variations



1294 34 Mining Information on Protein Function from Text

in cancer literature. Bioinformatics 20:
3249–51.

67 MIKA, S. and B. ROST. 2004. NLProt:
extracting protein names and sequences
from papers. Nucleic Acids Res. 32:
W634–7.

68 MULLER, H., E. KENNY and P.
STERNBERG. 2004. Textpresso: an
ontology-based information retrieval and
extraction system for biological literature.
PLoS Biol. 2: e309.

69 NAIR, R. and B. ROST. 2002. Inferring
sub-cellular localization through
automated lexical analysis. Bioinformatics
8: S78–86.

70 NEDELLEC, C. 2005. Learning language
in logic – genic interaction extraction
challenge. In Proc. LLL05 Workshop,
Bonn, Germany.

71 NELSON, S., M. SCHOPEN, A. SAVAGE,
J. SCHULMAN and N. ARLUK. 2004.
The MeSH translation maintenance
system: structure, interface design, and
implementation. In Proc. 11th World
Congr. on Medical Informatics, San
Francisco, USA: 67–9.

72 NENADIC, G., I. SPASIC and S.
ANANIADOU. 2003. Terminology-
driven mining of biomedical literature.
Bioinformatics 19: 938–43.

73 NETZEL, R., C. PEREZ-IRATXETA, P.
BORK and M. ANDRADE. 2003. The way
we write. EMBO Rep. 4: 446–51.

74 NEUFELD, T. and G. RUBIN. 1994. The
Drosophila peanut gene is required for
cytokinesis and encodes a protein similar
to yeast putative bud neck filament
proteins. Cell 77: 371–9.

75 OLIVEROS, J., C. BLASCHKE, J. HERRERO,
J. DOPAZO and A. VALENCIA. 2000.
Expression profiles and biological
function. Genome Inform. Ser. Workshop
Genome Inform. 11: 106–17.

76 ONO, T., H. HISHIGAKI, A. TANIGAMI

and T. TAKAGI. 2001. Automated
extraction of information on protein–
protein interactions from the biological
literature. Bioinformatics 17: 155–61.

77 PEREZ-IRATXETA, C., P. BORK and M.
ANDRADE. 2001. XplorMed: a tool for
exploring MEDLINE abstracts. Trends
Biochem. Sci. 26: 573–5.

78 PORTER, M. 1980. An algorithm for suffix
stripping. Program. Program. 14: 130–7.

79 PUSTEJOVSKY, J., J. CASTANO, R. SAURI,
A. RUMSHISKY, J. ZHANG and W. LUO.
2002. Medstract: Creating large-scale
information servers for biomedical
libraries. In Proc. ACL 2002, Philadelphia,
PA, USA.

80 RAYCHAUDHURI, S., J. CHANG, P.
SUTPHIN and R. ALTMAN. 2002.
Associating genes with gene ontology
codes using a maximum entropy analysis
of biomedical literature. Genome Res. 12:
203–14.

81 RAYCHAUDHURI, S. and R. ALTMAN.
2003. A literature-based method for
assessing the functional coherence of a
gene group. Bioinformatics 19: 396–401.

82 REBHOLZ-SCHUHMANN, D., H. KIRSCH

and F. COUTO. 2005. Facts from text – is
text mining ready to deliver? PLoS Biol. 3:
e65.

83 REESE, M., G. HARTZELL, N. HARRIS,
U. OHLER, J. ABRIL and S. LEWIS.
2000. Genome annotation assessment
in Drosophila melanogaster. Genome Res.
volume?: 483–501.

84 RZHETSKY, A., T. IOSSIFOV, I. KOIKE,
et al. 2004. GeneWays: a system for
extracting, analyzing, visualizing, and
integrating molecular pathway data. J.
Biomed. Inform. 37: 43–53.

85 SCHULER, G., J. EPSTEIN, H. OHKAWA

and J. KANS. 1996. Entrez: molecular
biology database and retrieval system.
Methods Enzymol. 266: 141–62.

86 SETTLES, B. 2004. Biomedical named
entity recognition using conditional
random fields and rich feature sets.
In Proc. NLPBA/COLING, Geneva,
Switzerland.

87 SHAH, P., L. JENSEN, S. BOUE and P.
BORK. 2005. Extraction of transcript
diversity from scientific literature. PLoS
Comput Biol. 1: e10.

88 SMITH, L., T. RINDFLESCH and
W. WILBUR. 2004. MedPost: a part-
of-speech tagger for bioMedical text.
Bioinformatics 20: 2320–1.

89 STAAB, S., C. BLASCHKE, C. NEDELLEC,
et al. 2002. Mining information for



References 1295

functional genomics. IEEE Intell. Syst.
17: 66–80.

90 STAPLEY, B., L. KELLEY and M.
STERNBERG. 2002. Predicting the sub-
cellular location of proteins from text
using support vector machines. Pac.
Symp. Biocomput. Hawaii, USA: 374–85.

91 STOICA, E. and M. HEARST. 2006.
Predicting gene functions from text using
a cross-species approach. Pac. Symp.
Biocomput. Hawaii, USA.

92 TANABE, L. and W. WILBUR. 2002.
Tagging gene and protein names in
biomedical text. Bioinformatics 18: 1124–
32.

93 TU, Q., H. TANG and D. DING. 2004.
MedBlast: searching articles related to a
biological sequence. Bioinformatics 20:
75–7.

94 VENCLOVAS, C., A. ZEMLA, K. FIDELIS

and J. MOULT. 2003. Assessment of
progress over the CASP experiments.
Proteins. 53: 585–95.

95 VOORHEES, E. and L. BUCKLAND. 2002.
The 11th Text REtrieval Conf. (TREC
2002). In Proc. TREC 2002, Gaithersburg,
MD, USA.

96 WATTARUJEEKRIT, T., P. SHAH and
N. COLLIER. 2004. PASBio: predicate-
argument structures for event extraction
in molecular biology. BMC Bioinformatics
5: 155.

97 WEISE, C. 2005. eTBlast – It’s only words,
and words are all I have. Angew. Chem.
Int. Ed. Engl. 44: 182.

98 WHEELER, D., D. CHURCH, S.
FEDERHEN, et al. 2003. Database
resources of the National Center for
Biotechnology. Nucleic Acids Res. 31:
28–33.

99 WILBUR, W., G. HAZARD, G. DIVITA, J.
MORK, A. ARONSON and A. BROWNE.
1999. Analysis of biomedical text for
chemical names: a comparison of three

methods. Proc. AMIA Symp. Washington,
DC, USA: 176–80.

100 WILBUR, W. and L. COFFEE. 1994. The
effectiveness of document neighboring in
search enhancement. Inf. Process Manag.
30: 253–66.

101 WITTEN, I., A. MOFFAT and T. BELL.
1999. Managing Gigabytes: Compressing and
Indexing Documents and Images. Academic
Press, San Diego, CA.

102 WREN, J., W. HILDEBRAND, S.
CHANDRASEKARAN and U. MELCHER.
2005. Markov model recognition
and classification of DNA/protein
sequences within large text databases.
Bioinformatics 21: 4046–53.

103 XENARIOS, I., L. SALWINSKI, X. DUAN,
P. HIGNEY, S. KIM and D. EISENBERG.
2002. DIP, the Database of Interacting
Proteins: a research tool for studying
cellular networks of protein interactions.
Nucleic Acids Res. 30: 303–5.

104 XIE, H., A. WASSERMAN, Z. LEVINE, A.
NOVIK, V. GREBINSKIY and A. SHOSHAN.
2002. Large-scale protein annotation
through gene ontology. Genome Res. 12:
785–94.

105 YEH, A., A. MORGAN, M. COLOSIMO

and L. HIRSCHMAN. 2005. BioCreAtIvE
Task 1A: gene mention finding evaluation.
BMC Bioinformatics. 6: S2.

106 YEH, A., L. HIRSCHMAN and A.
MORGAN. 2003. Evaluation of text data
mining for database curation: lessons
learned from the KDD Challenge Cup.
Bioinformatics. 19: 331–9.

107 ZHOU, G., J. ZHANG, J. SU, D. SHEN

and C. TAN. 2004. Recognizing names
in biomedical texts: a machine learning
approach. Bioinformatics 20: 1178–90.

108 MITCHELL, A., A. DIVOLI, J. KIM, M.
HILARIO, I. SELIMAS and T. ATTWOOD.
2005. METIS: multiple extraction
techniques for informative sentences.
Bioinformatics, Vol. 21: 4196–7.



Bioinformatics -- From Genomes to Therapies Vol. 3. Edited by Thomas Lengauer
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31278-8

1297

35
Integrating Information for Protein Function Prediction
William Stafford Noble and Asa Ben-Hur

1 Introduction

Most of the work on predicting protein function uses a single source of in-
formation – the most common being the amino acid sequence of the protein
(see Chapter 30). There are, however, a number of sources of data that are
predictive of protein function. These include protein–protein interactions
(Chapter 31), the genomic context of a gene (Chapter 32), the protein’s struc-
ture (Chapter 33), information mined from the biological literature (Chap-
ter 34) and data sources indicating coregulation, such as gene expression and
transcription factor binding [10]. A classifier that predicts function based
upon several sources should provide more accurate predictions than can be
achieved using any single source of data. However, the heterogeneous nature
of the data sources makes constructing such a unified classifier challenging.

We have divided the various methods for data integration into five cat-
egories (Figure 1). First, vector-space integration consists of characterizing
proteins in various ways by a set of variables, i.e. as vectors. Any standard
classification method can then be applied to the resulting vector-space repre-
sentation. An alternative – classifier integration – is to train a classifier on each
source of data and then combine the predictions of the various classifiers into
a single prediction. Kernel methods are a recent advance in the field of machine
learning [41]. These methods provide a coherent framework for integrating
various sources of data, applicable even when there is no explicit vector-
space representation of the data. Several sources of data form a network
that is informative of functional relationships. The prime example of such
a network is protein–protein interaction data. Proteins that interact often do
so because they participate in the same pathway. Therefore, the network of
protein–protein interactions in a cell can be informative of protein function
(see Chapter 32). The final two approaches model such networks and their
relationship to protein function. Graphical models, both directed and nondi-
rected, provide a probabilistic framework for data integration [23]. Modeling
is achieved by representing local probabilistic dependencies; the network
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Figure 1 Schematic description of the various methods for integrating
genomic information for prediction of protein function. (a) Integration
by concatenating data sources into a vector of features. (b) Integrating
predictions of several classifiers. (c) Data integration using kernel
methods. (d) Integration of network information, typically by Bayesian
methods. (e) Integration of several networks of functional relationships
into a single network.

structure of these models makes them a natural choice for capturing networks
of functional relationships. The last form of integration we discuss does not
aim at explicit prediction of protein function, but instead integrates several
networks of functional relationships, such as various forms of interaction,
coexpression, coregulation, etc., into a single network that unifies all those
relationships.

2 Vector-space Integration

Perhaps the simplest form of data integration is to summarize, for each pro-
tein, a variety of relevant types of data in a fixed-length vector and feed the
resulting collection of vectors into a classification algorithm. This approach
has the advantage of simplicity, but treating each type of data identically does
not allow us to incorporate much domain knowledge into the design of the
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classifier. For example, certain sources of data may benefit from a different
measure of similarity than others (see Section 4).

An early example of such an approach is described in Ref. [14]. This work
presents a limited form of data integration: many different types of protein
features are used, but most of these features are derived from the protein’s
amino acid sequence. Such features include protein length, molecular weight,
charge, amino acid composition (i.e. residue frequencies) and isoelectric point.
For a subset of the data for which three-dimensional (3-D) structures are
available, the authors also include several features based upon secondary
structure features; however, the experiments suggest (somewhat surprisingly)
that these features are not very informative. The authors apply three different
out-of-the-box machine learning algorithms to their data and compare the
resulting performance with that of the BLAST sequence comparison algo-
rithm [1] at predicting whether a sequence is an enzyme as well predicting the
first two digits of the protein’s Enzyme Commission (EC) number. Among the
three machine learning algorithms – the C4.5 decision tree, naive Bayes and
k-nearest-neighbor algorithms – the best-performing algorithm is k-nearest-
neighbor, which predicts the class of a query protein by finding the most
similar protein in the training set and outputting the corresponding label (see
Chapters 24 and 27 for more detailed descriptions of this algorithm). This
simple approach works as well as BLAST at discriminating between enzymes
and nonenzymes, but less well when the task is more specific. The latter result
is not surprising, since many of the enzyme classes are characterized by highly
specific sequence features [4].

A closely related set of experiments was described 5 years later in Ref. [24].
Like in the previous work, the authors summarize each protein using a fixed-
length vector of features derived from the amino acid sequence. After consid-
ering 25 such features, the authors settle on 14, which include straightforward
features such as average hydrophobicity and number of negatively charged
residues, as well as outputs from nine different previously described predic-
tion methods. These predictions include subcellular location, various types
of post-translational modifications, low-complexity regions, transmembrane
helices, etc. The resulting 14-element feature vectors are given to a feed-
forward neural network, which can subsequently predict EC numbers and
“cellular role” Gene Ontology (GO) terms with good accuracy.

A larger version of this type of experiment was described in Ref. [46].
In this work, the authors build classifiers for all EC protein families that
include 50 or more members (299 families), as well as 233 Pfam families [45].
Each protein is represented using an extremely rich collection of 453 features.
These features include statistics derived from the protein sequence, including
amino acid frequencies, predicted secondary structure content, molecular
weight, average hydrophobicity, isoelectric point, etc. In addition, the authors



1300 35 Integrating Information for Protein Function Prediction

extract information about sub-cellular location, tissue specificity, etc., from
the Swiss-Prot database [3] and encode this information in nine of the 453
features. The paper demonstrates the utility of probabilistic decision trees
on this task. This algorithm is essentially an improved version of the C4.5
decision tree classifier, and does a better job of handling unbalanced data sets
(when negative examples far outnumber positive examples) and missing data,
and which exhibits more stable learning behavior.

Protein structure is often conserved when no significant sequence conser-
vation can be detected. Instead of making predictions using direct structure
comparison, one can represent structural features of the protein, analogously
to the methods presented earlier, that represent features of the protein se-
quence [15]. This paper characterizes a protein using several structural fea-
tures: the total surface area attributable to each residue type, the fractal
dimension of the protein surface (which quantifies how “crinkly” the surface
of the protein is), surface area to volume ratio, secondary structure content,
and the presence of cofactors and metals. Then a support vector machine
(SVM) classifier is used to predict the the first digit of the EC number of
enzymes whose structure is known. The prediction task prepared by Dobson
and Doig [15] is a very difficult one: in each of the six enzyme classes no two
structures belong to the same SCOP superfamily. Therefore, sequence-based
methods will provide very poor results. The authors have not compared their
approach to a sequence-based approach that uses the same set of sequences,
so it is unclear whether these structure-based features provide added value. In
general, the advantage of using sequence-based classifiers is that many more
protein sequences are available than protein structures.

One of the challenges in vector-space integration is determining the con-
tribution of each feature to the accuracy of the classifier and finding small
subsets of features that maintain or improve classifier accuracy. This task is
known as feature selection and is an active area of research in machine learning.
The interested reader can find a wealth of information about the state-of-the-
art of the field in Refs. [18,19]. The simplest approach to feature selection is the
so-called filter method whereby one computes for each feature a statistic that
reflects how predictive the feature is. Statistics that achieve this goal include
the area under the receiver operating characteristic (ROC) curve, the Pearson
correlation coefficient, the Fisher criterion score, etc. [18, 19]. Independently
scoring each feature does not take into account the redundancy that often
exists in high-dimensional data such as gene expression and also ignores the
classifier with which the data will be ultimately classified. These issues are
handled by wrapper or embedded methods (see Refs. [18,19]). Wrapper methods
use a classifier to evaluate the merit of subsets of features and, as such, can be
combined with any classifier. In embedded methods, on the other hand, the
classifier is part of the selection process and uses the properties of the classifier
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to select relevant features. An example of a simple embedded method is the
recursive feature elimination (RFE) method [20], that for a linear classifier
iteratively removes features for which the magnitude of the corresponding
component of the classifer’s weight vector is the smallest.

The drawback of vector-space integration is modeling all features the same
way. One way to address this issue is to train different classifiers for each
source of data and then to combine the predictions of the different classifiers.
We call this integration method classifier integration, which is described in the
next section. Kernel methods, which are presented in Section 4, train a single
classifier, but allow more flexibility in combining data sources than the vector-
space integration methods, by allowing the user to define a different similarity
measure for each data source and thereby incorporating more domain knowl-
edge into the design of the classifier. Moreover, kernel methods are applicable
in modeling data sources such as protein sequences where no obvious vector-
space representation is available.

3 Classifier Integration

The second approach to building a unified protein classification algorithm
trains several classifiers and then combines their predictions. Gene finding
is a well-known bioinformatics problem for which combining the predictions
of several classification methods can provide more accurate predictions [40].
Conceptually, there are several classes of methods for combining the output
of different classifiers:

(i) Integration of different classification methods, each trained on the same
data.

(ii) Integration of the same method trained on different subsets of the data
or on different subsets of features. This is an active field of research in
machine learning called ensemble methods, and includes methods such as
boosting [16], random forests [9] and various “committee machines” [6].

(iii) Integration of several classifiers, each trained on a different source of
data.

In our context we are focusing on the third class of methods. The standard
method for integrating the results of several classifiers is by a majority vote.
A more sophisticated approach is to use a classifier whose job is to integrate
the predictions of the various classifiers [6]. Not much work has been done
to apply classifier integration methods to protein function prediction. One
example of integrating the predictions of several classifiers is described in
Refs. [36, 37] and is compared with kernel-based integration in those papers.
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See the next section for details. Classifier integration is most useful in cases
in which each classifier is available as a black-box, e.g. as is the case for gene
finders.

4 Kernel Methods

Recently, a class of algorithms known as kernel methods have become popular
in the machine learning community [41, 43] and this popularity has extended
into computational biology [42]. A kernel is a function that defines similarities
between pairs of data objects and a kernel method is an algorithm whose
implementation depends on the data only through the kernel. More specif-
ically, a kernel is a similarity measure that satisfies the condition of being
a dot product in some space, i.e. K(x, y) can be expressed as 〈Φ(x), Φ(y)〉,
where Φ is some possibly nonlinear mapping. This mapping technique has
been known for decades, but has gained popularity recently in the context of
a particularly powerful classification algorithm, known as the support vector
machine (SVM) [8, 12, 50]. The so-called “kernel trick” – mapping data into a
higher-dimensional space by means of a predefined kernel function – often
results in a problem with more dimensions than examples. The SVM, it
turns out, can cope remarkably well with such cases, effectively reducing
the curse of dimensionality. Other kernel methods have subsequently been
described for classification, regression, clustering, principal components anal-
ysis, etc. [43].

Kernel methods provide a coherent framework for data integration. The
kernel function provides a form in which to represent a wide variety of data
types, including vectors, matrices, strings, trees and graphs. As a kernel
method represents data via the kernel function, any data set of n elements
can be summarized as an n-by-n matrix of pairwise kernel values. This
kernel matrix is a sufficient representation: once it is computed, the original
data can be discarded and the kernel method can still perform its function.
Furthermore, kernel matrices from different data sources can be combined
in a simple kernel algebra, that includes the operations of addition, multi-
plication and convolution [22]. The simplest way to combine kernels is by
adding them: adding kernels is equivalent to concatenating their feature space
representations. When the kernels are linear kernels over an explicit vector-
space representation this is the same as the vector-space integration described
in Section 2. The feature space for the multiplication of kernels is the product
of the feature spaces of the kernels. This approach has been used in the context
of predicting protein–protein interactions [5].

It is possible to perform vector-space integration with kernel methods.
Since kernel methods are sensitive to the scale of each feature, it is often
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useful to normalize the features such that they are on a similar scale, e.g. by
standardizing each feature. When performing integration at the kernel level,
an alternative is to normalize the kernel itself, rather than its feature space rep-
resentation by using a cosine-like kernel K′(x, y) = K(x, y)/

√
K(x, x)K(y, y),

which is the same as projecting the feature-space representation to the unit
sphere.

In two related papers, Pavlidis and coworkers apply a kernel-based data
integration technique to the problem of protein function prediction [36, 37].
The authors use kernels to combine microarray expression data with phy-
logenetic profiles and use the resulting combined kernel to train an SVM
classifier to place yeast genes into MIPS functional categories [33]. This
kernel-based approach is compared to a vector-space integration scheme,
which simply concatenates the two types of data into a single vector, and
a classifier integration scheme, which trains two different SVMs and then
sums the resulting discriminants. In this case, the primary difference between
the vector-space integration scheme and the kernel approach is the use of
a third-degree polynomial kernel on each data set prior to integration. The
polynomial kernel maps each data set into a higher-dimensional space whose
features are all monomials over the original features with degree less than
or equal to 3. By performing this mapping on each data set individually,
rather than on the concatenated vectors, the method incorporates the prior
knowledge that inter-feature dependencies within one data set are more likely
to be relevant than dependencies between two different types of data. This
prior knowledge is borne out by the results, which show that the kernel-based
integration scheme provides better classification performance than either of
the other two schemes. Data integration by kernel summation has been
applied in several other bioinformatics applications: prediction of protein–
protein interactions [5] and prediction of metabolic networks [51]. Prediction
of metabolic networks, i.e. associating enzymes with metabolic pathways, can
be considered a form of function prediction; prediction of pairwise relation-
ships, or networks, is discussed in detail in Section 5.

Rather than simply adding kernels, one can consider a linear combination
of kernels, which can take into account how informative each kernel is. For
example, if we know that data set A is more useful (i.e. more relevant or less
noisy) than data set B, then we can combine the corresponding kernels as a
weighted sum: KAB = λKA + KB. The only difficulty, of course, is how best
to select the data set weighting factor λ. The value of the weighting factor
can be set using cross-validation over several choices for its value. This is
feasible when combining two kernels. When using a larger number of kernels
this is no longer practical and a different approach for weighting the different
kernels is required.
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Lanckriet and coworkers present a statistical framework for performing
kernel-based data integration with weights assigned to each data set [26,
28]. Rather than requiring that the weights be assigned a priori, the authors
train an SVM and learn the kernel weights simultaneously, using a technique
known as semidefinite programming (SDP) [27, 35, 49]. In Ref. [28], this
SDP-SVM approach is compared to a previously described Markov random
field method for data integration [13] (described in Section 6). Lanckriet
and coworkers use the same classification of yeast genes into 13 broad MIPS
functional categories and five types of data as [13]: (i) the domain structure
of the protein, according to Pfam [45], (ii) known protein–protein interactions,
(iii) genetic interactions and (iv) cocomplexed proteins, as identified by the
comprehensive yeast genome database, and (v) cell cycle gene expression
profiles. Performance is measured using ROC curves [21]. The SDP-SVM
approach provides far better performance across all 13 functional classes.
A subsequent article [26] applies the same framework to two more yeast
classification problems – recognizing membrane proteins and recognizing
ribosomal proteins – and provides more details about the SDP-SVM method.

Borgwardt and coworkers propose a kernel method for predicting protein
function using protein structure [7]. They represent the structure of a protein
as a graph whose nodes are secondary structural elements and whose edges
represent proximity in sequence or in 3-D space. The authors propose a
kernel that quantifies the similarity between two proteins using the random
walk kernel [17], combined with kernels that quantify the similarity between
the secondary structural elements of the protein. The proposed kernel thus
combines local properties of the protein with the global 3-D structure. They
use this kernel with an SVM classifier, as well as with more sophisticated
hyper-kernel machinery, to distinguish between enzymes and nonenzymes,
and predict the first EC number of an enzyme on a data set used in Ref. [15].
Their more sophisticated approach provides slightly better results than the
SVM vector-space integration approach of Dobson and Doig; it is likely that
integrating additional structural features into their kernel will provide further
improvement.

5 Learning Functional Relationships

Much of the data relevant to predicting the protein function is in the form
of a network or can be converted into a network structure. Protein–protein
interaction data is an example of such a network: proteins that interact often
participate in the same biological process, have a similar localization pattern
and, to a lesser extent, have a similar function [5]. Other sources of data that
are not directly in the form of a network can be converted into a network
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structure. Gene expression data can be represented by a graph whose edges
represent comembership in a gene expression cluster or weighted by the
correlation between the nodes; sequence data can be similarly converted to a
graph by means of sequence similarity scores from algorithms such as Smith–
Waterman [44] or PSI-BLAST [2]. Other sources of data for weighting edges
include similarity of phylogenetic profiles, gene fusion and cocitation from the
literature [29] (see also Chapter 32).

Given several networks of pairwise functional relationships, an impor-
tant task is to unify those networks into a single network [32]. Marcotte
and coworkers demonstrate how to combine pairwise functional relation-
ships from three different sources: correlated evolution using phylogenetic
profiles [39], correlated mRNA expression profiles and patterns of domain
fusion [31]. The data fusion approach is simple: the authors make a list of
all pairs of functionally related proteins in yeast according to each method.
This list contains 93 000 pairs of proteins. Functional links that are supported
by two out of three of the methods are considered “highly confident” and
functional annotations from proteins of known function are then propagated
across this high-confidence network. This simple approach yielded functional
annotations for more than half of the 2557 yeast proteins that were unanno-
tated at the time.

This simple approach of trusting only predictions that are made by more
than one method clearly has drawbacks, especially when some of the con-
tributing methods are more reliable than others or when the methods assign
confidence values to their predictions. Lee and coworkers address this issue
and propose a framework for unifying the scores associated with different
networks [29]. The following function assigns a log-likelihood score to a
linkage L between two proteins in the presence of a network E in the context
of a particular pathway or annotation:

LLS(L|E) = log
P(L|E)/P(L̄|E)

P(L)/P(L̄)
,

where P(L|E) are the frequencies of the linkage L observed in the data and L̄
are instances where the linkage is not observed.

A similar problem is addressed by the MAGIC system [47]; MAGIC esti-
mates the probability that proteins i and j share a functional relationship. The
existence of a functional relationship is modeled using several pairwise rela-
tionships between proteins: coexpression, colocalization, physical interaction,
genetic interactions and comembership in a complex. The paper proposes a
Bayesian network model for estimating the probability of a functional rela-
tionship. A Bayesian network is a probabilistic model that represents a proba-
bility distribution in a form that makes it amenable to efficient computation by
encoding the probabilistic dependencies in the data in the form of a directed
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Figure 2 A naive Bayes model: Given that a functional relationship
exists between two proteins, the existence of any two relationships
between the two proteins (interaction, coexpression, etc.) are
independent.

graph (see Refs. [34, 38] for textbooks on Bayesian networks). To illustrate the
approach we will consider a very simple model. Let R be the random variable
that denotes the existence of a functional relationship and let X1, . . . , Xd be
the pairwise relationships that serve as evidence for the existence of the
relationship. We are interested in the probability P(R|X1, . . . , Xd). Using
Bayes rule, this probability can be expressed as:

P(R|X1, . . . , Xd) =
P(X1, . . . , Xd|R)P(R)

P(X1, . . . , Xd)
.

The naive Bayes model is the assumption that each data source Xi is condi-
tionally independent of the other data sources, i.e. P(Xi|R, Xj) = P(Xi|R) for
j �= i [34, 38]. This assumption enables us to write:

P(X1, . . . , Xd|R) = P(X1|R)P(X2, . . . , Xd|X1, R) = P(X1|R)P(X2, . . . , Xd|R)

= P(X1|R)P(X2|R)P(X3, . . . , Xd|X2, R)

= P(X1|R)P(X2|R)P(X3, . . . , Xd|R)

. . . =
d

∏
i=1

P(Xi|R) .

Finally, we have:

P(R|X1, . . . , Xd) = ∏i P(Xi|R)P(R)
∏i P(Xi)

. (1)

The classifier resulting from this independence assumption is known as naive
Bayes. The independence assumption underlying the naive Bayes classifier
can be expressed as the directed graph shown in Figure 2. The interpretation
of the network structure is that a particular pairwise relationship between
two genes, e.g. physical interactions, is a consequence of the existence of a
functional relationship between the genes. The Bayesian network suggested
by Troyanskaya and coworkers introduces some dependencies between the
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various sources of data, but the general dependency structure is similar to the
one presented here. The conditional probability distributions at the nodes
of the network were determined by surveying a panel of experts in yeast
molecular biology. Thus, there is no learning involved in the construction of
the system. The pairwise relationships used in MAGIC are matrices whose i, j
element is the degree to which protein i and j share a particular relationship.
For some data sources this is a binary score, e.g. the proteins coded physi-
cally interact or their genes belong to the same gene expression cluster. For
other data sources, the score is continuous, e.g. when measuring expression
correlation.

Learning of metabolic networks is an example of learning of functional
relationships. In this problem, one learns a network whose nodes are enzymes
and whose edges indicate that the two enzymes catalyze successive reactions
in a pathway. Yamanishi and coworkers [51] integrate many sources of data in
the context of kernel methods and consider two approaches to this problem.
(i) A “direct” approach: a classifier is trained on positive examples – pairs of
enzymes that are known to belong to the metabolic network versus pairs of
enzymes that are not part of the network. (ii) “Learning the feature space”:
before training a classifier, a low-dimensional feature space is computed. This
space captures the proximity between enzymes that belong to the metabolic
network. Yamanishi and coworkers find that learning the feature space signif-
icantly improves the results, and, further, that integration of several kernels
based on expression data, phylogenetic profiles, localization and chemical
compatibility gives better results than any individual kernel.

6 Learning Function from Networks of Pairwise Relationships

When pairwise relationships between proteins are known, the function of
unknown proteins can be inferred using the “guilt by association” rule by
looking at the annotations of its neighbors in the network. This rule assigns
a functional annotation using a majority vote among the annotations of the
neighboring nodes. This method of assigning function is clearly an over-
simplification of the problem since it ignores the larger context in which a
node appears. An alternative approach is to integrate information across the
network, rather than relying only upon local information. In this section,
we describe several approaches that consider the network as a whole when
making predictions. All the methods predict a single function of interest
using a network in which each protein is a node. Binary node labels indicate
whether the protein has the function of interest and a third label value can be
added to represent proteins with unknown function. The nodes are connected
with edges whose weights reflect the degree to which the two proteins are
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related. Multiple networks can be used either by merging the networks or by
having several networks sharing the annotation variables.

Deng and coworkers proposed a Markov random field (MRF) model to take
into account multiple networks of relationships between genes [13]. Rela-
tionships such as protein–protein interaction and coexpression are symmetric:
no directionality can be assigned to such relationships. Therefore, Bayesian
networks that rely on a directed graph to model the dependencies between
variables are not readily applicable. MRFs, which represent probabilistic
dependencies using undirected graphical models, are therefore a more ap-
propriate modeling choice. The reader is referred to Ref. [38], for example,
for an in-depth discussion of MRFs. Deng and coworkers estimate an MRF
model for each function of interest, and each protein is assigned a variable
Xi with a state of either 1 or 0, depending on whether or not the protein has
that function. The joint probability of X, the vector of variables, is written as:
exp(−U(x))/Z(θ), where x is a value of X, Z(θ) is a normalization factor that
depends on the parameters of the model and:

U(x) = −α
N

∑
i=1

xi − β ∑
(i,j)∈S

[
(1− xi)xj + xi(1− xj)

]
− γ ∑

(i,j)∈S
xixj − κ ∑

(i,j)∈S
(1− xi)(1− xj) , (2)

where S is the set of edges of the graph, α = log( π
1−π) and π is the prior

probability for observing the function of interest. The first term in Eq. (2)
represents the prior probability of observing the configuration x. The rest of
the terms represent interactions between neighbors in the network: the first
counting the number of neighbors that do not agree on the assignment of
function, the second counting the neighbors that share the function of interest
and the third counting neighbors that are negative examples.

The training data is a subset of the proteins whose function is known.
Using this data, the probability distribution of the function of the rest of
the proteins is estimated by conditioning on the state of the known proteins.
The probability of an unknown protein having the function of interest can
then be obtained by summing over the possible configurations of the rest of
the unknown proteins. The authors propose a Gibbs sampling scheme for
estimating these probability distributions.

So far we presented the MRF model that uses a single network. When
several networks are available, the probability distribution is a product of
terms, each of which is of the form (2), sharing the same values of X. The
authors also add a component that takes into account the domain composition
of the given proteins (see Ref. [13] for the details). The prior probabilities for
a protein to be assigned the function of interest is determined using data on
protein complexes, according to the fraction of members of the complex that
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have that function. When that information is not available, a global prior
based on the frequency of the annotation is used. Given a set of possible
annotations, one can estimate the probabilities of each annotation. Multiple
annotations can then be assigned on the basis of the assigned probabilities.
The correlations between different annotations are not taken into account.

The authors apply their method to classify yeast proteins using MIPS anno-
tations combining networks from several sources:

• Physical interactions taken from the MIPS database, including 2448 interac-
tions between 1877 proteins.

• MIPS genetic interactions.

• Comembership in a complex obtained using TAP data, including 232 com-
plexes involving 1088 proteins with known function.

• Cell cycle gene expression data. A network is formed by forming edges
between proteins whose expression is above some threshold (0.8 in the
paper).

The authors find that combining multiple sources of data improves their
performance relative to learning from any single data source.

Karaoz and coworkers propose a general framework for integrating and
propagating evidence in functional linkage networks [25]. This approach is a
generalization of the “guilt by association” rule which, in essence, repeatedly
applies the rule until the network reaches a state that is maximally consistent
with the observed data. They begin with a functional linkage network in
which the edges are defined by protein–protein interactions and the edge
weights are defined by correlating the corresponding mRNA expression pro-
files. A separate network is defined for each functional annotation (GO term)
and each node in the network is assigned a label based upon whether the
protein is assigned the current GO term (1), a different GO term in the same
GO hierarchy (−1) or no GO term at all (0). The optimization procedure
attempts to assign labels (1 or −1) to the zero-labeled nodes so as to maximize
an “energy” function. Their energy function is similar to the one used in
Ref. [13], but the approach is limited to a single network and, rather than
assigning function according to the distribution of a variable, they use a local
minimum of the energy function. As described, the method integrates two
types of data: one used in the definition of the network topology and the
other defines the edge weights. A larger number of sources of data can be
integrated by performing a preprocessing step of network integration by one
of the methods described in the previous section so that the network or the
weighting are computed by more than a single source of data. A similar
approach is described in Ref. [11]; to address the situation that a node has no
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annotated neighbors and “guilt by association” cannot be applied at the node,
their model has a state space that indicates whether “guilt by association” is
ready to be applied at a node.

Rather than trying to estimate a probabilistic network model, one can take
a more direct approach of making predictions on the protein graph. An
example of this approach is found in Ref. [48]. This paper follows the stan-
dard machine learning paradigm of optimizing a two-part loss (or fitness)
function. This function is composed of an error term that measures how well
the predicted function follows the training data (existing annotations) and a
regularization term that ensures the “smoothness” (regularization, in machine
learning terms) of the predicted biological function. In the context of learning
on a graph, smoothness means that adjacent nodes have similar predicted
function. As in the previous approaches, the authors define a graph whose
nodes are proteins labeled as “+1” or “−1”, depending on whether the protein
is annotated with the function of interest. Let n be the number of proteins,
and assume that the function of the first p proteins is known and is given by
a vector y with elements equal to ±1. Proteins with unknown function have
yi = 0. They define a variable fi which is the predicted annotation of node i.
The value of f is estimated by minimizing the function:

p

∑
i=1

( fi − yi)2 + μ
n

∑
p+1

f 2
i + ∑

i,j
wij( fi − fj)2 ,

where wij is the weight on the edge connecting nodes i and j. The first term is
the error term; the rest are regularization terms: the second term ensures that
the value of f for unlabeled nodes is bounded and the third term ensures that
adjacent nodes have a similar annotation. Setting μ = 1, this expression can
be written as:

n

∑
i=1

( fi − yi)2 + ∑
i,j

wij( fi − fj)2

where we take into account that the last n− p entries of y are zero. In order to
facilitate extending this formulation to multiple networks this is written as:

min
f ,γ

n

∑
i=1

( fi − yi)2 + cγ , f TL f ≤ γ ,

where L is the Laplacian matrix L = D−W, where D = diag(di), di = ∑j wij.
Multiple networks are incorporated as:

min
f ,γ

n

∑
i=1

( fi − yi)2 + cγ , f TLk f ≤ γ ,

where Lk is the Laplacian for network k. Sparsity and a dual formulation
of the problem yield efficient algorithms that enable solving the problem
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even for large networks. The authors apply their method to predict MIPS
categories in yeast (the same data used in Refs. [13, 28]). They use networks
based on Pfam domain composition similarity, coparticipation in a protein
complex, MIPS physical interactions, genetic interactions and cell cycle gene
expression similarity. They obtain similar performance to that of the SDP-
SVM method [28] and better than the MRF method [13].

7 Discussion

The methods described in this chapter illustrate that integrating several
sources of data provides improved accuracy in protein function prediction.
We described several approaches for data integration. Selecting among
these various approaches is difficult, because a large-scale experimental
comparison of different integration techniques has not been performed. In
the end, researchers tend to select the modeling technique that they are most
comfortable with.

A related problem for which data integration yields improved classification
accuracy is prediction of protein–protein interactions and the related problem
of prediction of comembership in a complex. In this domain, examples of
vector-space integration include the works described in Refs. [30, 52]. These
papers use a collection of features to predict comembership in a complex using
probabilistic decision trees and random forests. In these experiments, features
include microarray experiment correlations, transcription factor-binding data,
localization, phenotype, gene fusion, gene neighborhood and phylogenetic
profiles. An example of kernel-based integration is found in Ref. [5] where
sequence-based kernels are used in conjunction with kernels based on features
such as GO annotations to predict protein–protein interactions. The use of
kernel-based classifiers allows the use of a high-dimensional feature-space
that cannot be represented explicitly in practice. As in the other examples
presented in this chapter, the combined method performs significantly better
than methods that use only a single source of data.
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The Molecular Basis of Predicting Druggability
Bissan Al-Lazikani, Anna Gaulton, Gaia Paolini, Jerry Lanfear, John Overington,
and Andrew Hopkins

1 Introduction

Medicinal chemists have learnt through the experience of many hundreds
of screening campaigns in the pharmaceutical industry that for many tar-
gets no small-molecule modulators have yet been discovered, even when
screened against a diverse chemical file of hundreds of thousands to millions
of compounds. Even when the medicinal chemist is fortunate enough to
discover a small-molecule modulator of the biological target of interest, it
is common for many ‘leads’ compounds to be unsuitable for optimization
into prototype drugs. Chemical biologists may not require such optimized
chemical tools, but both the chemical biologist and the medicinal chemist can
learn from each other in their experience of discovering chemical tools and
leads. The failure of many screening campaigns to discover drug-like leads or
chemical tools against certain targets has lead to two competing hypotheses
to explain and overcome this phenomenon. The first hypothesis is that the
discovery of a chemical tool against a target is a function of the diversity
of chemical space screen against the target, independent of the target – the
diversity argument. The second hypothesis claims that the ability to discover
a small-molecule modulator is an inherent property of the physicochemical
topology of a biological target, independent of chemical space – the druggabil-
ity argument. These constraints are more severe if the aim is to discover drugs
that can be orally administered. The concept of druggability postulates that
since the binding sites on biological molecules are complementary in terms of
volume, topology and physicochemical properties to their ligands, then only
certain binding sites on putative drug targets are compatible with binding
compounds with high affinity to compounds with “drug-like” properties [15].
Furthermore, the concept also asserts that molecular recognition on biological
targets, such as proteins, has evolved to be exquisitely specific at discrete sites
on protein surfaces and creates stringent physicochemical limits that restrict
the target set available to modulation by small molecules. The extension of
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this concept to a whole genome analysis leads to the identification of the
druggable genome – the genes and their expressed proteome predicted to be
amenable to modulation by compounds compatible with drug-like properties
[14, 25].

2 Chemical Properties of Drugs, Leads and Tools

For in vitro or cellular experiments the chemical biologists would require a
minimum set of physicochemical characteristics of the compound to ensure
that the compound is within a range of solubility and polar/hydrophobic
balance of properties that enable the tool to permeate the cell membrane and
reach the site of action. For the medicinal chemist, the same principles apply,
but the great range of biological barriers that a drug needs to pass through
in order to affect the biological system of a whole organism is far greater
and thus reduces the molecular property range of chemical space. Lipinski
introduced the concept of physicochemical property limits to the drugs, with
respect to solubility and permeability of drugs from a seminal analysis of the
Derwent World Drug Index which demonstrated orally administered drugs
are far more likely to reside in areas of chemical space defined by a limited
range of molecular properties. Lipinski’s analysis demonstrated that 90% of
orally absorbed drugs had molecular weights of less than 500 Da, less than
five hydrogen-bond donors (such as the OH and NH group count), fewer
than 10 hydrogen-bond acceptors (such as the total, combined nitrogen and
oxygen atom count being 10 or less) and lipophilicity less than calculated
logP ≤ 5 [20]. The multiples of five observed in the molecular properties of
drugs led to the coining of the term Lipinski’s “Rule of Five”. Since the work
of Lipinski and coworkers, various expansions of the definition and methods
to predict “drug-likeness” have been proposed in the literature [1,9,17,19–22,
27, 28, 31, 34–36]. The common thread emerging from the field is that drug-
likeness is defined by a range of molecular properties and descriptors that
can discriminate between drugs and nondrugs for such characteristics as oral
absorption, aqueous solubility and permeability. This is illustrated by the
observation that the distribution of mean molecular properties of approved
oral (small-molecule) drugs has changed little in the past 20 years, despite
changes in the range of indications and targets [33].

3 Molecular Recognition is the Basis for Druggability

The molecular basis of the a priori druggability hypothesis derives from bio-
physical study of molecular recognition. The binding energy (ΔG) of a ligand
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to a molecular target (e.g. protein, RNA, DNA, carbohydrate) is defined as:

ΔG = −RT ln Ki = 1.4 log Ki (1)

where R is the gas constant (1.986 cal mol−1 K−1).
The affinity of binding is predominately driven by the van der Waals and

entropy components of the binding energy by the burying of hydrophobic
surfaces. Thus for a ligand, such as a drug molecule, to bind with an affinity
of Ki = 10 nM it requires a binding energy (ΔG) of –11 kcal mol−1. A
lower affinity “hit” from a high-throughput screen of Ki = 1 µM affinity
equates to 8.4 kcal mol−1. Thus, a 10-fold increase in potency is equivalent
to 1.36 kcal mol−1 of binding energy. The binding energy potential of a ligand
is, in general, proportional to the available surface area and its properties. The
hydrophobic effect from the displacement of water and the van der Waals at-
tractions between atoms contributes approximately 0.03 kcal mol−1 Å−2. Thus
a ligand with a 10 nM dissociation constant would be required to bury 370 Å2

of hydrophobic surface area, assuming there are no strong ionic interactions
between the protein and the ligand. Empirical analysis of nearly 50 000 biolog-
ically active drug-like molecules reveals a linear coloration between molecular
weight and molecular surface area (Figure 1). The contribution of the hy-
drophobic surface to binding energy is demonstrated by the phenomenon
of the “magic methyl”, where experienced medicinal chemists often observe
that a single methyl group, judiciously placed, can increase ligand affinity by
10-fold, approximately equivalent to the maximal affinity per nonhydrogen
atom [16]. The accessible hydrophobic surface area of a methyl group is
approximately 46 Å2(if one assumes all of the hydrophobic surface area is
encapsulated by the protein binding site and thus forms full contact with the
target) with a hydrophobic effect of 0.03 kcal mol−1 Å−2 equal approximately
to 1.36 kcal mol−1, equivalent to the observed 10-fold affinity increase. In ad-
dition to the predominantly hydrophobic contribution to the binding of many
drugs, ionic interactions, such as those found in zinc proteases (such as ACE
inhibitors) contribute to the binding energy. The attraction of complementary
polar groups contributes up to up to 0.1 kcal mol−1 Å−2, with ionic salt bridge
approximately 3 times greater, enabling low-molecular-weight compounds to
bind strongly. Unlike hydrophobic interactions, complementary polar inter-
actions are dependent on the correct geometry. Thus, encapsulated cavities
are capable of binding low-molecular-weight compounds with high affinities
since they maximize the ratio of the surface area to the volume.

Thus, the physicochemical characteristics of the binding site define the
physical and chemical properties of the ligand. Therefore, a target needs a
pocket, whether the pocket is predefined or formed on binding by allosteric
mechanisms. In general, thermodynamics and selection pressure play a part
in reducing the accidental existence of such favorable pockets for ligand
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Figure 1 Relationship between molecular
weight and molecular surface area. Analysis
of 49 456 biologically active, drug-like
compounds with IC50 ≤ 100 nM. Molecular
weight was calculated from the chemical
structures represented as desalted, canonical
SMILES strings. The calculated molecular
surface area of N, O, P and S atoms was

estimated using the fast Ertl method [10]
using a two-dimensional approximation. All
other atom types (excluding H atoms) were
estimated using an overlapping spheres
method. All calculations were performed
using Scitegic’s Pipeline Pilot (San Diego,
CA.).

interactions. The thermodynamic argument contests that it costs energy to
maintain an exposed hydrophobic pocket in an aqueous environment. Se-
lection pressure may also increase the specificity of molecular recognition
for ligand pockets to avoid inappropriate signaling or inactivation from the
milieu of metabolite and small molecules in which cells are bathed.

A quantitative approach is already well established for assessing the drug-
like properties of a small molecule, could such a quantitative approach for
assessing the properties of proteins as drugs? The “Rule of Five” is a set of
properties to suggest which compounds are likely to show poor absorption or
permeation, since such compounds are unlikely to show good oral bioavail-
ability [20]. Physicochemical constraints such as this limit the type of proteins
we see as drug targets; simply put, drug targets need to be able to bind
compounds with complementary properties. As a receptor binding site must
be complementary to a drug, it is reasonable to assume that equivalent rules
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could be developed to describe physicochemical properties of binding sites
with the potential to bind “Rule of Five” compliant molecules with a potent
binding constant (e.g. Ki < 100 nM). A number of properties complementary
to the “Rule of Five” can be calculated, e.g. the surface area and volume of
the pocket, hydrophobic and hydrophilic character, and the curvature and
shape of the pocket. Following the assumption that properties of the drug
are complementary to those of the binding site, analysis of the calculated
physicochemical properties of the putative drug binding pocket on the target
protein can provide an important guide to the medicinal chemist in predicting
the likelihood of discovering a drug against the particular target site. Based on
the known physicochemical properties of passively absorbed oral drugs, one
would predict “druggable” binding sites to be predominately apolar cavities
of 400–1000 Å3,where over 65% of the pocket is buried or encapsulated, with
an accessible hydrophobic surface area of at least 350 Å2.

Druggability predictions have been empirically explored using heteronu-
clear nuclear magnetic resonance (NMR) to identify and characterize the bind-
ing surfaces on protein by screening around 10 000 low-molecular-molecules
(average molecular weight 220, average cLogP 1.5) [13]. Screening results
from 23 proteins reveal 90% of the ligands binds to sites know to be a small
molecule ligand binding sites. In the relative small sample of proteins studied,
Hajduk and coworkers note a high correlation between experimental NMR hit
rates and the ability to find a high affinity ligands. Only in three out of the
23 proteins were distinct uncompetitive new binding sites were discovered.
The authors’ postulated that these new sites could possibly play an unknown
physiological role in the proteins functions.

4 Estimating the Size of the Druggable Genome

Whilst our current knowledge may be limited in predicting a priori where
uncompetitive allosteric binding sites may appear from a protein sequence,
we may be able to identify at the sequence and structural level which targets
are more likely to be potentially amenable to modulation by drug-like small
molecules from extrapolation of our current knowledge.

Using knowledge of proteins to which current drugs and leads bind, we
can infer the subset of the human genes and protein that have a high proba-
bility of being potentially druggable, i.e. capable of binding drug-like small
molecules with high affinity. Outlined below are a number of methodologies
and approaches that have been used to infer the druggable portion of targets
encoded by the human genome. In this chapter we have extended the work
of Hopkins and Groom, and attempted to estimate the size of the druggable
human genome using three distinct methodologies:
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• Homology-based analysis from comprehensive survey of drugs and leads

• Feature-based probabilistic druggability analysis

• Structure-based amenability analysis

4.1 Initial Estimates

In order to begin to gauge the number of possible drug targets in the human
genome, one should begin with a survey of the knowledge of the current
modes of action of existing drugs. In a review of the pharmacological liter-
ature, Drews [7, 8] identified 483 targets for known drugs. From this figure
Drews later estimated the number of ligand binding domains as a measure
of the number of potential points at which small molecule therapeutic agents
could be close to 10 000; however, the methodology of how these numbers
were derived is not disclosed [6].

4.2 Hopkins and Groom’s Method

The first systematic survey of the druggable genome, following the pub-
lication of the draft human genome [18, 32], was by Hopkins and Groom
[14]. Hopkins and Groom attempted to identify the genes which produced
potentially druggable proteins by their membership of druggable gene fam-
ilies. The explicit assumption of a gene family-based analysis is that the
conserved architecture of the druggable protein domain is likely to be con-
served amongst related members of that domain’s gene family. Hopkins
and Groom approached the problem in two stages. (i) A database of drug
target sequences from a comprehensive survey the literature and investigation
drug databases was complied. (ii) The constructed drug target sequence
database as used to identify related members of a putative druggable gene
family from the protein domain annotation of the translated human protein
sequences. Hopkins and Groom’s analysis of the literature, the Investigational
Drugs Database and the PharmaProjects databaseidentifies 399 nonredundant
molecular targets shown to bind “Rule of Five” compliant compounds, with
binding affinities below 10 µM. Whilst there is some degree of overlap with
Drews’ work [7, 8], a significant amount of redundancy was observed in the
initial study. In addition a number of new proteins targeted by experimental
drugs were captured. Likewise, some targets for biological agents, for which
modulation by “Rule of Five” compliant compounds has not yet been shown,
were eliminated from the survey. Nearly half of the targets fall into just six
major gene families: G-protein-coupled receptors (GPCRs), serine/threonine
and tyrosine protein kinases superfamily, zinc metallopeptidases, serine pro-
teases, nuclear hormone receptors, and phosphodiesterases (PDEs). Of the 399
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targets of marketed and experimental drugs identified, 376 sequences could be
assigned to 130 drug-binding domains, as captured by their InterPro domain
annotation. Of these, 125 are domains with homologs and orthologs present in
the human proteome. The sequence and functional similarities within a gene
family assume a general conservation of binding site architecture between
family members. The explicit assumption being that if one member of a gene
family is modulated by a drug molecule, other members of the family could
also be able to bind a compound with similar physicochemical properties.
Following the above logic, 3051 genes were identified as belonging to the 125
druggable InterPro domains and thus predicted to encoded proteins that have
some precedence for inferring their ability to bind a drug-like molecules.

Hopkins and Groom’s database identifies only 120 biological targets as the
modes of action for marketed, “Rule of Five” compliant drugs – significantly
less than the previous estimate that launched drugs acted on 483 targets.
Interestingly, the vast majority of the drugs and leads identified in this survey,
about 90%, are competitive with an endogenous ligands at a structurally
defined binding site. This figure is similar to the rates of discovering new
binding sites by Hajduk and coworkers [13] (Hopkins, personal communica-
tion).

4.3 Orth and Coworkers Update 2004

Orth and coworkers [24] based an estimate on the druggable gene families
on the InterPro domain assignments in the annotated gene-encoding loci of
the 2004 release of the Consensus CoDing Sequence (CCDS) database. The
authors estimate the 3080 nonredundant gene-encoded loci in the human
genome predicted to be belonging to the druggable genome with over 2950
druggable gene sequences in public databases.

4.4 Russ and Lampel’s Update 2005

Russ and Lampel [30] conducted an estimate on the druggable genome
based on the preliminary final assembly (Ensemble Release 35) of the human
genome where 99% of the sequence has high quality cover. The authors
found Pfam protein domain annotation predicted fewer false positives than
the InterPro classification used by Hopkins and Groom [14], estimating
3100 druggable genes from the previously defined set of druggable protein
domains, approximately 2900 of which were predicted by both approaches. Of
the 3100 predicted genes, 2600 are covered by the consensus CCDS annotation
of the major genome databases. Extrapolation from the manual VEGA
genome annotation databases (about 40% of total genome) leads the authors to
a conservative estimate of around 2500 druggable genes. The authors consider
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these assessments from the high confident gene prediction databases to be a
considered lower conservative estimate of the size of the druggable genome.

5 Homology-based Analysis of Drug Targets

In order to expand the homology analysis methodology for identifying which
targets expressed from the human genome are likely to be druggable, it is
necessary to expand our survey to identifying all known biological targets of
drugs and lead compounds. Inpharmatica commissioned the construction of
two databases, DrugStore and StARLITe, to accurately ascertain the number
of biological targets modulated by drugs and preclinical medicinal chemistry
compounds, respectively.

Inpharmatica’s DrugStore is a relational database relating all Food and
Drug Administration approved drugs to their molecular targets and approved
indication. From this analysis we have identified 26 000 drugs products
which reduces to 1783 unique new molecular entities (NMEs), of which 1415
are small molecule chemical entities, 180 are biological therapeutics (18 of
which are antibodies), and the remainder are vitamins and supplements. As
drug discovery has been more target-centric over the past two decades in its
research modus operandi, a key point of debate has been how many modes
of action acted upon by approved drugs? The first attempt to ascertain this
number was by Drews, who estimated known drugs acted on 483 targets – the
source of the often quoted “500 targets” figures. Hopkins and Groom’s analy-
sis challenged this figure and suggested, irrespective of poly-pharmacology
off-target effects, “Rule of Five” compliant (orally administered) approved
drugs acted primarily on only 120 modes of action. A subsequent analysis by
Burgess and Golden proposed all approved NMEs consisting of new chemical
entities (NCEs) and new biological entities (NBEs) targeted 272 proteins [3, 5,
11, 12]. Here, we propose from analysis of the DrugStore database all NMEs
primarily act on 301 drugs targets of which 238 are human proteins and
only 170 are human proteins targeted by small-molecule drugs (Table 1 and
Figure 2). Biological drugs target 59 modes of action with current marketed
antibody therapeutics acting on 15 human targets. Only nine targets are
currently found to be modulated by both small-molecule and biological drugs.
The remaining targets are predominately anti-infective drug targets.

The drug target universe expands considerably if we expand our analysis to
include biological targets for which medicinal chemists have developed small-
molecule leads. Unlike the bioinformatics community which has developed a
wealth of public databases to assemble and disseminate protein and genomic
sequences, medicinal chemistry structure–activity relationship (SAR) data is
not publicly available in a systematic database and is spread between com-
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Figure 2 Molecular targets of current Food and Drug Administration
approved drugs (a) by numbers of drug substances and (b) by number
of drug target in gene family. Figures are derived from analysis of
1606 active ingredients (25 024 approved products). Orange Book,
September 2002 (http://www.fda.gov/cder/ob).

Table 1 Molecular targets of approved drugs

Class of drug target Species No. molecular targets
Targets of approved NMEs all (anti-infectives and human) 301
Targets of approved NMEs human only 238
Targets of approved NCEs human 170
Targets of approved antibodies human 15
Targets of approved biologicals all (anti-infectives and human) 59

pany in house data warehouse, of peer-reviewed journal articles and patents,
often in formats not easily accessible to machine processing. In order to survey
the universe of drug targets with known leads, Inpharmatica have created
the StARLITe database of bioactive compounds by extracting structures, as-
says, targets and SAR from the key medicinal chemistry journals (i.e. Journal
of Medicinal Chemistry 1980–2004, Bioorganic and Medicinal Chemistry Letters
1990–2004) covering 350 000 compounds and 1 275 000 assay points. The
comprehensive survey of medicinal chemistry identifies 1155 targets known
to have at least one drug or lead compound bind with an affinity below 10 µM,
707 of which are human molecular targets (Table 2 and Figure 3). Applying
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Figure 3 Gene family distribution of nonredundant human proteins
with small-molecule chemical leads with binding affinities below 10 µM.
Data derived from an analysis of Inpharmatica’s StARLITe database.

Lipinski’s criteria to the compounds in the dataset (as represented as desalted,
canonical SMILES strings) reveals 587 human proteins with at least one or
more compounds which complies with the “Rule of Five” with a binding
affinity more potent than 10 µM, which could be unambiguously identified
and assigned to a protein sequence (Figure 4). The extremely through analysis
of the literature, represented in the StARLITe database, more than doubles in
size the number of identified proteins with existing lead matter.

Using this larger database of drug targets which show some precedent
of modulation by small-molecule leads or drugs we attempted to estimate
the size of the potential druggable genome based on a homology to known
drug targets. The underlying assumption in this analysis is that if one gene
family member has shown the propensity to selectivity bind small-molecule
modulates other members of the gene family may significant contain physic-
ochemical and architectural properties that they are also like to bind drug-like
small molecules. Proteins that have a similar sequence are generally likely to



5 Homology-based Analysis of Drug Targets 1325

Figure 4 Proportion of targets with leads observed with at least one
“Rule of Five” (Ro5) compliant compound within each gene family.

share very similar three-dimensional and perform similar or related functions.
If a protein therefore has a high degree of sequence similarity to the target
of a drug (or other proteins that is known to be druggable), we predict that
proteins is likely to be druggable too, if we believe the binding site architecture
to be conserved. Where proteins are less closely related in sequence, it is more
difficult to infer druggability. Relatively small differences in the binding site
of a protein could have a large impact on its ability to bind small molecules.
The authors recognize that this is a simplistic assumption and is likely to
overestimate the number of potential members of the predicted druggable
subset of the human genome. For example, many individual members of the
gene family may bind distinct ligands. The molecular recognition properties
of their respective binding sites could be significantly divergent. Using the
BLAST sequence alignment algorithm to search each of the sequences against
the human genome, we identified 945 distinct genes that show homology to
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Table 2 Molecular targets with chemical leads and tools (identified from the medicinal
chemistry literature in Inpharmatica’s Startlite database and unambiguously assigned to a
molecular target via a protein sequence)

Gene
family

Redundant
ortholog
targets (all
species)
<10 µM

“Rule
of Five”
redundant
ortholog
targets (all
species)
<10 µM

“Rule
of Five”
redundant
ortholog
mammalian
targets
<10 µM

“Rule
of Five”
redundant
ortholog
mammalian
targets
<10 µM

Nonredun-
dant human
targets
<10 µM

“Rule of
Five” nonre-
dundant
human
Targets
<10 µM

Aminergic
GPCRs

71 71 61 61 34 34

Aspartyl
proteases

10 4 9 4 7 3

Cysteine
proteases

20 18 19 17 16 14

Enzymes –
others

149 117 131 104 102 81

GPCRs class
A – others

59 47 49 38 35 30

GPCRs class
B

12 7 10 5 5 2

GPCRs class
C

20 20 19 19 10 10

Hydrolases 54 44 46 37 34 28
Ion channels
– ligand
gated

52 42 47 37 26 20

Ion channels
– others

20 18 18 16 14 12

Kinases –
others

11 8 11 8 7 6

Metallo-
proteases

60 56 53 50 41 39

Nuclear
hormone
receptors

45 33 33 26 22 19

Others 188 144 146 109 108 79
Oxido-
reductases

67 63 62 58 39 37

PDEs 15 13 15 13 11 11
Peptide
GPCRs

99 72 80 59 52 42

Protein
kinases

101 90 87 78 75 66

Serine
proteases

34 30 34 30 27 24

Transferases 68 46 57 39 42 30
Total 1155 943 987 808 707 587
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the molecular targets of approved drugs at a cutoff of 30% sequence identity
and E-value less than or equal to 10−5. Expanding the BLAST analysis to
include human proteins from the known drug-like leads from the StARLITe
database identified a 2921 protein sequences within the same sequence iden-
tify cutoffs.

In addition to using a sequence homology approach, we also approached
the problem of identifying the druggable subset of the human proteome using
a feature-based Bayesian method.

6 Feature-based Druggability Prediction

Drug targets, be they targets of small-molecular-weight drugs or protein ther-
apeutics, may share common sequence-based features that are not necessarily
detectable by overall sequence similarity. An alternative approach to using
sequence-based similarity methods is to examine the presence of sequence-
based features that are enriched in drug targets compared to that of the
rest of the genome. A large set of over 100 protein properties and features
were calculated for each sequence in the DrugStore database such as the
number of transmembrane helices, signal peptides, isoelectric point, length
distribution, percentage of helical structure, antigenicity, net charge at pH 7.4,
domain complexity, subcellular localization, etc. Features that were enriched
in existing drug targets retained and used to construct probabilistic Bayesian
models for both small-molecule druggability prediction and protein therapeu-
tic druggability prediction. The implementation of this Bayesian probabilistic
scoring allows for ranking any portfolio of targets based on their predicted
druggability. The major advantage of this approach is the independence of
any prior knowledge about the examined protein, or homology to precedent
target families. The Bayesian models also hold the advantage of being tunable
to reflect specific gene families, or drug profiles. The probabilistic models
were then used to rank all sequences from human genome according to both
small-molecule and protein druggability as predicted by the presence of drug-
gable features in the protein sequence. The small-molecule model predicts
2325 gene products to be druggable with high confidence (i.e. achieving scores
comparable with those of existing targets).

7 Structure-based Druggability Analysis of Protein Data Base (PDB)
Structures

Following the hypothesis that druggable binding sites can be predicted a priori
we have developed an algorithm to analyze the PDB for druggable binding
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sites. Actual and putative ligand-binding sites were, respectively, identified
either by virtue of the presence of a ligand in the crystal structure or by
analysis of the surface of the protein structure. A range of physicochemical
properties of the identified binding sites and cavities were calculated from
the protein structures including volume, depth, curvature, accessibility, hy-
drophobic surface area and polar surface area. The algorithm was trained set
against a test set of 400 protein complexes binding small molecule, “Rule of
Five” compliant ligands. From this analysis a decision tree was derived to
predict the druggability of a binding site or cavity from calculated physico-
chemical properties. The decision tree predicts whether a cavity is druggable
within the statistical confidence of the tree. This method has a demonstrated
a 91% success rate when predicting druggability on the protein drug targets
(of oral drugs as defined in Inpharmatica’s Drugstore database of approved
drugs). The method requires either an experimentally derived structure or a
high-quality homology model. Ideally, due to the inherent flexibility of many
protein-ligand binding sites a sample of multiple conformations is preferred.
The method is scalable to be employed on the entire PDB (December 2004
release). By removing short peptides, 27 409 files were suitable for analysis,
which was further classified into 76 322 structural domains using SCOP [23]
and DISCObase of which 28% (21 522) of the structural domains were found
to have at least one site predicated, to some degree, to be druggable. Due
to the high redundancy in the PDB and the high number of ligand–protein
complexes reduced to a nonredundant set of human targets 427 proteins were
predicted to contains a druggable binding site, with 281 of these proteins
having no prior known compounds or drugs developed against those targets.
Structure-based druggability algorithms could be automatically applied to
continuously assess the stream of novel structures determined by the struc-
tural genomics initiatives.

Combining a nonredundant set of genes from all methods outlined above:

• current targets of approved drugs

• current targets of chemical leads or chemical tools

• sequence homology to current drug targets

• sequence homology to current chemical lead targets

• feature-based sequence probability prediction

• structured-based prediction

• sequence homology to structure-based prediction
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we identify a total of 3505 unique genes that are predicted with first- and
second-order evidence and high confidence to encode small-molecule drug-
gable proteins of which only 170 are the primary human targets for marketed
drugs (Table 3). The results of this combined analysis concur with the previ-
ous estimated by Hopkins and Groom [14] which approximately 14% of the
human genome could be inferred to be potentially druggable.

Table 3 Predictions of the size of the human druggable genome

Druggability prediction method No. molecular targets
Targets of approved NCEs 170
Sequence homology to NCE drug targets 945
Targets of chemical leads with activities (binding affinities) below
10 µM

707

Targets of “Rule of Five” chemical leads with activities (binding
affinities ≤10 µM)

587

Sequence homology to targets with chemical leads 2921
Feature-based druggability sequence probability prediction 2325
Structured-based prediction 427
Sequence homology to proteins predicted druggable by
structure-based method (high confidence)

3541

Sequence homology to proteins predicted druggable by
structure-based method (low confidence)

6619

Predicted druggable genome (high confidence) 3505

Unique druggable targets from combining drug targets, targets with leads, homology to
drug/lead targets and structure-based prediction.

8 How Many Drug Targets are Accessible to Protein Therapeutics?

If our explorations of the proportion of the protein targets expressed by the
human genome accessible to modulation by high-affinity, drug-like small
molecules is limited, how much larger is the universe for drug targets if we
expand our investigations to include targets of protein therapeutic such as
antibodies and recombinant biologicals? At the time of writing, approved
antibody therapeutics were known to act on 15 human targets, whilst in total
all biological drugs in the pharmacopoeia currently work via 59 modes of
action. Due to the inherently lower toxicity observed for fully humanized
antibodies and the rising rate of biological approvals, it has been argued that
antibodies may soon overtake NCE approvals [2]. Interestingly, it has also
been observed by studying rates of attrition that antibodies acting against
novel modes of action often shown a higher chance of success in phase II
clinical studies than small-molecule drugs acting on precedent mechanisms
[26, 29, 37]. Thus, we attempted to estimate how many targets are accessible
to biological drugs as the targets of antibody therapies. Other criteria, such as
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antigenicity, are also important in developing inhibitory antibodies. However,
these have not been considered in this analysis, as they are not common to
both antibody and other protein drugs.

In order to estimate the number of genes expressing products that could be
accessible to antibody therapeutics we assume that proteins are required to
be located in the extracellular matrix. We assume that extracellular location is
the common characteristic of secreted and transmembrane of proteins. Where
the extracellular location is known, this is often included in Swiss-Prot and
Gene Ontology (GO) [4] database annotation for the protein. Secreted proteins
can be predicted by the presence of a signal peptide, whilst transmembrane
domains can be identified by sequence property prediction. Analysis reveals
1384 genes predicted to encode secreted proteins with high confidence (i.e.
predicted by multiple different methods). If the confidence level is lowered
(i.e. signal peptide predicted by single method), 6560 genes are predicted to
potentially be secreted. Our transmembrane analysis reveals that 973 genes
are predicted, by multiple methods, to have transmembrane domains and be
located inside the plasma membrane. This number increases by 1407 genes
which are predicted to be plasma membrane proteins only by a single method.
Combining these results together we identify the total number of extracellular
proteins, with high confidence, to be expressed by 2287 genes. The study was
extended to identify proteins that contain feature similar to the current set of
biological drug targets using the Bayesian probabilistic featured-based algo-
rithm discussed above. Trained on the existing set of biological drug targets
1637 gene products were predicted to be druggable via biological therapeutics
with high confidence (i.e. achieving scores comparable with those of existing
protein targets). Therefore, the total number of genes predicted to encode
protein therapeutic druggable proteins is 3258 genes equivalent to 13% of the
gene in the human genome (Table 4).

Table 4 Predictions of the number of genes in the human genome accessible to protein
therapeutics (recombinant soluble proteins and antibodies)

Druggability prediction method No. of
molecular targets

Targets of approved antibodies 15
Targets of approved biologicals 59
Secreted protein (high confidence) 1384
Secreted proteins (low confidence) 6560
Transmembrane predictions (high confidence) 973
Transmembrane predictions (low confidence) 1407
Unique, combined transmembrane and secreted predictions
(high confidence)

2287

Feature-based biological target sequence probability prediction 1637
Total unique genes predicted to be accessible via biological
therapeutics

3258
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Figure 5 Gene family distributions: (a) small-molecule druggable
genome and (b) protein therapeutics.

9 Conclusions

From a comprehensive survey of the medicinal chemistry literature, and by
combining a variety of methodologies, sequence homology, structure- and
feature-based, we have identified approximately 3500 genes in the human
genome that are predicted to be accessible to modulation by high affinity
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Figure 6 Overlap of antibody and small-molecule druggable
universes.

drug-like small molecules: approximately 14% of the human genome. Of the
approximate 3500 human druggable genes, small-molecule chemical tools or
leads (with binding affinities equal or more potent that 10 µM) have already
been identified that act on 707 of these and 170 are the primary targets for
approved, small-molecule drugs. Whilst there may be many more proteins
expressed by the human genome that may be discovered to be modulated by
small-molecule tools or drugs, the proteins identified as belong to the subset
known as the “druggable genome” represent those targets we can readily
predict have a higher confidence of discovering a small-molecule chemical
tool than the remaining genes in the genome. Since it was first proposed that
the various physicochemical constraints on drug-like chemicals would reduce
the available targets space it has been suggested that the accessible drug target
space may expand considerable with the application of biological drugs such
as fully humanized antibodies. To date, approved protein therapies act via
about 59 human targets, 18 of these are targeted by marketed antibodies.
With the commercialization of recombinant protein production the number of
biological drugs receiving approval and being studied in the clinic is steadily
rising. Several commentators predict that the rise of antibody therapies may
challenge the premier position of small-molecule chemical entities as the dom-
inant technology of medicinal chemistry [2]. Our analysis of the proposition of
the genome potentially accessible to modulation by protein therapeutics, such
as antibodies is around 13%, with 3258 genes predicted to encode proteins
potential druggable via protein therapeutic proteins. Interestingly, 70% of
all the drug targets are also predicted to be accessible to modulation by
antibody therapy. Indeed, if we expand the analysis to compare the overlap
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between the antibody-accessible druggable genome and the “small-molecule
druggable” genome, 1516 genes are predicted to encode proteins druggable
by both small molecules and protein therapeutics – approximately 45% of our
current estimate of the small-molecule druggable genome (Figures 5 and 6).
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1 Introduction

Comparative genomics is an approach that uses the signal of past selection as a
highly sensitive assay for function in genome sequences. Unlike experimental
approaches, it does not require a prior hypothesis of that function. The
realization that comparative sequence analysis is crucial to understanding
the functions encoded in the human and other genomes is driving a major
comparative sequencing effort. The fruits of this labor are a rapidly expand-
ing number of whole-genome sequences and new computational methods to
analyze these data in efficient and meaningful ways.

In this chapter, we introduce the concepts and techniques of comparative
genomics; in doing so we build on the foundations laid in earlier chapters, par-
ticularly Chapter 3 on sequence alignment and Chapter 4 on phylogenetics.
In general terms, the approaches we describe can be applied to any collection
of organisms, but our emphasis here is primarily on questions of relevance to
human genomes. We begin, in Section 2, by presenting an overview of genome
structure and content, providing a context for the subsequent discussions. We
then introduce the concepts of natural selection, homology and phylogenetic
distance that underlie comparative genome analyses in Section 3. In Section 4,
we consider the types of questions that can be addressed and the strategies
that can be employed to address them. We also consider the availability
and accuracy of genomic sequence data. In Section 5, we introduce the
three main technical challenges of comparative genomic sequence analysis –
genomic sequence alignment, the visualization of sequence relationships and
detecting the signal of selection. We review the methods employed to meet
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these challenges and discuss the most popular, and the most promising new
tools. In Section 6, we illustrate the utility of comparative genomic studies
with recent applications that have given new insights into human biology.
Finally, in Section 7, we highlight some resources that are likely to have a
profound impact on future comparative genomic studies and identify future
research challenges.

2 The Genomic Landscape

The human genome is approximately 3 200 000 000 (3.2 Gb) nucleotides long
[50]. At first sight, a monotonous repetition of A, T, C and G representing
the four nucleotides of DNA, it is in fact a diverse and still in many ways
mysterious landscape. Of the total 3.2 Gb, 2.85 Gb have been sequenced to
high accuracy [50]; the remainder are largely attributable to heterochromatic
regions (centromeres and telomeres) that are highly repetitive and refractory
to current sequencing technology.

Proteins are often thought of as the principal functional product of a
genome. Consequently, protein-coding sequences are the first place screened
for disease-associated mutations and functionally significant polymorphisms.
The human genome encodes approximately 22 000 protein-coding genes
(http://www.ensembl.org), although the total diversity of proteins produced
is likely to be several times this thanks to alternate transcription initiation and
processing [19, 67]. However, it appears that this protein-coding sequence
accounts for less than 1.5% of the human genome sequence [59]. The situation
is similar in rodents [40, 114], other mammals [63] and, to varying degrees,
other vertebrates [4, 46]. These estimates of coding sequence content appear
to be robust, they are based on the integration of comparative data [90] and
transcript evidence [89], and they are also consistent with extrapolation from
the detailed investigation of targeted regions [75]. This finding does of course
raise the question “What is the function of the remainder of the genome?” and
even questions whether the majority of a vertebrate genome is subject to any
selective constraint.

A protein is translated from an mRNA which contains a contiguous protein-
coding “open reading frame”, flanked by stretches of noncoding sequence. In
eukaryotes, the genomic DNA that provides the template for mRNA synthesis
is often found as a series of collinear but discrete segments (exons), interrupted
by introns. Although transcribed, the introns are spliced from the mRNA
prior to protein synthesis. This is a marked difference from the situation in
prokaryotic organisms (Chapter 41), where the mRNA template is typically
uninterrupted. Particularly in higher eukaryotes such as mammals, the length
of introns often far exceeds that of exons. In addition to the sequences that are
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transcribed into RNA, a gene will have an associated core-promoter region
immediately upstream of the transcribed region. The core-promoter region
acts to drive transcription and consequently expression of the gene. However,
it is common, especially in higher eukaryotes that there are other sequences,
potentially distantly located [61], that are also crucial to the appropriate regu-
lation of gene expression.

Pseudogenes are the remnants of functional genes that have apparently lost
the ability to perform any useful function. Often, this means that they look
obviously like protein-coding genes, but that they have accumulated changes
such as in-frame stop codons that would prevent them producing a functional
protein. Pseudogenes can arise through duplication where one copy of a gene
retains and continues to perform the original function, whereas the other is
redundant so free to accumulate changes that disrupt its function without
detriment to the fitness of the organism. Alternately, the function of the gene
may no longer be required – the human GLY1 pseudogene possibly provides
such an example, the ancestral gene acting in threonine catabolism, but for
which the only human copy contains multiple in-frame stop codons [31],
again the selective constraint is removed. In both of these cases the gene
becomes a nonprocessed pseudogene.

A major component of the human and many other higher eukaryotic
genomes is sequence derived from interspersed repetitive elements (IRE) such
as endogenous retroviruses, retrotransposons and DNA transposons. At least
45% of the human genome is identifiably derived from IREs [59], although
this almost certainly underestimates their true contribution as older, more
divergent repeat-derived sequences are unlikely to be identified. These
elements are often considered “junk” DNA and rarely have organism-level
biological functions been attributed to them, although a small number of
exceptions are known [52, 58]. It is interesting to note that some vertebrate
lineages, most notably that of the pufferfish, are almost devoid of such IRE-
derived sequence and have a genome approximately 8-fold smaller than the
human despite encoding a similar number, or possibly slightly more, protein-
coding genes [4].

Processed pseudogenes are a consequence of a genome rich in repetitive
elements, specifically those that replicate and transpose through the reverse
transcription of RNA into DNA. Occasionally, rather than reverse transcrip-
tase, the enzyme responsible for reverse transcription, driving the replication
of an IRE, it will reverse transcribe the mRNA of a gene. The result is a
processed pseudogene – the copy of an mRNA integrated into the genome.
These are distinct from the pseudogenes discussed above as they bare the
hallmarks of transcript processing, such as the removal of introns and 3′
polyadenylation [119]. Processed pseudogenes are often incomplete at the
5′ end – a consequence of reverse transcriptase reading the 3′ end of the
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mRNA first. Some genes such as those encoding the ribosomal proteins
are particularly susceptible to generating new processed pseudogenes [119],
probably reflecting in part the level germline transcript of the gene.

In probably every measure that has been made of the human genome
sequence, it has been found to be far from homogeneous. We have already
seen the distinction between heterochromatic regions that appear to perform
roles in the packaging and segregation of chromosomes. Throughout the rest
of the genome (the euchromatic regions), there is considerable variation in
gene density (the number of genes per unit sequence), IRE content, nucleotide
and dinucleotide frequency, and the observed rates of genetic recombination,
nucleotide substitution, insertions and deletions. Many of these attributes
have been found to covary across the genome [40, 45, 101], but currently
the bases of their interrelationships are not well understood. Of particular
relevance to comparative genomic studies is the fluctuation of substitution,
insertion and deletion rates across the genome [117], which suggest there may
be regional variation in the rate at which mutations occur. At least in rodents,
the scale of this variation is of the order of 1 Mb, so that the substitution rates
for two neutrally evolving regions of sequence are highly correlated if they lie
within this distance of each other, but the correlation decreases rapidly with
increasing genomic distance [38].

The rate of sequence mutation is not only dependent on the large-scale
region of a genome, but also on the sequence and composition of neighbor-
ing nucleotides [45, 108]. For example, tandemly repeated sequences and
mononucleotide tracts are prone to insertion and deletion mutation [108]. The
epigenetic methylation of cytosine nucleotides when they are located directly
upstream of a guanine (CpG) is a common occurrence in mammalian genomes
and, to a lesser extent, in other metazoa [8]. This nucleotide modification has
had a major influence in shaping mammalian genomes. Thanks to a quirk of
biochemistry, a methylated C can mutate to T at a much higher frequency than
all other nucleotide substitutions can occur. As a result, CpG dinucleotides are
grossly under-represented across the majority of the human genome, relative
to chance expectation given the frequency of C and G nucleotides (approxi-
mately 20% of the expected frequency [59, 104]) and CpG mutation rates tend
to be substantially higher than those of other dinucleotides. However, within
specific islands of sequence (commonly known as CpG islands), CpGs are not
methylated, at least in the germline [9], so are not under-represented. CpG
islands are often associated with the 5′ end and promoters of some genes [9],
so represent sequences that are often of particular interest in comparative
genomic studies.

Segmental duplications are a genomic feature that can often cause problems
for sequence assembly such that they are frequently overlooked. These are
large (typically 5 kb is taken as a minimum threshold in their definition) tracts
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of sequence that occur multiple times in a genome, often as tandem repeats.
These duplicated regions can contain whole genes or even multiple genes.
Recent segmental duplications will share a high degree of nucleotide identity
and are likely to be polymorphic in the population, and the mechanism of
segmental duplication provides a rapid means of divergence between species
[60, 80].

3 Concepts

The replication of DNA is imperfect – new mutations are continually arising
with each generation. In the absence of natural selection, the eventual fate of
a new mutation will be determined by genetic drift, i.e. chance fluctuations in
frequency that result from sampling a finite population. For most mutations
this will result in their loss from the population, but some will drift to fixation.
As this is a random process, any observed sequence changes can be considered
an unbiased sample of all mutations that occurred. However, natural selection
disrupts this unbiased sampling of mutations.

Through the cumulative action of past evolution, most functional DNA is
expected to have attained a sequence that is near-optimal for its environment.
Consequently, mutational changes are likely be detrimental, i.e. to result in a
departure from the optima and removed by purifying selection. As a result,
functionally important sequences are expected to accumulate fewer muta-
tional changes than neutrally evolving DNA, so functional regions of two
sequences diverged from a common ancestor are expected to be more similar
than nonfunctional regions. Local regions of sequence similarity resulting
from selective constraint are often referred to as a phylogenetic footprint [105].

At the opposite end of the selective spectrum is diversifying (positive)
selection. Following environmental change, an existing sequence may no
longer be optimal and new mutations could provide a selective advantage,
in which case they are likely to increase in frequency in the population,
as it responds to the change in selective pressure. Diversifying selection
can lead to changes accumulating at a faster rate than in neutrally evolving
sequence. There are instances such as sexual selection and host– pathogen
arms races where there is sustained selective pressure for diversification [81],
but in the majority of cases a period of diversification will be both preceded
and succeeded by longer periods of purifying selection. As such, diversify-
ing selection can be difficult to unambiguously identify and the majority of
comparative studies outside protein-coding sequences currently focus on the
identification of purifying selection. For an in-depth discussion of genetic
drift, selection and the influence of population size, see Ref. [65].



1340 37 Comparative Genomics

Both purifying and diversifying selection result in a departure from the
neutral rate of sequence evolution; this departure is diagnostic and can be
considered the signature of selection. Natural selection can only act on ge-
netic variation that manifests as phenotypic differences between individual
organisms of a population. It is a stringent filter – even a 0.001% reduction
in fitness will result in a polymorphism being efficiently removed from most
mammalian populations [83, 86]. Therefore, the signature of selection defines
a sequence as significantly contributing to the biology of the organism. As
we have discussed (Section 2), vertebrate and many other higher eukaryotic
genomes are dominated by sequences that appear to have no biological func-
tion. This means that although the human genome is approximately 3.2 Gb
in size [59, 112], most of the biological functions, and, consequently, disease-
associated polymorphisms and biological insight are concentrated into as little
as 0.16 Gb of sequence [40, 64] (Section 6.1). Comparative genomics pro-
vides a means of identifying that rich vein of functional sequence and, unlike
laboratory-based approaches, it does so without requiring prior assumptions
of what that function may be.

The rate of sequence evolution is measured from an alignment (Chapter 3)
between sequences that have diverged from a common ancestor, i.e. they are
homologous. If the point of divergence for two homologous sequences was
a speciation event, then they are referred to as orthologs. Otherwise, they
are paralogs of one another. The distinction between orthology and paralogy is
important for two reasons. (i) Orthologs are more likely than paralogs to have
conserved the same function since divergence because the processes giving
rise to paralogs such as intra-genome duplication and horizontal gene transfer
provide an opportunity for functional diversification through the relaxation
of selective constraint [43]. (ii) When comparing multiple orthologs loci
between the same range of organisms, a common phylogenetic relationship
and divergence times can be assumed for all of the loci, enabling direct
comparison between loci. No such assumptions can be made for comparisons
involving paralogous loci. For these reasons the majority of studies are based
on alignments of orthologous sequences.

Phylogenetic scope, a term introduced by Cooper and coworkers [23], defines
the range of organisms being considered in an analysis, denoted by their most
recent common ancestor. For example, a study involving sequences from
zebrafish, chicken, frog, mouse and human would be vertebrate in scope,
whereas one looking at human, chimp and macaque is primate in scope. The
phylogenetic scope of a study must be matched to the biological questions
being asked. In general, more closely related species are more likely to
have similar biology than distantly related species. The Sonic hedgehog gene
discussed later (Section 6.3) provides a good example of the potential pitfalls
of an inappropriate phylogenetic scope.
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Figure 1 Phylogenetic tree showing branch lengths. An unrooted
tree with branch lengths derived from nucleotide substitution rates
of anonymous aligned sequence in the greater cystic fibrosis
transmembrane conductance regulator gene (CFTR) region. Individual
branch lengths are shown on each branch segment.

The number of expected differences between sequences has important im-
plications for the utility of a particular sequence in a comparative analysis and
how the analysis should be performed. It is useful then to have some standard
measure of the expected degree of sequence divergence. For orthologous
sequences, a widely used measure has been divergence time in millions of
years, estimated through the integration of fossil records and molecular data.
The greater the divergence time, the greater the number of changes that are
likely to have accumulated. However, these date estimates vary wildly with
the methods used and assumptions made, e.g. the divergence between rodent
and primate lineages has been estimated as occurring between 75 and 121
million years ago [40, 41, 114].

A more useful measure for comparative genomics analysis is that of branch
length, sometimes simply referred to as distance. The concept of branch length
is introduced in the chapter on phylogenetic reconstruction (Chapter 4) where
it denotes the number of mutational changes per unit of sequence, e.g. substi-
tutions per nucleotide, deletions per amino acid or inversions per kilobase.
The most useful and widely used measure when considering comparative
genomics is that of substitutions per nucleotide, as it is readily calculated
(Chapter 4) and is reasonably robust to alignment methodology. As a mea-
sure it also relates directly to the amount of information present in aligned
sequences and also how accurate an alignment between those sequences is
likely to be (see below). For the phylogenetic tree shown in Figure 1, the total
branch length between human and mouse is D = 0.63 substitutions per site in
neutrally evolving sequence, calculated by summing branch lengths between
the human and mouse terminal nodes (0.025 + 0.12 + 0.399 + 0.083). It should
be noted that branch length is often not the same as the sum of sequence
differences, as the methods used to calculate substitution rates typically take
into account the likelihood of multiple changes at the same site.
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In theory, the power of a study to discriminate non-neutral from neutral
evolution is proportional to the total divergence (branch length) of the anal-
ysis, in the case of Figure 1, this would be the sum of each value shown on
the tree (total 0.989). Under the simplest scenario of identifying selective
constraint, one is evaluating the likelihood that a segment of nucleotides has
remained unchanged by chance, given an expected neutral rate of evolution
D. For small values of D, we can use the Poisson distribution (e−D) to
approximate the probability that a neutrally evolving site will be unchanged
[23,30]. For a human:mouse alignment with D = 0.63, there is a 53% likelihood
that a neutral site will be unchanged by chance.

In practice, a pairwise alignment between orthologous sequences cannot
discriminate selective constraint from neutral evolution for a single nucleotide
position. Rather, a region of consecutive nucleotides is evaluated collec-
tively. The size of region necessary to identify selective constraint scales
inversely with the value of D for the analysis [30]. A simple way to increase
the sensitivity of an analysis, to detect shorter or less conserved sequences,
is to compare more distantly related sequences. Unfortunately, there are two
important caveats to this strategy. (i) The more diverged sequences are, the
less accurate the alignments are between them [88], so constrained sequences
may be missed at the alignment stage rather than in the analysis of the
alignment. (ii) The issue of phylogenetic scope – diverged species are less
likely to share biological functions or be subject to similar constraints.

An alternative approach for increasing total D of an analysis is to include
more sequences through multiple alignment. Based on the branch-length
values in Figure 1, a comparison of human and mouse has D = 0.63, but
adding rat as a third species increases total D to 0.72. When calculating total D
for an analysis, each unique section of branch is counted only once, so rat only
adds D = 0.086 to the total analysis, considerably more power could be added
by using dog instead of, or in addition to, rat as it would contribute D = 0.244
of unique branch length. A further advantage to increasing comparisons from
pairwise to multiple sequences is that it allows the direction of mutational
changes to be resolved, such as the discrimination of insertion from deletion
and the ability to assign changes to a specific lineage [40].

Alignment of closely related pairs of sequences such as human–chimp or
human–macaque orthologous regions (D = 0.009 and 0.052, respectively [70])
are of little use for phylogenetic footprinting studies (Figure 2). However, ex-
tending the approach described above to the alignment of many such similar
sequences can in theory provide sufficient total D to usefully detect selective
constraint [23,30]. As the sequences are closely related, their alignment should
be highly accurate, covering most nucleotides [88], and the phylogenetic scope
is narrow, so little functional divergence is expected. This paradigm, know
as phylogenetic shadowing [11], represents an ideal combination of attributes
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for comparative genomic studies. Using phylogenetic shadowing, Boffelli
and coworkers [11] were able to demonstrate the identification of constrained
sequences specific to primates and showed that as few as four to eight well-
chosen genomes could capture much of the information present in deeper
alignments of up to 17 primate sequences. The principal limitation is the need
for multiple closely related, orthologous sequences (Section 3).

4 Practicalities

4.1 Available Genomic Sequences

At the turn of the millennium, comparative genomic projects in vertebrates
involved the laboratory-based identification of homologous regions and their
sequencing [26], prior to any comparative analysis. This situation has changed
markedly, with an extremely high-quality reference human genome sequence
in hand [50], and high-quality draft sequences from mouse and rat [40, 114].
The target for all three of these genomes is “finished” sequence, highly accu-
rate and completely contiguous. Finished sequence is the “gold standard” and
the ideal for comparative analysis. Unfortunately, the production of finished
vertebrate sequence currently demands considerable human time and skill,
and is correspondingly expensive. In contrast, a well-designed whole-genome
shotgun sequencing and assembly project [115] can be largely automated at
every stage. As a result of these economics, the majority of eukaryotic whole-
genome sequencing projects now being undertaken have adopted a purely
whole-genome shotgun strategy (Chapter 2), producing “draft” assemblies
with no finishing step planned for the foreseeable future.

Draft assemblies have been produced from multiple other vertebrates
including chicken (Gallus gallus [46]), dog (Canis familiaris [63]), zebrafish
(Danio rerio), frog (Xenopus tropicalis), macaque (Macaca mulatta), chimpanzee
(Pan troglodytes [22]) tiger-pufferfish (Takifugu rubripes [4]), domestic cattle
(Bos taurus), rabbit (Oryctolagus cuniculus), armadillo (Dasypus novemcinc-
tus), African elephant (Loxodonta africana), opossum (Monodelphis domestica),
medaka (Oryzias latipes) and freshwater pufferfish (Tetraodon nigroviridis [51]).
This list is expanding at an accelerating rate, driven largely by the realization
that sequence comparisons between multiple vertebrate genomes is crucial
to understanding the structural and functional components encoded in the
human genome [21].

Whole-genome assemblies, rather than individual clone sequences, now
provide the primary resource of genomic sequence for most comparative
analyses in the vertebrate scope, and there is a similar situation for biologists
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focusing on prokaryotes, viruses, fungi, plants, nematodes and insects, with
at least draft status sequence available for over 1000 genomes. However, the
quality and completeness of sequences should be considered when undertak-
ing an analysis. For finished sequence, the accuracy is expected to be high
with less than one nucleotide error per 100 000 nucleotides and fewer than one
insertion/deletion error per 200 000 nucleotides, the vast majority of which are
located in tandemly repetitive sequence [50], and there should be no gaps in
sequence coverage. The quality of draft sequences depends to a large degree
on the depth of coverage. With 8-fold coverage (every base sequenced on
average 8 times), a whole-genome shotgun sequencing project can produce a
high-quality sequence with good long-range ordering of sequences [77]. As
coverage is reduced, the rate of all types of error increase; in particular, there
is a rapid reduction in sequence contiguity [116].

Even in high-quality and “finished” genomic sequences, there is still a
chance of mis-assembly, especially in regions rich in repetitive elements. How-
ever, a more common issue is that of segmental duplication (Section 2) where
very recently duplicated regions, that may encompass several genes, cannot
be reliably discriminated during normal assembly procedures resulting in
the collapse of multiple duplications into a single sequence [98]. Efforts are
currently being made to identify and resolve these problematic regions [96];
however, it has become apparent that the copy number of high-identity (above
97%) segmental duplications is often polymorphic in the human population,
diverges rapidly between species [20] and may be associated with disease
susceptibility [32]. A further consideration is that the small number of differ-
ences between segmental duplicates will appear as polymorphisms in almost
all assays, having potentially disruptive effects on genetic studies. For these
reasons it is often prudent to check for indications of segmental duplication
such as the “WSSD” and “Segmental Dups” tracks from the University of
California at Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu)
prior to investigating a new region.

Considerations of sequence quality and coverage are set to become more
important as the emphasis of genome sequencing continues its shift from
high-accuracy sequencing to sampling more genomes, but with lower indi-
vidual coverage. As discussed above (Section 3), an optimal strategy for the
identification of constrained sites is to analyze sequence from many closely
related genomes to achieve a large total branch length. The cost of sequencing
one genome to 8 times is almost the same as eight genomes once, and there is
then a trade-off between high quality sequence and maximizing the number
and diversity of sequenced genomes. Margulies and coworkers [70] have
explored this trade-off with both real and simulated data, demonstrating that
as little as 2 times shotgun, although insufficient to produce a good-quality
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assembly, can be useful in the identification of constrained sequences by
directly aligning reads to more completely sequenced genomes.

The National Human Genome Research Institute (NHGRI; http://www.
genome.gov) has adopted this strategy of many genomes at low coverage and
is currently coordinating the low-coverage sequencing of 16 additional mam-
malian genomes, selected to maximize total branch length for comparative
analysis. The full list of organisms, target sequence coverage and progress in
sequencing can be monitored online (http://www.genome.gov/10002154).
Based on the equations of Eddy [30] and simulations of Margulies and
coworkers [70], these genome sequences should provide resolution of selec-
tive constraint down to a segment length of eight nucleotides – approaching
the same scale as individual transcription factor-binding sites. If successful,
this strategy is likely to be applied to an even greater number of mam-
malian and other genomes (a fruit fly-based project is also currently under
way; http://rana.lbl.gov/drosophila/multipleflies.html) the most exciting of
which from the perspective of human biology is the proposal to sequence
multiple primate genomes (http://www.genome.gov/12511814).

4.2 Defining and Obtaining Genomic Sequences

When undertaking a comparative genomic study, it is necessary to delineate
a locus or loci of interest and to obtain corresponding homologous, often
orthologous, sequences. Typically, an approximate locus will be defined by
either arbitrary distances from an identified feature of interest, the confidence
intervals of a preceding genetic study or the extent of a sequenced genomic
fragment. It can be useful to extend a region of analysis slightly beyond
the minimal extent so that the region is bounded by features that are well
conserved between species, e.g. protein-coding exons, that serve as anchors
for the analysis. A pair of well-conserved anchors provides confidence that
the full extent of a locus has been isolated from each species under analysis.

Pre-assembled genomes are the most accessible source of defined genomic
segments, as the problems of stitching together overlapping sequence frag-
ments have already been tackled and the assemblies will have been sub-
ject to some degree of validation and quality control. Complete assemblies
can be obtained from a number of disparate sites depending on the organ-
ism and assembly method. However, the UCSC Genome Browser, Ensembl
(http://ensembl.org) and the National Center for Biotechnology Informa-
tion (NCBI) (http://www.ncbi.nlm.nih.gov) all provide portals to the most
current, and archived, public assemblies. These sites also provide means of
searching the assemblies, such as BLAST [2], BLAT [56] and SSAHA [82], as
well as precomputed annotation for the genome assemblies that can be readily
incorporated into comparative genomic analyses.
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There are several routes to identifying homologous loci in target genome
sequences. An obvious approach is based on sequence similarity searches,
but caution must be taken to distinguish orthologous from paralogous loci.
Processed pseudogenes, in particular, are common [99], these are the reverse-
transcribed copy of an mRNA that has integrated into the genome, but which
does not code for a functional protein. As processed pseudogenes lack in-
trons, they can score better than an orthologous locus in a similarity search.
Genome-wide, reciprocal best matches [106] can be used to increase confi-
dence that two loci are orthologous. Ensembl also provides precomputed
assignments of gene orthology, currently based on reciprocal best matches for
several genomes in the “geneview” pages and from the EnsMart data repos-
itory. Conservation of the order and orientation of genes in and neighboring
the locus can also provide additional support of the orthology of two loci.

Probably the simplest currently available route to identifying orthologous
loci is with the Net alignments at UCSC. These genome-to-genome pairwise
alignments show genome-wide best matches and local rearrangements within
them. They provide a direct means of jumping between an orthologous
location in two genomes and can be used directly to delineate an orthologous
locus in a target genome. For example, with the genome browser showing
a complete locus of interest in a human assembly, clicking on the human
to dog Net will provide an option to open the dog genome browser in a
corresponding window from which the canine sequence and associated an-
notation can be obtained. An extension of this method is to use the genomic
alignments to transfer annotation from one perhaps well-annotated genome
to another that may have been recently assembled. The LiftOver tool at
the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver)
provides this facility for a limited set of genome pairs. This can provide
a rapid way to get a baseline annotation which can then be filtered and
refined. The Net alignments are generally good quality, but problems do arise,
particularly where segmental duplications and assembly gaps are involved.

If there is uncertainty in the assignment of paralogy or orthology between
multiple sequences, it can often be resolved through rigorous phylogenetic
analysis (Chapter 4) of either whole genomic alignments or more discrete
regions such as protein-coding sequences within them. This is often a problem
with comparisons involving teleosts such as pufferfish and zebrafish, which
may have been subject to a past whole-genome duplication [47] with the
subsequent loss of many genes.
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5 Technology

There are three general challenges that are common to most comparative
genome analysis: (i) the production of an alignment, (ii) visualization of the
alignment and (iii) detection of departures from neutral sequence evolution
in the alignment. As alignments form the foundation of the comparative
analysis, we will spend some time discussing the different options available
and the consequences for interpreting results. There are also several options
available for the visualization of large-scale genomic alignments. We have al-
ready discussed the principles and general approaches taken for the detection
of departures from neutrality (Section 4); in Section 5.3, we present the tools
that are currently available to apply these methods.

5.1 Alignments

The starting point for the majority of comparative genomic analyses is an
alignment between homologous sequences. Precomputed alignments are
available between several whole genomes as well as tools (Table 1) for pro-
ducing such alignments. To a large extent, the genomic alignment tools and
precomputed alignments can be treated as “black boxes”. It is not necessary
to understand in fine detail the process of producing the alignment to address
a biological question with it. However, knowing in general terms how an
alignment was generated, and the parameters used, can be crucial to its
meaningful interpretation, especially when considering the apparent absence
of conservation. Here, we present an overview of the genomic alignment
problem, highlighting the limitations of available methods as well as recent
advances in the field.

There are two general approaches to sequence alignment – local alignment
and global alignment. Both of these strategies are introduced and discussed
in detail in Chapter 3. When performing a local alignment, one is asking to
be shown every similarity, scoring above a predefined threshold, between
two sequences. The aligned subsequences (alignment segments) need not
be in the same order or orientation in the parent sequences and one-to-many
matches are permitted. In contrast, in a global alignment the entire length of one
sequence is aligned with the entire length of the other through the insertion
of gaps in both sequences. There is a maximum one-to-one correspondence
between nucleotides, and their order is constrained such that duplications,
inversions and other rearrangements cannot be detected. Rather than compet-
ing and redundant, these approaches should be considered complementary
as they provide different insights into the relationship between two or more
sequences.
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Table 1 Summary of widely used and recommended genomic alignment tools

Program Alignment Alignment Ref. Comment
method tool

AVID global pairwise 12 http://genome.lbl.gov/vista
BlastZ local pairwise 94, 95 the most widely used local

genomic alignment tool;
http://pipmaker.bx.psu.edu/pipmaker

Blat local pairwise 56 efficient use of memory and rapid
execution make this a good choice for
defining approximate regions to align
with more sensitive methods

CHAOS local pairwise 15 by itself it lacks the heuristic refinements
of BlastZ, but is used by DIALIGN
and Lagan to identify initial alignment
matches

DIALIGN global multiple 76 only practical for alignment of large (more
than 10 000 nucleotides) sequences when
used in conjunction with CHAOS [18];
http://dialign.gobics.de/anchor

GLASS global pairwise 6 one of the first available tools, now
superseded by AVID

Lagan global pairwise 16 http://genome.lbl.gov/vista
MAVID global multiple 13 http://genome.lbl.gov/vista
mLagan global multiple 16 http://genome.lbl.gov/vista
MultiZ global multiple 10 based on BlastZ local alignments, but

with a tiling path of aligning segments
chosen (chaining, see main text) and
integrated into multiple sequence
alignments; this is the method used to
produce high-resolution alignments
for the UCSC Genome Browser
(http://genome.ucsc.edu)

sLagan global pairwise 17 also known as Shuffle-Lagan – produces
“glocal” alignments which have
relaxed some constraints of global
alignment so inversions, translocations
and duplications can be detected;
http://genome.lbl.gov/vista

TBA global multiple 10 a prototype standalone tool to produce
threaded blockset multiple sequence
alignment, similar to the output of MultiZ

WABA global pairwise 57 readily handles large gaps and can predict
the protein coding/noncoding status of
a sequence region based in part on the
periodicity of divergent sequences

Note that several visualization tools, such as MultiPipMaker, emulate multiple alignment by
stacking the percentage identity plots of multiple pairwise alignments without actually producing
a character-based multiple alignment.
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5.1.1 Local Genomic Alignments

All of the local alignment methods commonly applied to genomic sequences
(Table 1) employ an index-based search strategy based on the same principle
as that employed in the original BLAST algorithm [2]. Briefly, this approach
produces an index of all k-length words (k-mers) in one of the input sequences
and searches the other sequence for identical words. When a match is found,
it is extended in both directions to define a maximally scoring segment of
alignment. If that score is above the predefined threshold the alignment is
reported.

There are three methods applied to genomic local alignment tools that
elaborate this basic procedure to increase the sensitivity and specificity. (i)
Requiring two matching words to be separated by a maximum distance from
each other. This is a common approach used by BLASTN and most of the
local alignment methods in Table 1. The principal exception is CHAOS, which
identifies multiple matching words but does not perform alignment extension.
Instead, the matching words are clustered (chained) if they lie in the same
orientation and within a threshold distance of each other. It is this chain
of words that is scored by CHAOS rather than BLAST-like extended initial
matches. (ii) Using degenerate k-mers, which can tolerate a mismatch in any
position of the k-mer, is a strategy that adds considerably to the computational
load in the initial search step but provides more flexibility in defining word
matches. This method is used by CHAOS in conjunction with the novel chain-
of-words approach. (iii) Matching k-mers of nonconsecutive positions, an idea
introduced to the field by Ma and coworkers [66]. For example a k = 8 word
could be represented as 11111111 where each “1” denotes the position of an
identity required for a match – a nonconsecutive k = 8 could be represented
as 11011011011. This is distinct from the degenerate k-mer approach as a
degenerate k-mer can tolerate a mismatch in any position, whereas the po-
sition of possible mismatches is constrained in the nonconsecutive k-mer case.
Such patterns of matches can relate more directly to the underlying biology.
The previous example could be useful to identify matches between coding
sequence given the periodicity of codon conservation, due to the degeneracy
of the genetic code. The nonconsecutive k-mer also has a slight statistical
advantage over the consecutive k-mer, as the failure to match overlapping
nonconsecutive k-mers is less strongly correlated between k-mers than the
failure to match those which are overlapping and consecutive [5].

Beyond the limits of sensitivity defined by the initial index search, there
are many parameters that can be modified in the available tools to optimize
them for a specific purpose or phylogenetic scope. For such insight we direct
the reader to the primary literature and associated web servers (Table 1).
However, the program BlastZ is one of the most versatile and widely used
in this class of program for comparative genomic studies and is the basis for
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a number of publicly available resources, as such we consider its use in more
detail here.

Developed principally by Scott Schwartz and Webb Miller [94, 95], BlastZ
is based on the Gapped-BLAST algorithm [2]. An alignment is seeded by
a short perfect or defined imperfect match, extended by dynamic program-
ming, initially without gaps and if score thresholds are achieved, then with
gaps. Sequence between anchoring alignments is again searched and align-
ments extended, but using a lower stringency than in the initial search, the
stringency being determined by the separation distance between anchors.
BlastZ employs heuristics to take sequence complexity into account, requiring
low-complexity sequence to align better than high-complexity sequence and
to dynamically mask any regions with an unexpectedly large number of
matches. As BlastZ is a local alignment tool, matches may overlap, they
can be distributed between both strands and are unconstrained in their linear
order. However, BlastZ has the option of constraining matches to be colinear
between input sequences (chaining) or to select only a best match to each
region of a reference sequence (single coverage). Both of these options involve
discarding data, but can be useful in interpreting results and subsequent
analysis.

5.1.2 Global Genomic Alignments

The prototypical global alignment method is that of Needleman and Wunsch
[78]. However, this procedure does not scale well to the large alignments
commonly required in comparative genomics. The approach employed by
most of the genomic global alignment tools is to define a series of anchors –
high-confidence matches between a pair of sequences that are constrained to
be in the same order and orientation in both sequences. This is effectively
the chaining method optionally employed by BlastZ, as discussed above. The
portion of each sequence between adjacent anchors is then aligned with lower
stringency, defining a new set of anchors and the process is reiterated until
all sequence is aligned. The strategy effectively breaks the large alignment
down into a series of progressively smaller alignments, with two important
consequences. (i) The total search space is quickly reduced and continues
to be refined with each iteration, allowing the alignments to be produced
quickly and using little memory relative to the length of input sequences. (ii)
The chain-of-anchors approach is tolerant of large gaps, which are common
in genomic sequence alignments, but poorly dealt with by gap penalties
employed by the purely dynamic programming methods such as Needleman–
Wunsch (Chapter 3).

Table 1 summarizes the global sequence alignment tools that are often ap-
plied to genomic sequences. Of these, AVID [12] and Lagan [16] are the most
widely used. AVID identifies maximal matches (identical runs of nucleotides)
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and from these selects a chain of nonoverlapping alignment anchors using
dynamic programming, iterating the process as described above until all bases
are aligned or there are no significant matches in the remaining subsequences.
The full Needleman–Wunsch algorithm is applied if the remaining sequences
are short (less than 4 kb), otherwise a fully gapped alignment of these regions
is returned.

A particularly useful feature of AVID is its ability to perform template-
directed fragment assembly. Provided with a contiguous and a fragmented
sequence, AVID will use high-confidence local matches to order and orient
the fragmented sequence relative to the contiguous one, producing a “merged
draft” which is then used for pairwise alignment. Such a utility can be
invaluable in the analysis of early-draft genomic sequences.

Lagan [16] proceeds in a very similar iterative manner to that described
for AVID, making use of the application CHAOS to produce local alignments
from which the anchors are defined. In a further development, Brudno and
coworkers [17] have generalized this approach by relaxing the criteria for
colinearity in the order of alignment anchors, instead requiring them to be
sequentially ordered along only one of the input sequences, the designated
reference sequence. This relaxation allows for the detection of genomic rear-
rangements such as inversions, translocations and duplications relative to the
reference sequence. This method is implemented as Shuffle-Lagan (Table 1).
In recognition of similarities to both local and global methods, the authors
have termed these “glocal” alignments. The approach is innovative and has
potential to be developed further, but there are two key drawbacks to the
current implementation: (i) as the two input sequences are treated differently,
the resulting alignment depends on the order sequences are presented, and
(ii) our current lack of understanding of the frequency of genomic rearrange-
ments to appropriately parameterize such alignments.

5.1.3 Multiple Sequence Alignments

The local and global sequence alignment methods we have discussed so far
are only able to produce pairwise alignments. We have seen in Section 3,
however, that the combined analysis of multiple sequences provides much
greater insight, statistical power and resolution to comparative genomic stud-
ies. Unfortunately, the difficulties of producing pairwise genomic sequence
alignments are exacerbated in the challenge of producing multiple align-
ments.

To perform a progressive multiple alignment in this manner, the phyloge-
netic relationship between sequences being aligned needs to be established.
This can either be calculated from initial all-versus-all pairwise alignments
of the sequences or for some programs can be provided in the form of a
previously established phylogenetic tree. If the multiple sequence align-
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ment is between orthologous sequences, their relationship is often known
in advance, e.g. (((human,chimp),(mouse,rat))dog). Provision of the tree in
advance removes uncertainty in the order a program aligns the sequences,
providing consistency between the alignment of multiple loci and expediting
the alignment process, as well as ensuring the correct phylogeny is used. After
producing the initial multiple sequence alignment, the location of gaps can
be optimized, making use of the greater information content of multiple se-
quences. There are multiple alignment versions of AVID and Lagan, denoted
by the “M” prefix to the name (MAVID and mLagan) – both of which use
the general method outlined above to produce the global multiple sequence
alignments.

Although MAVID and mLagan produce true multiple sequence alignments,
many visualization tools (Section 5.2) display conservation profiles relative
to a chosen reference sequence. A similar approach is frequently used to
integrate conservation measures between multiple pairwise alignments [94]
and to define multiply conserved sequences (MCS) (Section 5.3). The reference
sequence approach is an obvious choice if the objective is the annotation
or investigation of a particular sequence. However, it is increasingly the
case that comparative genomic studies intend to measure how a locus has
evolved in multiple lineages and how selective forces have changed during
that evolution, rather than just detecting regions of the reference sequence
that are selectively constrained. For these analyses the reference sequence
approach has two major drawbacks. First, any regions conserved between
a subset of aligned sequences, but not the reference, will not be detected. This
problem can be overcome by generating several multiple sequence alignments
– one with each of the sequences under study as the reference. This solution is
time consuming, raises the additional problem of integrating results between
alignments and exposes the second major drawback to the reference sequence
approach, i.e. the potential for inconsistencies when using alternate sequences
as the reference.

A solution to the problems presented by reference sequence based align-
ment and analysis has been proposed in the form of a “threaded blockset”
[10]. Under this proposition, a multiple sequence alignment is represented
as a series of alignment blocks, termed the blockset. Within an individual
block, each row corresponds exactly to an input sequence (or its reverse
complement) if gap characters are ignored, i.e. no sequence within a block has
been rearranged. Additionally, an individual block need not involve every
aligned sequence. From this blockset, multiple sequence alignments can be
produced using any one of the aligned sequences as the reference sequence,
simply by ordering and orienting the blocks according to the selected refer-
ence sequence, a process referred to as threading the blockset. This approach
ensures consistency of alignment when alternate reference sequences are used
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and no portions of the alignment are discarded. The threaded blockset aligner
(TBA [10]) has been developed as a prototype tool to generate blocksets.

Many eukaryotic genomes are rich in repetitive sequences; these can con-
fuse alignment programs if not treated appropriately. The identification of
repetitive sequences is considered in detail in Chapter 7. The simplest treat-
ment of interspersed repeats and low-complexity regions is to mask the se-
quence prior to alignment, readily achieved with tools such as RepeatMasker
(A. Smit and P. Green, http://www.repeatmasker.org/) or available precom-
puted from the UCSC Genome Browser for a wide range of whole-genome
assemblies. However, interspersed repeats can be interesting in their own
right and are a useful measure of background mutation rate (Section 5.3). A
more satisfactory treatment of repeats is to ignore them in the initial stages
of alignment and then align through them if flanking nonrepeat sequence has
been aligned. This is often termed “soft-masking”, and is implemented in
several alignment tools including LAGAN, Blat and AVID.

5.1.4 Assessing the Quality of Genomic Alignment Tools

Which alignment tool is the most accurate? This is an obvious question
to ask when deciding which tool is the most appropriate to use. Unfortu-
nately, this appears to be impossible to definitively answer. For protein-coding
sequences, solved three-dimensional protein structures provide a “gold stan-
dard” against which alignment methods can be scored [14]. No such equiva-
lent exists for noncoding DNA. A possible solution is the in silico simulation
of sequence divergence [103], which can provide a population of sequences
related to a common ancestor by a precisely known sequence of mutational
events, so the true alignment is known.

There is a chance that an evaluation of alignment success based on sim-
ulated data is measuring the similarity of evolutionary models rather than
the sensitivity and specificity of the alignment methods themselves. Despite
this limitation, Pollard and coworkers [88] have performed such an analysis
and produced some useful rules of thumb for genomic sequence alignment.
All methods rapidly lost sensitivity with increasing divergence, with more
than 50% of nucleotides not accurately aligned by all methods with D = 1.0
(divergence, substitutions per site) in the most realistic simulations. Local
aligners were successful at identifying constrained sites, but performed poorly
on neutral sequence with D > 1.0. As would be expected from their mode of
action, global aligners had the highest overall sensitivity to accurately align
orthologous sites in both neutral and selectively constrained sequence. Lagan
[16] performed particularly well under almost all of the simulation scenarios.
The simulations in this study did not include inversions and duplications
which would have only been detected by the local alignment methods.
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5.1.5 Using Whole-genome Alignments

As we have seen, there is a good diversity of tools available to produce
pairwise and multiple genomic sequence alignments. Although these tools
are optimized for genomic sequence alignment, the alignment of whole eu-
karyotic genomes to each other is still a daunting and specialist task requiring
considerable computational resources. Fortunately, several research groups
that specialize in such large-scale genomic alignments have made their align-
ments publicly available (Table 2). The utility of these alignments is not
limited to whole-genome analyses and they represent an excellent resource
for investigations focused on defined loci.

Table 2 Precomputed whole eukaryotic genome alignment resources

Resource URL Reference
MultiZ at UCSC http://genome.ucsc.edu/ 10
Berkeley Genome Pipeline http://pipeline.lbl.gov/ 25
GALA http://gala.cse.psu.edu/ 33, 39

These publicly available alignments have several significant advantages
over proprietary alignments produced ad hoc to address specific questions. (i)
As they are a public resource, they are used by many members of the research
community to address a multitude of questions and, therefore, any systematic
problems in their construction are likely to be highlighted, whereas in-house
alignments are unlikely to be as rigorously vetted. (ii) Results based on the
same alignments can be directly compared between research groups, e.g. in
the integration of findings in large collaborative projects [40, 114]. (iii) It is
faster and simpler than producing your own alignments, especially in the
cases where existing annotation has already been mapped to the alignments
(http://pipeline.lbl.gov) or can be readily mapped using easily accessible
tools (http://pipmaker.bx.psu.edu/piphelper).

However, there are of course limitations to the utility of precomputed align-
ments. The user is restricted by the predefined phylogenetic scope of the align-
ments, e.g. at the time of writing, the human-based MultiZ alignments avail-
able from UCSC included alignments with chimp, mouse, rat, dog, chicken,
pufferfish and zebrafish, but assemblies for the genomes of opossum, rhesus
macaque, cow and frog are also publicly available, and could add consid-
erably to the information content of the multiple sequence alignment. It is
also the case that for some analyses very specific sets of alignment parameters
or constraints are required [55], which are unlikely to be met by off-the-shelf
whole-genome alignments.
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5.2 Visualizing Genomic Alignments

The visual representation of alignment based data is an important aspect of
comparative genomics, especially when the focus of the analysis is a locus of
specific interest (see also Chapter 43). One of the most intuitive and logical
representations of a pairwise sequence alignment is a dot plot (Chapter 3).
Such a representation can summarize all regions of local similarity between
two sequences, highlighting inversions, translocations, duplications and dele-
tions. Plotting a sequence against itself is often an excellent first step in the
comparative characterization of a locus as it can highlight regions that are
tandem repetitive, low complexity and clearly show segmental duplications
– all of which are potentially confusing to interpret when visualized with
the other methods discussed below. For sequences of up to a few hundred
kilobases, the Dotter software [102] is able to produce a complete dot plot
and incorporate arbitrary annotation. For sequences above this size, the
computation of a complete dot plot is impractical, but tools such as PipMaker
[95] can produce dot plot-style summaries of local alignments (Figure 2) which
can be interpreted in essentially the same way.

The downside to dot plots is that they take up considerable space and are
impractical when it comes to summarizing the similarity between multiple
sequences. For these reasons, percentage identity plots (PIPs) were introduced
[44] in which the x-axis represents the coordinates of a reference sequence and
the y-axis shows percent identity (Figure 2). A horizontal bar within the plot
then identifies a gap-free segment of local alignment, the horizontal position
and extent of the bar defining the aligning section of the reference sequence.
The position of the bar in the y-axis shows the percentage nucleotide identity
for the ungapped local alignment. This is a versatile way of displaying
pairwise sequence similarity as it can be applied to both local and global
alignments, and through stacking of multiple such plots can be adapted to
show the conservation of a reference sequence aligned with any number of
sequences.

Another intuitive and commonly used representation of nucleotide identity
in sequence alignments is to plot a histogram of conservation (Figure 2). As
with PIPs, identity is plotted against the coordinates of a chosen reference
sequence. Rather than calculating the identity from an ungapped segment of
alignment, however, it is calculated from a predefined range of nucleotides
in the reference sequence. These can be discrete consecutive bins of, say, 10
alignment columns or, more commonly, calculated as a sliding window, e.g.
VISTA [73] uses a window of 100 columns with sliding increments of 1, by
default.
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5.3 Detecting Selection

Any significant departure form the neutral rate of sequence evolution can
indicate the action of selection. The neutral rate is typically calculated from
regions of alignment corresponding to one of four types of sequence: 4-fold
degenerate (4D) sites, ancient repeats, anonymous sequence or pseudogenes.
We consider the advantages and drawbacks of each of these below.

In the standard genetic code, there are eight instances where substituting
the third codon position for any other nucleotide will not change the encoded
amino acid (CTn = Leu, GTn = Val, TCn = Ser, CCn = Pro, ACn = Thr,
GCn = Ala, CGn = Arg, GGn = Gly) – these are 4D sites. 4D sites are readily
identified from annotated or well-predicted coding sequences and because
they are embedded in generally well-conserved coding sequence they can
often be aligned between even highly divergent sequences with a high degree
of confidence. For these reasons, 4D sites represent an excellent type of
sequence from which to calculate the branch length D. In general such sites are
readily identified as less conserved than other coding positions and non-4D
third codon positions [79]. However, that is not to say that they are devoid of
function or functional constraint – such sites may be involved in the regulation
of splicing, translational efficiency, mRNA localization or stability. 4D sites are
generally considered to be good for the calibration of nucleotide substitution
rates, but they are of no use in measuring the neutral rate of insertion, deletion
or rearrangements.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Visualization of genomic sequence
alignments. The WNT2 locus was aligned
between human and orthologous loci from
nine other vertebrates for which at least a
draft whole-genome shotgun sequence is
available. Orthologous regions and extents
were defined using the UCSC Nets. In
each case, coordinates and annotation
are shown for the human sequence and
nucleotide identity from pairwise alignment.
(A.) Summary view from MultiPipMaker [94]
based on BlastZ alignments. The extent of
the WNT2 transcript is shown above the
alignment, protein-coding exons indicated
in purple and untranslated region (UTR)
in yellow. Regions of local alignment are
shown in green or red if a combined length
and identity threshold is achieved. The region
highlighted is shown in detail in (B) and (C).
(B.) Detailed view of MultiPipMaker output
– a percentage identity plot. Exons are

denoted by black boxes above the plot and
projected as purple-shaded regions across
it. Other features above the plot correspond
to annotated repetitive elements (triangles
and predicted CpG islands (grey and white
boxes). (C.) VISTA plot [73] summarizing
mLagan [16] global alignments of the
sequences. Higher curves show greater
conservation; regions meeting a threshold
level of conservation are shaded – purple for
sequence annotated as protein coding, blue
for UTR and red for anonymous sequence.
Exons 2 and 3 are readily aligned in all
cases, whereas the relatively short and poorly
conserved exon 1 is not always aligned
(panel C, frog and pufferfish). An additional
complication when using draft sequences
is the presence of assembly gaps – the
apparent failure to detect exon 1 in chicken in
this case coincides with a gap in the chicken
assembly.
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IREs are widespread through most vertebrate genomes and are thought to
be free from selective constraint (Section 2). Unlike 4D sites, IREs are free
to accumulate insertion, deletion and rearrangement as well as substitution
changes [85]. Using the tool RepeatMasker (http://repeatmasker.org) com-
bined with an appropriate repeat database (Repbase; http://girinst.org) IREs
can be grouped into families and subfamilies based on sequence similarity.
Each copy of an IRE subfamily is thought to have been almost identical at the
time of insertion as they were all produced from one or a very small number
of “parent” elements in a brief period of activity before mutation robbed the
parent element of its ability to transpose [59]. Therefore, an IRE that inserted
into a genomic location in the common ancestor of a set of sequences being
compared is expected to accumulate mutational changes independently in
each of the diverging lineages and those changes are likely to be invisible to
selection.

This assumption of identity between IRE subfamily members at the time
of insertion provides them with additional advantages over other categories
of candidate neutral sequence. For example, using the IRE subfamily con-
sensus sequence as an out-group, mutational changes can be assigned both a
direction and a lineage from just pairwise comparisons rather than requiring
a minimum three aligned sequences.

For mammalian and other genomes rich in interspersed repeats, IREs ap-
pear to be the ideal solution to measuring the neutral rate of mutation. How-
ever IREs are typically defined on the basis of their sequence similarity to
previously defined repeats and to other sequences in the genome. This means
that highly diverged members of a repeat family may not be detected, re-
sulting in an under estimation of the mutation rate. The distribution of
IREs is nonrandom across a genome [45], some favoring A/T-rich insertion
sites, others showing preferential retention based on nucleotide composition.
The nonrandom distribution may result a systematic bias in mutation rate
estimation. The abundance of these elements in the genome may also lead
to nonorthologous recombination between elements [53], resulting in a high
frequency of gene conversion within the elements [91].

Another possibility is anonymous sequence. In genomes dominated by
nonfunctional sequence such as those of mammals (Section 2), the background
mutation rate can be approximated by simply taking the average rate across
the whole alignment. This estimate can be improved by specifically excluding
annotated functional sites such as protein-coding exons and core promoters.
The remaining unannotated (anonymous) regions of alignment will be en-
riched for selectively neutral sites. An interesting variation is to use sequences
that align between closely related species but do not align with a more distant
out-group, because the sequence has been inserted in one lineage or lost from
the other [24]. Again, it can be argued that the sequence is less likely to contain
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important functional elements and is thus enriched for selectively neutral
sites.

Pseudogenes (Section 2) are particularly interesting for estimation of the
neutral rate because their starting point is a functional gene, with all the
associated sequence biases, periodicity, and, in the case of nonprocessed pseu-
dogenes, introns, splice junctions and regulatory sites. These are often the
features we are most interested in identifying or investigating in comparative
studies. If a gene pseudogenized before the common ancestor of compared
sequences, we can see the effect of mutation and genetic drift free from
the action of selection superimposed upon it. This is the ideal scenario.
Unfortunately nonprocessed pseudogenes are too rare – only 37 having been
found in a systematic screen of the human genome [59] – to be of general use
in calculating background mutation rates. Processed pseudogenes have been
useful for the investigation of protein-coding sequences [84], but again their
uneven distribution limits their use in estimating local mutation rates and
some sequences identified as pseudogenes may still have functional roles [87].

For a comparative study that aims to identify highly constrained sequences
that are evolving many times slower than the neutral rate, it can be adequate
to estimate the neutral rate on a genome-wide basis. Such studies include
the identification of protein-coding sequence with distant pairs of sequences,
e.g. human versus pufferfish [26, 107], and the ultra-conserved elements [7]
discussed later (Section 6.2). For more sensitive studies it is necessary to
calculate the neutral rate in localized regions, as the rate of mutation has been
found to vary spatially across genomes [45, 117] (Section 2).

Regional estimates of the neutral rate can be calculated in a sliding window
manner or by calculating it for an arbitrarily defined region of interest. The
principal problem with this approach is that sites subject to selection cannot
be assumed to be randomly distributed across the genome. For instance,
anonymous sequence around the PAX6 gene [74] is highly enriched in func-
tionally important conserved sites (Section 6.3). An estimate of the neutral rate
based on anonymous sequence around this gene would give an artificially low
estimate for the neutral mutation rate in the region. The larger the window
used to estimate the regional neutral rate, the less likely it is to be dominated
by non-neutral sites, but a larger window reduces the resolution for detecting
regional variation in mutation rate. The optimum window size for neutral
rate estimation will be a balance of these two opposing needs. If recent
findings [38] for the rodent lineage can be generalized to other vertebrates,
then typically a window of 10 kb is likely to show a consistent neutral rate
across its length and even windows up to 1 Mb may have little variation in
neutral rate across them, but substantially larger than this and neutral rate
fluctuations may be compromised by neutral rate variation. Testing for con-
cordance between different measures of the neutral rate such as those derived
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from 4D, ancient repeat and anonymous sequence allows the influence of
cryptic non-neutral sites to be evaluated and provide a justification for the
selected window size.

Having established a neutral rate estimate for the sequences of interest,
the challenge is to identify and delimit regions of sequence that significantly
deviate from it. At its simplest this can be a relative rate test, dividing the rate
of evolution in the test sequence by the neutral rate. Values of one indicate
neutrality, significantly less than one, constraint and more than one indicates
diversifying selection. There are many variations on this basic principle,
including the commonly used Ka/Ks ratio test, where Ka denotes the rate of
substitutions that lead to amino acid changes and Ks the rate of substitutions
in protein-coding sequence that do not lead to a change in the encoded amino
acid. Ka/Ks equal to 1.0 indicates neutral evolution (no selection), below 1.0
indicates purifying selection and above 1.0 positive (diversifying selection)
to detect selection in the protein-coding sequence [48]. The differences be-
tween approaches predominantly relate to how to score constraint between
multiply aligned sequences and how to define the boundaries of a constrained
sequence.

Several studies have defined the extent of constrained regions on the basis
of ungapped segments of alignment [28, 29] – a strategy that lends itself well
to analyses based on local rather than global alignments. Often, these studies
will use precalibrated thresholds for significant constraint rather than calcu-
lating relative rates directly, e.g. 70% identity over 100 ungapped nucleotides
are commonly used parameters for human to rodent alignments [28].

Sliding windows have been widely used to arbitrarily define the extent of
sequences which are then evaluated for constraint [73, 114]. The approach
can accommodate alignment gaps, generally treating them as nucleotide
mismatches [73], but their sensitivity is crucially dependent on the size of
the evaluation window and by how much the window is moved along the
alignment for each evaluation. Analyses based on sliding windows have
also been applied to phylogenetic shadowing [11]. In this case, rather than
scoring conservation or substitution rate directly, the substitution rates for
each alignment column were compared to the rates of sequences known
to be evolving neutrally or subject to selection. The final score being a
likelihood ratio of neutral versus constrained evolution for each alignment
column. A web server for phylogenetic shadowing analysis is available
(http://bonaire.lbl.gov/shadower).

An intuitive way of integrating measures of constraint across multiple
aligned sequences is to define MCS – the common core of sequence that aligns
in all (or most) sequences from a defined scope can then define the boundaries
of the MCS [69, 110]. For instance it is easy to see that exons 2 and 3 of WNT2
can be considered MCS within vertebrates (Figure 2). The MCS definition is
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versatile, accommodating local or global alignments and can tolerate missing
sequence from incompletely sequenced genomes.

Two highly versatile tools, RankVISTA [71] and phastCons [100], have
recently been developed that quantify constraint and operate free of window
size constraints and identity thresholds. These tools are also noteworthy
because they quantitatively measure constraint rather than the crude binary
discrimination into constrained or unconstrained that is common to many of
the methods discussed above. RankVISTA integrates pairwise relative rate
scores across a multiple alignment using a phylogenetic weighting scheme.
The neutral rate estimates are derived from anonymous regions in the sub-
mitted alignment and the final score is an easily interpretable probability
of observing such conservation in a 10-kb fragment of neutrally evolving
sequence. The extent of constrained sequences is determined with dynamic
programming (Chapter 3). This tool is available from the standard VISTA
web server (http://genome.lbl.gov/vista). The tool phastCons [100] is one of
the first practical implementations of a phylogenetic hidden Markov model
(phylo-HMM [36]) to score conservation across genomic alignments, in effect
scoring how well the observed pattern of substitution matches its internal
model of a constrained site. The approach is also noteworthy because it takes
into account the tendency for conservation levels to be similar at adjacent
sites and it is an extensible model that could incorporate additional parame-
ters. Precomputed phastCons results are available through the UCSC genome
browser for multi-species whole-genome alignments.

All of the methods described above focus on nucleotide substitution rates.
Insertions and deletions also have the potential to help detect constrained
regions; however, estimation of their rate is more sensitive to alignment
parameters than is the case of substitution rate calculations [54], and good
stochastic models of insertion and deletion in noncoding DNA are not cur-
rently available. Alignment gaps are typically treated as either missing data
(phastCons) or nucleotide substitutions (RankVISTA) when assessing selec-
tive constraint. Neither of these are particularly satisfactory solutions and in
the case of phastCons lead to artificially high scores over regions of gapped
alignment. A better treatment of alignment gaps is likely to be an important
avenue for future work in the development of these methods.

6 Applications

There have been a huge number of published studies that are either centered
on comparative genomic analysis or utilize comparative genomics to address
specific questions within a wider study. In the next few subsections we
highlight a small number of examples that have given new insight into the
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general biology of vertebrate genomes and provide good examples of the
application of methods described in this chapter.

6.1 How Much of the Human Genome is Constrained?

The protein-centric view of genome function (Section 2) has been challenged
by recent whole-genome comparative analyses. With publication of both the
draft human [59] and mouse [114] genomes it became possible to estimate
the total proportion of the human genome that is subject to selective con-
straint, and so estimate the proportion of the genome that has conserved
function, but which is not protein coding. A conservation score was calculated
for nonoverlapping 50 nucleotide windows of human:mouse whole-genome
pairwise alignments. Two sets of scores were derived, one for the com-
plete alignment and a second derived only from aligned ancient repeats. As
ancient repeats are thought to be unconstrained by selection (Section 5.3),
the distribution of conservation scores should reflect the pattern expected
under neutral evolution. The distribution of scores from the whole-genome
alignments substantially overlaps those derived just from ancient repeats,
although a significant shoulder specifically towards higher scores is evident
[114]. Subtracting the ancient repeat distribution from that of the whole
genome suggests that approximately 5% of 50 nucleotide windows are more
highly constrained than expected under neutral evolution. Similar analyses
based on human to rat comparisons have supported this conclusion [40].
These studies are not without their limitations. In particular, isolated regions
of constraint that are substantially shorter than the 50-nucleotide window
size used will have gone undetected, suggesting that the estimate of 5%
may be a lower bound for the true value. Using a novel method based on
insertion and deletion rates rather than substitutions also finds that generally
similar fractions of 2.6–3.5% of the human genome show evidence of selective
constraint [64]. These studies have led to the important conclusion that much
of the functionally constrained sequence in the human genome does not code
for proteins.

If coding sequences are not the singularly dominant functional component
of the genome, the question arises “What are the functions of noncoding
sequence?”. Several types of noncoding elements are known, such as cis-
regulators of transcription and splicing (see Chapter 6), RNA structures that
influence transcript localization and stability, as well as transcripts whose
functional product is RNA rather than protein (see Ref. [72] for review). It
is also likely that there are classes of functional elements that we have yet
to discover. This potential naivety is well illustrated by the relatively recent
realization that a major class of noncoding functional elements (microRNAs)
had been almost entirety overlooked [3].
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It is one of the great strengths of comparative genomics that no prior as-
sumption of the function is required to identify a sequence as functionally
important. With the increasing depth of available genomes (Section 5) and
the methods described above, we are rapidly approaching the stage where we
can confidently identify short regions and possibly even single nucleotides as
constrained. A remaining and significant challenge is to characterize the func-
tion of those sites. Again, comparative genomics can help. We have already
seen that there is a characteristic profile of conservation for protein-coding
sequence (Section 5.1) and similar profiles may exist for other categories
of functionally important sequence. Dermitzakis and coworkers [27] found
that conserved nongenic sequences (CNGs) accumulated sequence changes
in a manner that can be statistically distinguished from both protein-coding
sequences and noncoding RNA genes. These patterns of sequence change
most resembled clusters of protein binding sites.

6.2 Ultra-conserved Regions

The sequences studied by Dermitzakis and coworkers [27] were selected,
from chromosome 21, on the basis of a simple threshold identity in human
to mouse alignment, and also on the ability to polymerase chain reaction
amplify homologous sequences from 14 mammalian species. Consequently,
these sequences should represent the subset of CNGs that have both the
highest nucleotide identity and are the most constrained through mammalian
evolution. Ironically, a whole-genome analysis of noncoding conservation has
since shown that human chromosome 21 is the only autosome devoid of so-
called ultra-conserved elements [7]. These elements are also defined on the
basis of simple length and identity thresholds, but in this case 200 nucleotides
of ungapped alignment between human, mouse and rat with 100% nucleotide
identity in all three species. In total, 481 of these incredibly well conserved
sequences were found.

Although defined initially on the basis of conservation between humans
and rodents, 97% of the ultra-conserved elements could be identified in the
chicken genome with, on average, more than 95% nucleotide identity and
more than 66% of them could be aligned with a pufferfish genome (T. rubripes).
In contrast, only 5% could be identified in any of the nonvertebrates Ciona in-
testinalis (sea squirt), Drosophila melanogaster (fruit fly) or Caenorhabditis elegans
(nematode worm) and all of these were ultra-conserved elements that overlap
protein-coding exons from known genes. It appears then, that although
these ultra-conserved elements have been highly constrained for 300–450
million years of vertebrate evolution [7], they are largely confined to the
vertebrates. A similar study making use of recently available whole-genome
sequence from multiple insects, has also identified ultra-conserved regions
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between fruit flies and the mosquito Anopheles gambiae [42]. However, the
majority of ultra-conserved elements identified in files were substantially
shorter than the 200 nucleotide threshold used for the human study despite
similar evolutionary distances for some of the analyses in both studies.

It has been noted in both mammals and flies that ultra-conserved elements
are often located in the introns of, or intergenic regions around, developmen-
tally important genes [7, 42, 118]. These developmental regulators are often
DNA-binding transcription factors or RNA-binding proteins [7] that are likely
to be involved in the regulation of RNA processing and transport. These
observations have invoked the notion of developmental master regulators –
regions that integrate multiple signals coordinating the expression of genes
which in turn regulate many more genes through transcription and RNA
processing. Direct experimental support for this idea has been provided
by Woolfe and coworkers [118] in a zebrafish experimental system. Of 25
noncoding sequence elements that are highly conserved between human and
pufferfish, 23 showed significant transcriptional enhancer activity in one or
more tissues during zebrafish development [118].

The idea that ultra-conserved elements act as developmental regulators fits
well with the observation that they are highly conserved within phylogenetic
clades that share similar developmental programs, but apparently not con-
served between more diverse groups. Could the ultra-conserved elements
that are common to both humans and pufferfish be the master regulators that
define the basic vertebrate body plan: skeletal structure, musculature, internal
organs and the developmental programs to orchestrate their construction?
This is an attractive idea, but much more work is required to establish if
this is even close to accurate. In particular, some genes are known to be
key regulators of developmental programs, and the orthologous genes in both
humans and flies are apparently performing the same task in the same tissue.
PAX6, for example, is crucial in the development of eyes in both human and
fruit flies [111]. The human PAX6 locus is one of the richest in ultra-conserved
elements [7] and six out of seven tested elements show enhancer activity,
four of which directed expression preferentially in the developing eye [118].
Despite the conserved role of PAX6 in eye development between humans and
flies, and the demonstrated role of mammalian ultra-conserved elements in
directing that expression, there is no identifiable sequence similarity between
the ultra-conserved elements and the fruit fly PAX6 locus.

6.3 Specific Locus Studies

In this section we focus on a small number of disease related studies that
have been substantially advanced through the application of comparative
genomics. We make several references to Online Mendelian Inheritance in
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Man (OMIM) – a key human curated resource that brings together published
information relating human genetic diseases and disease genes. Full OMIM
records can be obtained with their identifier number from the Entrez system
(http://www.ncbi.nlm.nih.gov/entrez).

Hirschsprung disease is a congenital disorder characterized by intestinal
abnormalities (OMIM:142623). The genetics of this disease have been well
studied, but the pattern of inheritance is complex. Mutations have been
found in eight loci which contribute to disease susceptibility (OMIM:142623
for review), but these account for only 30% of cases [34]. Genetic evidence
indicated that one of those eight loci, the RET gene, harbored additional,
previously undetected mutations or variants that account for much of the
remaining susceptibility [37]. All apparent protein-coding sequence of RET
had already been screened for mutations, so the challenge was to identify
additional functionally important noncoding sites within the locus or identify
previously missed protein-coding sequence.

Emison and coworkers [34] identified more than 30 regions of conserved
noncoding sequence in 350 kb of genomic sequence centered on the RET gene.
The analysis used the multiple conserved sequences paradigm (Section 5.3)
based on alignment of 12 orthologous loci from vertebrates. Only five of the
conserved noncoding regions were within the region maximally implicated
by genetic evidence. The comparative analysis also indicated that a human
single nucleotide polymorphism (SNP) is located within one of the conserved
regions and, not withstanding the polymorphism, the nucleotide has been
highly conserved through vertebrate evolution. An obvious candidate for the
functional variant, Emison and coworkers [34] were able to show that this
conserved element has enhancer activity and that the level of that activity
is influenced by the SNP genotype. The comparative alignment allowed the
ancestral and derived alleles to be discriminated – the lower enhancer activity
and disease susceptibility being associated with the more recently derived
allele. The noncoding SNP genotype was shown to account for much of
the previously unaccounted for genetic susceptibility contributed by the RET
locus.

The Hirschprung disease RET locus is a good recent example of the utility of
comparative genomics and its synergy with genetic studies. It also stands out
for several of other reasons. The functional variant identified is common in the
population, exceeding 50% in some parts of East Asia, despite being disease-
associated. The effect of the genotype is influenced by sex, demonstrating a
form of epistasis, and the variant is regulatory rather than protein coding. All
of these features are likely to be frequently encountered when searching for
the genetic risk factors in common diseases [68] such as cancer, heart disease,
diabetes and stroke.
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The RPGR gene has a similar story to the RET locus. RPGR is known to
be a major locus for X-linked retinitis pigmentosa (OMIM:312610) – a form
of retinal degeneration. Several known disease associated coding sequence
mutations had been found, but it was apparent from genetic studies that
many more cases of retinitis pigmentosa should be attributable to the locus
than could be explained by the mutations in the coding sequence [109, 113].
Comparative genomics revealed a previously unknown, alternately spliced
protein-coding exon that was specifically expressed in the retina and har-
bored the missing mutations [113]. In this case all of the disease-associated
mutations disrupted the encoded protein. It is likely that such missing mu-
tations are common for even well-studied genes and that they are simply
under-reported in the literature, because it is seldom practical to screen large
genomic intervals for mutations, nor is it easy to demonstrate their causal role.
Our next example demonstrates over how wide an interval cis-regulatory sites
can act, but also how, even when the region is large and complex, comparative
genomics can allow functional sites to be identified an subsequently charac-
terized.

The mouse Sasquatch (Ssq) mutation was generated serendipitously when
trying to insert a transgene into the genome. The transgene integration led to
ectopic expression of the developmental signaling molecule Sonic Hedgehog
(SHH) and resulted in preaxial polydactyly (extra digits) [97]. Intriguingly,
genetic evidence demonstrated that the effect was specifically in cis [97], but
as the integration site was over 1 Mb from Shh and located within the intron
of an adjacent gene, identifying the functional regulatory element remained a
challenge.

Multiple sequence alignment between orthologous regions from mouse,
human, chicken and pufferfish identified a 0.8-kb stretch of sequence close
to the transgene insertion site that had been highly conserved throughout
vertebrate evolution [61]. It has now been shown that the 0.8-kb element,
known as the ZRS, is a limb bud-specific enhancer of Ssh expression [61, 92]
and that even the fish sequence can drive expression in the mouse limb bud.
These studies into the Shh locus have shown that cis-regulatory elements can
be located large distances, at least 1 Mb, along linear DNA from the genes they
act to regulate. Not only can these elements be far from their targets, they may
also be closer to other genes on which they apparently have no regulatory role
– the ZRS is located in the fifth intron of the Lmbr1 gene whose expression is
unaffected by mutations in the ZRS.

Like the ultra-conserved sequences described above, the striking conser-
vation of the ZRS through vertebrate development indicate that even single
nucleotide substitutions in the region are likely to be detrimental and strongly
selected against. Accordingly, point mutations in the ZRS have been found in
four human families and two mouse lines, in each case they lead to preaxial
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polydactyly (see Ref. [62] for review). In contrast to these point mutations,
complete deletion of the ZRS in the mouse abolishes Shh expression in the
limb bud and results in severely truncated limbs [92] – a similar phenotype
to human acheiropodia which is also linked to the Shh locus [49]. Several
vertebrate lineages such as snakes have substantially reduced or entirely lost
limbs, although they were present in their ancestors. Sagai and coworkers [93]
have shown that for at least two of these cases, i.e. snakes and limbless newts,
this has coincided with the loss of the ZRS, where as it remains conserved in
lizards and legged newts. Whether loss of the ZRS was a primary event in the
morphological transition of either of these separate lineages or if it represents
secondary losses remains unclear; however, it does illustrate two points rather
well. (i) The importance of selecting an appropriate phylogenetic scope for a
comparative genomic study (Section 3) – an analysis utilizing legless newts
and snakes rather than pufferfish and chickens would not have revealed the
ZRS in the first place. (ii) It demonstrates the apparently modular nature
of conserved noncoding sequence blocks in evolution – the ZRS can be lost
apparently without disrupting the many other functions (OMIM:600725) of
Shh during vertebrate development.

7 Challenges and Future Directions

There has been great progress in understanding the biology and functions
encoded by the human genome since the first draft of a reference sequence
was produced in 2001 [59], and much of this insight has been derived through
comparison both within and between genomes. However, as with many sci-
entific endeavors, more questions arise with each increment in understanding.
For example, we have now realized that much of the functionally constrained
sequence in the human genome does not encode proteins and our current
understanding of these elements is poor. They are the “dark matter” of the
genome. A major and current challenge is to identify each of these elements
and to start dissecting their function. In particular, it is likely that they will
harbor polymorphisms that impact human health, contributing to common
disease susceptibility. The integration of comparative genomics with genetic
variation data [1] to identify functional polymorphisms is likely to be a rapidly
expanding field with the combined assets of multiple mammalian genome
sequences and high-density confirmed polymorphism data available.

Sequence comparison alone may be able to identify all constrained sites,
but it is unlikely to be able to establish their associated functions. Rather, it is
the synergy of comparative studies with laboratory experiment that provides
greatest insight. This approach is embodied by the Encyclopedia of DNA
elements (ENCODE) project, an international initiative with the aim of identi-
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fying all functional elements in the human genome [35], in effect to shed light
on the dark matter of the genome. This is an ambitious and relatively long-
term goal. As a first step, a pilot project has been undertaken to investigate
30 Mb of the human genome (approximately 1%, randomly selected) in great
detail, applying a broad spectrum of experimental and computational meth-
ods to identify functionally important sites (http://genome.gov/10005107).
These rigorously annotated regions will be important training and testing
grounds for the development of methods in comparative genomics. The
UCSC genome browser (http://genome.ucsc.edu/ENCODE/) provides a key
portal to access the ENCODE pilot project data.

8 Conclusion

In the middle of 2000, credible estimates of the total number of human protein-
coding genes plummeted from 80 000–100 000 to 30 000 or so [90]. These
lower counts were essentially confirmed by the early analyses of the human
genome [59] and, if anything, the real numbers are likely to be smaller still
[50]. Although it is difficult, and perhaps even of little value, to interpret these
results within the commonly perceived frameworks of organismal complexity,
the fact remains that they have created a new impetus for looking beyond
protein-coding genes towards other classes of functional elements, such as
noncoding RNAs and, in particular, the cis-acting elements regulating gene
expression. At the same time, it is sobering to reflect on how unanticipated
these downward revisions of gene count were and, accordingly, to reserve
judgment on exactly how many more functional elements of major relevance
we may expect to find. The methods and early results presented in this review
are merely the first steps on a long path towards a broader understanding of
the totality of information encoded in the genome.
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Association Studies of Complex Diseases
Momiao Xiong and Li Jin

1 Introduction

Most complex diseases, including obesity, diabetes, cardiovascular disease,
hypertension, asthma, psychiatric illness, cancer and inflammatory disease,
are common diseases and hence pose great public health concerns [19]. Health
states of individuals are a complex, multidimensional phenomenon. Clinical
manifestations arise from integrated actions of multiple genetic and environ-
mental factors, through dynamic, epigenetic and regulatory mechanisms [90,
91]. For example, outcome, severity and progression of ankylosing spondyli-
tis (AS) are influenced by genetic factors, environmental (i.e. nongenetic)
factors, psychosocial constructs, treatments, biologic constructs (intermediate
phenotypes) such as disease activity, possibly biomarkers themselves, and
their interactions. It is assumed that AS is the effect of inflammation leading
to ankylosis. The susceptibility genes, environments and their interactions
will initiate inflammatory arthritis and enthesitis. The subsequent immune
response over time slowly leads to varying degrees of bony ankylosis and,
later, to spinal fusion. In some patients, the occurrence of spinal arthritis may
be accompanied by peripheral arthritis and other nonspinal manifestations.
Subsequently, the severity and persistence of axial and/or joint inflammation
will affect the rate and extent of ankylosis. The occurrence of ankylosis, in
turn, will lead to the long-term health outcomes – spinal fusion, functional
disability and work disability. In general, inflammation results in functional
disability independent of ankylosis, while ankylosis is the primary cause of
spinal fusion.

Therefore, clinical phenotype can be thought of as a synthesis of genes,
gene–gene interactions and gene–environment interactions [14, 40, 78, 81]. A
general disease model can be represented by Figure 1.

The general disease model assumes that multiple modules of phenotypes,
a set of genes and a set of environments, contribute to the outcome of the
disease. A module of phenotypes consists of a number of phenotypes which
are influenced by the genes and environments. The genes and environments
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Figure 1 Scheme of a general disease model.

can be classified into four categories: (i) the genes and environments directly
influencing a phenotype, (ii) the genes and environments influencing several
phenotypes in a module of phenotypes, (iii) the genes and environments
simultaneously influencing several modules of phenotypes, and (iv) the genes
and environments directly influencing the outcome of the disease. There-
fore, the genes and environments will have direct and indirect effects on
the disease. The genes and environments which affect the disease through
influencing the phenotypes in the modules will only have indirect effects on
the disease. Therefore, the proposed disease model is based hierarchically
organized networks of phenotypes, genes and environments.

In the proposed disease model, intermediate phenotypes play an important
role. In the context of complex traits, it is often insufficient to consider indi-
viduals who merely show a particular clinical symptom as being “affected”
[100]. The clinical symptoms might be accompanied by several intermediate
phenotypes, each of which is caused by a set of genes, environments and
their interactions. Definition of the phenotype is a key issue in dissecting the
genetic structure of complex diseases [81]. A narrowly defined disease phe-
notype beforehand will result in the collection of samples that are genetically
more homogeneous and, thus, can offer advantages over broad definitions.
Smaller samples with a precise phenotype are more valuable and powerful
than a large number of poorly characterized samples [14]. The intermediate
phenotypes are simpler in the sense that the number of genetic and envi-
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ronmental factors influencing each intermediate phenotype is presumably
smaller than the number of factors affecting the clinical outcome. Therefore, if
we can localize the genes for each of the intermediate phenotypes separately,
we can characterize most of the genetic susceptibility genes for the complex
disease [14, 100].

In recent decades, linkage analyses have been the primary method for
genetic studies of diseases. Linkage analysis tests for the cosegregation of
a genetic marker and a disease phenotype using family data. A significant
linkage result implies that a marker and a susceptibility gene are genetically
linked. Linkage analysis has been highly successful for many rare single-gene
disorders [53].

However, the fact that many diseases are caused by multiple mutations and
genes that individually contribute only modestly to disease risk limits the
power of linkage studies. Furthermore, linkage analysis requires multiplex
families with multiple affected relatives, which are not available on many
occasions. An alternative method to linkage analysis for genetic studies of
diseases is association studies that examine the co-occurrence of a marker and
disease at the population level [74, 80, 82, 92]. Association analysis has higher
power than linkage studies to detect small effects. Common complex diseases
involve many genes, most of which have small effects. This fact, together
with the imminent completion of the HapMap Project providing a compre-
hensive catalogue of millions of single nucleotide polymorphisms (SNPs) and
haplotypes across diverse populations [3, 105], and rapid development of
high-throughput genotyping technologies [9], has increased the importance
of association studies in genetic epidemiology [21]. The existence of disease–
marker association implies that either the marker allele itself is a functional
variant contributing to disease risk or the marker is close enough to the disease
locus.

Genetic association studies offer a potentially powerful approach for map-
ping causal genes with modest effects, but they also raise great challenges
in three at least aspects. (i) Since a genome-wide association study involves
a large number of SNPs and statistical tests, it is practically impossible to
ensure a genome-wide significance level of 0.05 using traditional statistic
methods. (ii) Most phenotypic variations are generated by integrated actions
of multiple genetic and environmental factors through complex (primarily
nonadditive and nonlinear) interactions between genes, and between gene
and environments. Detecting interactions among genes or SNP markers is
a daunting task. (iii) Most existing analytic methods analyze each genetic
marker (or haplotype) and phenotype individually, and do not consider net-
work structures among multiple phenotypes and multiple markers. In short,
statistical and computational methods for genetic studies have not kept pace
with data collection in the laboratory. Therefore, new techniques need to be
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Figure 2 Illustration of generation of LD.

proposed to address these challenging tasks. In this chapter we will focus
on how to develop statistical methods which have enough power to ensure a
genome-wide significance level.

2 Linkage Disequilibrium (LD), Haplotype and Association Studies

DNA variations are responsible for phenotypic variations. Direct association
studies or indirect association studies (nonrandom association with neighbor-
ing markers, called LD) can be used to reveal the relationship between DNA
variations and phenotypic variations.

2.1 Concepts of LD

LD refers to the nonrandom association of alleles at different marker loci. It
is also called allelic association or gametic disequilibrium. LD is of fundamental
importance in genetic studies of complex diseases [50, 82].

LD is due to evolutionary forces in the history of populations such as muta-
tions, recombination and random genetic drift. Suppose that a new mutation
arises on individual chromosomes and is flanked by the specific alleles that
happen to be present on that chromosome. Over years of transmission of the
mutation, through multiple meioses to successive generations, recombination
separates the mutation from the original alleles at loci that are unlinked to the
mutations. At very closely linked loci, the likelihood of recombination with
the disease mutation is low and the original alleles will remain in linkage with
the mutation for many generations. By examining the haplotypes at many
loci within a large region that does not exhibit recombination, it is sometimes
possible to identify a smaller region that appears to be in “LD” with the
mutation because the same alleles are present in different families with the
diseases. LD provides an indication of which part of the chromosome to study
first. See Figure 2.
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2.2 Measures of LD

Due to the important implications of LD in association studies of complex
diseases, several quantities have been proposed to measure the level of LD
between loci, which quantifies the dependence of alleles at two loci. Here, we
review several widely used measures of LD.

2.2.1 LD Coefficient D

Consider two marker loci, with two alleles D1 and d1 at the first locus and
two alleles D2 and d2 at the second locus. Assume the population is mating
randomly. The disequilibrium coefficient for alleles D1 and D2 at two loci is
defined as the difference between the haplotype frequency and the product
of allele frequencies: DD1D2 = PD1D2 − PD1 PD2 , where PD1D2 denotes the
frequency of haplotype D1D2, PD1 and PD2 , respectively, denote the frequency
of allele D1 at the first locus and the frequency of allele D2 at the second
locus. The maximum likelihood estimate (MLE) of DD1D2 is estimated by
D̂D1D2 = P̂D1D2 − P̂D1 P̂D2 , where P̂D1 and P̂D2 are the estimated frequency of
allele D1 and D2, respectively. PD1D2 is the estimated frequency of haplotype
D1D2. In practice, the haplotype frequency is unobservable, but can be
estimated using one of the algorithms mentioned in the previous section.

2.2.2 Normalized Measure of LD D′

The linkage disequilibrium coefficient DD1D2 depends on the frequencies of
haplotype and alleles, making comparisons between two populations diffi-
cult. For the convenience of comparison, Lewontin [61] normalized the above
measure of LD by dividing the coefficient D by its maximum value Dmax,
which is given by:

min[PAi PBj , (1− PAi)(1− PBj)] if DD1D2 < 0

min[PAi(1− PBj), (1− PAi)PBj ] if DD1D2 > 0 .

This normalized LD measure D′ is therefore defined as:

D′D1D2
=

⎧⎪⎪⎨
⎪⎪⎩

DD1D2

max(−PD1 PD2 , Pd1 Pd2)
DD1D2 < 0

DD1D2

min(PD1 Pd2, Pd1 PD2)
DD1D2 > 0

The normalized LD measure lies between −1 and +1, achieving these values
when two loci are in complete LD.
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2.2.3 Correlation Coefficient r

Pearson’s correlation coefficient r2 between two loci is another commonly
used measure of the LD. This coefficient is defined as [49]:

r2 =
D2

D1D2

PD1 Pd1 PD2 Pd2

.

r2 is often used to eliminate the arbitrary sign introduced. When two loci
are in linkage equilibrium, r2 is reduced to zero. There is a simple inverse
relationship between this measure and the sample size required to detect
association [55].

2.2.4 Composite Measure of LD

LD measures, D, D′ and r, assume that individuals mate at random. Under
assumption of random mating, the frequency of the genotype is the product of
frequencies of haplotypes, and the previously discussed measures of LD can
be calculated by estimations of frequencies of alleles and haplotypes which are
obtained by MLE. However, this assumption is not always satisfied. When
only genotypic data are available and random mating cannot be assumed,
the measures of gametic disequilibrium introduced previously cannot be cal-
culated directly. Weir [112] and Weir and Cockerham [113] introduced the
following composite measure of LD which combines gametic and nongametic
digenic disequilibrium coefficients, and uses only genotype data:

ΔAB = DAB + DA/B = PAB + PA/B − 2PAPB .

This can be calculated as [114]:

ΔAB =
1
n

(
2nAABB + nAABb + nAaBB +

1
2

nAaBb

)
− 2P̂AP̂B ,

where n is the number of individuals sampled, nAABB, nAABb, nAaBB and nAaBb
are the numbers of individuals carrying corresponding genotypes at two loci,
and P̂A and P̂B are the sample frequencies for allele A and B, respectively. The
composite measure of LD has the advantage of allowing its determination
with genotypic data [46].

2.2.5 The Relationship between the Measure of LD and Physical Distance

Let t denote the age of the mutation which creates the LD. Let θ be the re-
combination fraction between the two marker loci and Pij(t) be the frequency
of the haplotype AiBj, at t generations after the mutation causing LD. The
haplotype in the next generation is produced either by transmission without
recombination or by transmission with recombination between two loci. Thus,
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we have on average:

Pij(t + 1) = (1− θ)Pij(t) + θPAi PBj .

Recall that:

Dij(t) = Pij(t)− PAi PBj .

Combining above two equations yields the following recursive formula for
the calculation of the expectation of the measure of the LD: Dij(t + 1) = (1−
θ)Dij(t) and Dij(t) = D0(1 − θ)t, where D0 = Pij(0) − PAi PBj is an initial
measure of LD.

2.3 SNPs and Haplotype Blocks in the Human Genome

2.3.1 SNPs

A SNP is a mismatch between chromosomes in the base present at a particular
site in the DNA sequence. It is estimated that about 10 million SNPs (minor
allele frequency above 0.1) are present in the human genome, yielding an
average density of one in every 200–300 bp [20,58]. These 10 million common
SNPs capture 90% of the variation in the population [79] and are widely
distributed across the genome, e.g. in exons, introns, intergenic regions, in
promoters or enhancers, etc. SNPs play important functional roles. An exonic
SNP may directly affect the relevant protein; an intronic SNP can influence the
splicing [57]; SNPs in promoters or enhancers can influence gene expression
[30]. SNPs are major variations causing diseases.

2.3.2 Tagging SNPs

Millions of SNPs in the human genome provide enough markers to scan
the whole genome and their analysis is a powerful tool for genome-wide
association studies. However, genotyping a huge number of SNPs is both
labor intensive and very expensive. Fortunately, due to the LD between SNPs
in a chromosomal region, it is not necessary to type all of the SNPs [115].
Genotyping only a few carefully chosen SNPs which, referred to as “tag
SNPs”, will provide most of the genetic information in a region with high
LD [15, 23, 42, 54] (Figure 3). It was reported from preliminary estimation that
most of the genetic variations in the human population could be represented
by genotyping 1–2 million tag SNPs across the genome [15, 20, 42]. Thus,
using tag SNPs can reduce the number of markers being genotyped without
losing much information.

2.3.3 Haplotype Block Model

As a dense set of SNPs markers becomes increasingly available, LD mapping
is emerging as a powerful tool for fine mapping of disease susceptibility genes
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Figure 3 SNPs, haplotypes and tag SNPs.

and genome-wide association studies. The extent and pattern of LD have been
debated for several years. Many evolutionary forces such as mutation, genetic
drift, selection, recombination and population bottleneck affect the pattern of
LD. It is now widely accepted that the pattern of pairwise LD is erratic. The
relationship between the level of pairwise LD and the distance between two
individual markers is not monotonic, which complicates LD mapping.

In recent years, there has been growing interest in haplotype and haplotype
block LD mapping to alleviate the problem of erratic patterns of pairwise
LD. A haplotype is a set of polymorphic alleles that co-occur along the same
chromosome. Recent studies showed that haplotypes are not uniformly dis-
tributed over the chromosome; rather, they are organized in discrete blocks,
in which all pairs of polymorphisms are in strong LD (low recombination),
whereas pairs of polymorphisms between blocks show much weaker asso-
ciation (recombination hotspots) [13]. Therefore, a haplotype block shows a
largely atomistic pattern and island structure of LD, which greatly simplifies
association analyses.

There is strong evidence supporting the existence of haplotype block pat-
terns in the human genome. Daly and coworkers [23] reported block-like
patterns in a 500-kb region on chromosome 5 in 129 trios for Crohn’s disease.
They found that two to four common haplotypes can account for more than
80% of the haplotype variation in their sample. Jeffreys and coworkers [52]
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studied the haplotype patterns in a region of 216 kb of the major histocom-
patibility complex (MHC) II complex in the sperm of 50 British males. Their
results showed that about 94% of the recombinants in the MHC region were
located in the low LD regions, suggesting that the block-like pattern was
caused by the recombinant hotspots. Studies by Patil and coworkers [72]
revealed similar haplotype block patterns in their samples. Block-like patterns
have also been observed on chromosome 22 [24]. More recently, Gabriel and
coworkers [38] studied the haplotype patterns across 51 chromosomal regions
using population samples from Africa, Europe and Asia. Their findings were
consistent with the above observations.

These studies implied that the genome can be portioned into blocks with
high LD that are separated by regions with low LD. Within a block, very
few common haplotypes or markers can uncover the majority of the DNA
variations. These studies also suggested that recombination hotspots and
population bottleneck might be possible mechanisms underlying haplotype
blocks.

The haplotype block model has important implications for genetic studies.
It dramatically alleviates the irregular pattern of LD and holds the promise for
mapping complex disease genes. It also provides a simple way of choosing
SNPs for large-scale association studies. The main haplotypes in each block
could be labeled with a small number of “haplotype-tagging” SNPs (htSNPs)
(Figure 3), which would provide an efficient tool for screening each haplotype
block region for genetic association studies.

To facilitate genome-wide association studies of complex diseases, the In-
ternational HapMap Project was initiated in 2003 [20]. Its goal is to determine
the common patterns of DNA sequence variation in the human genome, to
find SNPs, to construct the general haplotype maps, and to discover the
haplotype block structure across the genome and several major populations
for all investigators. HapMap is expected to provide a very dense map
of SNPs, new tools to dissect genetic structures of complex diseases and
to a resource for the development of new treatments. HapMap also holds
promise to make the candidate gene-based, linkage-based and genome-wide
association studies both practically feasible and cost effective [20].

2.3.4 Definitions of Haplotype Block

Three methods have been proposed to define haplotype blocks. Briefly, the
first method defines a block as a region in which “LD decays slowly with
distance or not all”. Unfortunately, the sampling variation of LD shows
considerable fluctuation so that analyses of any trends are made difficult. The
second method defines blocks through the optimal partition of a chromosome
into a minimum number of blocks and minimum number of representative
SNPs. However, there has been no clear biological interpretation of such
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partitioned haplotype blocks. The third method for defining haplotype block
is based on recombination. A haplotype block is defined as a region in which
there are no recombination events evidenced in the study sample.

2.3.4.1 Definition of Haplotype Blocks based on Pairwise LD
A simple way to define haplotype blocks is to use pairwise LD [23, 38, 80]. A
block is defined whenever all pairwise LD coefficients D′ or correlation coef-
ficients r2 (adjacent and nonadjacent) within a region exceed some predefined
threshold, although different thresholds may be used to define the boundary
of the blocks in the samples.
Disadvantages of pairwise LD-based blocks include that (i) it is unclear how
much the levels of pairwise LD should be chosen to define haplotype blocks
which are consistent with the haplotype ancestry, and (ii) the thresholds used
to define the block boundaries are subjective and arbitrary. Furthermore, some
other factors such as genotyping errors and gene conversion may affect the
construction of blocks defined by LD coefficients [107].

2.3.4.2 Definition of Haplotype Blocks based on Haplotype Diversity
The second method for defining haplotype block is based on haplotype di-
versity and involves the optimal partition of a chromosome into a minimum
number of blocks and minimum number of representative SNPs [72, 120]. A
block is defined such that the minimum number of tag haplotypes (e.g. two
to five) and blocks can account for a maximum proportion of the observations
(usually above 80%).
Haplotype-diversity defined blocks share the same concern as those defined
by the LD-based method. Thresholds used for determining the number of tag
haplotypes which can cover the prespecified proportion of observations are
subjective. Also, this method requires known phase data, which are often not
accessible or computationally intensive to generate.

2.3.4.3 Definition of Haplotype Blocks based on both Pairwise LD and Haplo-
type Diversity
Recently, Anderson and Novembre [4] used a minimum-description-length
principle to define the best block boundaries. This method simultaneously
uses information about pairwise LD as well as the diversity of haplotypes
to define haplotype blocks. This method may be better than either of the
methods discussed above individually because it uses the joint information
on pairwise LD and haplotype diversity, and it is expected to be less severely
affected by multiple mutations, gene conversion and genotyping errors. How-
ever, this method also requires known phase data, which again mostly depend
on statistical inference and are often not accessible in practice.
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Haplotype blocks defined by pairwise LD and haplotype diversity are closely
related. In general, regions with high pairwise LD usually have low haplotype
diversity and regions with high haplotype diversity usually demonstrate low
LD. Currently, there is no consensus on which method should be used to de-
fine haplotype blocks. Each definition works well for some specific cases. The
block structures identified in each study depend strongly on the methods used
for defining blocks and on the populations studied. Methods for comparison
of haplotype blocks between studies have not been well developed, and it
is still unclear which definition of haplotype blocks reflects the underlying
biological processes such as recombination and population bottleneck better
than others.

2.3.5 Haplotype Reconstruction

Although over 10 million SNPs for which the frequency of both alleles ex-
ceeds 0.1 exist in the genome [14, 20], analyzing each SNP individually is
thought to be less powerful and less informative than simultaneous use of
multiple marker information in a region of interest [2, 31, 64, 67]. However,
haplotypes are not directly observable. Phase-unknown multilocus genotype
data are the primary data sources which we currently have. Although several
experimental technologies for molecular haplotyping have been developed
[73, 102, 119], these methods are labor intensive, low throughput and costly.
Therefore, experimental haplotyping methods are not practically useful for
large-scale population studies. Analyzing family data with many relatives
is another method to infer haplotypes, but (i) collecting family data is costly
and (ii) ambiguity still exists, especially as the number of markers increases.
Therefore, computational methods for estimating haplotypes using phase-
unknown genotype data offer practical and cost-effective solutions.

2.3.5.1 Clark’s Algorithm
Clark was the earliest to propose an algorithm based on maximum parsimony
to reconstruct haplotypes among unrelated individuals using genotype data
[17]. This algorithm first determines the haplotypes from all individuals with
no haplotype ambiguity, i.e. the individuals which are complete homozy-
gotes and single-site heterozygotes, assuming Hardy–Weinberg equilibrium
(HWE), the basic model of stable frequency distribution among haplotypes
in the presence of random mating. Then, the remaining individuals with
ambiguous haplotypes are sequentially screened for the possible occurrence
of previously recognized haplotypes; the complementary haplotype was then
added to the list of resolved haplotypes. Clark’s algorithm is straightforward,
but does not give unique solutions and does not explicitly assume HWE [69].
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2.3.5.2 Expectation Maximization (EM) Algorithm
The EM algorithm infers haplotypes based on maximum likelihood that op-
timizes the likelihood of occurrence of molecular haplotype frequencies from
the observed data, assuming HWE [26,35,76]. The advantages of the EM algo-
rithm include its solid theory, good performance for large samples and relative
robustness to departure from HWE. However, since the optimization method
is greedy, its performance is sensitive to the initial solution. Inappropriate
initial solutions may lead to wrong local maxima, which is serious when there
are many distinct haplotypes. Therefore, to ensure finding the global MLE of
haplotype frequencies, EM algorithms should be started multiply with several
initial solutions. Further, a standard application of the EM algorithm may
not be feasible when large number of markers are analyzed simultaneously
since the number of haplotypes, and hence the computational time, increase
exponentially with the number of markers.

2.3.5.3 Bayesian and Coalescence-based Methods
Stephens and coworkers [95] proposed using a Bayesian approach, either
using a simple Dirichlet-prior distribution or a prior distribution which ap-
proximates the coalescent, to reconstruct haplotypes from genotype data. The
algorithm has been implemented in the program PHASE and its modified
versions [62]. This algorithm infers haplotypes based on the following logic –
a haplotype that is more similar to the commonly observed haplotype patterns
has a higher probability of being present in the population than the less similar
haplotypes. The principle for Bayesian haplotype reconstruction methods
is to treat the unknown haplotypes as random quantities, and to calculate
the a posteriori distribution of the unobserved haplotypes given the observed
genotype data using prior information and the likelihood. The haplotypes (or
haplotype frequencies) can then be estimated from maximizing this a posteriori
distribution [96]. The prominent feature of this algorithm is the incorpora-
tion of coalescence theory into the algorithms and that it outperforms two
previously introduce algorithms. The disadvantages include the lack of a
measure of overall quality of the inferred haplotypes, slow computation and
unclear performance in admixed or rapidly expanding populations when the
coalescent model does not hold [69].
Several other coalescence-based and Bayesian algorithms as well as modified
EM algorithms have also been developed to facilitate haplotype reconstruc-
tion for multiple markers [6, 44, 70].

The algorithms mentioned above have their own advantages and disadvan-
tages. Comparative studies and new methods are still needed for haplotype
inference. In addition, methodologies for haplotype reconstruction in large
families remain challenging.
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2.3.6 Measure of Haplotype Block LD

Suppose that there are k loci within a block. Assume that two alleles A1 and
A2 at each locus have frequencies PA1 and PA2 , respectively. Consider a k locus
haplotype Hj1 j2...jk with a sequence of alleles Aj1 , Aj2 , . . . , Ajk , where Aji at the
i-th locus is either A1 or A2. Let PHj1 j2...jk

be the population frequency of the
haplotype Hj1 j2...jk . An overall measure of the haplotype LD at the k loci is
defined as:

δHj1 j2...jk
= PHj1 j2...jk

− PAj1
PAj2

. . . PAjk
.

This overall measure of the haplotype LD includes the pairwise LD measures
and higher-order measures.

Such an overall measure can be applied to measuring LD between a hap-
lotype block and a marker locus. Consider a haplotype Hj1 j2...jk consisting of
alleles Aj1 Aj2 . . . Ajk in the block and an allele M1 at the marker locus which
is outside the block. The haplotype Hj1 j2...jk and the allele M1form a (k + 1)
locus haplotype Hj1 j2...jk M1 . The overall measure of LD for the haplotype
Hj1 j2...jk M1 can be used to measure LD between the haplotype Hj1 j2...jk and
the marker allele M1, and will be denoted by DHM. Some authors suggested
that the haplotype block be treated as alleles and multiallelic analysis for the
single marker be applied to the haplotype block analysis [12]. Following this
approach, the measure of LD between a haplotype block and the marker locus,
denoted by DHM, can be defined as:

DHM = PHj1 j2...jk M1
− PHj1 j2...jk

PM1

= PHj1 j2...jk M1
− (δHj1 j2...jk

+ PAj1
PAj2

. . . PAjk
)PM1

= PHj1 j2...jk M1
− PAj1

PAj2
. . . PAjk

PM1 − PM1δHj1 j2...jk

= δHM − PM1δHj1 j2...jk
.

This measure of LD between a haplotype and a marker is obtained by remov-
ing the haplotype block LD from the LD measure between the haplotype and
the marker locus.

3 A General Framework for Population-based Association Studies

3.1 Motivation

Genome-wide association studies are emerging as a promising tool for genetic
analysis of complex disease [14, 68, 82, 101]. With the imminent completion of
the HapMap Project providing a comprehensive catalogue of common genetic
variations in human populations [3], and rapid development of technologies
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enabling efficient and economical genotyping of a large number of variants
[9], genome-wide association studies are becoming practically feasible in the
near future [48]. However, one of the major barriers in performing genome-
wide association studies is a multiple-testing problem, which may prevent the
realization of genome-wide association studies.

Three popular strategies have been used to alleviate multiple-testing prob-
lems. One strategy is to focus on controlling false discovery rates, defined
as the expected proportion of false positives among the declared significant
discovery. A traditional quantity for measuring the overall rate of the multiple
tests is the family-wise error rate (FWER), which is the probability of making
at least one type I error (a false positive) among all the hypotheses. However,
the FWER for ensuring genome-wide significance is too stringent. Recently,
another multiple-hypothesis testing error measure, known as the false dis-
covery rate (FDR), has been suggested [7, 22, 33, 83, 97–99]. This is a new
notion of global significance for simultaneous testing and is more powerful
than FWER. Although FDR is more liberal than FWER, since it allows for
controlling the fraction of false discoveries, the p-value of a test still needs
to be roughly 5 × 10−6 to ensure FDR ≤ 0.05 if 100 SNPs out of a million
SNPs being tested show significance and are left for further investigation
[97]. In addition, FDR only deals with how many SNPs should be further
investigated, but will not change the order of SNPs ranked by p-values, i.e.
FDR cannot detect true linkage or association which the existing statistics may
not detect. The second strategy is to construct haplotype blocks by studying
LD patterns across the genome and to optimally select a set of robust tag SNPs
such that all common variants are either directly genotyped or in strong LD
with the genotyped tag SNPs [38, 41, 54, 56, 95, 118, 120, 121]. However, it is
unclear whether the haplotype block patterns and tag SNPs are consistent
among populations or repeated sampling from within a population. Although
the multiple-testing problem can be alleviated by selecting and typing tag
SNPs [1, 45], the effect of such a strategy on the significance level is still
limited. The third strategy is to adjust p-values. Considering the adjustment
for millions of statistical tests, a stringent p-value of 10−6 to 10−7 has been
suggested [37, 68, 104, 109, 111] to ensure a genome-wide significance level
of 0.05. Unfortunately, with most existing statistics it is difficult to achieve
such stringent p-values. Therefore, developing novel test statistics, which can
reach stringent p-values for testing true linkage or association and identify
new SNPs showing evidence of linkage or association that are undetected by
the traditional statistics, requires immediate consideration.

Before developing a general framework for population-based association
studies, we first review the traditional statistics for association studies. The
primary assumption for association studies is that a mutation (a disease al-
lele) increases disease susceptibility. Under this assumption, one expects
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that the disease allele will occur more frequently in the affected individu-
als (cases) than in the unaffected (controls) [75]. The standard χ2 test for
association studies is to identify the disease locus by comparing the differ-
ences in allele/haplotype frequencies between the affected and unaffected
individuals. More precisely, the χ2 statistic is a quadratic form of difference of
allele/haplotype frequencies between the affected and unaffected individuals
[2,16]. As an alternative to comparing differences in allele/haplotype frequen-
cies, a recently developed class of association tests compares similarities of
corresponding genome regions between affected and unaffected individuals
[10–12, 25, 106, 119, 121].

A natural way of amplifying differences in frequency is to construct a linear
transformation of allele/haplotype frequencies in the currently used statistics
for association studies. However, it can be shown that any statistics arising
from linear transformation will not change the values of pre-transformation
statistics. It is suspected that the relationship between genotype and pheno-
type is nonlinear for complex diseases [66]. Motivated by this, we propose to
use nonlinear transformations of allele/haplotype frequencies in cases (PA)
and in controls (P), i.e. f (PA)and f (P), with the expectation that statistics
based on the difference | f (PA) − f (P)| will only amplify signal, rather than
noise and hence they will be more powerful than those based on the difference
|PA − P|. For example, the case-control differential may be enhanced with
some nonlinear transformations of allele/haplotype frequencies. It can be
shown that many similarity -based test statistics are version of the χ2 test with
quadratic transformations of allele or haplotype frequencies. Thus, a gen-
eral framework for association studies which can unify the allele/haplotype
frequency-based association tests and similarity-based association tests can be
developed.

3.2 The Traditional χ2 Test Statistic

Traditional association tests compare the differences in allele or haplotype fre-
quencies between affected and unaffected individuals. Let nA = [nA

1 , . . . , nA
m]T

and n = [n1, . . . , nm]T be vectors of number of alleles or haplotypes in affected
and unaffected individuals, respectively. Let nA andnG be the number of sam-
pled affected and unaffected individuals, respectively. Let PA = [PA

1 , . . . , PA
m ]T

and P = [P1, . . . , Pm]T be vectors of allele or haplotype frequencies in the
affected and unaffected individuals, respectively. Define:

P̂A
i =

nA
i

nA
and P̂i =

ni
nG

.

Let P̂A = [P̂A
1 , . . . , P̂A

m ]T and P̂ = [P̂1, . . . , P̂m]T. By standard statistical theory
[60], we know that the vectors nA and n following multinomial distributions
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with the following variance-covariance matrix:

A

∏ = nA[diag(PA
1 , . . . , PA

m )− PA(PA)T] ,

and:

∏ = nG[diag(P1, . . . , Pm)− PPT] ,

respectively. Here, diag(PA
1 , . . . , PA

m ) and diag(P1, . . . , Pm) denote diagonal
matrices with the diagonal elements PA

1 , . . . , PA
m and P1, . . . , Pm, respectively.

Let:

ΣA = diag(PA
1 , . . . , PA

m )− PA(PA)T and Σ = diag(P1, . . . , Pm)− PPT .

The allele or haplotype frequencies are asymptotically distributed as the fol-
lowing multivariate normal distribution:

N
(

PA,
1

nA
ΣA
)

and:

N
(

P,
1

nG
Σ
)

,

respectively.
One form of the standard χ2 statistic for case-control association studies is

given by:

T = (PA − P)TΛ−(PA − P) ,

where Λ = 1
nA

ΣA + 1
nG

Σ and Λ− is a generalized inverse of the matrix Λ.
Under the null hypothesis of no association of the marker with the disease,

T is asymptotically distributed as a central χ2
(m−1) distribution.

If we ignore the terms −P2
i and −PiPj (i, j = 1, . . . , m) in the elements of

matrix Σ, the variance-covariance matrix Σ is reduced to:

Σ ≈

⎡
⎢⎢⎣

P1 0 . . . 0
0 P2 . . . 0

. . . . . . . . . . . .
0 0 . . . Pm

⎤
⎥⎥⎦ = diag(Pi) .

Similarly, we have ΣA ≈ diag(PA
i ) for the affected individuals. Thus, T can

be reduced to:

T =
m

∑
i=1

(Pi − PA
i )2

Pi
2nG

+ PA
i

2nA

.
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If we assume that the numbers of affected and unaffected individuals are
equal, i.e. nA = nG = n, then the χ2 test statistic T can be further reduced
to:

T = 2n
m

∑
i=1

(Pi − PA
i )2

Pi + PA
i

,

which is exactly the formula of the standard χ2 test statistic [16].

3.3 Test Statistics

From Section 3.2 we know that the principle behind the standard χ2 test in
case-control studies is to compare differences in allele/haplotype frequencies
between two populations (e.g. cases and controls). We expect that amplifying
such differences may improve the power of detecting disease susceptibility
genes. One strategy for amplifying the difference is to nonlinearly trans-
form the frequencies. The difference in the values of nonlinear function of
allele/haplotype frequencies between cases and controls should be larger
than the difference in original allele/haplotype frequencies. This observation
motivates us to develop a general framework for population-based associa-
tion studies which is based on the difference in nonlinear transformation of
allele/haplotype frequencies between cases and controls.

Assume that nA affected individuals and nG unaffected individuals are
sampled. Let P̂A

Hi
and P̂Hi be the estimators of frequencies of haplotype

Hi in cases and controls. The allele/haplotype frequencies are asymptoti-
cally distributed as the multivariate normal distributions N(PA, 1

2nA
ΣA) and

N(P, 1
2nG

Σ), respectively, where PA = [PA
H1

, . . . , PA
Hm

]T, P = [PH1 , . . . , PHm ]T,
ΣA = diag(PA

1 , . . . , PA
m )− PA(PA)T and Σ = diag(P1, . . . , Pm)− PPT.

Let f (x) be a continuously differentiable nonlinear function with a nonzero
differential at x. Let Xj = f (P̂A

H−j) for j = 1, . . ., m, X = [X1, . . . , Xm]T, Yj =
f (P̂Hj) and Y = [Y1, . . . , Ym]T. Then, the random vectors X and Y are asymp-

totically distributed as multivariate normal distributions N( f (PA), 1
2NA

BΣABT)

and N( f (P), 1
2nG

CΣCT), respectively [87], where bii =
∂ f (PA

Hi
)

∂PA
Hi

, bij = 0,

cii =
∂ f (PHi)

∂PHi
, cij = 0, B = (bij)m×m and C = (cij)m×m.

Define the matrix:

Λ =
1

2nA
BΣABT +

1
2nG

CΣCT .

Let Λ̂ be an estimator of the matrix Λ. We propose the following test statistic
TN to test the association of the alleles/haplotypes with the disease [123]:

TN = (X−Y)TΛ̂−(X− Y) ,
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where Λ̂− is the generalized inverse of the matrix Λ̂. The null hypothesis is
that there is no association of alleles/haplotypes with the disease, i.e. H0 :
PA = P. Let r = rank(Λ̂). Under the null hypothesis, TN is asymptotically
distributed as a central χ2 with r degrees of freedom (Theorem A, p. 122 in
Ref. [87]; p. 13 in Ref. [43]). The test statistic TN defines a class of nonlinear
tests. Various nonlinear functions with some regularity can be used to con-
struct the test statistic. Table 1 lists some of the nonlinear functions used in
this study and their corresponding derivatives.

Table 1 Some of the nonlinear transformations for allele or haplotype frequencies

Function Derivative
Entropy
−x log x −1− log x

Exponential
ex ex

Polynomial
x2 + x + 1 2x + 1

Sigmoid
1

1 + e−x
e−x

(1 + e−x)2

Gaussian

e−
(x−c)2

2σ2 c− x
σ2 × e−

(x−c)2

2σ2

Reciprocal
1
x

− 1
x2

3.4 Null Distribution of the Nonlinear Statistics

In the previous sections, we have shown that when the sample size is large
enough to apply large sample theory, the nonlinear test statistics under null
hypothesis of no association are asymptotically distributed as central χ2 dis-
tributions. To examine the validity of this statement, we performed a series
of simulation studies [123]. The computer program SNaP [71] was used to
generate haplotypes of the sample individuals. Two datasets with a single
haplotype block each were simulated. The first dataset has two marker loci
which generated four haplotypes with frequencies 0.2952, 0.2562, 0.1957 and
0.2529. The second dataset has six marker loci which generated eight hap-
lotypes with frequencies 0.1820, 0.1461, 0.1406, 0.1291, 0.1211, 0.1107, 0.0817
and 0.0887. For each dataset, 20 000 individuals who were equally divided
into cases and controls were generated in the general population.

To examine whether the asymptotic results of the nonlinear test statistics
still hold for small sample size under the null hypothesis of no association,
100–500 individuals were randomly sampled from each of the cases and con-
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trols. In total, 10 000 simulations were repeated for each of the nonlinear
test statistics. In each simulation, the nonlinear test statistics were calculated.
Figure 4(A and B) plots the histograms of the nonlinear test statistics based on
entropy and exponential functions using two-SNP haplotypes. It can be seen
that the null distributions of nonlinear statistics are similar to the theoretical
central χ2 distributions even under the scenario of smaller sample size. Type
I error rates of the nonlinear test statistics for sample sizes from 100 to 500
individuals using two-SNP and six-SNP haplotypes have been summarized,
and show that the estimated type I error rates (at the significance level 0.05)
of the nonlinear test statistics were not appreciably different from the nominal
level α = 0.05.

3.5 Power of the Nonlinear Test Statistics and the Standard χ2 Test Statistic

The standard χ2 test statistic is a special case of the general nonlinear test
statistics. The nonlinear test statistics can be used as the general framework
for association studies. To further study the merit of the nonlinear statistics for
association studies we need to evaluate the performance of nonlinear tests and
compare the power of several nonlinear test statistics with that of the standard
χ2 test statistic.

To gain further understanding the power of the nonlinear statistics, we first
study their noncentrality parameters. The alternative hypothesis is that there
is at least one allele or haplotype associated with the disease, i.e. Ha : PA �=
P. Under the alternative hypothesis, the test statistic TN is asymptotically
distributed as a noncentral χ2

(r) distribution with the following noncentrality
parameter:

λN = [ f (P4)− f (P)]TΛ−1[ f (PA)− f (P)] ,

where:

r = rank(Λ), f (PA) = [ f (PA
H1

), . . . , f (PA
Hm

)]T,

f (P) = [ f (PH1), . . . , f (PHm)]T ,

Λ =
1

2nA
BΣABT +

1
2nG

CΣCT , ΣA = diag(PA
H1

, . . . , PA
Hm

)− PA(PA)T ,

Σ = diag(PH1 , . . . , PHm)− PPT , PA = [PA
H1

, . . . , PA
Hm

]T ,

P = [PH1 , . . . , PHm ]T ,

bii =
∂ f (PA

Hi
)

∂PA
Hi

, bij = 0, i �= j, cii =
∂ f (PHi)

∂PHi

, cij = 0, i �= j, B = (bij)m×m

and C = (cij)m×m .
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Figure 4 Histograms of nonlinear test statistics.

The noncentrality parameter λN can be approximated by (Appendix A) [123]:

λN ≈ e2δT
HD

(
I +

1
2

S
)T [ 1

2nA
(I + S)ΣA(I + S) +

1
2nG

Σ
]− (

I +
1
2

S
)

δHD ,

(1)
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where

e =
PD( f11 − f12) + Pd( f12 − f22)

P(A)
, δHD = [δH1D, . . . , δHm D]T

and

S = C−1H(PA − P) = diag
(

e f ′′(PH1)δH1 D

f ′(PH1)
, . . . ,

e f ′′(PHm)δHmD

f ′(PHm)

)
.

The matrix S measures the strength of the nonlinearity of the nonlinear
transformation f (P) (Appendix A). Note that under the same alternative
hypothesis, the traditional χ2 test statistic, which is defined as:

T = (P̂A − P̂)TΛ̂−1
0 (P̂A − P̂) , Λ̂0 =

1
2nA

Σ̂A +
1

2nG
Σ̂ ,

is a noncentral χ2
(r) distribution with the noncentrality parameter:

λ ≈ e2δT
HD

[
1

2nA
ΣA +

1
2nG

Σ
]−

δHD . (2)

Comparing the noncentrality parameters λN and λ, we can see that the non-
centrality parameter λN involves one more term S than the noncentrality
parameter λ. The matrix S characterizes the nonlinearity of the nonlinear
function. The power of the nonlinear test statistics depends on the strength of
the nonlinearity of the nonlinear function through the matrix S. The matrix
S is referred to as the strength matrix of the nonlinearity of the nonlinear
function.

If the product terms of the haplotype frequencies in the variance-covariance
matrices ΣA and Σ are ignored, the matrices ΣA and Σ can be approximated by
ΣA = diag(PA

H1
, . . . , PA

Hm
) and Σ = diag(PH1 , . . . , PHm). Then the noncentrality

parameters λN andλ will be further reduced to:

λN ≈ e2
m

∑
i=1

δ2
Hi D

(
1 + eπi

2 δHiD
)2

1
2nA

(
1 +

eπiδHiD
2

)2
PA

Hi
+ 1

2nG
PHi

λ ≈ e2
m

∑
i=1

δ2
Hi D

1
2nA

PA
Hi

+ 1
2nG

PHi

,

(3)

where πi =
f ′′(PHi)
f ′(PHi)

. The parameter πi is proportional to the curvature of a

nonlinear function [5] and influences the noncentrality parameter λN.
From the above formulas, we can see that both noncentrality parameters

λ and λN depend on the frequencies of the allele or haplotypes, penetrance,
the measure of the LD between the marker alleles or haplotypes and the
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disease allele, as well as the number of the sampled affected and unaffected
individuals. In addition, the noncentrality parameter of the nonlinear test λN
also depends on the curvature, which measures the degree of nonlinearity of
the nonlinear function.

Now we compare the power of several nonlinear test statistics with that
of the standard χ2 test statistic. The nonlinear functions for construction of
nonlinear test statistics are listed in Table 1. The markers are assumed to be bi-
allelic (i.e. SNPs). Specifically, we consider two scenarios: (i) a disease locus,
and (ii) two marker loci and a disease locus which is located in the middle of
two markers [123]. The calculation of the power is based on analytic methods
which are based on calculation of the noncentrality parameter.

We first investigate the expected noncentrality parameters of the nonlin-
ear tests statistics at the disease locus. We assume that the frequencies of
two alleles at the disease locus in controls are both equal to 0.5. Figure 5
plots the expected noncentrality parameters of the nonlinear test statistics
and the standard χ2 test statistic as a function of the frequency of the disease
allele in cases. From Figure 5 we can see three remarkable features. (i) The
expected noncentrality parameters of all test statistics increase as difference
in frequency of the disease allele between cases and controls increases. (ii)
The expected noncentrality parameters of the most nonlinear test statistics
in Table 1 (except for the statistic based on reciprocal transformation of the
allele frequency) are larger than that of the standard χ2 test statistic. (iii) The
expected noncentrality parameters of the nonlinear test statistics in Table 1 (ex-
cept for the statistic based on reciprocal transformation of the allele frequency)
are almost indistinguishable.

We then investigate the power of the nonlinear test statistics at the disease
locus. Figure 6(A–C) plots the power of the nonlinear test statistics and the
standard χ2 test statistic as a function of the disease allele frequency under
three different disease models: (1) disease model with penetrance f11 = 1,
f12 = 0.2 and f22 = 0.1; (2) disease model with penetrance f11 = 1, f12 = 1
and f22 = 0.1, and (3) genotype relative risk model, in which the genotype
relative risk for genotypes Dd and DD is r and r2 times greater than that of the
genotype dd [82]. Several features emerge from these figures. (i) The power
for most of the nonlinear test statistics is higher than that of the standard χ2

test statistic, but the power of the test statistic based on the reciprocal function
is lower than that of the standard χ2 test statistic. The power curves of the
exponential, sigmoid and quadratic functions are similar. (ii) The power of
the nonlinear test statistics is influenced by the disease model. The shapes of
the nonlinear test statistics in disease model (2) are different from that of the
test statistics in disease models (1) and (3). (iii) The power of the test statistics
depends on disease allele frequency. The shapes of the power curves in
disease model (1) and (3) are roughly bell-shaped; however, the shapes of the
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Figure 5 Expected noncentrality parameters as a function of allele
frequency.

power curves in disease model (2) are skewed to the left. (iii) The strength of
the nonlinearity of the nonlinear transformations also influences the power of
the nonlinear test statistics. Figure 7 shows that the measure π1 of nonlinearity
for several nonlinear transformations as a function of disease allele frequency.
The measure of the reciprocal function is a negative function of the disease
allele frequency and is the smallest among the nonlinear functions being
studied. Figure 6(A–C) also shows that the power of the reciprocal-based
test statistic is the smallest among the nonlinear tests being studied. In many
cases, the larger the measure of nonlinearity of the nonlinear transformation
for allele or haplotype frequency, the higher the power of the nonlinear test
statistic. However, since the power of the test statistics also depends on other
parameters such as disease models, the correlations between the measure
of the nonlinearity of the nonlinear transformation and the power of their
corresponding nonlinear test statistics follow complex patterns.

Next, we study the power of the nonlinear tests using haplotypes at the
marker loci. The markers are assumed to be bi-allelic (i.e. SNP). In particular,
we consider two marker loci and a disease locus that is located in the middle
of the two markers. The average haplotype frequencies in the affected and
unaffected individuals are calculated by equations (1) and (4) in Akey and
coworkers [2]. The power of the nonlinear test statistics and the standard χ2

statistics using four haplotypes generated by two marker loci as a function
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Figure 6 Power of nonlinear test statistics as a function of disease
allele frequency.
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Figure 6 (continued)

Figure 7 Measure π of nonlinearity as a function of disease allele
frequency.
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of the genetic distance between the disease locus and its flanking marker loci
for recessive, dominance and genotype relative risk disease models is shown
in Figure 8(A–C, respectively). The data demonstrate that the power of the
nonlinear test statistics is higher than that of the standard χ2 test, except
for the nonlinear test based on the reciprocal. Similar to the scenario at the
disease locus, the power of the nonlinear test statistics at the marker loci also
depends on the disease model, haplotype frequency, disease allele frequency,
the measure of the nonlinearity of the nonlinear functions, and the measure of
LD between haplotypes at the marker loci and disease locus.

4 Similarity-based Statistics for Association Studies

We often observe that affected individuals share common haplotypes in the
region surrounding disease mutations more often than unaffected individuals
[36, 55, 116]. One way to test the excessive sharing of common haplotyes
among affected individuals is to compare differences in haplotype frequen-
cies between affected individuals and unaffected individuals [2]. Another
way is to compare differences in haplotype similarity between affected and
unaffected individuals [10,12,28,106,108]. Before introducing similarity-based
statistics for association studies, we will study how to measure the haplotype
similarity.

4.1 Similarity Measures

Several haplotype similarity measures have been developed to quantify de-
grees of haplotype sharing [106]. Here, we introduce three widely used
measures of haplotype similarity.

Consider K marker loci which generate m haplotypes. Assume that nA
haplotypes are sampled from the affected individuals and nG haplotypes are
sampled from the unaffected individuals. Let Hi be one of the m haplotypes
at the K marker loci. Let PHi and PA

Hi
be the frequency of the haplotype

Hi in the unaffected individuals and the affected individuals, respectively.
Suppose that the number of Hi haplotypes in the unaffected individuals and
affected individuals are ni and nA

i , respectively. Let ΓHi and ΓA
Hi

be the
similarity measure of the haplotype Hi in the unaffected individuals and
affected individuals, respectively. A similarity measure of the haplotype Hi
is defined as:

ΓHi =
ni
nG

m

∑
j=1

nj

nG
S(Hi, Hj) = PHi SiP ,
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Figure 8 Power of nonlinear test statistics as a function of genetic
distance; see text for details.
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Figure 8 (continued)

where

P = [PH1 , . . . , PHm ]T , Si = [S(Hi, H1), . . . , S(Hi, Hm)] , S = (S(Hi, Hj))m×m ,

referred to as a similarity matrix, and S(Hi, Hj) is a measure to quantify
similarity between the haplotype Hi and the haplotype Hj and will be defined
below.

The similarity measure of all the haplotypes in the unaffected individuals,
denoted by Γ, is defined as summation of the similarity measure of individual
haplotype, i.e., Γ = ∑m

i=1 ΓHi . Then, we have Γ = PTSP. Similarly, for the
affected individuals, we have Γ = (PA)TSAPA, where PA, SA and ΓA are
similarly defined as that for unaffected individuals.

4.1.1 Matching Measure

The matching measure S(Hi, Hj) is defined as:

S(Hi, Hj) =

{
1 Hi = Hj

0 otherwise .

Therefore, for the matching measure, S is an identity matrix.
The matching measure considers only identical haplotypes as similar hap-

lotypes and any nonidentical haplotypes are not similar, even if they share a
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Figure 9 Scheme of length measure of similarity between haplotypes
Hi and Hj.

large proportion of their sequence. To overcome such limitations, we need to
develop other similarity measures.

4.1.2 Counting Measure

The counting measure S(Hi, Hj) is defined as the number of alleles in common
between haplotypes Hi and Hj. The haplotypes may not be identical, but share
some common alleles. If the shared common alleles contain disease alleles, all
haplotypes sharing disease alleles may be present more often in the affected
individuals than the expected.

4.1.3 Length Measure

The length measure S(Hi, Hj) is defined as the length of the longest continu-
ous interval of matching alleles between haplotypes Hi and Hj. As shown in
Figure 9, the length measure between haplotypes Hi and Hj is 7.

The length measure characterizes partial sharing identical by descent (IBD)
between haplotypes.

4.2 Test Statistics

There are two types of test statistics: statistics based on the similarity measure
of all haplotypes and statistics based on the similarity measure of part of the
haplotypes. For the convenience of presentation, the former will be referred to
as the overall similarity measure, the latter as the partial similarity measure.

We first consider test statistic based on the overall similarity measure.
Define Σ = diag(P1, . . . , Pm) − PPT and b = 2SP. Then, var(Γ) and
var(ΓA) can be approximated by var(Γ) = 4

nG
PTSTΣSP and var(Γ)A =

4
nA

(PA)T(SA)TΣASAPA, where ΣA = diag(PA
1 , . . . , PA

m ) − PA(PA)T, SA and
PA are defined as before. We define statistic based on the overall haplotype
similarity measure as:

Tos =
(Γ̂A − Γ̂)2

4
[

1
nG

P̂TŜTΣ̂ŜP̂ + 1
nA

(P̂A)T(ŜA)TΣ̂AŜAP̂A
]
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under the null hypothesis of no association, Tos is asymptotically distributed
as a central χ2

(1) distribution.
Now consider the test based on the partial haplotype similarity measure.

Let bii = SiiPHi + ∑m
j=1 SijPHj and bij = PHi SijPHj (i �= j). ΓH = [ΓH1 , . . . , ΓHm ]T

and B = (bij)m×m. BA and ΓA
H for the affected individuals are similarly

defined. Define the test statistic as Ts = (ΓA
H − ΓH)TΛ−(ΓA

H − ΓH), where Λ =
1

nG
BΣBT + 1

nA
BAΣA(BA)T. Under the null hypothesis of no association, Ts is

asymptotically distributed as a central χ2
(r) distribution, where r = rank(Λ).

Above we also show that the similarity measure of the genome region
is a quadratic function of the allele or haplotype frequencies. Therefore,
similarity-based statistics are nonlinear test statistics.

5 Generalized T2 Test Statistic

Although most researchers acknowledge that genetic variation provides valu-
able information for diagnosis, prevention and treatment of complex diseases,
there is no universally accepted consensus on how genetic variation con-
tributes to the cause of complex diseases [90, 91]. Two different basic view
points on the genetic architecture of complex diseases lead to two different
strategies for analyzing complex diseases.

The popular view on the mechanisms of the common diseases is to assume
that a single marker or gene acts independently and can explain the patho-
genesis of the disease. The widely used strategies for unraveling the genetic
structure of a common disease are single-locus analysis, one locus at a time,
assuming that each susceptible locus has a large independent main effect on
disease risk. The strategies focusing on the single genes with large marginal
effects on disease risk have resulted in only limited success in genetic studies
of complex diseases [47]. Current research demonstrates that only a small
proportion of the disease risk is due to the influences of variations in a single
gene with large genetic effects. In the real world, complex diseases develop as
a consequence of interactions between multiple DNA variants, and exposure
to environmental agents varying over time and space, which are organized
into networks. The single-gene paradigm for genetic analysis which has
proven successful in dissecting genetic structures of Mendelian diseases may
not lead to success in genetic studies of complex diseases.

There are an increasing number of researchers who advocate taking a
systems-level approach to complex diseases. The new concept concerning
complex disease is to assume that the development of disease should be
considered as a dynamic process with gene–gene and gene–environment
interactions contributing within a complex biological system which is hierar-
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chically organized into complex gene interaction networks [90, 91]. Genetic
mechanisms underlying complex diseases involve multiple genes which
influence disease variation largely through genetic interaction networks in
which the effect of one gene is enhanced or masked by effects of other genes
[66]. Actions of genes through networks are consequences of complex molec-
ular interactions occurring during biological processes such as metabolism,
transcription, signal transduction and translations. It was reported that
the principles underlying stable phenotypes in the presence of mutations
comprise genetic network structure that are redundant and robust [39].
Consequently, the genetic effects on the phenotype can be observed only
when multiple mutations hit the genetic networks. The phenotypic variations
depend on the genetic interaction networks. Uncovering hierarchically
organized gene interaction networks and their nonadditive relationships
with disease susceptibility require developing novel statistics which can test
association of a set of markers or networks with the disease.

The Hotelling T2 statistic can be used to test association of multiple markers
(or networks) with the disease [117].

5.1 Test Statistic

Consider a design in which nA cases from an affected population and nG con-
trol subjects from a comparable unaffected population are sampled. Suppose
that there are k markers typed in the samples. The j-th marker has alleles
Bj and bj with population frequencies PBj and Pbj , respectively. Define an
indicator variable for the genotype of the j-th marker for the i-th individual
from the affected population:

Xij =

⎧⎪⎨
⎪⎩

1 BjBj

0 Bjbj

−1 bjbj

.

Similarly, we define an indicator variable, Yij, for an individual from the
unaffected population. Let:

Xi = (Xi1 , . . . , Xik)
T, Yi = (Yi1 , . . . , Yik)

T

X̄j =
1

nA

nA

∑
i=1

Xij, Ȳj =
1

nG

nG

∑
i=1

Yij

X̄ = (X̄1, . . . , X̄k)T, Ȳ = (Ȳ1, . . . , Ȳk)T .
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The pooled-sample variance-covariance matrix of the indicator variables for
the marker genotypes is defined as:

S =
1

nA + nG − 2

[
nA

∑
i=1

(Xi − X̄)(Xi − X̄)T +
nG

∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T

]
.

Hotelling’s [51] T2 statistic is then defined as

T2 =
1

1
nA

+ 1
nG

(X̄− Ȳ)TS−1(X̄− Ȳ) ,

Under the null hypothesis of no association of markers with the disease, the
statistic T2 is asymptotically distributed as a central χ2

(k) distribution.

5.2 Nonlinear T2 test

We can also develop a nonlinear T2 statistic for testing the association of a set
of markers with the disease. Let f be a nonlinear function. Then, f (Ȳ)− f (X̄)
is asymptotically distributed as the following multivariate normal distribu-
tion:

f (Ȳ)− f (X̄) ∼ N( f (μY)− f (μX), Λ),

μx = E[X̄] ,

μY = E[Ȳ], Λ
1

nA
CΣYCT +

1
nG

BΣxBT, C =

(
∂ f

∂μT
Y

)
,

ΣY = nAcov(Ȳ, Ȳ), μx = E[X̄] ,

B =

(
∂ f
∂μx

T
)

, Σx = nGcov(X̄, X̄) .

The nonlinear T2 statistic can be defined as:

TN = [ f (Ȳ)− f (X̄)]T (Λ̂)− [ f (Ȳ − f (X̄)]

where (Λ̂)− is the generalized inverse of the matrix Λ̂. Let r = rank(Λ̂). It can
be shown [43] that under the null hypothesis of no association of the markers
with the disease, the statistic TN is asymptotically distributed as a central χ2

(r)
distribution.

6 Family-based Association Studies

Although population-based association studies are a powerful tool for genetic
studies of complex diseases, their drawback is that they may create spuri-
ous association due to population substructure. Recently, genomic control



6 Family-based Association Studies 1407

has been proposed to adjust for the effect of population substructure [27,
29]. However, the adjustment depends on the assumed models and the
population parameters [124]. Since the true disease models are unknown
and the estimation of population parameters may not be accurate, genomic
control cannot completely eliminate the effect of population substructure on
association studies.

The transmission/disequilibrium test (TDT), introduced by Spielman and
coworkers [94], and its extensions are widely used to test for linkage in the
presence of association because they can avoid spurious association due to
population substructure [34]. The original TDT and its early extensions use
one marker at a time [59, 63, 84, 89, 93]. With availability of a large collection
of SNPs and the rapid progress of efficient genotyping methods, the TDT has
been extended to using haplotypes and multiple marker loci [10, 11, 18, 65, 77,
121, 122]. Although collection of nuclear family data is not easy for late onset
diseases, TDT will still be a major tool for genome-wide association studies.

6.1 TDT at a Single Locus with Two Alleles

Throughout the chapter, we consider nuclear families with at least one af-
fected child. For the time being, we consider a locus with two alleles B1 and
B2 at the marker locus and assume that the parental genotypes are known. We
also assume that parents are heterozygous at the marker locus. Let n1 be the
total number of transmissions of allele B1 to affected children and n2be the
total number of transmissions of allele B2. Then, the original TDT is defined
as [94]:

TDT =
(n1 − n2)2

n1 + n2
. (4)

The original TDT can be rewritten in terms of allele frequencies. Let n =
n1 + n2, p̂ = n1/n, and q̂ = n2/n be the frequencies of the transmitted alleles
B1 and B2, respectively. Then, the TDT in Eq. (4) can be rewritten as:

TDT = n( p̂− q̂)2 .

6.2 TDT at a Single Locus with Multiple Alleles or at Multiple Loci with Phase-
known Haplotypes

The two-allele TDT can be generalized to multiple alleles or multiple loci with
haplotypes. If the phases of haplotypes are known, the TDT formulations for
multiple alleles or haplotypes are the same. For simplicity of presentation,
we only consider haplotypes. However, conclusions obtained for haplotypes
hold for multiple alleles. Assume that the number of haplotypes is k. Let nij be
the number of times that heterozygous parents with genotype HiHj transmit
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haplotype Hi to an affected child. Since we consider only heterozygous
parents, we assume nii = 0 for all i. Let ni· = ∑k

j=1 nij be the number of

times that haplotype Hi is transmitted to an affected child and n·i = ∑k
j=1 nji

be the number of times that it is not. The extension of the two-allele TDT is
then given by [93]:

TDTm =
k− 1

k

k

∑
i=1

(ni· − n·i)2

ni· + n·i
. (5)

This test statistic may not be distributed as a χ2
(k−1) distribution [59, 84, 88].

To ensure that the multiple allele or haplotype TDT asymptotically fol-
lows a χ2 distribution, TDTm can be modified using score method [88]. Let
n = ∑k

i=1 ∑k
j=1 nij. Let pij be the probability that a parent with genotype

HiHj transmits haplotype Hi to an affected child, pi· be the probability that
haplotype Hi is transmitted to an affected child and p·i be the probability
that haplotype Hi is not transmitted to an affected child. Their estimates are,
respectively, given by:

p̂ij =
nij

n
, p̂i· =

ni·
n

and p̂·i =
n·i
n

.

Let p̂ = [ p̂1·, . . . , p̂k·]T, q̂ = [ p̂·1, . . . , p̂·k]T, q̂ = [ p̂·1, . . . , p̂·k]T and d = p̂− q̂. We
can show that the variance-covariance matrix of d is given by:

cov(d, d) = Σ/n ,

where:

Σ = Σp + Σq − Σpq − ΣT
pq ,

Σp =

⎡
⎣p1·(1− p1·) . . . −p1·pk·

. . . . . . . . .
−pk·p1· . . . pk·(1− pk·)

⎤
⎦

Σq =

⎡
⎣p1·(1− p·1) . . . −p·1 p·k

. . . . . . . . .
−p·k p·1 . . . p·k(1− p·k)

⎤
⎦

Σpq =

⎡
⎣ −p1·p·1 . . . p1k − p1·p·k

. . . . . . . . .
pk1 − pk·p·1 . . . −pk·p·k

⎤
⎦ . (6)

By large sample theory [60], d is asymptotically as N(p− q, 1
n Σ).

Define the statistic:

TDTs = ndTΣ−d , (7)
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where Σ− is the generalized inverse of matrix Σ. Then, under the null hy-
pothesis of no linkage, TDTs is asymptotically distributed as a central χ2

distribution with degrees of freedom r, where r = rank(Σ−).

6.3 Sib-TDT

6.3.1 Comparison of Genotype Frequencies

Assume that total Ns sibships are sampled. Let G be the number of observed
genotypes among all individuals in the sample. Let mij be the number of
individuals with the j-th genotype in the i-th sibship. Let NA

i and NC
i be the

number of affected individuals and unaffected individuals in the i-th sibship,
respectively. We denote the total number of individuals in the i-th sibship by
Ni, i.e. Ni = NA

i + NC
i . Let tij be the number of individuals with the j-th

genotype in the i-th sibship. Then, mij follows a hypergeometric distribution
with mean:

eij = tij
NA

i
Ni

,

and variance:

Vij = tij
NA

i
Ni

(
1− NA

i
Ni

)
Ni − tij

Ni − 1
.

Let πij =
tij
Ni

, πi = [πi1, . . . , πiG]T, ti = [ti1, . . . , tiG]T, ei = [ei1, . . . , eiG]T, mi =

[mi1, . . . , miG]T and Vi = [diag(πi)− πiπT
i ] NA

i NC
i

Ni−1 .
The total observed genotype counts for the affected sibs across all families

with its expected value under the null hypothesis of no association are given
by:

m =
Ns

∑
i=1

mi

and:

e =
Ns

∑
i=1

ei .

Let NA be the total number of affected sibs across all families. Let P = m
NA , μ =

e
NA and V = 1

(NA)2 ∑Ns
i=1 Vi. When the sample size is large, P is asymptotically

distributed as a multivariate normal distribution with mean μ and variance-
covariance matrix V. Let bjj = −1 − log Pj, bjk = 0, j �= k, B = (bjk)G×G,
Yj = −Pj log Pj, Y = [Y1, . . . , YG]T and Σ = BVBT.
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Define the test statistic:

TSG = (Y− μ)TΣ−(Y− μ) ,

where Σ− denotes the generalized inverse of matrix Σ. Under the null hypoth-
esis of no association, statistic TSG is asymptotically distributed as a χ2

(G−1).

6.3.2 Comparison of Allele Frequencies

When the number of genotypes is large, an approach via the comparison
of genotype frequencies will have low power. To avoid this problem, we
compare allele frequencies. Allele counts are linear combinations of genotype
counts [85]. Suppose that there are K alleles. The count of the l-th allele for
the affected individuals in the i-th sibship is equal to ail = CT

ilmi, where the
j-th element of the vector Cil has the value 2, 1 or 0, depending on whether
the corresponding genotype has 2, 1 or 0 alleles of typel allele. Let CT

i =
[Ci1, . . . , Cik]. Then, the observed allele count of the affected individuals in the
i-th sibship and its expected values under the assumption of no association
are given by ai = Cimi and ea

i = Ciei. The covariance matrix is Va
i = CiViCT

i .
Define ma = ∑Ns

i=1 ai, ea = ∑Ns
i=1, and Va = ∑Ns

i=1 Va
i . Let Pa = ma

NA , μa = ea

NA

and Σa = BVaBT

(NA)2 , where B is defined as that in the previous section.

Define Ya
j = −Pa

j log Pa
j and Ya = [Ya

1 , . . . , Ya
k ]T. Then, the test statistic TSa,

defined as:

TSa = (Ya − μa)T(Σa)−(Ya − μa) ,

is asymptotically distributed as a central χ2
(k−1) under the null hypothesis of

no association.

7 Nonlinear Transmission/Disequilibrium Test

Similar to population-based association studies, multiple-testing problems are
also the major barrier to success of genome-wide TDT. By the same arguments
as those for population-based genome-wide association studies, there is an
urgent need to develop novel genome-wide TDT statistics with high power.

A natural way of developing powerful genome-wide TDT statistics is to
apply a nonlinear transformation of the number of the transmitted and non-
transmitted alleles or haplotypes for enlarging the difference in the number of
transmitted and nontransmitted alleles or haplotypes. The common feature
of the original TDT and its extensions is to compare the difference between
the numbers of alleles or haplotypes transmitted and not transmitted from
heterozygous parents to affected children, respectively. Therefore, amplifying
the difference between the numbers of transmitted and nontransmitted alleles
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Figure 10 Power of nonlinear test statistics as a function of genetic
distance.

or haplotypes is essential to improving the power of the TDT statistic. We
hypothesized that this goal can be achieved by modifying the TDT statistics.
Instead of comparing the difference between the numbers of the transmitted
and nontransmitted alleles or haplotypes, the modified TDT compares the
difference between a nonlinear transformation of these numbers. Such a
transformation should satisfy two conditions: (i) statistics based on such
a nonlinear transformation must still provide valid tests in the presence of
population substructure and (ii) the nonlinear transformation should amplify
the difference between the numbers of transmitted and nontransmitted alleles
or haplotypes. The TDT based on the comparison of differences between the
nonlinear transformations of the numbers of transmitted and nontransmitted
alleles or haplotypes is referred to as nonlinear TDT.
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Figure 10 (continued)

7.1 General Procedures for the Construction of the Nonlinear TDT

For the simplicity, we consider family trios (one affected offspring with two
heterozygous parents) and assume that all family members are genotyped
at one or multiple marker loci. For haplotype analysis, we assume that the
phases of the haplotypes are known. The results can be extended to sib-pair
and general pedigrees with phase known and unknown haplotypes£ R©

7.1.1 A Single Locus with Two Alleles

Consider a locus with two alleles M1 and M2. Let n1 be the total number of
transmission of allele M1 to the affected child and n2 be the total number of
transmission of allele M2. Let n = n1 + n2, p̂ = n1/n and q̂ = n2/n be the
estimated frequencies of the transmitted alleles M1 and M2, respectively. The
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nonlinear TDT for one locus with two alleles is defined as:

TDTN1 =
n[ f ( p̂)− f (q̂)]2

p̂q̂{[ f ′( p̂) + f ′(q̂)]2} , (8)

where f (·) is a differentiable nonlinear function satisfying some regularity
conditions such as entropy, exponential, polynomial, sigmoid and reciprocal
functions. It can be shown that TDTN1 is asymptotically distributed as a
central χ2

(1) distribution under the null hypothesis of no linkage or no asso-

ciation and asymptotically distributed as a noncentral χ2
(1) distribution with

the noncentrality parameter:

λN1 =
n[ f (p)− f (q)]2

pq{[ f ′(p) + f ′(q)]2} , (9)

under the alternative hypothesis of presence of linkage and association.

7.1.2 A Single Locus with Multiple Alleles or Multiple Loci with Phase-known
Haplotypes

The two-allele TDT can be generalized to multiple alleles or multiple loci with
haplotypes. If phases of haplotypes are known, the TDT formulations for
multiple alleles or haplotypes are the same. For simplicity of presentation,
we only consider haplotypes. However, conclusions obtained for haplotypes
also hold for multiple alleles. Assume that the number of haplotypes is
K. Let nij be the number of times that heterozygous parent with genotype
HiHj transmits Hi to an affected child. Since we consider only heterozygous
parents, we assume nii = 0 for all i. Let ni· = ∑k

j=1 nij be the number of times

that haplotype Hi is transmitted to an affected child and n·i = ∑k
j=1 nji be the

number of times that is not. Furthermore, let n = ∑k
i=1 ∑k

j=1 nij. Let Pij be
the probability that a parent with genotype HiHj transmits haplotype Hi to
an affected child, Pi· be the probability that haplotype Hi is transmitted to an
affected child and P·i be the probability that haplotype Hi is not transmitted
to an affected child. Their estimates are given by p̂ij = nij/n, p̂i· = ni·/n and
p̂·i = n·i/n. Let:

Σp =

⎡
⎣p1·(1− p1·), . . . , −p1·pk·

. . . . . . . . .
−pk·p1·, . . . , −pk·(1− pk·)

⎤
⎦

Σq =

⎡
⎣p·1(1− p·1), . . . , −p·1 p·k

. . . . . . . . .
−p·k p·1, . . . , −p·k(1− p·k)

⎤
⎦

Σpq =

⎡
⎣p11− p1·p·1, . . . , p1k− p1·p·k

. . . . . . . . .
pk1 − pk·p·1, . . . , pkk − pk·p·k

⎤
⎦
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Σ = Σp + Σq − Σpq − ΣT
pq . (10)

Their corresponding estimates are denoted by Σ̂p, Σ̂q, Σ̂pq and Σ̂.
Let the vectors of the nonlinear transformation of the frequencies of the

transmitted and nontransmitted haplotypes be X = [ f ( p̂1·), . . . , f ( p̂k·)]T, Y =
[ f ( p̂·1), . . . , f ( p̂·k)]T, respectively. Let B and C be the Jacobian matrices of X
and Y, respectively, and define bii = f ′( p̂i·), bij = 0 for i �= j, B = (bij)k×k, cii =
f ′( p̂·i), cij = 0 for j �= k, C = (cjk)k×k. Let B̂ and Ĉ be the estimates of matrices
B and C, respectively. Let Λ = BΣX BT + CΣYCT − CΣXYBT − BΣXYCT and its
estimates by Λ̂. Then, the nonlinear TDT for haplotypes is defined as:

TDTN2 = n(X−Y)TΛ̂−(X− Y) , (11)

where Λ̂ denotes a generalized inverse of the matrix Λ.
It can be shown that TDTN2 is asymptotically distributed as a central χ2

(r)
distribution under the null hypothesis of no linkage or no association and
r = rank(Λ−). Under the alternative hypothesis that linkage and associ-
ation between the marker and the disease loci exist, the statistic TDTN2 is
asymptotically distributed as a noncentral χ2

(r) distribution with the following
noncentrality parameter:

λN2 = n(μT − μNT)TΛ−(μT − μNT) , (12)

where μT = [ f (p1·), . . . , f (pm·)]T and μNT = [ f (p·1), . . . , f (p·k)]T.

7.2 Power of the N\ nonlinear TDT

A key component of power calculation is to compute noncentrality parame-
ters. The noncentrality parameters of the χ2 distribution of the nonlinear test
statistics are formulated in Eqs. (10) and (13), which implies that the expected
frequencies of the transmitted and nontransmitted alleles/haplotypes need to
be calculated for power calculations.

We first study how to calculate the expected frequencies of the transmitted
and nontransmitted alleles. It was shown that:

pi· = pi + b(1− θ)δ1i and p·i = pi + bθδ1i ,

where b =
( f11 − f12)PD + ( f12 − f22)Pd

P(A)
,

PD and Pd and are the frequencies of the alleles D and d at the disease locus,
respectively. f11, f12 and f22 are the penetrance for genotypes DD, Dd and
dd, respectively, with f11 ≥ f12 ≥ f22 ≥ 0, P(A) = f11P2

D + 2 f12PDPd +
f22P2

d represents the disease prevalence in the studied population. θ is the
recombination fraction between the marker and the disease locus, Mi denotes
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a marker allele, pi is the frequency of the marker allele Mi and PDi is the
frequency of the haplotype DMi, δ1i is the measure of LD between the marker
allele Mi and allele at the disease locus and is defined as δ1i = PDi − PDPi.
Thus, the expected frequencies of the transmitted and nontransmitted alleles
are given by E[Pi·] = Pi + (1 − θ)E(δ1i] and E[P·i] = Pi + bθE[δ1i], where
E[δ1i] = δ1i(0)(1− θ)t, δ1i(0) is the measure of the initial LD when the LD
was created, t is the time since the generations of the LD between the marker
and the disease locus. Next, we calculate the expected frequencies of the
transmitted and nontransmitted haplotypes. For simplicity of notations, we
consider only three-locus haplotypes. The extension of the methods for three-
locus haplotypes to haplotypes with more than three loci is straightforward,
but involves more complex notation. To provide guidance for study design
and intuitively illustrate the validity of the nonlinear statistics for testing
the null hypothesis, we approximate the noncentrality parameter. We can
show that the noncentrality parameter of the nonlinear test statistics can be
approximated by:

λN2 ≈ nδT
DM(1− 2θ)2b2

(
I +

1
2

S
)T

[(I + S)Σp(I + S)T − (I + S)Σpq

− ΣT
pq(I + S)TΣp ]−

(
I +

1
2

S
)

δDM ,

where δDM = [δ11, . . . , δ1k]T, S = b(1− 2θ)C−HδDM, C is a Jacobian matrix as
defined in the text, H = [H1, . . . , Hk]T and Hl = diag(0, . . . , 0, f ′′(P·l), 0, . . . , 0).
The quantities b, θ and the matrices Σp, Σpq are defined as before.

To ensure that the distributions of the nonlinear test statistics are a central
χ2 distribution, we need to have:

(1− 2θ)δ1i = 0 for all i = 1, . . . , k . (13)

This demonstrates that either θ = 1/2 or δ1i = 0 for all i = 1, . . ., k will lead to
Eq. (13). Therefore, like the original TDT, the nonlinear TDT statistics can also
be used to test either linkage or association. To detect linkage by nonlinear
TDT, the LD between at least one marker allele and a disease allele must exist,
i.e. only in the presence of association, the nonlinear TDT can be used to
test linkage. The most properties of the original TDT will also hold for the
nonlinear TDT statistics. We conduct preliminary power studies of nonlinear
TDT and plot the power curves of the standard and nonlinear TDT for the
recessive and dominance disease models in Figures 10A and 10B, respectively.

7.3 Real Examples

To further evaluate their performance, the nonlinear TDT statistics were ap-
plied to two real data sets. The first data set is a test of association of the
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RET gene, which encodes a receptor tyrosine kinase, with Hirschsprung [8].
The second example is to test the association of Fcγ receptor genes (FcγRIIA,
FcγRIIIA and FcγRIIIB) with systemic lupus erythematosus in 126 pedigrees
[32]. SNPs in these three genes were typed. The results are shown in Tables 2
and 3. The results showed that the p-values of most nonlinear TDT statistics
are much smaller than those of the original TDT statistic. These results
suggest that developing nonlinear TDT statistics harbors great potential for
establishing genome-wide linkage or association.

Table 2 Test for association of the RET gene with HSCR

TDT Entropy Exponential Quadratic Sigmoid Reciprocal
Single SNP
A45A 9.4E-8 < E-16 9.4E-13 1.1E-13 4.5E-14 0.0086
V125V 0.034 9.1E-9 0.0022 0.0013 0.0011 0.0037
A432A 0.65 0.64 0.65 0.65 0.65 0.32
G691S 0.21 0.17 0.20 0.20 0.20 0.00011
L769L 0.11 0.080 0.10 0.10 0.10 0.063
S836S 0.48 0.43 0.47 0.47 0.46 0.021
S904S 0.21 0.17 0.20 0.20 0.20 0.0011
7-SNP Haplotypes
A-L 6.2E-7 4.8E-9 1.1E-16 < E-16 2.6E-15 0.0063

Table 3 Test for association of FcγR gene with SLE

TDT Entropy Exponential Quadratic Sigmoid Reciprocal
2-SNP Haplotypes 1.2E-5 5.8E-8 1.9E-7 2.4E-7 1.3E-7 0.0023

8 Perspective of Genome-wide Association Studies

Several large-scale genome-wide association studies in which 300 000 or
500 000 panels of SNPs will be typed are planned, including European
initiatives, the National Institutes of Health (NIH) initiative for the Genetic
Association Information Network, and the Genes and Environment Initiative
[103]. To increase the power and reduce the cost of genotyping, two-stage
study design for genome-wide association studies in which in the first stage all
markers are typed in a fraction of samples and in the second stage a subset of
markers showing significant association will be typed was proposed [86,110].

A key component of genome-wide association studies is to test interaction
between genes and interaction between genes and environment. Complex
diseases are caused by multiple genes, primarily through nonlinear gene in-
teractions and gene–environment interactions. Complex gene interactions are
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organized into networks. Genetic interaction networks must be ubiquitous in
common diseases, given the complex dynamic interactions of the genetic regu-
latory and metabolic networks. Despite growing consensus on the importance
of testing for gene–gene interactions in genetic studies of complex diseases,
the effect of gene–gene interactions has often been defined as a deviance
from genetic additive effects, which is essentially treated as a residual term in
genetic analysis and leads to low power to detect the presence of interacting
effects. To what extent the definition of gene–gene interaction at population
level reflects their biochemical or physiological interaction remains a mystery.

Testing of interactions including gene–gene and gene–environment inter-
actions poses great challenge to genome-wide association studies because of
the extremely large number of potential interactions. Should we incorporate
testing of gene-gene interactions into genome-wide association studies? There
is some doubt about the strategy to test for interactions at the expense of
power for detecting main effects. Some suggest limiting the testing of in-
teraction to pairs of markers that individually show significant association
at some threshold. However, others argue that although both SNPs do not
show significant evidence of association when analyzed individually, they
do give significant evidence of interaction. It remains to be seen whether
incorporating testing of interactions into genome-wide association studies
will be useful.

We are entering a new era in genetic studies of complex diseases. Without
question, the next few years will be an exciting time [122]. A dozen large-scale
genome-wide association studies are under way. More and more powerful
methods for genome-wide association studies are being developed. We can
expect that a flurry of new association results will appear in the literature.
The validation of association findings will continue to rely not only on the
replication of independent samples, but also on functional studies of the SNPs.
It is certain that genome-wide association studies, in conjunction with systems
biology, will successfully dissect the complex structure of common diseases.
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Appendix A

Let f (P) be a vector-valued nonlinear function of random vector P. Assume
that the nonlinear function f (P) satisfies regularity conditions which ensure
that Theorem 3.3A in Serfling [87] holds. Then, f (P̂) is asymptotically dis-
tributed as a multivariate normal distribution N( f (P), 1

2nG
CΣCT), where

cii =
∂ f PHi

∂(PHi)
, cij =

∂ f (PHi)
∂PHj

, C = (cij)m×m ,

Σ = diag(PH1 , . . . , PHm)− PPT .

Similarly, f (P̂A) is asymptotically distributed as N( f (PA), 1
2nA

BΣABT),
where

bii =
∂ f (PA

Hi
)

∂PA
Hi

, bij =
∂ f (PA

Hi
)

∂PA
Hj

, B = (bij)m×m ,

ΣA = diag(PA
H1

, . . . , PA
Hm

)− PA(PA)T .

Therefore, under the null hypothesis H0 : PA = P, which implies f (PA) =
f (P), f (P̂A)− f (P̂) is asymptotically distributed as N(0, Λ), where:

Λ =
1

2nA
BΣABT +

1
2nG

CΣCT .

Let Z = f (P̂A) − f (P̂) and r = rank(Λ). Then, under the null hypothesis,
TN = ZTΛ−Z is asymptotically distributed as a central χ2

(r) distribution [43].

The alternative hypothesis is Ha : PA �= P. Under the alternative hypothesis,
TN is asymptotically distributed as a noncentral χ2

(r) distribution with the
following noncentrality parameter:

λN[ f (PA)− f (P)]TΛ−[ f (PA)− f (P)] (A.1)

By Taylor expansion, we have:

f (PA)− f (P) ≈ C(PA − P) +
1
2
(PA − P)TH(PA − P) (A.2)
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where H1 = diag(0, . . . , f ′′(PHl ), 0 . . . 0), l = 0, . . . , m

(PA − P)TH(PA − P) =

⎡
⎢⎣

(PA − P)TH1(PA − P)
...

(PA − P)THm(PA − P)

⎤
⎥⎦

Equation (A2) can be rewritten as:

f (PA)− f (P) ≈ C
[
(PA − P) +

1
2

C−(PA − P)TH(PA − P)
]

= C
[
(PA − P) +

1
2

C−H(PA − P)(PA − P)
]

. (A.3)

Let S = C−H(PA − P), then:

f (PA)− f (P) ≈ C
(

I +
1
2

S
)

(PA − P) . (A.4)

Substituting f (PA)− f (P) in Eq. (A4) into Eq. (A1) yields:

λN = (PA − P)T
(

I +
1
2

S
)T

(CTΛ−C)
(

I +
1
2

S
)

(PA − P) (A.5)

= (PA − P)T
(

I +
1
2

S
)T [

(C−Λ(CT)−
]− (

I +
1
2

S
)

(PA − P) .

Recall that:

PA − P = eδHD and B ≈ C + H(PA − P) (A.6)

where δHD = [δH1D, . . . , δHm D]T.
Thus:

C−Λ(CT)− = C−
[

1
2nA

BΣABT +
1

2nG
CΣCT

]
(CT)−

=
1

2nA
C−BΣA(C−B)T +

1
2nG

Σ

=
1

2nA
(I + S)ΣA(I + S) +

1
2nG

Σ . (A.7)

Substituting Eqs. (A6) and (A7) into Eq. (A5), we obtain:

λN ≈ e2δT
HD

(
I +

1
2

S
)T [ 1

2nA
(I + S)ΣA(I + S) +

1
2nG

Σ
]− (

I +
1
2

S
)

δHD .

(A.8)
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Next we study geometric interpretation of the matrix S. Let γ(P) = Z1, . . . , Zm]T,
where Zi = f (PHi). Define the following parameter equations:

PA = P + tΔP .

As t varies, γ(PA) = γ(P + tΔP) defines a curve C in the space. The tangent
vector of the curve C at the point P is given by:

dγ
dt

=
∂γ

∂PT ΔP , where
∂γ

∂PT =

⎡
⎢⎣

f ′(PH1) 0 . . . 0
...

... . . .
...

0 0 . . . f ′(PHm)

⎤
⎥⎦ .

Taking Zi (i = 1, . . ., m) as a new coordinate system, we obtain the change
rates of the tangent vector of the curve over new coordinates:

∂
(

dr
dt

)
∂ZT = C−HΔP = S , where H =

⎡
⎢⎣

H1
...

Hm

⎤
⎥⎦

and Hi = diag(0, . . . , f ′′(Hi), . . . , 0)

The change rate of the tangent vector of the curve characterizes the strength of
the nonlinearity of the nonlinear function [5]. The vector S has the following
form:

S = diag
(

f ′′(PH1)
f ′(PH1)

(PA
H1
− PH1), . . . ,

f ′′(PHm)
f ′(PHm)

(PA
Hm
− PHm)

)
.

If the product terms of the haplotype frequencies are ignored, we obtain
C−Λ(CT)− = diag(Λ1, . . . , Λm), where

Λi =
1

2nA
[1 + πi(PA

Hi
− PHi)]

2PA
Hi

+
1

2nG
PHi , πi =

f ′′(PHi)
f ′(PHi)

,

I +
1
2

S = diag
(

1 +
π1

2
(PA

H1
− PH1), . . . , 1 +

πm

2
(PA

Hm
− PHm)

)
.

Then, Eq. (A8) can be simplified to:

λN ≈ e2
m

∑
i=1

δ2
Hi D

[
1 + πi

2 (PA
Hi
− PHi)

]
Λi

= e2
m

∑
i=1

δ2
Hi D

[
1 + eπi

2 δHi D
]2

1
2nA

(
1 +

eπiδHiD
2

)2
PA

Hi
+ 1

2nG
PHi

.
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For the standard χ2 test statistic, we have πi = 0. Thus, its noncentrality
parameter is given by:

λ ≈ e2δT
HD

[
1

2nA
ΣA +

1
2nG

Σ
]−

δHD and λ ≈ e2
m

∑
i=1

δ2
HiD

1
2nA

PA
Hi

+ 1
2nG

PHi

.
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Pharmacogenetics/Pharmacogenomics
Xing Jian Lou, Russ B. Altman, and Teri E. Klein

1 Introduction

Pharmacogenetics is the study of how variations in the genes of an organism
affect its response to drugs. Since its inception in the mid-20th century [32,
45, 64, 69], the major goal of pharmacogenetics research has been to maximize
drug efficacy and minimize drug toxicity. In recent years, with the sequencing
of the human genome and the development of high-throughput genotyp-
ing methods, the ability to correlate genetic variations to drug responses
has dramatically increased. Therefore, pharmacogenetics has been moving
from the study of the impact of single-gene variations on drug response
to the study of the entire complement of pharmacologically relevant genes
(pharmacogenes), and how these genes and their variations interact with each
other and the environment to affect drug response. Although “pharmaco-
genetics” and “pharmacogenomics” are often used interchangeably, the term
pharmacogenomics is usually associated with the collection of data, including
DNA sequence variations and mRNA expression, using large-scale and high-
throughput methods. Pharmacogenomics research yields complex data that
are relevant to many genes and difficult to integrate. Traditional methods of
manual data collection and management are no longer cost-effective with the
development of high-throughput pharmacogenetics and pharmacogenomics
experiments. In this chapter, we review the challenges that pharmacoge-
nomics brings to biomedical informatics as well as biomedical informatics
tools that can catalyze the research and development of pharmacogenetics and
pharmacogenomics.

2 An Overview of Pharmacogenetics and Pharmacogenomics

The concept of pharmacogenetics originated from the clinical observation
that plasma or urinary drug concentrations were variable and could be in-
herited. Through more than 50 years of research, pharmacogenetics has
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provided knowledge on how the genetic variation of single genes affects
the drug toxicity and efficacy for drug development and therapy. Despite
this progress, many multidimensional relationships between genes, drugs,
disease and environment remain unclear. Pharmacogenomics studies using
genomic approaches are expected to accelerate the process of understanding
these multiple interactions.

2.1 Background of Pharmacogenetics and Pharmacogenomics

The classic example of pharmacogenetics is as follows. A 4-year-old boy has
acute lymphoblastic leukemia. His treatment protocol includes daily doses of
oral 6-mercaptopurine (6MP). However, this treatment leads to excess toxicity,
including severe life-threatening bone marrow suppression. The physician
performs a genetic test for thiopurine S-methyltransferase (TPMT) and learns
that the patient has two mutated copies of this gene that cannot metabolize
6MP into its usual inactive metabolite. Instead, the 6MP is metabolized by
a different pathway that leads to toxic compounds, called 6-thioguanines.
Based on this information, his physician greatly reduces his dose of 6MP and
monitors the resulting response to the drug. The boy subsequently has an
uneventful several-year maintenance period and achieves complete remission
[21].

Before the genetic variations of TPMT, an enzyme that metabolizes 6MP,
were discovered, physicians had long wondered why approximately one in
300 Caucasian patients had serious, sometimes lethal, myelosuppression dur-
ing the treatment with regular dosages of 6MP [67, 68]. Now we know that
this adverse drug response results from a lack of TPMT as a result of a
genetic alteration. When there is insufficient TPMT, 6MP is metabolized to 6-
thioguanine nucleotide (6TGN), a toxic 6MP metabolite, instead of its normal
metabolite, 6-methly-MP [36–38,68]. Severe side-effects and adverse reactions
then occur under the “standard-of-care” treatment. There is also evidence
that an increased activity of TPMT is associated with a decreased efficacy of
6MP [37].

Most initial pharmacogenetic discoveries involved a small number of poly-
morphisms (variations in genes, see also Chapter 37) in a single gene associ-
ated with a very dramatic change in the drug response. These simple, but
striking, examples provided the foundation for our present understanding
that inheritance can play an important role in individual variations in drug
response by influencing efficacy, toxicity or both. Drug-metabolizing enzymes
are divided into two large subgroups: phase I (functionalization) and phase
II (conjugation) enzymes. Phase I reactions consist of oxidation, reduction
and hydrolysis. These reactions usually lead to metabolites that are more
polar than the parent compounds. In a phase II reaction, an endogenous
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hydrophilic moiety is attached to a target molecule, producing a metabolite
that is more water soluble than the parent compound. Glucuronidation,
sulfation, acetylation and conjugation to glutathione and amino acids are the
major conjugation reactions. The most common variations associated with
drug responses reported occur in genes coding enzymes of both phase I and
phase II metabolism [66]. Polymorphisms in cytochrome P450 genes (such
as CYP2D6, one of the phase I genes) are the most widely studied and best
understood, because these polymorphisms affect the metabolism of a wide
range of commonly used drugs [12, 53]. Polymorphisms in genes from phase
II metabolism, such as TPMT and N-acetyltransferases (NATs), have also been
shown to affect drug response. Transporter gene polymorphisms are also
found to be associated with drug efficacy and toxicity [60]. Recently, there
has been a focus on polymorphisms in genes that are the targets of drug
therapy (and are not involved in metabolism). For example, mutations in the
epithelial growth factor receptor (EGFR) gene have been shown to enhance
tumor response to the EGFR tyrosine kinase inhibitor gefitinib (Iressa; As-
traZeneca) [41, 46].

Like many other genetic phenomena, the response to many drugs is de-
termined by the interaction of multiple genes at different loci [31, 47]. In
addition, environmental factors including diet, age and lifestyle also play
important roles in a person’s response to drug treatment. Environmental
factors need to be studied in the context of an individual’s genetic make-up
in order to understand their effects [24, 29]. Pharmacogenetics has thus ex-
panded to pharmacogenomics and includes multidisciplinary research efforts,
including genetics, molecular biology, cell biology, physiology, pharmacology,
biochemistry, toxicology, clinical pharmacology, clinical pharmacy, epidemiol-
ogy, pharmaceutical sciences and bioinformatics.

2.2 Influence of Pharmacogenetics and Pharmacogenomics
on Drug Development and Therapy

Most pharmaceutical companies avoid developing drugs that are metabo-
lized primarily by polymorphic enzymes such as CYP2D6 because of inter-
individual variation in response. However, this precaution is not always
effective, especially when variations exist in the drug targets. Therefore, an
important aspect of drug development is to develop pharmacogenetics tests
to define the patient population that will benefit most from the drug treatment
with minimal adverse reactions. Using pharmacogenetics tests to select the
right patient group may significantly decrease the cost of drug development.
Clinical trials focused on the right population (responders without adverse
reaction) may decrease the trial size and increase the success rate. Although
there is still debate about the cost-effectiveness of genetic screening before
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drug trials, there is evidence that genetic variations can be used to enrich for
normal and hyper-responders to decrease the size of clinical trials [54]. A
population-based study of genetic variations associated with increased risk
of disease conducted by deCODE Genetics has also led to the discovery of a
disease-specific pathway and shortened the time of target discovery through
the phase II clinical trial to little more than 1 year [23, 27, 28].

On the therapy side, few currently available medicines actually treat all
patients effectively. Some medicines are licensed on the basis of only 30%
efficacy in clinical trials [57]. Physicians have therefore accepted in practice
that many medicines are prescribed by trial and error. Patients first take one
medicine and, if it is shown to be ineffective, are then prescribed another.
Unfortunately, the adverse risks that are associated with medicines can be
lethal and can be additive. Adverse reactions represent the fourth to the
sixth leading cause of death in the US [7, 51]. Therefore, it would be useful to
determine, before prescribing a drug, whether a patient is likely to respond,
and if that individual is at risk of adverse reactions. In the US there are
only three pharmacogenetic tests that have been approved by the US Food
and Drug Administration (FDA) to be used by physicians to personalize
treatment decisions for maximizing efficacy and avoiding adverse reactions.
AmpliChip of Roche is used to individualize the dosage of antidepressants,
antipsychotics, β-blockers, and some chemotherapy drugs by detecting gene
variations for the CYP2D6 and CYP2C19 genes. The TRUGENE HIV-1 iden-
tifies variations in the viral gene that make the virus resistant to some an-
tiretroviral drugs. Most recently, the Invader UGT1A1 test of Third Wave
Technologies was approved for identifying patients with specific mutations
in the UGT1A1 gene. These patients may be at increased risk of adverse
reaction to chemotherapy drugs such as irinotecan. Although the number of
pharmacogenetic tests is currently limited, a lot of effort and resources have
been put into this field by private, public and regulatory sectors such as the
Roche decode alliance (http://www.decode.com) and the ScanBalt Clinical
Research Network (http://www.scanbalt.org/sw229.asp). That two out of
three pharmacogenetic tests were approved by the FDA in 2005 indicates the
rapid progress and growth in this area.

3 Biomedical Informatics Resources Relevant to Pharmacogenomics

The explosion of biological information in the last decade has triggered
the establishment of many successful biological databases in areas such
as sequences [5, 48], structures [15] and functions [4, 33]. These databases
provide basic data of relevance to pharmacogenomic. The Reference Se-
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quence (RefSeq) Project at the National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/RefSeq) provides a comprehensive
and nonredundant set of sequences, including genomic DNA, transcript
(RNA) and protein products for major research organisms. It also serves as a
standard for sequence annotation such as exon, intron, alternative splicing
isoforms, and 3′- and 5′-untranslated regions of genes [48]. The human
genome browsers offered by University of California at Santa Cruz (UCSC)
(http://www.genome.ucsc.edu), Ensembl (http://www.ensembl.org) and
NCBI (http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi) offer com-
prehensive information about gene location and genomic annotation. The Sin-
gle Nucleotide Polymorphism database (dbSNP) at NCBI (http://www.ncbi.
nlm.nih.gov/projects/SNP/index.html) and International HapMap Project
[1,2] provide excellent sources for the locations and types of genetic variations
of reported SNPs, including those submitted by The SNP Consortium [56, 63]
– an industrial group that is performing large-scale SNP screening.

The success of pharmacogenomics depends on the description of functional
features (phenotypes) associated with gene products. These phenotypes range
in detail from the molecular [19] to the individual [36] and population levels
[41, 43], including gene expression profiles, enzyme kinetic data, blood pres-
sure and drug responses in a particular population of patients. Some progress
has been achieved in the representation of these phenotypes. Efforts have
begun in providing standards of metabolism and signaling pathway presenta-
tions [10, 30, 33] (BioPax: http://www.biopax.org/index.html, see also Chap-
ters 20 and 22). Furthermore, existing standards for coding diagnoses (Inter-
national Classification of Diseases: http://www3.who.int/icd/vol1htm2003/
fr-icd.htm; MeSH: http://www.nlm.nih.gov/mesh), pathology (Systematized
Nomenclature of Medicine – SNOMED: http://www.snomed.org) and pro-
cedures (Current Procedural Terminology: http://www.ama-assn.org/ama/
pub/category/3113.html) in clinical medicine offer a good starting point for
pharmacogenomics research. However, these clinical data representations do
not provide the precision required for high-quality data retrieval. Also there
is a fair amount of agreement within the pharmacology community on how
to represent pharmacokinetic profiles. Programs such as ADAPT II [9] and
NONMEM (http://c255.ucsf.edu/nonmem0.html) allow first- and second-
order kinetics and associated parameters to be computed. A standard set
of parameters, including the dissociation constant for binding of inhibitor to
enzyme (Ki), the concentration of substrate that produces half-maximal veloc-
ity (Km) and the maximal velocity of a reaction (Vmax), have fairly consistent
definitions and thus provide a good initial opportunity for modeling of the
data (see also Chapters 20 and 22).

A set of controlled terms is called a standard vocabulary or controlled vo-
cabularies. The Human Genome Organization (HUGO) Nomenclature Com-



1432 39 Pharmacogenetics/Pharmacogenomics

mittee (HGNC) has created a reference set of symbols for human genes [65].
These symbols are used by almost all databases that involve genes or gene
products (e.g. protein). Therefore, this nomenclature serves as a standard
vocabulary for pharmacogenomics regarding genes. Controlled vocabularies
are also very useful for indexing purposes. For example, whereas an abstract
in Medline is free text, the list of Medical Subject Heading (MeSH) keywords
from the Medline database (http://www.ncbi.nlm.gov/PubMed/) represents
a controlled vocabulary. The advantage of a controlled vocabulary is that
computer programs can be written to detect certain phrases and can be pro-
grammed to process data based on the occurrence of these phrases.

There have been a number of proposed standards for exchange sequence
data, including standards that support GenBank submission such as BIOML
(http://bioinformatics.genomicsolutions.com/BioML.html), Bioperl (http://
bio. perl.org) and GCG (http://www.accelrys.com/products/gcg_wisconsin_
package). There has also recently been much effort in creating a standard
for exchange of genetic polymorphism information, such as the PharmGKB
eXtensible Markup Language (XML) schema (http://www.pharmgkb.org/
schema/index.html) and the Polymorphism Markup Language (PML) [61].
The Microarray Gene Expression Data (MGED) society also has developed
Microarray and Gene Expression Markup Language (MAGE-ML) – a data
exchange format for microarray expression experiments [58]. MGED is
an international organization of biologists, computer scientists and data
analysts that aims to facilitate the sharing of microarray data generated
by functional genomics and proteomics experiments. MAGE-ML specifies
a set of Minimum Information About a Microarray Experiment (MIAME),
including experimental conditions, the quality control parameters, the list
of genes being assayed and the actual expression measurements (and back-
ground measurements) recorded, and is implemented using XML (see also
Chapter 23). This format has been widely accepted by the microarray and
gene expression community and can be used for pharmacogenomics studies
as well.

While data exchange format and controlled vocabulary are well devel-
oped for microarray data and most of the sequence-related genomic data,
many pharmacogenomic, especially phenotype, data related to function still
lack such standards. The mouse genome initiative has created an ontol-
ogy that provides a general framework for communication on mouse pheno-
types (http://www.informatics.jax.org/searches/MP_form.shtml). With the
objective of capturing information about phenotypes in any organism, in
2002, Ashburner also proposed the Phenotype And Trait Ontology (PATO:
http://obo.sourceforge.net). Ontologies based on the PATO proposal are
under development [20]
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4 Building the PharmGKB

The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB,
http://www.pharmgkb.org) is a National Institutes of Health (NIH)-funded
effort to build a centralized repository for genetic and clinical information
on all individuals participating in pharmacogenomics studies as well as for
molecular, cellular and pharmacological information on model systems that
are used for pharmacogenomics research. The PharmGKB is currently being
developed at Stanford University. It is web based, and supports the storage,
integration and dissemination of data and knowledge about pharmacoge-
netics and pharmacogenomics. The home page of PharmGKB is shown in
Figure 1. In brief, the PharmGKB classifies primary phenotype and geno-
type data sets submitted by the pharmacogenetics and pharmacogenomics
community, described below, into five categories: (i) clinical outcome, (ii)
pharmacodynamics and drug responses, (iii) pharmacokinetics, (iv) molecular
and cellular functional assays, and (v) variation in genetic sequence. Users
browse data by associated genes, drugs, diseases and pathways. These path-
ways show how drugs are metabolized (pharmacokinetics) and how drugs act
(pharmacodynamics). In addition to primary genotype and phenotype data
sets, PharmGKB collects information about gene–drug–disease interactions of
relevance to pharmacogenetics from the literature. Using controlled vocab-
ularies and standard exchange formats, PharmGKB integrates this data with
relevant information from other databases, and provides browsing, search-
ing and analytical functions to help scientists discover connections between
genetic variations and alterations in drug responses and related phenotypes.

Different approaches are used at facilities within the pharmacogenetics
and pharmacogenomics community to uncover the mechanisms underlying
the inter-individual differences in the response to drug treatments. For
example, some groups specialize on the study of genetic variations affect-
ing the treatment of a particular disease (e.g. http://www.pharmgkb.org/
network/members/parc.jsp), some groups focus on studying the influence of
multiple genetic effects on a single drug (e.g. http://www.pharmgkb.org/
network/members/cobra.jps), and others on the study of variations of a
group of genes and their resulting effect on drug treatment (e.g. http://www.
pharmgkb.org/network/members/pmt.jsp). Studied diseases include, but
are not limited to, arrhythmia, hypertension, atherosclerosis, asthma, cancer
and depression. Examples of investigated drugs include tamoxifen, statin,
ACE inhibitors and irinotecan. Numerous functional polymorphisms on
genes responsible for drug transport, metabolism and genes targeted by drugs
are under investigation in pharmacogenetics and pharmacogenomics study
centers.
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Figure 1 The PharmGKB home page. Contents of the Knowledge
Base are highlighted in the gray shaded box.

In addition to the PharmGKB, there are other tools available for special-
ized topics in pharmacogenomics. For example, the Pharmacogenomics of
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Arrhythmia Therapy group at Vanderbilt University has developed a data
reduction algorithm [Multifactor Dimensionality Reduction (MDR)] for the
detection of gene–gene, gene–drug or gene–environment interactions in rela-
tively small sample sizes [22,52]. The number of analytical and computational
approaches continues to grow with the challenges facing the pharmacoge-
nomics community.

PharmGKB uses the SOAP (simple object access protocol) web-service
standard method (http://www.pharmgkb.org/home/projects/webservices/
index.jsp) to allow users to access these analytical and computational tools
(see also Chapter 43 for bioinformatics web technology). For example,
PharmGKB has demonstrated a service on the gene variant page that triggers
code to gather all variants for that gene, format them as required by the
haplotype inference algorithm PHASE and ship the data to the Channing
Laboratory in Boston for computation. Users therefore are able to access data
through the central repository of PharmGKB, but use tools developed by third
parties to analyze such data through PharmGKB’s web service.

General information in the PharmGKB is available to the public without
restriction. However, genotypic and phenotypic information associated with
individual human subjects is only available to users that have been granted
access, i.e. “registered”. Patient privacy policies are discussed in more detail
in Section 4.3.3.

4.1 Establishing a Repository of Pharmacogenetics
and Pharmacogenomics Information

Pharmacogenetics and pharmacogenomics research usually involves the anal-
ysis of multidimensional data obtained through different approaches and
using different technologies. Integration is very important at many levels. For
example, data on functional changes are meaningless if they are not associated
with a particular genotype. The establishment of a central data repository
and maintaining the relationships among these data provides a foundation
for such integration.

4.1.1 The Data Model

A good data model is critical to the establishment of a successful pharmacoge-
nomics knowledge base, because of the great diversity of information formats
and the rapid evolution of the field. A data model contains important classes
of objects in the domain of interest, the key attributes for these objects and the
logical relationships among these objects.

The high-level objects in a pharmacogenomics data model are shown in
Figure 2. Functional considerations for a database include the ability to accept
data submissions from the user community, provide a preview of submitted
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Figure 2 PharmGKB data model. Each gray box represents a class
of objects that has a large tree of subclasses of objects underneath
it for more specificity. The lines between the objects summarize the
types of links that occur between instances of each type of objects.

data to the submitters for inspection and approval, provide access to all
approved submissions to all registered users, provide a search capability to
find major objects from any text field associated with the object, and track
changes to the data and be able to retrieve a date dependent view of the data.
More information about one sample pharmacogenomics relational data model
can be viewed at http://www.pharmgkb.org/resources/references.jsp.

Relational database management systems are the most dependable and
widely used architectures for building large databases. They provide built-in
support for dynamic and hierarchical data modeling, including adding ob-
jects, associating particular attributes with each object and interlinking objects
with named relationships. For example, PharmGKB is built using a relational
database architecture upon which a middle layer (written in Java) contains all
logic and a final presentation layer presents data to the user. The technical
infrastructure of PharmGKB is detailed at http://www.pharmgkb.org/
resources/references/architecture.jsp.

4.1.2 Primary Data

The main source of the pharmacogenomic primary data is from pharma-
cogenetics investigators. Information regarding the research interest and



4 Building the PharmGKB 1437

affiliations of all the groups to submitting to PharmGKB is available at
http://www.pharmgkb.org/views/loadContributors.action.

Fundamentally, there are only two types of data generated from pharma-
cogenetic and pharmacogenomic research – genotype data and phenotype
data. Genotype is the internally coded, heritable information carried by the
organism. Variation in genotypes represents differences in sequence within
a species, such as SNPs (a very common gene variation that only involves
the change of a single nucleotide) the locations or the number of repeats,
deletions, or critical splice sites (see also Chapters 36 and 37). Phenotypes are
the observable properties of an organism produced by the interaction of the
genotype with the environment. For pharmacogenetics, the “environment”
is often defined via the exposure to a drug, although it may include other
variables, e.g. describing smoking habits or alcohol consumption. However,
because an individual’s drug response is usually a consequence of interactions
among many genes or proteins (encoded by genes), including transporters,
enzymes and receptors in different cells, tissues and organs, “the observable
properties of an organism” here can vary from the change in the expression of
a transporter gene, across the increase or decrease of an enzyme’s activity or
the binding affinity of a receptor to how the individual feels, e.g. headache, di-
arrhea, etc. Different assays are designed to measure these different changes,
including how these changes interact with each other and trigger a new
change. Therefore, it is fair to say that there are as many phenotypes as assays
that have been invented to measure them.

Individual primary phenotype files in PharmGKB are carefully curated with
respect to clear documentation, scientific clarity, and privacy considerations.
Approved files will be then labeled with:

• List of genes, drugs, diseases relevant to the file (using controlled vocabu-
laries).

• List of index terms from the phenotype ontology.

• List of MeSH terms for additional indexing.

The approval and labeling procedure is an interactive process between cura-
tors and submitters. It is usually time consuming, but it is one of the necessary
procedures to ensure the high quality of the data in the knowledge base.

4.1.3 Data from Literature

Thousands of papers related to pharmacogenetics and pharmacogenomics
research have been published in the past decades. Numerous scientific dis-
coveries and observations are recorded in these papers. Most of them are
written in the text of natural language and stored in a database like Medline
with a less-structured form to accommodate the heterogeneity of information.
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Whereas natural language text has much power for expressiveness, it is diffi-
cult for computers to parse such language. For example, ideally a user would
like to be able to compare results among some of the relevant papers then
raise new hypotheses for further testing or to validate a discovery. Therefore,
it is useful to retrieve information from these publications and store it in a
database for facile comparison and integration. However, reliably retrieving
information from these papers is a considerable challenge. Three approaches
have been taken to solve this problem. First, one can use an online tool for
the scientific community to submit published literature providing evidence
for relationships between genes, drugs and diseases. We have developed a
web interface that accepts HGNC gene names, MeSH disease names and VA-
NDF, Apelon and USP DI R© drug names as a summary of published literature
finding. These annotations are associated with existing evidence (a PubMed
ID or an URL) and a confidence measure for the evidence (select from low
to high or unknown). Submitters are encouraged to categorize the submitted
literature into one of the knowledge categories discussed in Section 4.2.1.

The second way to capture information in the literature is manual curation.
Database curators routinely review the literature to find gene–drug–disease
associations that should be captured. Curators survey the literature using
PubMed, clinicaltrials.gov, the websites of the National Cancer Institute (NCI),
National Heart Lung and Blood Institute (NHLBI) and Google.

While human (especially expert) knowledge is very important in collect-
ing information in the pharmacogenetics and pharmacogenomics field, the
process is very time consuming and therefore the amount of information
collected through this method is relatively small. A third approach to acquire
information from published literature is based on automatic computer algo-
rithms to extract information automatically from text. We have developed a
statistical and computational approach to identify all the articles in Medline
citations that are associated with pharmacogenetics and pharmacogenomics
research. This method can also be used to extract data pertaining to par-
ticular gene–drug relationships with 92% precision [55]. One can search for
drugs that are associated with a gene of interest or vice versa. This tool is
available at http://pharmdemo.stanford.edu/pharmdb/main.spy. For more
details about tools for analysis of pharmacogenetics text, users can also visit
http://bionlp.stanford.edu/genedrug. For automatic analysis of scientific
texts, see also Chapter 33.

4.1.4 Linking to other Data Resources

Many biological databases provide data that is complementary to the basic
genotype–phenotype data sets collected for pharmacogenomics studies. The
key to making appropriate links between database resources is to have com-
mon terminologies for referring to basic concepts such as genes and drugs.
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For example, using shared vocabularies such as the HGNC gene symbols, one
can link via URL directly to the following resources:

• UCSC Genome Browser [34]

• Entrez Gene [42]

• GenBank [5]

• Swiss-Prot [4]

• PubMed [17]

• OMIM [25]

• MedlinePlus (http://medlineplus.gov)

• Gene Ontology (GO; http://www.ebi.ac.uk/GOA)

• SOURCE [16]

• PromoLign [74]

• RefSeq [48]

• Ensembl [6]

• GENATLAS [18]

• GeneCards [50]

• MutDB [14]

• PharmGKB

4.2 Turning Data into Knowledge

It is critical for a public repository of pharmacogenetics and pharmacoge-
nomics data to present core data sets upon which researchers in the field can
apply new analyses, generate new knowledge and build new hypotheses. In
order to provide such data sets, data need to be organized and classified first
so that one can browse and search for individual data set easily. Relationships
among data sets should be maintained and/or enabled. These relationships
should also be presented in biochemical pathways to best summarize con-
nected pharmacogenetic and pharmacogenomic knowledge for generating
new hypotheses and making new discoveries.
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Figure 3 Categories of pharmacogenetics knowledge used by
PharmGKB.

4.2.1 Categorizing Data

As discussed in Section 4.1.2, phenotype data obtained in pharmacogenet-
ics/pharmacogenomics research are extremely diverse. We have previously
categorized pharmacogenetics and pharmacogenomics information based on
two principles [3]. (i) Pharmacogenetics and pharmacogenomics relate vari-
ations in genes to variations in certain phenotypes associated with drugs.
Therefore, gene variations, phenotype variations and drugs should be used as
major labels for most pharmacogenetic and pharmacogenomic data sets. (ii)
Phenotypic data can be further classified based on the level (i.e. molecular or
whole organism) at which they are collected. The indexing schema containing
the five classified variation information types is shown in Figure 3. These
five categories are not perfectly separable, but they provide a framework
for categorizing pharmacogenetic and pharmacogenomic data and literature.
If data sets touch upon more than one area, they are multiply classified.
These five categories have been used for indexing the published literature,
labeling phenotype and genotype data sets, and designing the user interface
for different types of users. Specific definitions of the five categories of data
sets can be retrieved at PharmGKB through preprepared “simple queries”
(http://www.pharmgkb.org/search/query/index.jsp), as detailed in the fol-
lowing subsections

4.2.1.1 Genotype The most basic information about pharmacogenetics and
pharmacogenomics is the observation of variations in individual genes, in-
cluding the type of the variation (i.e. SNP, insertion, deletion, etc.), the
location of the variation on chromosomes (using, for example, the UCSC’s
Golden Path position) and the frequency of the variation in the populations
of interest. Information related to the potential importance of the genetic
variation or how to analyze the variants is also part of the genotype data. This
includes subject information such as gender and ethnicity, features (such as
exons and promoters) of the region under investigation, alternative splicing,
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and protocols for the assay by which the variant was analyzed. For exam-
ple, genotype file PS204853 in PharmGKB contains the measurement of four
variants in VKORC1 genes that are critical to the therapeutic dose of warfarin,
and the measurement was performed in 340 subjects with different age, sex
and ethnicity background.

4.2.1.2 Clinical Outcome
The main driving force of pharmacogenetic and pharmacogenomic research
is to make an impact on clinical medicine through maximizing drug efficacy
and minimizing drug toxicity. Therefore, the discovery of genetic variations
(genotype) that cause measurable differences in clinical outcomes that are of
concern to patients and their physicians such as how tolerable is the treatment
(drug side-effects, adverse reactions) or how soon the patient improves (dis-
ease symptoms, laboratory test results) in response to the drug treatment are
particularly meaningful. These clinical outcomes are obviously different from
the measurements of drug response in a research setting. Sometimes they
might not be detailed enough to illustrate the pharmacodynamic effect of a
drug, but they can certainly alter medical practice or policy. An example of
clinical outcomes can be viewed in file PS204373 at PharmGKB. The rejection
of a heart transplant in pediatric patients can be potentially managed by
using specific genotype information of the MDR1 and CYP3A5 genes because
such genotype information is important for maintaining the patient’s blood
concentration during immunosuppressive therapy with the drug tacrolimus.

4.2.1.3 Pharmacodynamics and Drug Responses
Datasets of measurements at the whole-organism level are classified into
pharmacodynamics data and drug responses, although usually pharmaco-
dynamics data can include all outcomes associated with how drugs act. For
example, changes in an individual’s intestinal CYP3A4 protein levels after 2
days of receiving oral rifampin are associated with variations in the pregnane
X receptor (PXR) gene (phenotype file PS200308 in PharmGKB).

4.2.1.4 Pharmacokinetics
The measurements of the absorption, distribution, metabolism or elimination
(ADME) of a drug in association with genotyping belong to the pharma-
cokinetics category. Classic pharmacogenetic studies relied upon observing
changes in drug metabolism in the context of genetic variants. Up to now,
most of the important genetic variants associated with drug responses are
in genes coding enzymes involved in drug metabolism and transporters in
charge of drug transportation. Many data sets have demonstrated that genetic
polymorphisms lead to variation in the pharmacokinetics of particular drugs.
For example, genetic variation in VKORC1 is responsible for phenotypic vari-
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ation in the steady-state concentration of warfarin in plasma (phenotype file
PS402853 in PharmGKB).

4.2.1.5 Molecular and Cellular Functional Assays
Many discoveries of pharmacogenetics and pharmacogenomics start from
measurements establishing an association between genetic variation and a
drug induced or inhibited reaction at the molecular and cellular level. For
example, the phenotype file PS200308 in PharmGKB, the example used in
Section 4.2.1.3, reports data about the binding ability of the variants PXR*1,
PXR*2, PXR*3 and PXR*4 of the PXR protein to CYP3A4 in a transient plasmid
expression system. Data obtained in vitro with artificial constructs belong to
the category of molecular and cellular functional assays.

4.2.2 Establishing Genotype–Phenotype Correlation

Correlating genotype findings to phenotype results is a key step to under-
standing the impact of genetic variations on drug response. Therefore, pro-
viding reliable information that links genotypes to phenotypes is an important
goal.

Pharmacogenomics data contains many levels of complexity, including in-
formation on individual subjects on whom pharmacogenetics and pharma-
cogenomics assays have been performed. Assays performed on individual
subjects include all of the genotyping efforts (using DNA samples) and most
of the phenotypic studies (all of the in vivo and some of the in vitro studies
on derived cell lines). These subjects might participate in multiple studies in
different institutes. Thus, it is possible that genotype data can be submitted by
one institute, pharmacokinetic phenotype data can be submitted by a different
institute, and pharmcodynamic and drug responses phenotype data can be
submitted by yet another institute. While ensuring that the privacy of these
individuals is protected, it is important to keep track of all subjects in asso-
ciation with the submitted genotype or phenotype results. This information
provides a way to link genotype data sets to data sets with different types of
phenotypes. Users can view the genetic variations in these individuals and
the phenotypic consequences of those variations. This provides one of the
most reliable ways to study the potential correlations between genotypes and
phenotypes.

Statistical and computational tools are needed to assist users in finding cor-
relation between genotype and phenotype. For instance, a simple genotype–
phenotype association can look for “single SNP, single phenotype measure-
ment” relationships. An implementation could compute correlations between
genotypic data and phenotypic data for biallelic SNP sites. These correlations
can be computed on individual study populations, as well as on all available
subjects pooled together. For more detailed analyses, users must be able to



4 Building the PharmGKB 1443

download data sets and perform more sophisticated correlation analysis as
needed.

4.2.3 Using Pathways to Summarize Current Pharmacogenetics and Pharma-
cogenomics Knowledge

Pathways provide an excellent way to summarize connected pharmacogenetic
and pharmacogenomic knowledge. In particular, it is critical to manage path-
ways related to drug metabolism or action. Users require both graphic and
computational representations of how drugs are transported and metabolized
(pharmacokinetics) and how drugs act (pharmacodynamics). In PharmGKB,
pathway knowledge is linked with the underlying data in PharmGKB. Drugs,
metabolites and transporter genes are presented using standard icons. Path-
way representations are interactive – every gene and drug in a pathway
diagram is linked to a related page which reports more detailed information
regarding the gene and drug. The arrows in a pathway diagram indicate that a
gene is involved in some process and are linked with the appropriate literature
annotation or primary data that establishes or confirms this relationship.

In addition to the pathway diagram, a text summary is provided to describe
the content on the graph and, more importantly, the drug-related significance
of the pathway, the limitations of that particular graphic representation and
any additional information not able to be included in the pathway diagram.
Related pathways, drugs and diseases (that are not directly involved in this
pathway but are related) are also listed next to the pathway. An example of
such pathways is shown in Figure 4.

As pathways rely on expert knowledge, the creation of drug-related path-
ways requires the collection of relevant information and assessment by ex-
perts from the pharmacogenetic research community. PharmGKB has devel-
oped a protocol for curation of pathways by pharmacogenetics experts. A
PharmGKB curator is assigned to the process. On a well-defined timeline, a
draft pathway is produced, there are one or more conference calls to discuss
it, and, when there is general agreement, the final pathway is rendered by
a graphical interface specialist and posted on the website. It is also stored
in a database using a simple relational representation, compatible with the
emerging pathway standards (such as BioPAX). The most time-consuming
part of this process is the documentation of standard names for drugs and
genes, and the collection of references to the supporting data for the links to
be portrayed. The assembly of a pathway typically takes 2–3 months.

4.3 Providing Easy Access of Knowledge for the Research Community

Easy access of knowledge and data can be obtained via the web-based query-
ing and browsing systems. Most data submission can also be web-based.
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Different strategies and formats can be used for exchanging different types
of data sets. An XML schema has been developed for genomic data sets.
Rules and privileges can be set for different users for security purposes. In
a pharmacogenetics and pharmacogenomics knowledge base, patient privacy
can be well protected.

4.3.1 Querying System

The popularity of Google-style searches leads users to expect that the en-
tire contents of a database can be searched for the occurrence of short text
phrases. Many databases, including PharmGKB, index their contents for full-
text search (using the Lucene [26] text search indexing engine). The challenge
in this task is to present the results (which will be a mixture of web pages,
data, publications and other types) to the user in a ranked and orderly way.
Lucene ranks all results based on parameters and preferences that can be set
by the developer. It also supports wildcards, boosting, approximate matches,
and neighborhood searches (e.g. within 10 words).

Most database users do not use powerful search features, but instead prefer
either Google-style text searches or queries predefined on the basis of tem-
plates. From a set of use-case scenarios from pharmacogenomics researchers,
we have identified a collection of commonly occurring queries and coded
these on a single web page. Each predefined query has two or three “fill in
the blank” selections and a submission button. The results are then formatted
in a manner that is sensitive to the nature of the question – an advantage of
knowing the query that the user has selected.

4.3.2 Visualization and Browsing

In order to present a consistent predictable picture of the database to the user,
it is important to use a simple set of web design principles. The main objects
in pharmacogenomics are genes, drugs, diseases, pathways and submission
group. In PharmGKB, the gene, drug and disease pages have been designed to
have a similar look and feel. Data for which PharmGKB is the primary home
is boxed to draw attention. Literature annotations are included at the bottom
of each page, and with links among genes, drugs and diseases. External links

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4 Irinotecan pathways in liver, blood, bile and intestinal
compartments. Genes are represented by ellipsoids, drugs and
metabolites by rectangles; arrows for which there is supporting data
have golden heads. All graphical objects link to gene, drug (B), primary
data (C) or metabolite (D) pages to allow browsing. All PharmGKB
pathways are constructed using similar graphical elements.
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Figure 5 Gene page for CYP2C9. Named alleles are shown on the
top of the page. Primary data are shown in the boxed area (left panel).
The far right has links to external sources. The bottom of the page
(right panel) lists all curated relations between drugs and diseases,
and indicates what category of knowledge is used to establish the
relationship. All gene pages have a similar layout.

usually appear on the right panel. The current gene page for CYP2C9 is shown
in Figure 5.

A genotype browser is critical for visualization and analysis of genotype
data. These browsers typically display a genomic segment, while indicating
the location of polymorphisms. The PharmGKB browser allows for zooming,
sliding and display of the gene structure (Figure 6). Below the browser is a
table of polymorphisms displaying summary data and links, including (most
significantly) links to any measured phenotypes of the listed genotypes.

Phenotype files in PharmGKB are presented first with a short textual sum-
mary including the genes, drugs and diseases studied and the categories
of pharmacogenetic knowledge – clinical outcomes, pharmacodynamics and
drug responses, pharmacokinetics and molecular and cellular functional as-
says. In the Details Section, each column is labeled by a controlled vocabulary
to facilitate indexing and retrieval. Each row contains individual subject data
which are linked to all genotypes for that subject via a unique identifier. All
subject data is completely de-identified prior to submission to PharmGKB. An
example is shown in Figure 7.
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Figure 6 Variant browser for CYP3A4. The
genomic sequence is displayed with Golden
Path numbering. Brown bands indicate the
location of exons. SNPs are drawn as tick
marks above the sequence bar, with height
proportional to overall frequency and colored

based on type of SNP (e.g. nonsynonymous).
All SNPs are also displayed in the table
below, with links to detailed frequency and
population information. Haplotypes can be
computed using web services at the top right.

4.3.3 Privacy Protection

Pharmacogenomics studies individual response to drugs and so individual
data is critical. However, it is also critical to ensure the privacy of individuals
from whom the genotype and phenotype data were collected [39, 40]. At
PharmGKB, genotypic and phenotypic information associated with individ-
ual human subject is only available to registered users, who are associated
with a bona fide research institution or company (or who are sponsored by
other registered users). The most privacy-sensitive information has been de-
identified or binned according to the method described by Lin and coworkers
[39] in the database before it is released. Registration is free to the life science
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Figure 7 Phenotype data display. In addition to view the phenotype
data set from this page, phenotype and related genotype data can also
be down loaded by clicking the red arrow on the top right corner. All
phenotype data set have a similar layout.

research community, but one has to first provide an identity and agree to fully
comply with the usage policies, which include the prohibition of any attempt
to re-identify study subjects.
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4.3.4 Data Exchange Strategy

PharmGKB has developed a general purpose XML schema for genotype data
submission and exchange. This schema contains a superset of information
required by dbSNP and GenBank and is shared publicly. The XML captures
information about reference sequences, polymorphism location and type (e.g.
SNP, deletion, insertion etc.), study samples, populations and methods for de-
termining polymorphisms (e.g. sequencing, restriction fragment length poly-
morphism). It also allows for specification of species, copy numbers, and gene
structure/annotations. It is available at http://www.pharmgkb.org/schema/
index.html. Changes occur on a 6-months basis and are associated with a
sufficiently timely notice to allow associated code to be modified. PharmGKB
has participated in the public process of defining standards for exchange
of SNPs, such as PML [61], and has ensured that emerging standards are
consistent with our XML.

The availability of an XML schema with clear semantics allows curators
to run a full syntactic and semantic validation on submitted files upon re-
ceipt of a submission. The validation process ranges from data type checks
to “common-sense” checks, such as that base numbers fall within specified
ranges and that key required data items are provided. This XML schema has
provided a high-throughput processing of genotype submissions and posting
on the web.

In addition to supporting bioinformatics-savvy submitters who use XML,
it is important to have options for users with little bioinformatics expertise.
For example, user-friendly web pages for data entry using Excel files are also
available on PharmGKB. Laboratories without bioinformatics infrastructure
can use the online submission option for their genotype data sets. These
web submission pages are based on the data representation used in the XML
schema for polymorphisms.

5 Analytic Tools for Pharmacogenomics

The field of pharmacogenomics is so broad that it is difficult to list the key
analytic functionalities that are required. However, we can summarize the
key analysis tasks in pharmacogenomics, and the types of tools that are used.

The first challenge in understanding how a drug-related phenotype de-
pends on genetics is to identify the genes that are likely to be involved. This
may involve the creation of “candidate gene” lists based on analysis of the
published literature on the drug or phenotype. It may also involve examining
pathways of drug metabolism or action. Any bioinformatics tools that can
infer gene function, and relate a function to a drug response could be useful
at this stage of pharmacogenomic analysis. The analysis of gene expression
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(e.g. using microarrays) can also be used to suggest which genes may be
involved in the response to a drug. Presumably, similar proteomic capabilities
will emerge in the future. See Part VIII of this book for information on how to
analyze gene and protein function with bioinformatics methods.

The discovery of genetic variation in genes that may be involved in drug
response can be accomplished by resequencing multiple individuals and
looking for variation. These analyses typically use the Phred/Phrap suite
of programs to find evidence of multiple bases at a single position in the
genome [35]. Other methods include mining of expressed sequence tag (EST)
databases to find evidence of sequence polymorphism that is not likely to be
due to sequencing errors [13].

Once a polymorphism has been detected, it is necessary to determine if
it is likely to be functionally significant. Methods for assessing the likely
functional significance of SNPs include the SIFT program [71], the MutDB
resource [44] and others [8, 62, 70].

Phenotypes related to drug response are extremely variable. The key ana-
lytic challenge for phenotypes is to define them precisely, and to collect and
record them well. The organization of phenotypes into ontologies is a critical
need, because this allows the relationship between different phenotypes to be
defined, in order to support indexing, search and aggregation. For example,
“blood pressure” is a general phenotype that can be assayed in many ways.
If the detailed relationship between these assays is recorded, then different
blood pressure studies can be combined appropriately to achieve higher sta-
tistical power.

The key analytic challenge for pharmacogenetics is the discovery of geno-
type–phenotype relationships. If a phenotype is controlled primarily by a
single gene locus, then a plot of the phenotype versus the allele observed
at that locus is often a bimodal or trimodal distribution, with each mode
corresponding to a different allele. If, however, the phenotype is controlled by
a large number of loci from different genes, the distribution is likely to be uni-
modal and broad. Methods for finding the key genetic loci associated with a
particular phenotypic measurement are the domain of statistical genetics and
have been the subject of many recent reviews [11, 49, 72] (see also Chapter 37).

Recently, there has been a move to “whole-genome” association studies in
which the phenotype is correlated to SNPs collected from a sample of genomic
loci across the whole genome. The genotype SNPs are usually selected to
be “tag SNPs” in linkage disequilibrium with a large number of other SNPs
locally [59, 73]. Once regions are found to be correlated with the phenotype
of interest, they can be studied in a refined manner by genotyping the local
SNPs and searching for those that are likely to be functionally significant,
using the methods mentioned above. One strategy involves the combination
of family-based linkage analysis to focus attention on a small number of
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genomic regions, association analysis with SNPs to find those SNPs in these
regions that are most correlated with the phenotype of interest and then
expression analysis to see if any of the genes showing potentially relevant
polymorphisms show an expression change in response to a drug challenge.
More information on this topic can be found in Chapter 37. Multiple other
experimental methods can be used to focus attention on regions of the genome
for which a variety of evidence points to involvement in modulating the
response to a drug.

6 Future Perspectives on Informatics
for Pharmacogenetics/Pharmacogenomics

PharmGKB is the first public pharmacogenetics and pharmacogenomics
database to provide information about genetic variations in humans and the
phenotypic consequences of those variations. By providing original data in
standardized formats, and web interfaces to retrieve integrated information
and for analyzing data, PharmGKB is providing solutions to many of the
challenges that pharmacogenetic and pharmcogenomic researchers brought
to biomedical informatics.

One of the major goals of pharmacogenomics is to predict drug response
in individuals based on their genetic profile in order to provide the most
effective individualized medicine. In the future, patients will be stratified
based on genetic tests for their ability to respond to a therapeutic agent and
their possibility of having adverse reactions. The process of drug development
will also benefit from the ability to identify targeted patient populations with
a high likelihood of success early in the process, while avoiding unexpected
late failures. As the field increases its inventory of high-impact data sets
and useful analytical tools, it should help catalyze the use of patient genetic
information in medical practice.
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Evolution of Drug Resistance in HIV
Niko Beerenwinkel, Kirsten Roomp, and Martin Däumer

1 Introduction

Evolution is the cornerstone of modern biology, because it provides a uni-
fying principle for understanding diverse biological phenomena and for the
quantitative analysis of molecular data. Evolutionary concepts also become
increasingly important in medicine as witnessed, for example, by the progress
in finding the genetic basis of complex diseases (Chapter 38) or by assessing
polymorphisms in the human genome that are associated with drug effec-
tiveness and tolerance (pharmacogenomics, Chapter 39). Evolutionary and
population biology methods play a key role in understanding and controlling
infectious diseases both within and among individuals [64]. The primary
examples are infectious bacteria (Chapter 41) and viruses. In this chapter, we
investigate the evolution of HIV. HIV is an attractive model system for evolu-
tionary studies due to its short genome, large population size and high genetic
diversity. The extreme replication dynamics of HIV allow for observing sig-
nificant evolutionary changes over time. Understanding the evolution of HIV
is necessary for controlling the spread of the AIDS pandemic, for developing
effective therapies and vaccines, and for managing drug resistance.

The development of drug resistance is a major obstacle to the successful
treatment of HIV infection. The evolutionary dynamics of HIV facilitate its
escape from the selective pressure exerted by the human immune system and
by combination drug therapy. This chapter presents computational methods
for the design of optimal antiretroviral therapies against drug-resistant HIV
strains. The focus is on using genomic information, i.e. the nucleotide se-
quences of the viral drug targets, to guide treatment decisions. Since every
patient carries a unique virus population, the presented methods support in-
dividualized therapies, rather than the traditional one-drug-for-all paradigm.
As opposed to the individual treatment factors based on human genetic vari-
ation (Chapters 38 and 39), here the rationale for unique treatment choices
arises in the first place from the genetic variation in the infectious pathogen.
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Thus, we present computational methods for a specific case of personalized
medicine.

Section 2 reviews the biomedical background of HIV infection, antiretrovi-
ral therapy, and drug resistance. In Section 3, we discuss machine learning
and statistical methods which are used to predict phenotypic drug resistance,
as measured in vitro, from the viral genotype. The development of drug
resistance is the subject of Section 4. We present methods for learning mu-
tational pathways which the virus takes in order to escape from drug pressure
and we discuss the concept of the genetic barrier to resistance. Section 5
focuses on estimating the in vivo effect of drug combinations conditioned on
the baseline viral genotype. The described techniques draw on the results of
previous sections and directly address the problem of selecting optimal drug
combinations. In Section 6, the effect of immune pressure on the evolution
of the virus is studied. We discuss some open problems in Section 7 and list
related web resources in the final Section 8.

2 Biomedical Background

2.1 Biology of HIV

2.1.1 Epidemiology of HIV/AIDS

AIDS is one of the most serious infectious diseases having ever affected
humankind. An estimated 40 million people are currently suffering from this
disease [105]. Its mortality rate is close to 100% and resulted in more than
3 million AIDS-related deaths in 2004. In the same year, 5 million people
became infected with the relevant pathogen, the HIV, and of these 95% live
in developing countries. Despite the existence of controversial theories for
explaining the origin of HIV, there is wide agreement that the virus entered
the human population in a zoonotic transmission from African nonhuman pri-
mates, which were infected with the closely related simian immunodeficiency
viruses (SIVs) [44]. It is estimated that HIV type 1 (HIV-1) and type 2 (HIV-
2) were introduced into humans around 1930 and in the 1940s, respectively
[58, 61].

AIDS was first recognized in 1981 in the US. At that time several reports
described an increase in the incidence of rare opportunistic infections such as
Pneumocystis carinii pneumonia and mucosal candidiasis [43]. Common fea-
tures among the affected patients were that they showed evidence of a general
immune deficiency and that they were either homosexual men or intravenous
drug abusers. Two years later HIV was isolated [1] and by the mid-1980s it
became evident that two types of HIV (HIV-1 and -2), with slightly different
genome architectures, were circulating in the human population.
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Figure 1 Schematic diagram of an HIV particle.

Both HIV-1 and -2 strains are divided into groups and subtypes. HIV-1
embraces the three genetically distinct groups M (“main”), N (“new”) and O
(“outlier”). Group M viruses, which cause 99% of HIV infections worldwide,
are further subdivided into 11 genetically distinct subtypes, i.e. A1, A2, B, C,
D, F1, F2, G, H, J and K [65]. Additionally, a major fraction of HIV-1 strains
comprises intersubtype recombinants, designated “circulating recombinant
forms” (CRF). The less virulent HIV-2 strains comprise six distinct phyloge-
netic lineages, i.e. subtypes A–F.

2.1.2 Structure, Genome and Replication Cycle

The HIV particle (virion) is roughly spherical and about 100–120 nm in di-
ameter. Its outer envelope is composed of a lipid bilayer bearing numerous
spikes (Figure 1). Each spike is composed of three heterodimers formed by
glycoprotein 41 (gp41) and glycoprotein 120 (gp120) [40]. Beneath the outer
envelope is a layer of matrix protein. The core of the virus particle has a
hollow, truncated cone shape and is composed of another protein, p24, which
contains the genetic material of the virus. Finally, inside the core there are two
strands of RNA, consisting of about 9200 nucleotide bases, an integrase (p31),
a protease (p10) and a reverse transcriptase (RT) (p51/66).

HIV is classified as a cytopathic retrovirus. Several characteristics differ-
entiate retroviruses from other viral families. Their defining features are an
RNA genome and the RT, an enzyme which facilitates the conversion of the
RNA into DNA. HIV’s genome consists of nine genes. Three genes, gag, pol
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Figure 2 HIV replication cycle and targets of antiretroviral drug
therapy.

and env, are common to all other retroviruses, the remaining six, the so-called
accessory genes, vif, vpr, tat, rev, nef and vpu, are unique to HIV and SIV.

The life cycle of HIV can be divided into six steps: (i) binding to the target
cell, (ii) penetration into the cell, (iii) reverse transcription, (iv) integration into
the host’s genome, (v) replication and (vi) budding of new virions (Figure 2).
Gp120 facilitates binding and gp41 enables fusion of the viral envelope with
the cell membrane. The primary host receptor for gp120 is CD4. CD4 receptors
are most highly abundant on helper T cells, making these cells particularly
susceptible to HIV infection. However, macrophages, monocytes, dendritic
cells, Langerhans cells, hematopoietic stem cells, certain rectal-lining cells, and
microglial cells are also susceptible. Subsequent to the initial binding of gp120
to CD4, binding to a cellular coreceptor, such as CCR5 or CXCR4, follows.
Finally, binding to gp41 occurs enabling the penetration of the virus into the
target cell.

Once inside the cell, the virus sheds its coat and transcribes its RNA into
DNA. The resulting DNA is transported to the host cell nucleus and is inte-
grated into the host cell’s genome, forming what is referred to as the provirus.
The virus can now remain dormant for an undetermined time period, the so-
called latent phase, during which the viral genes are not expressed. Activation
of the provirus is marked by the beginning of the transcription of HIV’s
structural genes and the formation of new virions. Transcription produces
mRNA, which is translated into viral proteins, as well as single-stranded RNA
(ssRNA), which is inserted into all new virus particles. The virus assembles



2 Biomedical Background 1461

into a new virion, which will bud out of the cell in order to enter new cells.
The host cell membrane is modified by the insertion of gp41 and gp120. The
viral ssRNA and core proteins assemble beneath the modified membrane,
and, while budding, acquire the modified host plasma membrane as their
envelope. Finally, the viral protease is required to process the precursor Gag–
Pol polyproteins into mature HIV particles.

2.1.3 Basic Immunology and Course of Infection

HIV is able to infect several human cell types, but the most severe damage
appears to result from the infection of cells that are of central importance to the
immune system. The human immune system fights foreign invaders, removes
dead and damaged cells, and destroys mutant and cancerous cells. The
immune system is capable of fighting pathogens to which it has never been
exposed employing a number of different cell types, which are all categorized
as lymphocytes. B and T cells are two of the types of lymphocytes that
recognize foreign substances or nonself. B cells produce and secrete antibodies
in response to an antigen [76]. The three major types of T cells are cytotoxic or
killer T cells (CTLs), suppressor T cells and helper T cells. CTLs eliminate
virus-infected cells and are responsible for recovery from a viral infection.
Suppressor T cells or cytotoxic T cells suppress the immune response after
the antigen is eliminated. Helper T cells alert the immune system to antigens
and signal other cells in the system to attack the antigen. Helper T cells do
not kill cells, but interact with B cells and CTLs in order to help them attack
foreign particles [98].

There are specialized receptors on the surface of each T cell to identify one of
many millions of possible antigens that may invade the organism. Each T cell
expresses a unique receptor that binds to the complementary antigen on the
foreign particle to neutralize or destroy it. Killer and suppressor T cells carry
the CD8 receptor (T suppressor cells are also called T8 cell) and the helper T
cells (T4 cells) carry the CD4 receptor. Collectively, T8 and T4 cells regulate
the body’s immune response to foreign antigens [98].

The primary infection elicits a rapid increase in CTL cells. It is estimated
that approximately half of all T lymphocytes are involved. Rapid CTL cell
division occurs over the first 2- to 3-week period. CTL levels peak and HIV-
specific antibodies appear in the blood, leading to a drop in viral load, after
which it is difficult to isolate the virus. This phase, referred to as clinical
latency, is characterized by low viral replication and by a slow but constant
decrease of the number of CD4+ cells [36, 47].

The CTL response is essential for controlling the virus [67]. A strong CTL
response correlates with low plasma viremia (amount of free virus in the
blood) and a prolonged asymptomatic stage. The type of human leukocyte
antigen (HLA, see Section 6), a kind of peptidic alarm system on cells, affects
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the effectiveness of the CTL response, as CTLs can only recognize an epitope
bound to an HLA class I molecule.

CTLs have multiple antiviral mechanisms and it is currently unclear which
of these mechanisms is most important for the control of viral infections. CTLs
have the ability to lyse infected cells and to produce cytokines at sites of
viral replication. Cytokines are low-molecular-weight soluble proteins that
are produced in response to an antigen. They function as chemical messengers
regulating the innate and adaptive immune systems (tumor necrosis factor-α,
interleukin-1). Cytokines affect viral replication through their influence on
T helper cell activation and proliferation. Certain chemokines, a group of
cytokines, such as MIP-1α, MIP-1β and RANTES, are produced that suppress
HIV replication by competing for or down-regulating the CCR5 coreceptor.
However, at some point of the infection CTLs become incapable of control-
ling the virus. A possible factor contributing to this failure is the inability
of other T cells to help. The immune system is able to reduce the number
of viruses initially. Consequently, CTL-resistant HIV mutants are selected.
These mutants are not easily recognized by HLA molecules. Since only
those virions capable of escape survive and reproduce, eventually, the entire
viral population consists of CTL escape mutants (Section 6). At this point
the immune system is completely defenseless against the virus and HIV can
freely reproduce, thereby further impairing the immune system. As a result,
the increasing damage to the immune system leaves the infected individual
susceptible to opportunistic infections.

2.2 Antiretroviral Therapy

2.2.1 Antiretroviral Drugs

The aim of antiretroviral therapy in HIV infection is to reduce the amount
of replicating virus to as low a level as possible, thereby preventing the
infection of new cells and further damage to the immune system. There
are now 18 different drugs from four distinct drug classes in widespread use
(Table 1). The first antiretroviral agent to become commercially available was
zidovudine in 1987, followed by didanosine and zalcitabine in 1993. These
drugs belong to the class of nucleoside analog RT inhibitors (NRTIs), which
act on the RT (Figures 1 and 2). These drugs are analogues of thymidine or
cytosine and are modified in the 3′ position of the ribose molecule. NRTIs
can be considered as prodrugs as they must be phosphorylated to become
active. The incorporation of these drugs into newly synthesized DNA leads
to premature chain termination as the drugs do not provide the 3′ hydroxyl
group to form the bond with the next nucleotide.

A dramatic decline in clinical progression of HIV disease and HIV-related
deaths followed the introduction of protease inhibitors (PIs) in 1996. These
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Table 1 Approved antiretroviral drugs in the four drug classes: NRTIs, NNRTIs, PIs and EIs
(see text for details)

Drug class Generic name Abbreviation Trade name
NRTI zidovudine ZDV Retrovir

didanosine ddI Videx
zalcitabine ddC Hivid
stavudine d4T Zerit
lamivudine 3TC Epivir
abacavir ABC Ziagen
tenofovir TFV Viread
emtricitabin FTC Emtriva

NNRTI nevirapine NVP Viramine
delaviridine DLV Rescriptor
efavirenz EFV Sustiva

PI saquinavir SQV Invirase, Fortovase
ritonavir RTV Norvir
indinavir IDV Crixivan
nelfinavir NFV Viracept
lopinavir LPV Kaletra
atazanavir ATV Reyataz

EI enfuvirtide ENF Fuzeon

compounds act on the HIV protease enzyme, preventing the cleavage of es-
sential viral precursor proteins. PIs are peptide-like molecules that mimic the
Gag–Pol polyprotein and compete against it for the enzyme. The competitive
inhibition of the viral protease leads to production of immature, noninfec-
tious virus particles. Although PI therapy does not prevent the destruction
of already infected cells, a further spread of infection into uninfected cell
populations is prevented.

The nonnucleoside RT inhibitors (NNRTIs) are the third class of drugs
currently available for treating HIV infection. NNRTIs also act on the RT
enzyme, but differ in structure and mechanism of action from the NRTIs. The
binding of an NNRTI close to the active site of the RT leads to a conformational
change of the active site of the enzyme, and consequently to a reduced binding
affinity for the RT’s natural substrates, i.e. the nucleotides.

The fourth drug class comprises the so-called entry inhibitors (EIs), acting
at the stage of viral attachment or host cell penetration. The only drug ap-
proved so far within this class is the fusion inhibitor enfuvirtide. Coreceptor
antagonists are likely to enter phase III clinical trials soon.

The current standard of care is to treat HIV-infected individuals using a
combination of at least three drugs out of two drug classes. This is commonly
referred to as “highly active antiretroviral therapy” (HAART). Unfortunately,
long-term use of antiretroviral treatment is associated with several limitations
and drawbacks. Currently available antiretroviral drugs are unable to com-
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pletely eradicate HIV, and virus continues to reside and to replicate latently in
reservoirs. As a result, most patients will be on antiretroviral therapy for the
rest of their lives, a situation that often causes continuous severe side-effects
due to drug toxicity. Additionally, poor adherence to drug regimens has led
to an increased rate of HIV drug resistance, resulting in viral strains that have
reduced sensitivity to drug treatment [75].

2.2.2 Drug Resistance

The genetic and molecular basis of drug resistance is the enormous viral
turnover coupled with an extremely high replication error rate, caused by the
RT which lacks a proofreading mechanism. Mathematical modeling suggests
that every possible point mutation in the viral genome may occur more than
10 000 times in an infected person per day [21]. Thus it is likely that mutants
that are resistant to a single drug may naturally exist, whereas resistance to
a drug combination requiring three or more specific mutations seems to be
much more unlikely to preexist.

Resistance to antiretroviral drugs emerges when viral replication continues
in the presence of selective drug pressure. For some drugs, such as the NRTI
lamivudine and all NNRTIs, one point mutation is sufficient to induce high-
level resistance, whereas other drugs like zidovudine and the PIs require the
accumulation of multiple mutations to reach a high level of resistance. Thus,
resistance to therapies consisting of combinations of different drugs develops
in a gradual and stepwise manner (Section 4).

Single mutations or mutational patterns can result in resistance to an en-
tire drug class. Therefore, a strain, which has emerged under the selective
pressure of a specific drug, may be resistant not only to that drug, but also
to other drugs from the same class that have never been applied. This phe-
nomenon is referred to as cross-resistance. Cross-resistance affects almost all
of the currently available drugs to varying degrees. Thus, resistance to one
antiretroviral agent will affect the choice of other drugs from the same class.

2.3 Resistance Testing

Resistance to antiretroviral drugs can be measured using either genotypic
or phenotypic assays. Genotypic assays detect mutations known to cause
drug resistance. Phenotypic assays are drug susceptibility assays in which
the virus is cultured in the presence of serial dilutions of an inhibitory drug.
Both genotypic and phenotypic assays use HIV-1 RNA extracted from the
patient’s blood plasma for further testing, since this virus represents the
phylogenetically most recent step in the viral evolution that is happening
inside the patient.
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2.3.1 Genotypic Resistance Testing

Genotypic resistance testing is generally performed by sequencing the drugs’
target genes in order to detect mutations that confer drug resistance. The
clinical usefulness of genotypic testing has been demonstrated in several
prospective randomized trials [20, 26, 33]. Genotypic testing is used more
commonly than phenotypic testing because of its lower cost, wider availability
and shorter turnaround time. Furthermore, genotyping provides early evi-
dence of drug resistance within a virus population. Genotypic assays detect
mutations that are present as mixtures in relative proportions as low as 15–
20%, even if the mutation does not affect drug susceptibility in a phenotypic
assay. Moreover, genotyping can detect transitional mutations that do not
cause drug resistance by themselves, but indicate the presence of selective
drug pressure or the transmission of a resistant strain.

However, the interpretation of genotypic resistance tests remains challeng-
ing. Genotypic results are often interpreted by consulting “look-up tables”
of drug resistance mutations. Regularly updated tables with a compilation of
resistance associated mutations in protease, RT and the envelope protein gp41
can be obtained from the home page of the International AIDS Society – USA
[51]. For example, within the protease more than 50 mutations at 33 different
positions are listed. A more direct approach to the interpretation of genotypic
data is based on rule sets encoded in computer programs that classify the
virus as resistant, potentially resistant or susceptible to each drug (Section 3.2).
Constructing these sets of rules is a lengthy and complicated process. Any
additional information on drug resistance that is available requires frequent
updating of the set of rules. Furthermore, extensive variation exists among
the different available interpretation systems regarding drug activity and how
drug resistance is scored [78, 88].

2.3.2 Phenotypic Resistance Testing

Similar to the procedure of genotypic assays, the first step in a phenotypic
assay involves extraction of HIV-1 RNA from plasma, followed by reverse
transcription and amplification of the genes of interest. These amplified
genes are then used to generate recombinant viruses that can be tested for
susceptibility to protease and RT inhibitors. Results of phenotypic testing
are usually expressed in terms of the resistance factor (RF) which is the fold-
change in susceptibility of the test sample compared with a fully susceptible
control isolate.

Phenotypic testing in clinical settings is expected to be most useful for
isolates with unusual combinations of resistance mutations or mutations not
yet described and developing under new drugs. For example, the mutation
L76V in the protease arises under several PIs in the background of other mu-
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tations that already confer high level PI resistance. Hence, current guidelines
interpret such a genotype as multi-PI resistant. However, phenotypic analysis
of strains harboring the L76V mutation revealed susceptibilities to saquinavir
and atazanavir comparable to those of wild-type viruses, indicating that the
L76V mutation has a resensitizing effect [70]. Phenotypic testing may also
be useful in combination with therapeutic drug monitoring for designing
salvage regimens in heavily treated patients whose viruses contain multiple
drug resistance mutations.

However, the key question of whether a patient will respond to a particular
drug or not remains open. Therefore, the primary challenge for interpreting
phenotypic results is to predict clinical response by using data from clinical
trials, studies or large cohorts in order to correlate genotypes and phenotypes
(RFs) to virological response.

3 Prediction of Phenotypic Resistance from Genotypes

Phenotypic drug resistance can only be measured in a laborious virus assay
(Section 2.3). On the other hand, genotyping is much more efficient, but the
interpretation of the resulting sequence data is challenging. Computational
methods can help interpret sequence data by predicting phenotypic traits
from viral genotypes. Such genotype–phenotype relations are much easier to
study if the phenotype is determined by a well-defined laboratory experiment,
rather than from in vivo phenotypes that depend on many factors, which can
confound the analysis. Therefore, predicting the in vitro resistance phenotype
from the genotype is currently the most common approach to automatic
sequence interpretation.

3.1 Drug Resistance Data

Models for resistance phenotype prediction are learned from data that have
been generated in the course of routine resistance testing. Sequences are
obtained from clinical samples derived from patients failing antiretroviral
therapy. For each sample, the isolated virus has been genotyped (its drug
targets have been sequenced) and phenotyped (tested for its replication ca-
pacity in the presence of a drug). Genotypes are represented by vectors, one
entry for each position in the multiple protein sequence alignment taking
one out of 21 values that represent the 20 amino acids and the gap symbol.
Typically, the full protease (99 amino acids) and the 5′ part of the RT (amino
acid positions 250–335) are sequenced. Some prediction methods require the
input space to be a Euclidean vector space. In this case, each possible mutation
or amino-acid change at each position is represented by an indicator variable.
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Phenotypes are reported in terms of the RF, which is a single real-valued
number. Coefficients of variation between 10 and 60% have been reported
for this quantity [107]. On the other hand, the determination of genotypes by
standard cycle sequencing is highly reproducible, but the common population
sequencing strategy detects only those variants that are present in at least 15–
20% of viruses in the population.

Predicting the resistance phenotype from the genotype means solving, for
each drug, a regression problem. Predictors are the sequence positions of
the drug target, and response is the resistance factor. Alternatively, we may
consider the related binary classification problem induced by choosing a drug-
specific cutoff to define a susceptible and a resistant class of viruses. Similarly
multi-class classification problems arise by defining intermediate levels of re-
sistance. Several statistical and machine learning methods have been applied
to this high-dimensional, noisy data.

3.2 Methods of Phenotype Prediction

The VirtualPhenotype R© (Virco, Mechelen, Belgium) is a quantitative pheno-
type prediction method based on a pattern search in a database of genotype–
phenotype pairs [59]. From a query sequence, all mutations for a predefined
set of sequence positions are extracted and all phenotypes in the database
matching this pattern are retrieved. The predicted phenotype is the average
resistance factor of these matches. Thus, this approach can be regarded as
a nearest-neighbor method, where similarity is coached in terms of shar-
ing a predefined set of mutations. The regression problem has also been
approached by linear stepwise regression [110] and by artificial neural net-
works [32, 108]. For example, Wang and Larder [108] use a one-hidden layer
neural network to predict resistance to lopinavir from a selection of protease
sequence positions. Support vector machines (SVMs) have been applied in the
regression and classification setting to all drugs [3, 11]. Since the SVM learning
strategy is particularly well suited for high-dimensional data, this approach
does not require the selection of a subset of mutations. The performance of
linear SVMs was not improved significantly by the use of standard nonlinear
kernels.

Other methods are advantageous if the goal is not only to maximize predic-
tive power, but also to derive insight about the genotype–phenotype relation
from the learned model. For example, decision tree (or recursive partitioning)
methods yield models that are directly interpretable by human experts [10,
90]. Decision trees can elucidate the effect of mutational patterns on the
resistance phenotype. For example, analysis of 450 genotype–phenotype pairs
revealed concise models incorporating only four to seven sequence positions.
Moreover, decision trees can model the effect of a mutation in the context of
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other mutations. In particular, some decision trees display resensitization or
hypersusceptibility effects. For example, zidovudine resistance induced by
mutation T215Y in the RT may be reverted by mutations L74V/I and M184I/V.
The latter substitution can also resensitize tenofovir-resistant strains [112].
Likewise, the mutation N88S in the protease gene has been found to increase
the susceptibility to amprenavir.

Other methods are more concerned with the statistical modeling of geno-
type–phenotype relations that yields procedures for hypothesis testing.
Foulkes and DeGruttola [38] use cluster analysis to identify groups of similar
genotypes and to define superclusters of phenotypically similar genotype
groups. They introduce a statistical framework that allows for the calculation
of the probability that a sequence from one supercluster is more resistant
to a certain drug than a sequence from another supercluster. DiRienzo and
coworkers [29] build prediction models in a forward-stepwise manner. This
approach can identify specific mutational patterns that are most influential
in predicting phenotype. Combinations of codons are tested for significant
concordant or discordant associations with the occurrence of a mutation. Both
statistical approaches have been applied to the PI indinavir.

Finally, several clinical and virologic research groups have set up scoring
systems for relating sequence variations to drug resistance or the likelihood
of therapy failure [80, 85, 91, 104, 106]. Based on lists of mutations that have
been linked to drug resistance (Section 2) these authors provide hand-made
classifiers. Prediction models are encoded as sets of rules that have been
derived from the scientific literature and personal experience. These systems
predict resistance to a drug in terms of one of two to five levels ranging from
susceptible to resistant.

3.3 Comparisons

The performance of classifiers is usually assessed in terms of their accuracy,
i.e. by the percentage of correctly classified cases in a test set. However, accu-
racy provides only a very limited picture of the characteristics of the trained
classification model. For example, scoring classifiers are more appropriately
analyzed by means of receiver operating characteristic (ROC) curves [92].
Figure 3 displays four different measures of interest for a linear SVM model
that has been trained on 650 protease sequences in order to separate samples
resistant to saquinavir from those susceptible to saquinavir. Figure 3(a) shows
density estimates of the predicted scores for the resistant and the susceptible
subgroups of viruses. Although the two classes are fairly well separated, there
is some overlap. In choosing a cutoff for the prediction of resistance and
susceptibility, respectively, the accuracy of the classifier will vary as shown
in Figure 3(b). This dependency can be analyzed in more detail by plotting
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Figure 3 Performance measures for a scoring classifier that
separates viruses resistant to saquinavir from those susceptible to
saquinavir: density estimates of the predicted scores for the two
classes (a), accuracy as a function of the cutoff used for prediction
(b), ROC curve (c) and calibration error of predicting class membership
probability as a function of the cutoff (d).

the false positive rate against the true positive rate. The resulting ROC curve
is displayed in Figure 3(c). Finally, a scoring classifier (a method that classifies
samples based on a score by choosing a cutoff) can also be used to estimate the
confidence of predictions. It is important to assess whether these estimates
are well calibrated. The percentage of resistance predictions at a certain
confidence level should be close to that level of confidence. For example,
if 80% confidence is estimated for resistance predictions at a certain cutoff,
then a well-calibrated classifier would, at this cutoff, assign about 80% of the
samples to the resistant class. Figure 3(d) shows the classifier’s performance
in calibrating the confidence estimates [93].
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Depending on the concrete application scenario, a low false-positive rate
or low false-negative rate may be more desirable than minimizing the overall
accuracy. For example, for heavily pretreated patients, it can be very difficult
to identify active drugs for a new regimen. In this situation, a high sensitivity
in detecting potentially active drugs may be required. On the other hand, for
untreated patients one may want to take a more conservative approach and
exclude all inactive drugs from the initial therapy with very high probability.
ROC curves and related performance measures can help identifying such
classifiers.

4 Development of Resistance-associated Mutations

The evolution of HIV has received considerable attention over the past 15
years not only because of its relevance for treating HIV-infected patients, but
also because HIV provides an excellent model system for testing evolutionary
theories. The general interest in the population genetics of HIV stems from
its extraordinary evolutionary dynamics, which permit the observation of
effects that occur on timescales several orders of magnitude larger in cellular
organisms.

4.1 Viral Evolution

The intra-patient virus population is characterized by high rates of mutation
and turnover together with high virus titers. In this situation the large major-
ity of virions and productively infected cells turn over every day. Erroneous
reverse transcription introduces substantial diversity into the population. It
is estimated that any single RNA genome copied from a template molecule
contains an average of 0.1–1 mutation relative to the template. The census
population size (the actual number of viruses) within an untreated patient
can reach 107–108 infected cells. However, the effective population size (the
number of viruses in an idealized population that would show the same
amount of genetic variation under random genetic drift) has been estimated
to be much smaller, namely between 103 and 5 × 105 cells per host [16,
86]. This quantity determines the dominating mode of evolution as follows.
A large effective population size implies deterministic evolution driven by
mutation and selection, whereas a small effective population size implicates
stochastic evolution driven by random genetic drift. The randomness in
small populations is due to the finite sampling effects that arise in choosing
individuals for reproduction. In very large populations even small fitness
differences are recognized and the outcome of the evolutionary process is
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predictable. There is support for both evolutionary regimes, even in the
special case of evolution under drug therapy.

Multi-nucleoside resistance, i.e. resistance to multiple NRTIs, can develop
along different evolutionary pathways. This fact has been interpreted as evi-
dence for stochastic evolution. For example, viruses in patients treated with
zidovudine and didanosine follow one of two mutually exclusive pathways,
apparently by chance [17]. Similarly, resistance to the PI indinavir develops
by the accumulation of four to seven of approximately 12 different mutations.
However, almost no two isolates from treated patients have been shown to
contain the same combination of mutations. Likewise, resistance to ritonavir
was observed to develop uniquely in each of five patients treated with that
drug suggesting stochastic evolution of resistance patterns [74].

Apparent deterministic evolution can also be observed during the devel-
opment of drug resistance. For example, single-nucleotide changes produce
the mutations M184V and K103N that confer a high level of resistance to the
NRTI lamivudine and the NNRTI nevirapine, respectively. These mutants
are selected in over 90% of patients after a few weeks or even days of mono-
therapy. Convergent evolution has also been observed in protease sequences
isolated from patients that were under multiple drug therapies for at least 2
years. Out of five intra-patient virus populations that had escaped selective
drug pressure, identical amino acid replacements were observed in all five
patients at two different sites [23].

Despite these cases in favor of deterministic evolution, selection appears
to be detected less frequently than one would expect from HIV facing strong
immune responses and antiviral therapy. This may indicate a more prominent
role of genetic drift, but it might also be a limitation of the methodology
to detect selection. The most popular test for detecting selection compares,
for each site under consideration, the number synonymous mutations to the
number of nonsynonymous mutations. In practice, the test can suffer from
averaging the test statistic over a sequence region thereby limiting its power if
selective pressure acts only on a few sites [100]. Alternative tests are based on
the coalescent (a modeling framework in which two viral lineages converge in
a common ancestral sequence, going backwards in time) [101] or on a Bayesian
approach to sequence evolution [73].

In addition to classical phylogenetic and population genetics methods,
rapidly evolving RNA populations have also been modeled as molecular
quasispecies. This concept has been developed by Eigen and coworkers
[34, 35] in order to describe populations of self-replicating RNA molecules
as an ensemble of closely related genomes. The mutant spectrum depends
on individual replication rates and hence reflects the surrounding fitness
landscape. Since selection operates on this mutant cloud rather than on an
individual strain, evolution is biased by the internal structure of the quasi-
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species. In particular, selection may favor clouds of genotypes interconnected
by mutation over isolated genotypes, even if the average fitness of the cluster
is lower than that of the individual. The suitability of quasispecies models for
real RNA virus populations is subject to current debate [30, 34, 48, 49, 111].

Apart from random genetic drift, mutation and selection, there are addi-
tional factors that have a significant impact on evolving virus populations.
For example, migration occurs within hosts via infection of multiple cells,
tissues and organs. Migration also occurs between hosts as viruses spread into
different human subpopulations and geographic regions. Migration results
in complex spatial patterns and implies the necessity of studying structured
populations [45]. Another important factor is homologous recombination,
which can occur when a cell is coinfected with two different strains [53]. In
HIV-1, recombination has been shown to occur approximately two to three
times per genome per replication cycle. This is about 10 times as much as
the mutation rate and an extremely high rate of recombination given the
small genome size [52]. Recombination often biases parameter estimates of
evolutionary models, but explicit modeling of recombination is notoriously
difficult. Likewise, the role of recombination in the development of drug
resistance is not well understood [15].

4.2 Learning Mutational Pathways

In the context of HIV drug resistance we are particularly concerned with the
determinants and mode of the development of genetic changes that confer
phenotypic resistance. If drug pressure is continuous and uniform, viral
evolution is characterized by the accumulation of resistance-associated muta-
tions. This accumulation occurs in a nonuniform, stochastic fashion and gives
rise to coexisting evolutionary pathways. Understanding this evolutionary
process is important for estimating how close a virus is to escaping from drug
pressure. Mutagenetic trees, a family of probabilistic graphical models, have
been developed for estimating the rate and order of occurrence of resistance-
associated mutations in the viral drug targets.

Consider a set of n specific amino-acid changes (mutations) that develop
under drug treatment. A mutagenetic tree for these n mutations is a connected
branching on {0, . . . , n} rooted at 0. Each vertex v �= 0 represents the binary
random variable Xv that indicates the occurrence of mutation v. Associating
probability parameters θv with the tree edges one obtains a directed acyclic
graphical model with transition matrices:

(
Pr(Xv = b|Xpa(v) = a)

)
a,b=0,1

=
(

1 0
1− θv θv

)
,
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where pa(v) denotes the parent of v in the tree. The first row of this matrix
reflects the model assumptions that in the underlying evolutionary process
mutations are nonreversible and that a mutation can occur only if all of its
ancestor mutations have already occurred. By definition, mutagenetic trees
are stochastic models, but parameter values θv close to 0 or 1 result in near
deterministic behavior.

A mutagenetic tree defines a probability distribution on the set of all pos-
sible mutational patterns. In particular, this model family includes linear-
path models (chains) and the model of complete independence given by
the star topology. The complete family of mutagenetic tree models can be
characterized by their algebraic invariants [6]. The key observation is that the
binary state vectors that are compatible with the model, i.e. the mutational
patterns which have positive probabilities, form a finite distributive lattice.
This combinatorial structure allows for a simple enumeration scheme of (a
basis of) all invariants.

Mutagenetic trees can be reconstructed from data as maximum-weight
branchings of the complete graph on n + 1 vertices. This combinatorial
optimization problem can be solved efficiently by Edmonds’ maximum-
weight branching algorithm. The weight functional used in this algorithm
involves only pairwise probabilities, which can be estimated from cross-
sectional data. This method has been shown to be consistent in the sense that
if the data comes from a mutagenetic tree model, the procedure is guaranteed
to recover the true tree [27].

The single-tree model has been extended to mixture models of mutagenetic
trees that combine several weighted trees [8]. The first tree component is a star
with uniform probabilities that models the spontaneous and independent oc-
currence of mutations. All other components represent dependencies between
mutations and are estimated from the data. The mixture model is learned
by an expectation maximization (EM) algorithm that iteratively estimates the
expected values of the missing data (i.e. the association of samples to the trees)
and the structure and parameters of the trees. For model selection (choosing
the number of tree components) either cross-validation or a modified Bayesian
Information Criterion can be used that is based on an estimate of the structural
redundancy between tree components [113]. Mtreemix, a software package
for statistical inference with mutagenetic trees and mixtures of these, is avail-
able on the internet and described in [9].

4.3 Genetic Barrier

In order to estimate the rate of development of mutations, we assume inde-
pendent Poisson processes for the occurrence of mutations with parameters
λv. If the observed sampling time (i.e. the time on therapy) is also modeled
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Figure 4 Mutagenetic tree for the development of resistance to
zidovudine. Vertices denote amino acid changes from the wild-type;
edges are labeled with conditional probabilities (a) and expected
waiting times in weeks (b), respectively.

exponentially with rate λS, then:

θv =
λv

λv + λS
.

This relation allows for the translation of the estimated conditional probabil-
ities between mutations into the expected waiting time for the mutation to
occur. Furthermore, the probabilities of the occurrence of any mutational
pattern can be computed for any fixed mean waiting time. Hence, using
these timed mutagenetic trees we can compare models that have initially
been estimated from data sets sampled after different mean waiting times [4].
Figure 4 shows a mutagenetic tree and the corresponding timed mutagenetic
tree for the development of drug resistance in the HIV RT under therapy with
zidovudine. The model displays two characteristic pathways, namely the 70-
219 and the 215-41 pathway [14].

The genetic barrier summarizes how difficult it is for a virus population
to escape from drug pressure by developing mutations. This quantity can
be estimated by means of mutagenetic trees and the phenotype predictions
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introduced in Section 3 [4]. Suppose we have estimated a mutagenetic tree
model for the development of resistance to a certain drug. In particular, this
model can be used to compute transition probabilities between mutational
patterns. Using a classifier restricted to the set of n mutations we predict
each mutational pattern to be either susceptible or resistant. The genetic barrier
is defined as the probability of not reaching any resistant state after a fixed
time period under therapy. This quantity can be calculated as the sum of the
probabilities of all mutational patterns predicted as susceptible. Thus, a higher
genetic barrier indicates that the virus is less likely to become resistant. In fact,
a low genetic barrier has been proposed as the cause of the early virological
failure, which has been observed with some combinations of otherwise very
potent antiretroviral drugs [41].

For example, the genetic barrier to resistance to the nucleoside RT inhibitors
zidovudine, lamivudine, and didanosine of the wild type virus has been
computed under three different regimens: zidovudine mono-therapy (ZDV),
double therapy with zidovudine plus lamivudine (ZDV + 3TC), and double
therapy with zidovudine plus didanosine (ZDV + ddI). The genetic barriers to
zidovudine resistance are ordered as ZDV + 3TC > ZDV > ZDV + ddI for the
respective regimens. For lamivudine resistance we find ZDV > ZDV + ddI�
ZDV + 3TC, and for low level didanosine resistance ZDV > ZDV + ddI > ZDV
+ 3TC. Thus, unexpectedly, zidovudine resistance appears to develop faster
upon adding didanosine and a combination containing didanosine maintains
a higher genetic barrier to didanosine resistance than a regimen sparing di-
danosine. These findings have been shown to be consistent with and to partly
explain clinical data from a multi-cohort study assessing the risk of virological
failure under these regimens [4, 22].

4.4 Transitions between Sequence Clusters

Foulkes and DeGruttola [39] have modeled the evolution of drug resistance
as transitions between discrete states that are defined as clusters of sequences
with similar patterns of mutations, rather than individual mutational patterns
as used in the mutagenetic tree models. K-means clustering was applied
to identify these states. A Markov model was used to estimate transition
rates between states. One approach treats the state at a given time point
as known, whereas another approach treats this as a latent variable. The
second approach allows for consideration of the effect of minority species
on the evolution of the viral populations. Both methods have been applied
to protease sequences of HIVs cloned from the plasma of 170 patients who
participated in a clinical study of efavirenz combination therapy. Multiple
viral clones were available from each plasma sample at each measurement
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time point. In general, sequences of state membership that involved staying
in the same state over time had the highest a posteriori probabilities.

NNRTI mutation data from the same clinical study was analyzed with an
extended mutagenetic tree model that accounts for longitudinal and clonal
samples [5]. In this mutagenetic tree hidden Markov model (HMM), progres-
sion of the virus population in time is modeled as a sequence of unobservable
states, which are inferred from observed clonal samples. The hidden states,
which are compatible with the given tree topology, represent the state of the
population. Clonal variation is modeled by a simple error process that allows
for false positives and false negatives, i.e. for observed mutations despite a
wild-type population state and for wild-type residues in the presence of a
mutant population state, respectively. Analysis of the NNRTI data has shown
that the rates of occurrence of mutations, λv, can be estimated much more
precisely from longitudinal than from cross-sectional data.

5 Selecting Optimal Combination Therapies

Even in the era of HAART, treatment failure is not uncommon and clini-
cians are frequently faced with the problem of selecting a new potent drug
combination after failure of the current regimen. Preexisting drug resistance
mutations can be the cause of therapy failure. In any case, viral replication
under suboptimal therapy leads to the emergence of drug resistant variants
(Section 2). The accumulation of resistance-associated mutations limits re-
maining treatment options which are available. Moreover, because of broad
cross-resistance within drug classes, treatment changes cannot be based on the
assumption that the virus will remain susceptible to the unused drugs. Even
for therapy-naive patients not all drugs can be assumed to be active because of
increasing rates of transmission of resistant viruses. The viral genotype may
provide more information on the expected outcome of the new regimen than
the past treatment history alone. In the following we discuss genotype-based
methods for the selection of drug combinations that are estimated to maximize
clinical response.

The computational task of identifying optimal antiretroviral drug combina-
tions with respect to a given viral genotype is a typical bioinformatics problem
(such as sequence alignment) in the sense that the objective function of the
optimization problem is not known. In fact, we need to know the in vivo
effect of any drug combination on any mutational pattern in order to find
the best regimen. Typical clinical parameters of interest are the virus load
and the number of T4 cells (Section 2). Estimating these response functions
is much more challenging than actually selecting the optimal drug therapy.
Indeed, the number of drug combinations is only on the order of thousands,
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and hence they can be enumerated. By contrast, HIV’s high genetic diversity
induces a much higher number of mutational patterns. Furthermore, clinical
response is influenced by several factors in addition to resistance, including
patient adherence, immunological status, and baseline virus load.

5.1 Clinical Databases

One way to estimate the activity of a therapeutic regimen against a viral
strain is to learn this effect from observational clinical databases. This is
straightforward, if we fix a combination therapy or a narrowly defined type
of therapy. In this case, the same machine learning methods presented in
Section 3 can be used to predict virological response. For example, King and
coworkers [57] use decision trees in order to predict response to lopinavir–
ritonavir-based regimens. However, if the drug combination is not fixed,
direct learning from observed cohort data is limited by the amount of data
necessary to derive useful models, because here the complexity of the problem
depends on both mutational patterns and drug combinations. For example,
Wang and coworkers use a neural network model in this situation. They
estimate an approximate required database size of more than 9500 patient
samples to predict virological response, if 12 drugs and 49 mutations are
assumed [28, 109].

Furthermore, the distribution of drug combinations in clinical databases is
heavily skewed. It reflects drug approval times and preferred treatment strate-
gies over time rather than the full variety of potential combination therapies
[2]. Thus, training on such data sets is likely to result in models that capture
the features of only a few frequently observed combinations. Therefore, those
datasets are not appropriate for exploring the product space of all mutational
patterns and drug combinations.

5.2 Simple Scoring Functions

An alternative approach to general response prediction is to score drug com-
binations on the basis of single-drug effects. This implies the assumption
of a model of how the effect of a drug combination depends on the single-
drug effects. For example, we may use a classifier for resistance phenotype
prediction and count the number of active drugs in a combination, i.e. the
number of drugs for which the virus is predicted susceptible. This model has
been used in a retrospective analysis of 332 therapy changes accompanied by
genotypic resistance tests [24]. SVM-based phenotype predictions were used
to define one group of patients with two or fewer active drugs and a second
group of patients with three or more active drugs. Using a Cox proportional
hazards model it was demonstrated that patients in the group with at most
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two active drugs were at significantly higher risk of virological failure (defined
as two consecutive virus load measurements of more than 500 copies mL−1

after 24 weeks of therapy) [2].
Counting the number of active drugs in a combination therapy entails two

problems. First, we have to choose a cutoff value for each drug. Second,
we do not account for intermediate levels of resistance. The inherent diffi-
culty in selecting appropriate cutoffs and the apparent loss of information
can be avoided by considering the real-valued fold-change in susceptibility.
However, the dynamic range of resistance factors varies by as much as two
orders of magnitude between different drugs. Thus, resistance factors and
their predictions are not comparable between different antiviral agents.

In order to overcome this limitation different normalizations have been
proposed. In one approach, the degree of resistance is quantified relative to
the biological variation of fold-change values observed among untreated pa-
tients. This distribution is normal with individual parameters for each drug.
Hence, the z-score of a resistance factor is the number of standard deviations
it differs from the mean in therapy-naive patients. Another normalization is
based on phenotype predictions from genotypes obtained from both untreated
and treated patients. The resulting distributions exhibit large differences in
location and deviation of modes for the different drugs, but also reveal a
common bimodality. Thus, we model this density by a Gaussian mixture
model:

λ× N(μ1σ1) + (1− λ)× N(μ2, σ2) , λ ∈ [0, 1] ,

and estimate its parameters by the EM algorithm. This two-state model
provides a data-derived definition of susceptible and resistant. By linearizing
the log-likelihood ratio between these two classes, we obtain the activity score,
which approximates the conditional probability of membership in the suscep-
tible class given the viral genotype [7]. Thus, the activity score provides a
normalized and comparable measure of resistance and it can be extended to
multi-drug therapies by summing over all drugs in the combination.

5.3 Look-ahead Techniques

The genetic barrier of the virus to resistance to each of the compounds of the
regimen also provides a normalized score. The genetic barrier estimates the
likelihood of viral escape rather than the current level of resistance. Summing
these values provides an estimate of how easy it is for the virus to escape from
the selective pressure of the combination therapy. As shown in Section 4.3,
this genetic barrier score is generally different from the genetic barrier of the
drug combination, but the genetic barrier cannot be obtained for all drug
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combinations as it needs to be estimated from many samples derived from
patients under the same regimen.

Despite these simplifications, both the activity score and the genetic barrier
score have been shown to be predictive of virological response [2, 12]. In
particular, classifiers based on these scores can learn concepts that are specific
for the combined effect of drug combination and mutational pattern. Thus,
this approach is promising for identifying individually optimized drug com-
binations.

In a related approach the likelihood of the virus to escape from selective
pressure of a drug combination is estimated more conservatively. Applying a
heuristic greedy search, the mutational neighborhood of the viral strain under
consideration is explored. Successively, point mutations are introduced, the
activities of the regimen against the resulting in silico mutants are estimated,
and those variants are kept that reduce the activity of the regimen most. This
strategy can be implemented efficiently by organizing the mutated sequences
in a data structure called a priority queue that orders the sequences by activity.
If the activity is estimated by a linear model, the new activity for a one-point
mutant can be obtained by a cheap update of the previous activity avoiding a
full computation of the linear function for each visited mutant. The estimated
“worst case” activities at each level of depth of the sequence space search
were used as inputs to a linear model and yielded significant predictions of
virological success (defined as a drop in viral load of at least 2 log10 copies
mL−1 after 3 months of therapy) [7].

5.4 Rules-based Approaches

As mentioned in Section 3.2 several rule-based systems aim to predict clinical
response from genotypes. Based on these rule sets two computational ap-
proaches have been developed. The CTSHIV (Customized Treatment Strategy
for HIV) system is a rule-based expert system designed for finding optimal
resistance-avoiding combination therapies [60]. The system operates on a
set of resistance-inferring rules which are applied to a patient’s viral strains
and nearby mutants. Drug combinations are scored by identifying the most
resistant mutant and the least-resisted drug for this mutant in the respective
drug combination. Nearby mutants are generated by a backward-chaining
search. The optimal solution is computed by a branch and bound algorithm.

Another approach applies fuzzy logic methods to a set of expert rules [25].
Rule weights are learned from observed clinical outcomes. The resulting
system has been shown to have improved results over the set of rules alone.
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6 Host Genetic Profiles and Viral Evolution

6.1 Immunobiological Background

Host genetic profiles play an important role in the course and outcome of viral
diseases such as HIV-1. These genetic profiles have a significant impact on the
susceptibility or resistance to infection, the rate of disease progression and
therefore the clinical manifestations of the disease. However, the rapid rate
of viral evolution allows the virus to adapt to specific host genetic profiles.
The increased understanding of the interplay between the host and the virus
has provided important insights into the large variation in responses to HIV-
1 infection, where some patients are extremely resistant to even becoming
infected and whereas others progress to AIDS in a very short time period.

6.1.1 HLA Genes

The human major histocompatibility complex (MHC) is called the HLA sys-
tem and consists of a large gene region on the short arm of chromosome 6
which contains over 100 genes [50, 97]. These genes encode proteins which
are essential for adaptive and innate immunity. Of central importance in the
protection against pathogens are the HLA class I genes (particularly HLA-A,
−B and -C) and HLA class II genes (particularly HLA-DR, -DQ and -DP).
Class I genes encode molecules that are expressed on all nucleated cells, at
varying levels and bind endogenously derived antigens and present them to
T8 cells (Figure 5), leading to a cytotoxic T cell response. Class II molecules
are mainly expressed on antigen-presenting cells (APCs) such as B lympho-
cytes, macrophages and dendritic cells. Class II molecules bind peptides
of extracellular origin and present them to T4 cells, resulting in cytokine
production and T cell help in antibody production. Supporting the activities
of these molecules are the class III complement proteins and the inflammatory
cytokine genes, which are also located in the HLA region.

HLA class I and II genes are extremely polymorphic. As of January 2005,
1179 class I alleles and 725 class II alleles had been named and the growth
in the total number of observed alleles is projected to continue for some
time [82]. Additionally, HLA-B has been confirmed as the most polymorphic
gene in the human genome [71]. Allelic variation occurs both within and
between different ethnic groups (http://www.allelefrequencies.net). Linkage
disequilibrium (see also Chapter 38), where the alleles at one HLA locus are
not randomly distributed with respect to the alleles at another HLA locus, has
been described between different loci in the HLA region [68]. Due to the high
number of polymorphisms in the HLA genes, most individuals are likely to
be heterozygous at the most polymorphic loci. The expression of HLA alleles
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Figure 5 The crystal structure of the HLA-B*3501 allele complexed
with peptide VPLRPMTY from the NEF protein (75–82) of HIV-1 [95].
The HLA molecule is shown as a blue ribbon diagram and the peptide
is shown in yellow, with red oxygen atoms and blue nitrogen atoms.

is codominant, as both alleles of a locus are expressed on a cell’s surface and
each allele is able to present peptides to T cells.

Polymorphisms in HLA molecules are primarily concentrated among amino
acids which are responsible for the binding of the foreign peptide. These
amino acids are located on the floor or on the inner walls of the peptide-
binding cleft. The polymorphisms cause the clefts to have different size and
chemical characteristics in different allele variants. Therefore, although all
HLA molecules can bind large and diverse sets of peptides, different HLA
molecules have preferences in their binding affinities and specificities. Groups
of HLA-A, -B and -DR alleles, called supertypes, have been identified which
share specific binding preferences for peptides or supermotifs of a similar size,
charge and amino acid composition [66, 89].

Numerous studies have identified a role for HLA genotypes in HIV-1 pro-
gression and these will be discussed in detail below.
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6.1.2 Chemokine Receptors

Many inflammatory and immunoregulatory cells are strongly influenced by
the interaction between secreted chemokines and the chemokine receptors
which are expressed on their cell surfaces. Particular attention has been
focused on these receptors and their ligands because of their important role
in general immunity and in the process by which HIV-1 penetrates into cells.

Two receptor–ligand families have been shown to have prominent roles
in the HIV-1 infection process: the CCR and CXCR families. Two receptors
which are members of the CCR family are CCR2 and CCR5. CCR5 binds the
CC-motif ligands MIP-1α, LD78b (or CCL3L1), MIP-1β, RANTES, MCP-2 and
HCC-1. A member of the CXCR family, CXCR4, binds SDF-1 which is encoded
by the CXCL12 gene [55].

Viruses that exclusively use the CCR5 coreceptor for cell entry are known as
R5 strains and those that use CXCR4 are known as X4 strains. The binding to
CCR5 typically predominates in initial infection. As the infection progresses,
the virus begins to use CXCR4 instead of or in addition to CCR5. As CXCR4
is present on many more T4 cells than CCR5, this switch in coreceptor usage
enables the virus to infect a far greater number of T4 cells and is associated
with accelerated disease progression.

Genetic variations in the third variable loop (V3 loop) of the viral envelope
protein gp120 have been associated with the switch in coreceptor usage from
CCR5 to CXCR4. Machine learning methods similar to those described in Sec-
tion 3.2 have been applied to predicting coreceptor usage from V3 sequence
data [92]. Six statistical learning methods operating on the entire V3 loop
were evaluated using cross-validation. Classifiers based on SVMs showed
significantly higher area under the receiver operating characteristic curve
(AUC) than other methods, with the exception of position-specific scoring
matrices (PSSMs), for which the difference did not reach significance. At
varying specificities, which were controlled by choosing appropriate cutoffs,
SVMs dominated all other methods in terms of sensitivity. Predictions of
coreceptor usage on a large longitudinal dataset agreed well with published
data and showed smooth score trajectories, indicating applicability of scoring
classifiers to monitoring the accumulation of coreceptor-associated sequence
alterations. These models allow for careful monitoring of coreceptor usage,
which is an important prerequisite for the use of coreceptor inhibitors.

Individuals who are homozygous for a 32-bp deletion in CCR5 (CCR5-Δ32)
are almost completely protected from HIV-1 infection because of the inability
of the virus to bind to the coreceptor. Rare exceptions occur when homozy-
gotes are infected with X4 viruses that do not require CCR5 for penetration.
Heterozygotes are as likely to be infected, but demonstrate a slower rate of
disease progression. A number of polymorphisms in the CCR5 promoter in
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various ethnic groups have also been associated with increased likelihood of
infection and more rapid disease progression.

In CCR2, a valine to isoleucine polymorphism (CCR2-V64I) has been asso-
ciated with a favorable prognosis in heterozygous HIV-1-infected individuals,
although the mechanism by which this occurs is still ambiguous. Studies
into effects of the 3′A variant at position 801 in the untranslated region of the
CXCL12 gene which encodes SDF-1 (SDF-1-3′A) on HIV-1 disease progression
have been less consistent. CCL3L1 is one of the ligands of CCR5. The copy
number of the gene shows interindividual and interpopulation differences
and influences the level of the chemokine. Possession by an individual of a
copy number which was significantly lower than average for their respective
racial or ethnic background has recently been associated with enhanced HIV
and AIDS susceptibility [42].

6.2 Epitope Prediction

Epitopes are defined as the parts of antigens which interact with receptors of
the immune system. In order to continue developing techniques which will
help detect, monitor and fight diseases, it is important to know as much about
the intrinsic structure of the relevant epitopes as possible. Due to the large
number of epitopes and HLA molecules, prediction methods are an important
tool supporting the generation of new insights into this complex process.

6.2.1 Problem Definition

Peptides which are presented by HLA class I molecules are selected in a
multistep process consisting of (i) the cleavage of proteins in the cytosol into
peptides by the proteosome, (ii) the N-terminal trimming in the cytosol or
later in the endoplasmic reticulum (ER) by aminopeptidases, (iii) the transport
of peptides into the ER by TAP proteins and (iv) the loading of the peptides
onto class I molecules. These peptide–HLA complexes transit through the
constitutive secretory pathway, in which transport vesicles move from the
trans-Golgi network to the plasma membrane [83].

The peptides bound by class I molecules are generally 8–11 amino acids in
length. Binding is stabilized by contacts between atoms in the free N- and
C-termini of the peptide and conserved sites found at each end of the cleft in
class I molecules. These interactions limit the length of the peptide accepted
for binding and, therefore, the binding cleft is often described as being closed.
Variations in length of the peptide seem to be accommodated by kinking of
the peptide backbone.

By contrast, a number of different pathways have been describe by which
HLA class II molecules become loaded with peptides. Typically, exogenous
proteins are internalized by the cell or endogenous proteins resident in the
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endosomal system. Alternatively, antigens presumably excluded from the
endosomal system, such as proteins located in the cytosol or nucleus, can be
presented by class II molecules [103]. The conventional processing pathway
features enzymatic unfolding, fragmentation and loading of internalized ex-
ogenous antigens within the endocytic compartment. An alternative pathway
includes processing that is proteasome and TAP-dependent [102].

HLA class II molecules bind peptides that are more variable in length,
approximately 11–17 amino acids long and possibly much longer. The ends
of the peptide are not bound and the peptide lies in the binding groove in
an extended conformation. It is held in position by its side chains, which
protrude into pockets in the class II molecule’s binding groove that are lined
by polymorphic residues. Additionally, the peptide is stabilized by interac-
tions between the peptide backbone and conserved amino acids of the binding
groove. As HLA class II molecules are more permissive in their peptide
binding than class I molecules, it is more difficult to predict which peptides
will bind to particular class II molecules.

Recent research appears to suggest that there is a lack of absolute topolog-
ical restrictions on HLA class I and II molecules, implying that, in principle,
any protein can be presented by either molecule class. Therefore, the differ-
ences between class I and II could possibly be distinguished mainly on the
basis of their binding characteristics and physiological roles [103].

6.2.2 Methods

The ability of predicting which regions of a target protein make good epitopes
is important for the understanding of immunological processes and vaccine
design. A broad variety of prediction tools have been developed in recent
years, some of which deal with particular parts of the pathways, by which
peptides are loaded onto HLA molecules, such as TAP transport, or alterna-
tively with whole pathways.

Several methods have been developed for predicting proteasome cleavage.
In a recent comparison it was found that the best method, NetChop, captures
roughly 70% of the C-termini correctly [87]. NetChop uses neural networks
trained on in vitro data in addition to class I ligand data.

Two approaches have been used to predict selective TAP transport. Cas-
caded SVMs, using two layers of SVMs, were designed to include features of
the sequence and of amino acids [13]. Alternatively, a method was developed
using an additive scoring function to analyze and extend the TAP-binding
motif [31]. The method assumes that each amino acid makes an additive
and constant contribution to the biological activity regardless of amino acid
variation in the rest of the peptide. Possible interactions between amino
acids are accounted for by cross-terms. This approach is also called two-
dimensional quantitative structure–activity relationships (2D-QSARs) and it
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relies on solving the linear regression problem by using partial least squares
(PLS). PLS forms new variables, named principal components, as linear com-
binations of the initial variables and then uses them as predictors of the
dependent variable which is the TAP binding affinity.

Due to the closed nature of the binding cleft in HLA class I molecules and
the well-defined epitope length, many more methods have been developed for
predicting class I epitopes than class II epitopes. A comparison of some of the
methods that have been used in class I epitope prediction has been made [114].
The compared methods were based on binding motifs, binding matrices,
hidden Markov models (HMMs) and artificial neural networks (ANNs). The
selection of the optimal method depended on the amount of available data, the
biases of the data set and the intended purpose of the prediction. For datasets
with more than 100 known binding peptides, HMMs and ANNs were found
to be the methods of choice.

A relatively small number of prediction tools have recently been developed
for class II epitope prediction. A method involving the use of motif block
alignments, generated by aligning peptides known to bind specific class II
molecules, were used to generate PSSMs to which a position-based weighting
method was applied [79]. A novel Gibbs motif sampler method designed for
recognizing weak sequence motifs has also been developed [72]. An earlier
approach used a matrix-based prediction algorithm, employing an amino
acid/position coefficient table deduced from the literature [94, 99].

6.3 Analysis of Escape Mutations

Genetic resistance is an important aspect of the viral adaptation to the host. Its
analysis is an important component of the study of HIV-1 disease. The HLA
genotype of an individual appears to play an important role in the progression
of the disease.

A number of large, population-based HLA class I association studies (see
also Chapter 38) have been conducted [96]. The studies were done in large
Caucasian and African cohorts with subtype B and C infections. They have
associated HLA-B*57 and alleles of the HLA-B*58 supertype with low viremia
and a delayed onset of AIDS. HLA-B*27 has been consistently associated with
slow progression in non-African populations. The alleles that are part of
the HLA-B*7 supertype, including HLA-B*35, have been associated with high
viremia and fast progression.

When regions of HIV viral proteins are presented as peptides, or epitopes,
by HLA molecules, an immune response may be triggered. Therefore, the
less likely it is for a particular peptide to be presented by an HLA molecule,
the lower the overall immune response of the patient against that particular
peptide will be. In certain HLA genotypes, a mutation away from the HIV
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consensus sequence might be beneficial in promoting immune escape. The
ability of the virus to mutate rapidly [77] enables it not only to develop
resistance mutations to antiretroviral therapy, but also to adapt to the HLA
genotype of the infected individual. This type of mutation is often called an
escape mutation.

Once an escape mutation has occurred it has three potential evolutionary
fates. It may revert to the consensus or wild-type amino acid on transmission
to an individual of another HLA genotype. In this case, it will remain a target
for the immune system. Alternatively, the escape mutation might be stable
and the epitope that contains it will no longer be a target for the immune
system. Such an escape mutation will reach fixation in a population over time
as all other amino acid variants at that position are eliminated leaving only the
escape mutation. The original epitope therefore also no longer exists and has
become extinct. Finally, the escape mutation might not revert to consensus,
but could still be contained in an epitope that is presented. In this case, the
frequency of mutation will equilibrate in the population and there will be no
clear consensus [62].

Several studies have examined escape mutations at a population level.
An analysis of the RT gene in a large HLA-diverse cohort of Australian
HIV-1-infected individuals revealed that HLA-specific polymorphisms were
most evident in sites of least functional or structural constraint and were
often associated with particular host HLA class I alleles. Both positive and
negative HLA associations were found using standard statistical methods
including a preliminary power calculation and odds ratio analyses, followed
by the fitting of logistic regression models [69]. The majority of the strongest
associations were confirmed in a cohort of HLA-diverse European patients
using similar statistical methods [84]. In addition to this, six novel associa-
tions were identified. A study of the HIV-1 Gag polyprotein focused on two
HLA alleles associated with long-term HIV control. Two escape mutations
within a dominant HLA-B*57/HLA-B*5801-restricted epitope were present in
about 80% of HLA-B*57/HLA-B*5801-positive individuals, but in no HLA-
B*57/HLA-B*5801-negative individuals. Transmission of the mutant viruses
into HLA-B*57/HLA-B*5801-negative recipients resulted in a reversion to the
wild-type sequence of one of the escape mutations. The second mutation was
maintained after transmission [63].

A recent analysis of the percentages of amino acid positions, at which poly-
morphisms away from population consensus were significantly associated
with the HLA-A, -B and -C allelic groups, found that there is great variability
across the HIV-1 genome. The use of McNemar tests showed that some genes
have no statistically significant associations, whereas others have over 2%
of their amino acids involved in significant associations [56]. Other work
has shown that defined T8 cell epitopes tend to cluster in regions with dis-
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tinct characteristics: conserved regions appear to have more epitopes, highly
variable regions that lack epitopes bear cumulative evidence of past immune
escape that may make them relatively refractive to T8 cells, and epitopes are
more highly concentrated in alpha-helical regions of HIV-1 proteins [115].

A comparison of the relative contributions of HLA-A and -B alleles to the
T8 cell-mediated immune response was performed using a large cohort of
treatment-naive infected individuals from southern Africa. A panel of 410
overlapping synthetic peptides, spanning the entire expressed HIV genome,
was generated and used to characterize the T cell responses to these peptides
in interferon-α enzyme-linked immunospot (ELISPOT) assays [54]. There
were marked differences in the frequency of targeting of individual peptides:
some were targeted by no individuals, others where targeted by more than
25% of the cohort. Of the 30 most highly targeted peptides, 67% were HLA-
B-restricted. The authors concluded that the principal focus of HIV-specific
activity is at the HLA-B locus. The HLA-B gene frequencies in the population
are those most likely to be most influenced by HIV disease, which is consistent
with the observation that B alleles evolve more rapidly than A alleles [56]. The
genetic epidemiological associations between HIV and HLA class II loci have
not been as strong as those described for class I loci [18].

The observation of the influence of immune pressure on HIV-1 epitopes
during HAART, showed that T8-mediated immune pressure can continue to
effect viral evolution after the initiation of drug therapy [19]. Five treatment-
naive patients, who achieved sizeable reductions in viral load upon initi-
ation of HAART, were followed for 20 weeks. Each patient’s response to
95 screening epitopes was evaluated prior to beginning HAART, with each
of the five subjects responding to between one and three epitopes. The
total number of optimized epitopes was ten and no epitope was located at
a position where known resistance mutations occur. Two of the five patients
displayed evidence of T8 cell-dependent antiviral pressure. In one patient,
the epitope changed from an apparent escape variant prior to the initiation
of therapy, to the sequence that is best recognized by the T8 response after
the initiation of therapy and then to a new escape variant during continued
therapy. In another study [37], a long-term-nonprogressing HLA-B*27 child
managed to maintain viral loads of less than 400 copies mL−1 for almost a
decade under a dual-nucleoside therapy until an escape mutation emerged
with an immunodominant B*27-restricted CTL epitope. Subsequently, the
child experienced a re-emergence of HIV-1 viremia accompanied by marked
number of the CTL epitopes targeted.

Future treatment strategies for both treatment-naive and pretreated patients
should not only involve the analysis of resistance mutations in order to help
define treatment options, but to also take into account the influence of escape
mutations since they can also play a causal role in the loss of immune control.
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It may also be possible that the HLA-type of an individual has an impact on
the choice of a particular mutational pathway, i.e. the sequence and type of
resistance mutations a patient develops.

7 Conclusions

Computational methods for analyzing HIV drug resistance are likely to gain
further importance in the future. The huge number of mutational patterns,
on the one hand, and the large number of drug combinations, on the other
hand, call for computational support in data management, analysis and clin-
ical decision making. Moreover, therapeutic success appears to depend on
viral genotype, therapy and host HLA type in a complicated manner that is
unlikely to be captured by simple hand-made rules. Thus, the careful con-
struction, validation and application of statistical models of therapy outcome
may provide the basis for medical intervention planning. With an increasing
number of drugs, optimization methods for finding optimal drug combina-
tions will also play an increasingly important role. Hence, we expect sound
statistical modeling and efficient optimization to be the key to individualized
antiretroviral therapies in the future.

8 Web resources

8.1 Los Alamos HIV Databases (http://www.hiv.lanl.gov)

The Los Alamos National Laboratories maintain four different databases re-
lated to HIV infection [46]. The Sequence Database contains HIV and SIV
sequences partly annotated with information on patient, sample, phenotypes
and experimental techniques. The Resistance Database is a compilation of all
mutations in HIV genes known to confer resistance to anti-HIV drugs. The Im-
munology Database offers a comprehensive, annotated listing of defined HIV
epitopes. Finally, the Vaccine Trials Database provides a complete overview
of HIV and SIV vaccine trials and their outcomes.

8.2 Stanford HIV Drug Resistance Database (http://hivdb.stanford.edu)

The Stanford HIV Drug Resistance Database is a curated database of se-
quences coding for the molecular targets of anti-HIV therapy [81]. It includes
drug susceptibility data and therapy histories where publicly available. The
database has been designed for the study of evolutionary and drug-related
variation in the genome of HIV. The public website comprises query forms
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and a tool for the interpretation of genotypic resistance tests, based on various
sets of expert rules.

8.3 Geno2pheno (http://www.geno2pheno.org)

Geno2pheno is a web service that provides two types of phenotype pre-
dictions from HIV DNA sequences. Geno2pheno[resistance] predicts phe-
notypic drug resistance to all approved antiretroviral agents using different
classification and regression methods. The output also comprises normalized
resistance scores (see Section 6.2) [3]. Geno2pheno[coreceptor] operates on the
V3 loop of the envelope protein gp120 and predicts which coreceptor the virus
can use to enter target cells [92].

8.4 IMGT/HLA Databases (http://www.ebi.ac.uk/imgt/hla)

The IMGT/HLA database is the official database of the WHO Nomenclature
Committee for Factors of the HLA System [82]. It acts as a central repository
for HLA gene and allele sequences. It has also recently incorporated data
collected for the dictionary of HLA alleles and their serological equivalents.
The database provides the basic tools needed to retrieve allele information
and to perform sequence alignments. The database continues to grow with
approximately between 150 and 200 sequences being added annually.
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Analyzing the Evolution of Infectious Bacteria
Dawn Field, Edward J. Feil, Gareth Wilson, and Paul Swift

Nothing makes sense except in the light of evolution.
T. Dobzhansky, 1973

1 Introduction

The sequencing of hundreds of genomes is providing new insights into the
evolutionary processes that lead to the emergence and maintenance of traits
related to virulence and pathogenicity. In this chapter, we discuss how bioin-
formatic approaches to genome analysis can be guided by evolutionary prin-
ciples and complemented by phylogenetic studies of population and species.
When combined, the fields of molecular evolution and bioinformatics provide
a powerful set of conceptual, analytical and practical tools for mining infor-
mation from genomic sequences. Likewise, pathogens are fascinating subjects
for evolutionists because of the intense selective pressures associated with
host–pathogen interactions. Those interested in mechanisms of pathogenesis,
epidemiology, and the development of new antimicrobials and vaccines can
often benefit from an understanding of the evolution of infectious bacteria.

Bioinformatics has its roots as much in molecular evolutionary theory as
it does in statistics, mathematics and computing. This is because the theory
of evolution provides a unifying principle with which to gain meaning from
molecular data. Here, we provide an overview of how evolutionary theory
helps us to better understand a biological phenomenon of pressing relevance
– pathogenesis. We discuss the relevance of evolution to the study of infec-
tious bacteria by reviewing key evolutionary concepts and some of the most
commonly used methods and tools in molecular evolutionary biology. First,
we give an overview of molecular evolutionary theory, review the number
and nature of the genomes available from infectious bacteria, and provide
a practical overview of relevant software and databases. We then address
four areas in which an evolutionary perspective has profoundly impacted
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our understanding of infectious bacteria. These areas are the detection of
the determinants of virulence, the determination of relationships between
isolates, the ubiquity and importance of lateral gene transfer and its role in
niche adaptation, and the evolution of adaptive traits as a direct result of
coevolution with the host. Finally, we examine the future outlook for the
burgeoning field of evolutionary pathogenomics.

1.1 Introduction to Molecular Evolutionary Theory

There are many opportunities for applying evolutionary theory directly to the
bioinformatic analysis of genomes. For example, the assignment of function
based on homology, perhaps the most widely used concept in bioinformatics,
is based on molecular evolutionary theory. If gene A is homologous (related
by evolutionary descent) to gene B, it is likely to have a similar function, since
both genes evolved from a common ancestor. This process of characterizing
novel sequences can also be extended to the inference of similar structural
properties (homology modeling; see Chapter 10). While there are potential
dangers associated with assigning function (or structure) purely on the basis
of sequence similarity, the value of this approach should not be underesti-
mated.

There are three main foci to molecular evolutionary studies: the origin of
life, the evolutionary history of the subsequent expansion of life forms and the
manner in which molecules evolve. Reconstructing the evolutionary history
and the relationships between all extant bacteria falls into the field of phylo-
genetics and requires knowledge of how sequences evolve. It is beyond the
scope of this chapter to review all the methods and tools currently employed
in phylogenetic and population genetics studies. Rather, we cover some of
the key methods and tools. For a comprehensive review of phylogenetics, the
reader should refer to Chapter 4.

Molecular phylogenetic tree building has a long history and developed
from methods based on morphology. Evolutionary relationships can be recon-
structed using a variety of molecular methodologies that involve comparisons
of 16S rDNA genes, complete proteomes, restriction length fragment patterns
(RFLPs), housekeeping genes, repetitive sequences, single nucleotide poly-
morphisms (SNPs) and other polymorphisms (Table 1). The choice of method
is determined by both the question to be addressed (i.e. epidemiological or
evolutionary), as well as basic features of the bacteria in question. Currently,
multilocus sequence typing (MLST) is of particular importance because of its
reproducibility and the ease with which data can be compared between labo-
ratories [17, 43]. This method is based on the DNA sequencing of six to eight
housekeeping, or “core”, genes. Such genes are preferred as phylogenetic
markers because they are conserved across strains, have relatively uniform
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levels of genetic variability making it easier to pool information across loci and
are under strong stabilizing selection such that the majority of polymorphisms
detected are likely to have arisen as the result of neutral mutations. Each
unique allele encountered in a species can be given a number thus allowing
for the development of strain-specific “profiles”. MLST data can be used to
uniquely type each processed isolate, thus facilitating epidemiological studies
and the characterization of clonal complexes [25].

There are three general principles currently employed in the development
of methods for reconstructing phylogenetic trees. The first uses a distance
matrix built from the differences between sequences or sets of loci to build
a tree. The second uses the principle of parsimony, which assumes that the
correct tree is the one that requires the smallest number of past mutation
events. The third, maximum likelihood, uses an explicit model of sequence
evolution to judge which tree is most likely (the tree with the largest log
likelihood score) given a particular data set. Despite these differences, there
is strong agreement that, regardless of method, high-quality data should
always produce the same tree. With lower quality, or less phylogenetically
informative, data, different methods can vary in their reliability.

Constructing a tree is only the first step in inferring evolutionary relation-
ships. It is then useful to place some estimate of confidence on the tree
(bootstrapping), test whether the tree meets certain assumptions of the Neutral
Theory and whether it contains evidence of past recombination events. The
Neutral Theory states that the majority of mutations are neutral and do not
influence fitness [38]. The power of this theory comes from its ability to define
“null models” based on how sequences evolve under neutral assumptions.
Statistically significant deviations from the expectations associated with these
null models can therefore be taken as evidence for potential “non-neutral”
evolutionary forces.

The observation that neutral genetic variation accumulates at a relatively
constant rate has led to the formulation of the molecular clock hypothesis.
If the mutation rates of neutral characters (e.g. synonymous sites in coding
regions) have been empirically determined and an independent date for the
divergence of two lineages is available (in the case of eukaryotes this is usually
based on fossil evidence), the molecular clock can be calibrated for a particular
group of organisms. The assumption of a molecular clock allows the age of a
last common ancestor to be calculated, and enables the dating of nodes within
a phylogenetic tree and tests for non-neutral departures from expectations.
At all times, it is important to bear in mind that all trees are hypotheses and
should be treated as such.

Short-term evolutionary events occur within populations and the field of
population genetics is closely allied to the field of molecular evolution. Many
tools and approaches are shared across these two fields, but population ge-
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Table 1 A variety of molecular markers can be used to explore the phylogenetic relationships,
population structure and epidemiological patterns of infectious bacteria: overview of the
molecular evolutionary studies that can be employed

Method name Application Reference Conclusions of study
16S rDNA identification of

uncultured pathogenic
bacteria by placing new
16S sequences into the
bacterial tree

60 positive identification of the
uncultured bacterial species, T.
whipplei, that causes Whipple’s
disease

Comparison
of whole
proteomes

pairwise comparison of
all predicted proteins
in different species to
reconstruct bacterial
phylogenetic trees

58, 68 strong phylogenetic signal in
resulting tree and concordance
with 16S rDNA tree

Ribotyping generation of a tree of
more than 500 nontypeable
H. influenzae to examine
range of variation of
potential vaccine epitopes

8 use of a phylogenic strategy
for vaccine development is
proposed and validated

MLST generation of trees for
housekeeping genes and
examination of levels of
congruence between trees
to determine frequency of
recombination

26 unexpectedly high levels
of recombination in some
species; variation in levels of
recombination across species

Sequence
surveys

generation of sufficient
sequence data to date
emergence of human
pathogens and examine
the nature and rate of
recombination

24 last common ancestor of H.
pylori existed 2500–11 000years
ago and size of recombinant
fragments is unusually small

Multilocus
variable
number
tandem repeat
analysis
(MLVA)

multiplexed polymerase
chain reaction analysis
of repetitive regions for
strain identification and
epidemiological studies

37 human commerce has
contributed to observed
geographic dispersal of B.
anthracis

SNPs, insertion
deletions,
tandem repeats

Sequencing of a second
strain of B. anthracis to find
polymorphic markers

59 rare polymorphic sites are
present in this genetically
monomorphic species which
are suitable for tracking
infectious disease outbreaks

netics, which is concerned with the changes in the frequency of alleles, is
more mathematical in nature. The application of population-genetic theory
in genomics is still in its early days, but this new frontier in genomics holds
great promise for future discovery, especially as multiple strains from a single
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species are sequenced and “resequencing” of large quantities of DNA becomes
possible using custom microarrays [81].

Evolutionary theory also provides a range of assumptions useful in mining
biologically significant patterns from genome sequences. For example, it can
be used to examine the magnitude and type of selection acting upon a gene.
There are several tests for selection based on comparing the ratio of synony-
mous to nonsynonymous substitutions between sequences [50]. Recently, an
exciting method was developed that purported to detect selection in a single
genome sequence [56]. However, it appears that this method may be sensi-
tive to underlying assumptions regarding mutational processes acting at the
DNA level, thus re-emphasizing the power and importance of comparative
approaches in molecular evolutionary studies [50]. Furthermore, a recent
study comparing multiple genomes of several bacterial species or genera
demonstrated that the proportion of nonsynonymous changes decreases over
time, thus it is critical to place inferences of selection within a temporal (time-
dependent) perspective [62].

1.2 The Quantity and Quality of Data Available

The genomic data currently available for the evolutionary analysis of in-
fectious bacteria are vast and rapidly expanding. It is widely recognized
that our genome collection is strongly biased toward the tiny fraction of
total bacterial biodiversity that enters into relationships with human hosts
and leads to disease. Of the first 220 bacterial isolates sequenced, 117 are
capable of causing disease. We now have genome sequences for an array
of medically important microbes including those with the potential to cause
epidemics, serious outbreaks of disease on a local level, commensals (bacteria
that occasionally cause disease) and opportunistic pathogens that cause dis-
ease only in compromised hosts. Access to genomic data has revolutionized
our understanding of the fluid nature of bacterial genomes, emphasized the
importance of the evolutionary perspective when interpreting results, and
spawned the new and exciting field of phylogenomics [22].

As our taxonomic sampling of genomes becomes more representative of
the biodiversity in nature, so the application of evolutionary principles to the
analysis becomes more powerful. The second and fourth bacterial genomes
were Mycoplasmas, and the sixth and 18th genomes were both Helicobacter
pylori strains [7]. The potential scope for comparative genomic studies has
exploded since that time. At the time of writing, of the 220 bacterial iso-
lates sequenced, 132 are from species with a single sequenced representative,
while the remaining 88 isolates come from 33 species. Among these 220,
the best sampled species are all capable of causing disease. These include
Staphylococcus aureus (6), Streptococcus pyogenes (5), Chlamydophila pneumoniae
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(4), Escherichia coli (4) and Bacillus anthracis (4). There are also well-sampled
groups like the Mollicutes [35] and Campylobacteria [23].

1.3 A Practical Overview of Online Resources

Combining evolutionary theory and bioinformatic approaches provides a
powerful conceptual and practical toolkit for the study of infectious bacteria.
Databases and software useful in the study of evolutionary pathogenomics
are listed in Table 2. This list is far from exhaustive, but provides a starting
point for exploring the genomes of infectious bacteria, allowing the user to
examine levels of conservation between genomes, construct phylogenetic
relationships between sequences, and detect the presence of virulence factors
and horizontally transferred sequences.

Likewise, Table 3 lists some of the more widely used taxonomic and phylo-
genetic resources available. The true phylogeny of bacteria is still contentious,
but there are two primary sources of taxonomic information, the printed
Bergey’s Manual and the electronic National Center for Biotechnology In-
formation (NCBI) taxonomy. These formalized bacterial taxonomies are a
classification which is not always a true reflection of phylogenetic relation-
ships, but a best approximation given methods available in the past. Bergey’s
Manual is the most authoritative source for bacterial taxonomy. It offers
what it terms a “taxonomic outline”, which includes all named bacteria and
is now largely based on phylogenetic information derived from molecular
studies of 16S ribosomal RNA genes [53]. 16S rDNA genes are widely used
to reconstruct phylogenetic relationships because ribosomal RNA genes are
a universal feature of prokaryotic genomes. This outline can be downloaded
as a .pdf file from the web and is found in the printed volumes of Bergey’s
Manual. In contrast, the NCBI Taxonomy provides an online, browsable
taxonomy that contains bacteria for which there is at least one sequence in
GenBank [77]. While not claiming to be an authoritative source of taxonomic
information, this taxonomy is based on Bergey’s Manual and the contribution
of a wide range of experts. It is widely used in bioinformatics, in large part,
because each taxonomic group is linked electronically to all associated data
held at NCBI.

Another excellent source of information on the relationships between bac-
teria is the Ribosomal Database Project (RDP-II), which contains over 100 000
bacterial small-subunit rDNA gene sequences in aligned and annotated for-
mat [15]. Tools available at the RDP allow the user to browse a taxonomic
(phylogenetic) hierarchy of isolates and select sequences for phylogenetic
analysis or download. Alternatively, newly sequenced rDNA sequences can
be uploaded into the RDP, to be aligned against existing data. There are
now a variety of free (phylip, MEGA, splitstree) and commercial (PAUP,
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Table 2 Databases and software resources for evolutionary pathogenomic studies

Comprehensive comparative genomic databases
Comprehensive Microbial Resource
(CMR) (http://www.tigr.org/tigr-
scripts/CMR2/CMRHomePage.spl)

provides access to a wide range of information
and analyses about all complete bacterial
genomes

Virulogenome
(http://www.vge.ac.uk/index.html)

access to complete and incomplete genomes,
including Artemis applet and ACT
comparisons

Databases of the genomes of infectious
bacteria
Molligen (http://cbi.labri.fr/outils/molligen) web site dedicated to mollicute genomes

which allows blast searching and whole
genome alignment

Oral Pathogens database
(http://www.oralgen.lanl.gov)

databases of bacterial oral pathogens

Pathema
(http://www.tigr.org/pathema/index.shtml)

in-depth curated analysis of pathogen
genomes

Pathogen Sequencing Unit
(http://www.sanger.ac.uk/Projects/Pathogens)

sequenced genomes of organisms relevant to
human and animal health with related tools

STDGen and the Oral Pathogens database
(http://www.stdgen.lanl.gov)

databases of genomes responsible for sexually
transmitted diseases

Multiple genome alignment tools
A Genome Comparison Tool (ACT)
(http://www.sanger.ac.uk/Software/ACT)

a DNA sequence comparison viewer

Mauve (http://gel.ahabs.wisc.edu/mauve) multiple genome alignments in the presence
of large-scale evolutionary events

Multi-LAGAN (http://lagan.stanford.edu/
lagan_web/index.shtml)

one of several packages in the LAGAN tool
set for multiple alignment of genomes

MultiPipMaker
(http://pipmaker.bx.psu.edu/ pipmaker)

summarizes similarity between multiple
sequences using percentage identity plots

Multiple Genome Aligner (MGA)
(http://bibiserv.techfak.uni-bielefeld.de/mga)

computes multiple genome alignments for
large, closely related DNA sequences

Phylogenomic databases
PyPhy
(http://www.cbs.dtu.dk/staff/thomas/
pyphy)

large-scale reconstructions of phylogenetic
relationships of complete microbial genomes

Phylogenomic Display of bacterial
genes (Phydbac) (http://igs-server.cnrs-
mrs.fr/phydbac)

web interactive tool that displays
phylogenomic profiles of bacterial protein
sequences

MacClade) software packages available for phylogenetic analysis of 16S and
other sequences, and Joe Felsenstein’s website provides a comprehensive list
of these resources (Table 3). For more on software for phylogenetic analysis,
see Chapter 4.

Increasingly, there are now tools for the analysis of MLST data [36, 70].
The MLST websites (http://www.pubmlst.org and http://www.mlst. net)
are portals to these resources, and offer access to all data sets (e.g. profiles
and allele sequences) and a customized computing platform that contains a
range of prepackaged software for bioinformatic and phylogenetic research
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Table 2 (continued)

Curated databases of virulence factors
Virulence factor database (VFDB)
(http://www.mgc.ac.cn/VFs)

curated information about the virulence fac-
tors of 16 of the best-characterized bacterial
pathogens

Databases of horizontally transferred sequences
BAE-Watch (http://www.pathogenomics.bc.ca/
BAE-watch.html)

database of pathogen proteins with unusu-
ally high similarity to eukaryote proteins

GenomeAtlas (http://www.cbs.dtu.dk/
services/GenomeAtlas)

genomic atlases with views of compositional
biases useful in detecting regions of foreign
DNA

IslandPath (http://www.pathogenomics.bc.ca/
IslandPathExamples.html)

identification of horizontally transferred
genes and genomics islands, including
pathogenicity islands

An expanded number of resources can be found in the annual issues of Nucleic Acids Research
dedicated to descriptions of databases (January) and web servers (http://July).

(BioLinux). There are already online MLST databases for a variety of in-
fectious bacteria, including Burkholderia pseudomallei (and related species),
Campylobacter jejuni, Campylobacter coli, Enterococcus faecium, Haemophilus in-
fluenzae, H. pylori, Moraxella catarrhalis, Neisseria meningitidis, Streptococcus
agalactiae, S. aureus, Salmonella enterica, Staphylococcus epidermidis, S. pneumonia
and Streptococcus pyogenes. Groups interested in generating MLST data for
new species are encouraged to contact the researchers hosting these sites as
most of the database components can be easily reused [12].

2 Identification and Study of Determinants of Virulence
and Pathogenicity

Whole-genome sequencing reveals the entire genetic complement of an iso-
late, and, in the case of pathogens, may reveal key aspects about phenotypic
traits associated with disease and the mechanisms by which they evolved.
Evidence from genomic analysis is helping to address “big-picture” questions
such as, “What makes a pathogen?”, “Why does pathogenicity evolve?”, “Can
the ability to cause disease be lost over time?” and “Where do diseases
originate and why do they appear?”. A crucial step in this complex process
of discovery is the use of genome sequences to identify classical virulence
factors. This is largely done through homology, but can be complemented by
a range of in silico approaches which attempt to find novel virulence factors
using non-homology-based reasoning. This reasoning is primarily based on
clues including evidence of surface exposure, high copy number, repetitive
nature, high mutation rate or uniqueness to pathogens.
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Table 3 An overview taxonomic and phylogenetic of resources for studying the evolution of
infectious bacteria

Resource Description
Taxonomy
Bergey’s Manual of Systematic Bacteriology
(http://www.cme.msu.edu/bergeys)

“taxonomic outline”, including all species,
type strains and 16S rDNA sequence data

NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/
Taxonomy/taxonomyhome.html)

taxonomy for sequences in GenBank with
links to related resources in NCBI databases

The Taxonomy Browser
(http://www.msu.edu/%7Egarrity/taxoweb)

original data analysis tool for visualizing
the taxonomic relationships among
prokaryotes

16S ribosomal sequence phylogenies
Ribosomal Database Project II
(http://rdp.cme.msu.edu/html)

database of ribosomal sequences and
related tools for sequence alignment and
phylogenetic analysis

ARB (from Latin “arbor” meaning “tree”)
(http://www.arb-home.de/

community standard for managing 16S data
sets and building phylogenetic trees

Sequence alignment software packages
Clustal (http://www.ebi.ac.uk/clustalw) web interface to widely used sequence

alignment program
Tcoffee & 3Dcoffee (http://igs-server.cnrs-
mrs.fr/Tcoffee/tcoffee_cgi/index.cgi)

web interface to software for alignment of
sequences and structures

Phylogenetic software
CVTree (Composition Vector Tree Method)
(http://cvtree.
cbi.pku.edu.cn:1977/cvtree/index.php)

uses similarities in word frequencies
between proteomes to build phylogenetic
trees

Horizstory and Lumbermill
(http://coffee.biochem.dal.ca)

a pair of phylogenetic tools to compare
multiple trees and detect lateral gene
transfer events

Joe Felsenstein’s web pages
(http://evolution.genetics.washington.edu/
phylip/software.html)

comprehensive collection of links to
software for phylogenetic and population
genetic analysis

MEGA (Molecular Evolutionary Genetics
Analysis) (http://www.megasoftware.net)

estimates evolutionary distances,
reconstructs phylogenetic trees and
computes statistical quantities

MacClade (http://macclade.org) facilitates studies of character evolution
using phylogenetic trees

PAUP (Phylogenetic Analysis Using Parsimony)
(http://paup.csit.fsu.edu)

the most widely used and comprehensive
commercial phylogenetic software package

Phylip (Phylogeny Inference Package)
(http://evolution.genetics.washington.edu/
phylip.html)

widely distributed free phylogeny package
which implements a variety of methods

SplitsTree (http://bibiserv.techfak.uni-
bielefeld.de/splits)

test whether a data set creates a bifurcating
tree, outputs relationships between
sequences as networks

TreeView (http://taxonomy.zoology.gla.ac.uk/
rod/treeview.html)

a program for viewing phylogenetic trees

MLST related resources
Multilocus Sequence Typing (http://mlst.net) MLST home page
PubMLST (http://pubmlst.org) portal which provides access to MLST

resources
START (Sequence Type Analysis
and Recombinational Tests)
(http://pubmlst.org/software/analysis/start)

software that performs strain-specific
profiles, lineage assignment and tests for
recombination/selection

eBURST (http://eburst.mlst.net) clustering algorithm to examine patterns of
descent within closely related strains
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2.1 Homology-based Detection

The first aim of the sequencing of the genome of a pathogen is the identifica-
tion of determinants of virulence. Determining what makes an isolate capable
of causing disease is a complex process. The most direct method is to look for
“classical” virulence factors. This is usually done by searching new genomes
for genes with homology to known virulence factors. Approaches based
on homology work because it is statistically improbable that two sequences
showing a high degree of sequence similarity are not related through descent
[3]. Hundreds of virulence factors belonging to known gene families have
been found through this method since bacterial genome sequencing began,
attesting to the power of this approach. Any new sequence can be compared
against the virulence factor database (VFDB) a database of known virulence
factors for 16 of the best characterized bacterial pathogens [13].

2.2 Pattern-based Detection

There are several methods of finding genes involved in virulence without
recourse to known homologs. For example, knowledge of the statistical
properties of DNA has proven a powerful method of detecting “foreign” DNA
and this is useful because horizontally transferred sequences often include
determinants of virulence. Foreign regions of DNA can be detected by their
skewed G + C composition, third position G + C content, codon composition
or other higher level patterns. These sequences range in size from short frag-
ments to large regions with many genes known as pathogenicity islands. The
evolutionary character and importance of pathogenicity islands has recently
been reviewed [64].

The statistical properties and distributions of sequences in a genome can
also be used to develop searches for specific types of sequences. For example,
it is known that transmembrane regions contain more hydrophobic amino
acids than would be expected by chance. Therefore, algorithms have been
developed to find surface-exposed transmembrane proteins de novo based on
this fact, e.g. in the development of vaccines [55]. (See also Chapter 9 on the
topic of identifying transmembrane regions in proteins.) Other genes, like the
large family of PE/PPE glycine-rich genes in Mycobacterium tuberculosis which
make up about 10% of the genomic sequence, are unusual for their abundance
and repetitive structure, suggesting a priori that they might play a role in the
generation of antigenic variation [16]. These genes initially lacked homology
to any known genes, but over time have been found in other Mycobacterium
spp. and appear to be involved in virulence [42].

Another intriguing example of the detection of an unexpected (statistically
unlikely) pattern is the discovery of sequences capable of acting as “molecular



2 Identification and Study of Determinants of Virulence and Pathogenicity 1507

switches”. Rapid, reversible genetic change (phenotypic variation or phase
variation) is now known to be mediated by a number of different molecu-
lar mechanisms including slipped-strand mispairing, site-specific DNA rear-
rangement and DNA shuffling [30, 74]. These categories of mechanisms for
genetic change represent a wide repertoire of potential mutations. Slipped-
strand mispairing leads to small insertion–deletion events at short direct re-
peats, or microsatellites, while site-specific rearrangements are “triggered”
by the presence of particular sequence motifs and DNA shuffling occurs
when homologous section of DNA switch location or orientation within a
genome. Such loci have been termed “contingency loci” [49] collectively.
These “switches” are most often found in surface-exposed genes and genes
that mediate key interactions with the host environment. They appear to
have evolved both to provide genetic variation to evade host defenses and
to facilitate rapid adaptation to different micro-niches within the host [4].

From a computational perspective, short direct repeats, or microsatellites,
are the class of molecular switches that are most easily detected in new
genome sequences. These loci, also known as simple sequence repeats (SSR),
are composed of units of 1–6 bp. The high rate of slipped-strand mispairing at
such loci results in the hypermutability of these sequences. Due to their ability
to undergo rapid, reversible mutation they make highly efficient molecular
switches [49] capable of altering the translation and transcription of genes,
when found in coding regions or promoters, respectively. The discovery
of a large number of such loci in the first sequenced bacterial genome, H.
influenzae [33], has resulted in the search for such loci now being part of the
routine analysis of novel pathogenic genomes. Chapter 8 gives a detailed
account on methods for finding repeats in genome sequences.

The likelihood that novel SSRs are evolving in a nonrandom fashion can
be evaluated by examining the total length (as longer loci are both more
statistically improbable and more mutable [19]) as well as genetic context (i.e.
the ability of an insertion or deletion event in an SSR to cause a frameshift
within a known coding region or the location of an SSR in a promoter region)
of each repeat. Candidate loci can be further evaluated through population-
level surveys of variability in the “switch region” [46]. The best candidates can
then be examined using empirical methods (such as knockout strains [33]) to
explore their potential role in virulence and bacterial adaptation.

2.3 Comparative Genomic Methods of Detection

Good sampling of related genomes increases the power to detect differences
and similarities between genomes. Given whole genomes, it is possible to
search for genes shared between pathogens and nonpathogens, genes found
only in pathogens, and genes that are never found in pathogens. This practice
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of “differential genome display” came into practice as soon as the complete
genomes of pathogens and nonpathogens, i.e. H. influenzae and E. coli, became
available [34]).

This approach works when pathogens share the genes responsible for a
particular trait, but this is not always the case, as exemplified by the study
of motility in Mycoplasmas. The Mycoplasmas are now one of the best
phylogenetically represented groups of bacteria. They have minimal genome
sizes, and yet display a variety of phenotypes, host preferences and degrees
of pathogenicity. This group of bacteria is therefore ideal for comparative
genomic studies in a phylogenetic framework. For example motility is a
trait that has proven notoriously difficult to understand at the molecular level
[35]. When a simple comparison between proteomes of motile and nonmotile
Mycoplasmas failed to reveal candidate genes, the alternative was tested,
i.e. that genes for motility were shared by motile and nonmotile species,
but had been deactivated in nonmotile genomes [35]. Similarity searches
revealed candidate genes that were better conserved among motile genomes
than nonmotile genomes, suggesting relaxed selection acting on nonfunc-
tional instances of these genes. Furthermore, the authors attempted to define a
“required core set” of genes always found in full in motile genomes, but only
ever found in part in nonmotile genomes. Both of these “filters” provided
only circumstantial evidence of motility genes. Inspection of the 16S tree for
the Mycoplasmas shows that motile and nonmotile species do not form two
separate (monophyletic) evolutionary groups. The difficulties encountered in
defining the genes responsible for motility may reflect the fact that motility
has evolved independently more than once in Mycoplasmas [35]. A general
overview of methods of comparative genomics is given in Chapter 37.

2.4 Taxonomically Restricted Genes (TRGs) and Orphans

TRGs are found in isolated lineages and it is therefore plausible that they
are responsible for niche-specific traits, including those involved in virulence
and pathogenicity. Among TRGs, “orphans” (predicted proteins that lack
similarity to any known proteins) are of particular interest [78]. It has been
claimed that the number of orphan genes discovered in complete genome
sequences has been one of the biggest surprises of the genomic era so far [21].
Explanations for the large numbers of orphan genes in complete genomes in-
clude the suggestion that we have not sequenced enough genes from enough
organisms to find other members of these gene families [73], that orphans may
be noncoding sequences incorrectly annotated as predicted proteins [66] or
that orphan genes belong to known gene families, but have not been identified
as such owing to extensive sequence diversification [18]. An exciting frontier
within the area of improved gene prediction is the use of transcriptomic
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and proteomic data to validate genomic annotations. For example, the first
example of a “proteogenomic” approach to genome annotation found no
evidence of expression of many smaller-than-average genes predicted using
in silico methods alone, suggesting that many “orphans” do not encode real
proteins [35]. Such empirical data is essential to correct errors of annotation
and validate true orphans.

Despite the contribution of undersampling and error to the numbers of
orphans found in public databases, the number of bacterial orphans appears
to be increasing [78]. There is also mounting evidence that a proportion of
orphans are real genes [18, 65]. For example, evidence of transcription was
obtained in a study of 19 out of 25 proposed orphan genes in the E. coli K12
MG1655 [2]. An interesting possibility is that orphans are real genes captured
by bacterial isolates through horizontal transfer from phage (and plasmids).
This possibility is discussed further in Section 4.1 [18].

3 Putting Isolates of Infectious Bacteria into a Phylogenetic
Framework

As described above, the use of phylogenetic and population genetic analysis
can be used to address a wide range of questions concerning the biology and
control of infectious bacteria (Table 1). Phylogenies can be used to “place”
new isolates of pathogens, identified by their 16S sequences, onto the tree of
life [60]. They can also be used to track the emergence of hypervirulent or
antibiotic-resistant isolates [25], to explore the origins of pathogens and place
dates on their emergence [24] or to test whether specific traits have evolved
more than once [35]. Comprehensive phylogenies encompassing enough
strains to adequately represent the genetic diversity of a named species can
be used to guide a variety of subsequent studies. For example, to select a
maximally divergent set of strains to test for evidence of recombination [26]
or to examine the potential phylogenetic conservation of candidate epitopes
for the development of vaccines [55, 79].

One of the most interesting conclusions about the nature of pathogens
to be drawn from evolutionary studies is the fact that pathogenicity has
evolved multiple times. Pathogens are often found next to nonpathogens
on the bacterial tree and closely related isolates can differ greatly in their
degree and nature of pathogenicity. For example the 16S sequence of Yersinia
pestis and Yersinia pseudotuberculosis are identical [72], and the former appears
to have evolved from the latter only 1500–20 000 years ago [1]. Despite
their recent divergence, these species have very different potentials to cause
disease. While Y. pestis is infamous for causing devastating disease (The
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Plague), its close relative Y. pseudotuberculosis is rarely capable of causing
disease or death.

It has become increasingly clear that different sections of bacterial genomes
evolve at different rates. Studies must be designed in such a way that the
rate of evolution of a chosen “marker” matches the question asked and pro-
vides the correct level of discrimination. For example, to resolve relation-
ships between distantly related bacteria the 16S rDNA marker is preferable
[53] because it is universally conserved. However, 16S sequences are often
monomorphic among closely related strains and are therefore unsuitable for
population-level studies. For isolates with complete genomes, it is now possi-
ble to construct trees based on complete proteome comparisons – an approach
which removes the requirement for all isolated to share the same sequences.
For example, trees can be built using the numbers of shared genes found in
pairwise comparisons among proteomes [68] or on frequencies of amino acid
motifs (“words”) [58].

For examining the relationships between isolates within a species, more
rapidly evolving loci are required. There are now a variety of methods avail-
able that assay genetic diversity capable of distinguishing closely related
isolates. For example, ribotyping has been used to validate the utility of
bacterial epitopes for use in vaccine development [8]. Ribotyping and similar
methods that depend on the digestion of DNA by restriction enzymes are
excellent for economically processing large numbers of strains from a single
species, but have the drawback of generating “anonymous” banding patterns
that lead to ambiguities in scoring the similarities and differences between
strains. MLST, as mentioned above, is probably now the most widely applied
method.

In some cases, though, MLST is unable to distinguish between isolates
under examination, especially isolates from recently emerged pathogens. In
the case of Y. pestis, for example, fragments of five housekeeping loci were
examined and all were found to be monomorphic [1]. The three main biovars
(strain types) of Y. pestis can be distinguished by assaying markers evolving
more rapidly than housekeeping genes. These include restriction fragment
length polymorphisms (RFLP) associated with the IS100 insertion element [1]
and variable number tandem repeats (VNTRs) [57]. Such repeats are com-
posed of direct repeats of 7–25 nucleotides which change in length with high
frequency. The usefulness of these loci is increased by the typing of several loci
simultaneously. This method was originally developed to distinguish strains
of Bacillus anthracis, the most genetically monomorphic pathogen described
to date, and is now referred to as multiple locus VNTR analysis (MLVA)
[37]. MLVA can be used to rapidly type large numbers of isolates at low
cost. More importantly, the resulting strain profiles can be compared between
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laboratories. Along with MLVA, SNPs and insertion/deletion polymorphisms
have also been used to distinguish nearly identical strains [59].

Understanding the evolutionary relationships between strains has many
important applications, but is challenging given that there is tremendous ge-
netic variation among bacteria and bacterial species are notoriously ill-defined
entities [41]. It is well-known that there can be significant differences both in
the total quantity and composition of DNA between even very closely related
isolates. The surprising degree of diversity, revealed through genome se-
quencing, even between different strains of the same bacterial species, implies
that single genome sequences can no longer be viewed as defining the genetic
repertoire of named taxa, but rather as a sample of the genes potentially
available to members of a given (often ill-defined) population. For example,
the analysis by Welch and coworkers [76] on three genome sequences of
E. coli revealed that only about 40% of all identified open reading frames
were common to all three strains. This finding has motivated the genome
sequencing of multiple strains for a number of different named species, often
in the hope that this will facilitate the discovery of the genetic basis of variable
phenotypes of specific ecological or clinical relevance (such as heightened
virulence or antibiotic resistance).

In order to examine the detailed dynamics of genome divergence at this
fine-scale phylogenetic level, it is necessary to compare these genomes as thor-
oughly as possible within a phylogenetic or population biology framework.
Now that we have the genomes of many pathogens, it is becoming easier to
apply MLST approaches, but MLST studies can also be undertaken without
the benefit of a genome (as was the case with the early MLST schemes) if
enough suitable housekeeping genes, with uniform levels of variability, can
be selected.

The case of S. aureus, a “species” for which seven complete genome se-
quences are now available, clearly demonstrates the importance of detailed
information on evolutionary relationships when dealing with a set of isolates.
MLST data has revealed S. aureus to be a highly clonal species, and the seven
sequenced strains correspond to three pairs (each pair being very closely
related and belonging to the same clone) and a single more diverged strain
[32]. In the absence of the MLST data and without a complete appreciation
of the genetic diversity in this species, it might be reasonable to suppose that
the more diverged strain is atypical in some way. The ability to place the
sequenced strains in the context of the whole population reveals that they are
not representative of the full diversity within the population.

Nevertheless, the genome data for S. aureus enable comparisons both at
a very fine level (within a given clone) and at a relatively more diverged
level, encompassing the variation of the named species. Comparisons of gene
content between pairs of strains belonging to the same clone reveals that
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a significant fraction (about 2%) of the genome is lost or gained extremely
rapidly. This results in marked clinical differences between strains which are
essentially identical in terms of nucleotide sequence divergence. However,
it appears that the rate of change in gene content decreases in proportion
to sequence divergence when comparisons are made between strains clearly
separated on the phylogenetic tree. This example illustrates how comparisons
between genomes belonging to the same species are most powerful when used
in conjunction with MLST and/or microarray data that can provide the “big
picture” for the structure and diversity of a given population [32].

4 Mixing of Genetic Material among Bacteria

Bacteria were once thought to be clonal organisms that evolved without re-
course to recombination of their genetic material with that of other individu-
als. In the case of truly clonal organisms, the reconstruction of evolutionary
relationships using any molecule will, in theory, reconstruct the same evo-
lutionary tree. This will hold true for all loci at which sufficient “phyloge-
netically informative” polymorphisms are detectable and in the absence of
both selection and convergent evolution. Recombination, or the exchange of
DNA between independent lineages, can obscure the phylogenetic signal of
individual lineages and lead to the reconstruction of trees which do not reflect
the true relationships between isolates, but rather the individual evolutionary
history of the recombinant molecules being scrutinized.

The last decade has revolutionized our view of the stability and clonality
of bacteria through many lines of evidence and it is now clear that bacteria
can acquire new pieces of DNA from a variety of sources. Until the advent of
complete genome sequencing, the extent of horizontal transfer and the result-
ing “mosaic” nature of bacterial genomes was largely unappreciated. DNA
acquired from the environment, or from infection with phage and plasmids,
can result in significant changes in genetic repertoires in a way that can have a
significant impact on a bacterium’s success in a particular niche or even allow
it to change its niche completely [51]. Such changes can result in the emergence
of new pathogens or in heightened pathogenicity of existing pathogens. The
single most important result of horizontal gene transfer is the global spread of
antibiotic resistance.

Genes obtained through horizontal gene transfer can often be recognized
by their atypical base composition, sporadic distribution within a given phy-
logeny or landmark features. For example, horizontally acquired sequences
containing H. influenzae uptake signal sequences (USSs) have been found in
Neisseria meningitidis [39]. Rates of horizontal transfer largely depend on
niche (i.e. access to foreign DNA) and the presence of internal sequences that
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promote exchange. The small genomes of intracellular pathogens have few
molecular mechanisms that promote exchange and contain little foreign DNA,
while species with larger genomes might have gained up to 20% of their total
gene content from external sources [51].

In addition to new genes or gene islands being acquired by horizontal
gene transfer, thus launching the bacteria into a new, potentially pathogenic
lifestyle, homologous recombination can also result in metabolic genes from
any given strain being replaced by orthologs of a “donor” strain. MLST
data, being based on ubiquitous “core” genes and often used on large isolate
collections, are ideal for examining the extent to which this process occurs.
By examining the sequence changes between very closely related isolates,
it is possible to estimate the relative contributions of point mutations and
homologous recombination [69]. This approach has been used to estimate that
alleles change up to 10-fold more frequently by recombination than by point
mutation in some species (e.g. S. pneumoniae and N. meningitidis) whereas in
other species, such as S. aureus, point mutation appears to play a more major
role than recombination [27, 28]. The reasons for these differences are unclear
but are probably related to both the biology (e.g. efficiency of transformation)
and ecology of the organism (e.g. the probability of diverse lineages meeting
in the wild).

The extent of recombination can also be assayed from MLST data sets by
comparing phylogenetic trees from a small representative sample of isolates.
The logic behind this approach is that a history of frequent recombination will
result in discordant trees when different gene loci are compared. A statistical
approach based on the maximum likelihood method of phylogenetic recon-
struction has been used to demonstrate that trees built from different gene
loci for S. pneumoniae and N. meningitidis are typically no more similar to each
other than they are to random trees [27, 28]. Thus, this approach is consistent
with the method based on comparing very closely related isolates outlined
above and indicates that recombination has been so frequent in this species
that there is no consistent phylogenetic signal. It therefore makes little sense
in such extreme cases to attempt to reconstruct the evolutionary relatedness
between diverged strains, as these will be reticulate (network-like) rather than
tree-like.

4.1 The Importance of Phage and Plasmids

The importance of plasmids and phage in bacterial evolution and adaptation
has long been recognized, but it is continuing to come to the fore as evidence
for the ubiquity of horizontal transfer accumulates. While phage are viruses
and therefore pathogens (or “predators”) of bacteria, it is more difficult to
explain the persistence of plasmids [6] although it is clear that both provide
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important mechanisms for genetic exchange within bacteria. The gene pool
potentially harbored within phage and plasmid populations is significant [44].
For example, the sequencing of 27 phage genomes from a single host, S. aureus,
revealed a minimal overlap in gene content [40]. The discovery of such a high
percentage of novel genes suggests further that phage store a vast reservoir of
genetic diversity [40].

It is well recognized that prophages contribute significantly to observed
inter-strain differences by donating, among other things, genes related to
pathogenicity [9]. In a comparison of two Salmonella typhi strains, 113 pre-
dicted proteins were found to be unique to one strain. Seventy-six of these
were prophage genes [20], illustrating the impact prophages have on the
genetic individuality of bacterial strains. Similarly, in the species Streptococcus
pyogenes all major sequence gaps found in the alignments of “M” serotypes
are traceable to phage integration events [67]. Further, the prophages found
in S. pyogenes encode proven or suspected virulence factors, and therefore
the diversity observed between strains is likely to be of clinical relevance
[5]. In a global study of 115 bacterial genomes, including pathogens and
nonpathogens, 190 prophages were identified [10]. These prophages were pre-
dominantly found in pathogens. Several of them encoded disease-modifying
factors found in species such as Vibrio cholerae, E. coli 0157 and Corynebacterium
diptheriae. In some cases, including S. aureus, S. pyogenes and Salmonella
spp., the genome contains multiple prophages, each of which contributes
incrementally to virulence [10].

It has recently been suggested that phage contribute large numbers of or-
phan genes to bacteria [18]. It has been found that orphan genes have certain
characteristics that differentiate them from other genes. Orphans are signifi-
cantly shorter than native genes and are A + T-rich when contrasted with the
rest of the genome [18]. These characteristics have led to the belief that phage
may be responsible for the generation of bacterial orphans. Phage encode
short A + T-rich genes [54]. The dinucleotide frequencies of E. coli orphans and
of phage known to infect E. coli were found to be similarly biased in contrast
with native genes [18]. In addition the genetic diversity of phage has been
poorly sampled. Hence, if orphan genes did originate from phage it should
not come as a great surprise that, as yet, we have not found homologs [18].

A classic example of the pathogen-defining potential of phage-encoded
virulence factors is found in V. cholerae. The genome sequence of V. cholerae
Tor N16961 revealed a single copy of the cholera toxin (CT) genes, ctxAB.
These genes are localized within the integrated genome of CTXφ, a temperate
filamentous phage [75]. The receptor for entry of CTXφ into the cell is the
toxin-coregulated pilus (TCP). The TCP also represents the critical intestinal
colonization factor of V. cholerae [45]. The genes involved in TCP assembly
are part of a pathogenicity island that also includes a helicase-related protein
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Figure 1 Circular representation of V.
cholerae chromosome 1. This image was
created using the program CGView [71] and
data from the OrphanMine orphan gene
database [78]. (A) Inner circle: predicted
orphans on the negative strand. Second
circle: predicted genes on the negative
strand. Third circle: predicted genes on

the positive strand. Fourth circle: predicted
orphans on the positive strand. Fifth circle:
representation of the number of bacterial
species (from a total of 121 species) with hits
to the associated gene. (B) The TCP Gene
Cluster. Genes believed to be orphans prior
to the sequencing of V. fischeri are shown in
orange.

and a transcriptional activator that both share homology with bacteriophage
proteins [31]. The TCP cluster of genes is shown in Figure 1. The majority of
the genes located in the TCP cluster were long believed to be orphans until
orthologs to many of these genes were found in the genome of the symbiotic
bacterium of squid, Vibrio fischeri [63]. This surprising finding is made more
intriguing by the suggestion that this region is native to V. fischeri but was
acquired recently by V. cholerae from a low-GC genome such as V. fischeri [63].

This example illustrates how genes, annotated as orphans and derived from
phage, can be responsible for important biological phenotypes that play a
major role in the lifestyle of an organism. By sequencing more closely related
genomes we will be able to “home” more of these taxonomically restricted put
phenotypically relevant genes into gene families and in doing so, gain greater
understanding of the evolution of these genomes. The discovery of genes
associated with virulence in a commensal organism has more profound impli-
cations for the evolution of “virulence” factors and the role these genes play in
nature. Although long-studied through the perspective of relevance to human
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health, it is possible that many of these genes carry out functions unrelated to
pathogenicity in the environment. Perhaps this implies that virulence itself
does not always evolve as a selected trait, but is an (unfortunate) byproduct
which results from certain combinations of hitherto ‘blameless’ genes which
occasionally arise in an ecological setting conducive to the onset of disease.

5 Coevolution of Infectious Bacteria with Their Hosts

The coevolution of infectious bacteria with their hosts is just beginning to
inform medical science and yet is essential to understand when attempting
to interpret levels of variation found between isolates [80]. For example, it is
crucial to understand pathogen ecology and distribution with respect to its
host(s) since shifts in either can lead to a jump between hosts, a phenomenon
increasingly being seen in the case of emerging diseases. Here, we discuss two
aspects of the coevolution of pathogens with their hosts that have a significant
impact on the ability of pathogens to cause disease and which have been
revolutionized through the sequencing of genomes. These are the coevolution
(reduction) of metabolic capacity in pathogens associated with their hosts over
long evolutionary time periods and the evolution of mechanisms for rapidly
generating genetic variation that arise as a direct result of having to survive
within the ever changing and hostile environment of a host.

5.1 Reconstructing Metabolic Pathways

As described above, while many bacterial strains become pathogens, or gain
heightened pathogenicity, by acquiring new genes, the long-term evolution
of many pathogens involves a loss of genes. The size of a bacterial genome
can range from less than 0.5 to almost 10 million base pairs and this variation
depends on the number of genes required to live in a specific niche. Larger
genomes have more complex metabolic capacities as well as a high degree of
redundancy in their pathways. Small genomes reflect a degree of specializa-
tion, with the smallest genomes belonging to obligate intracellular parasites.

The metabolic potential of any pathogen is largely a product of the amount
of time it has coevolved with a particular host(s). The most interesting insights
into this phenomenon are gained from the examination of the metabolic path-
ways lost in genomes undergoing reductive evolution (reduction of genome
size). As pathogens become more dependent on their hosts over long evo-
lutionary time periods, they lose the need to maintain a complete set of
metabolic capabilities. If a given pathway is lost, it is likely that the corre-
sponding metabolite is being acquired directly from the host.
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Snapshots of this process in different species have been captured by the
sequencing of genomes. We now have the complete genomes of several
species that have experienced different degrees of reductive evolution. These
include the insect symbionts Buchnera and the intracellular pathogens like
Mycoplasmas, which are of special interest because they represent “minimal”
genomes. The larger genomes of species of Rickettsia and Mycobacteria are
still undergoing reductive evolution, as is evidenced by the relative sizes
of the repertoire of pseudogenes (nonfunctional, or “dead” genes) that are
currently present in these genomes. It is clear that the route to a reduced
genome can vary significantly among different organisms and very different
gene complements can be successfully adopted.

Detailed metabolic knowledge of an organism can have important prac-
tical applications, for example in the study of fastidious and unculturable
pathogens in the laboratory. Computer modeling of metabolic networks in
the Tropheryma whipplei genome led to the design of a medium that allowed
T. whipplei strains, a species previously only culturable in the presence of
human fibroblast cells, to grow in cell-free culture [61]. The success of this
approach has led the authors to develop the MetaGrowth Knowledgebase,
an online source of empirical and in silico evidence for the culture of species,
which will hopefully lead to better culture conditions for species including
Coxiella burnetii, Mycobacterium leprae, Rickettsia prowazekii, Rickettsia conorii
and Treponema pallidum [52]. The biochemical network view of host–pathogen
interaction is discussed in Chapter 23.

5.2 The Genetic Arms Race between Pathogen and Host

The host has a variety of mechanisms for defending itself against pathogens
and as a result host–pathogen relationships are associated with some of the
highest known selective pressures found in nature. The analysis of genomic
sequences has provided new insights into the mechanisms by which bacteria
invade and survive in host environments, and these often involve the rapid
generation of genetic variability. In addition, genomic sequencing is providing
detailed evidence to support one of the most fascinating observations to
come from the study of bacterial mechanisms of generating genetic diver-
sity, namely that bacteria (and other organisms) have evolved “the ability to
evolve” [11].

Random genetic mutation is the “engine” of evolution producing variation
that can be the source of new adaptive genotypes. Bacteria have two strategies
for elevating the number of beneficial mutations generated within a given
period of time. The first is to raise global mutation rates and the second is
to evolve regions of localized hypermutation [48]. “Mutators” usually arise
through a genetic mutation in a gene related to DNA replication or repair.
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Damage to such genes can increase the number of errors made during chro-
mosomal replication or decrease the rate at which errors are repaired leading
to the fixation of higher than average numbers of mutations. “Mutators”
have been associated with the emergence of hypervirulence and antibiotic
resistance [14].

Raising global mutation rates above background rates increases the proba-
bility of a beneficial mutation in the short term (because there are overall more
mutations occurring), but will have a damaging effect on an organism’s fitness
over the longer term as the vast majority of mutations are deleterious [47].
To avoid this problem, many pathogenic bacteria have evolved a different
strategy of increasing rates of evolution. This second strategy involves the
ability to generate large numbers of mutations at specific locations within their
genomes.

Phase variation, or phenotypic switching, is a widespread adaptive strategy
among pathogens [30]. It is well known that DNA sequences of different
compositions can have varying mutation rates. Bacteria have capitalized on
this phenomenon to evolve a variety of “molecular switches” that generate
rapid and reversible change. For example, as described above, candidate
SSR contingency loci are straightforward to extract from DNA and with the
sequencing of a variety of pathogen genomes we are beginning to appreciate
the extent to which these phase-variable loci are distributed among different
taxa. It is also becoming clear that contingency loci have evolved many times
during the course of bacterial evolution (Figure 2). Of the first 220 sequenced
isolates of bacteria, to the best of our knowledge, at least 30 isolates are
reported to possess putative or known SSR contingency loci. These isolates
belong to 30 species of 18 genera found in five divisions of bacteria.

6 Conclusions

The importance of an evolutionary perspective in the study of infectious
bacteria is coming into the fore in the era of genomics. The analysis of genome
sequences is elevating our general appreciation of the tremendous amount of
genetic diversity harbored in the bacterial gene pool and is elucidating phe-
nomena of specific importance to clinicians. These include the rise in antibiotic
resistance and emerging diseases. The tremendous potential of bacteria to
undergo adaptive evolutionary change can confound the development and
application of widely efficacious therapies and make pathogens formidable
foes of humans which can have devastating consequences for human health.
Collaborations between evolutionists, bioinformaticians, clinicians and those
generating complete genome sequences should be fostered as this approach
will grow in importance as we continue to sequence more bacterial genomes
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Figure 2 A phylogenetic tree of selected
species of proteobacteria demonstrates the
independent evolution of phase-variation
among commensals and pathogens.
Characterized and putative SSR contingency
loci have been found in the underlined
species. These species are interspersed

among free-living environmental species
(nonunderlined species). This unrooted
neighbor-joining tree was constructed using
the Jukes–Cantor method from pre-aligned
16S ribosomal sequences downloaded from
the RDP [15].

and generate phylogenetic data sets for large sets of isolates. The study of
pathogens using molecular evolutionary theory and bioinformatics is fuelling
the emergence of the multidisciplinary field of evolutionary pathogenomics.

The wealth of genomic and phylogenetic data presents vast opportunities
for the study of infectious bacteria. Along with these opportunities come
challenges, including the need for better methods, databases and tools for
mining data from collections of genomes in a phylogenetic context [29]. There
is also a pressing need for additional information on the specific phenotypes
associated with clinical isolates, improved sampling of natural isolates, and
targeted sequencing of nonpathogens. Understanding the extent, fluidity
and significance of the bacterial gene pool is one of the grand challenges
for researchers working in this field. The most powerful data sets will be
those with a phylogenetic tree describing the entire genetic diversity of a
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species (i.e. thousands of isolates), 10–30 complete genomes to allow detailed
genomic analyses coupled with microarray-based typing studies of hundreds
of strains. Such data sets are for the future, but at the present rate of advance
are unlikely to be too far over the horizon.
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1 Biological Resources

Biological resources useful to the scientists include a variety of data sources
and applications. These resources are made publicly available to the re-
searcher on the web, or are privately accessed through subscriptions or within
the scope of collaborations. The number of these resources is overwhelming
and increases significantly each year. In 2005, the Molecular Biology Database
Collection listed 719 public data sources [33] – a 31% increase since the previ-
ous year and 351% since the first compiled list in 1999 [15]. The thousands of
data sources providing biological information overlap: multiple data sources
may provide information about a scientific object, e.g. a nucleotide sequence,
and thus share entries. When these data sources provide information about
the same scientific objects, e.g. a gene, their data differ dramatically with
respect to (i) organization (“How is the scientific object represented?”), (ii)
format [ASCII, eXtensible Markup Language (XML), etc.], (iii) number of
entries (the instances of the scientific object entered in the data source), (iv)
characterization (“What information related to the scientific object is pro-
vided?”) and (v) data quality (“What level of curation is achieved?”). As
scientific objects are related by various scientifically meaningful relationships,
e.g. a gene codes for a protein, the biological data sources providing informa-
tion about those objects are often intertwined with links that capture those
relationships, expressing them through hyperlinks, indices or generated by
applications.

Scientific reasoning in bioinformatics relies on complex scientific protocols
partially or completely involving digital data sets retrieved from public or



1526 42 Integrating Biological Databases

private data sources. The digital parts of scientific protocols include data
collection from various sources, data analysis – using a wide range of appli-
cations – and data transformation, including traditional database operations
such as selections, projections, and joins. The execution – automated or not
– of a single protocol may thus involve multiple resources including data
sources and applications [77]. Integrating these resources and the data flows
resulting from the execution of scientific protocols is critical to scientific dis-
covery. Other areas in which scientific data integration is the core technology
include the design of scientific knowledge repositories and the representation
of systems biology and scientific pathways. Systems biology relates to dif-
ferent types of biological information, such as DNA, RNA, protein, protein
interactions, cells, tissues, etc., together with their individual elements, e.g.
specific genes or proteins, and the relationships of these with respect to one
another and the elements of other types. The aim of systems biology is to
integrate all of this information to obtain a view or model of the system
as a whole. Similarly, molecular interaction networks, including metabolic
pathways, regulatory pathways and molecular complexes, aim at modeling
the complex interactions between various scientific objects and the systems
that support them aim at providing access to information relevant to these
entities and their relationships.

The problems pertaining to scientific data integration are inherently com-
plex and challenging. Scientific data integration relies on the integration
of various systems often developed on different platforms, with different
operating systems. These primary differences already raise various operabil-
ity problems of communications between the integrated resources and the
integrating system. Then, scientific integration requires the integration of the
data themselves – a task that requires the integrating system to access and
“understand” the data. Accessing and understanding the data requires from
the integration system the ability to express (retrieval or database) queries
to the data source so that the integrated resource provides the expected data
and to map the data to the integrated data representation. In addition, sci-
entific integration requires from the integration system to provide all analysis,
transformation and, sometimes, visualization tools that are available to the sci-
entist. In fact, to the scientist, data access (via a database or a retrieval query)
and data analysis (via a tool) often are alike. Applications and data both play
primary roles in the scientific data integration scenario. Data without suitable
technology to access and analyze them are as meaningless as the technology
without the data. For these reasons, a data integration approach should allow
flexibility of use of the integrated data with available scientific tools.

Many approaches have been developed in the past to address these prob-
lems. Although they all offer benefits to the life scientist, they fail to provide a
complete solution to the scientific integration problem. The main reason may
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reside in the legacy with which they have to deal. There are several communi-
ties that have developed integration technology, although not always primar-
ily motivated by scientific integration challenges: (i) the database community
which develops database management systems and focuses on the design
of data definition languages to represent the data and query languages to
access and transform the data, (ii) the computing community which develops
approaches to facilitate interoperability of applications with distributed com-
puting architectures, Common Object Request Broker Architecture (CORBA),
the Grid, peer-to-peer (P2P) and web services, (iii) the knowledge commu-
nity which develops intelligent-based approaches where integration is driven
by a meaning expressed with Semantic Web or ontologies and achieved by
intelligent agents, and (iv) the process community which aims at modeling
business processes with workflows. As biological data integration involves a
combination of data, computing, process and knowledge, we believe that a
solution suitable to scientific discovery should benefit from all approaches.
For these reasons, we present the main contributions from those domains
that may shape in some extent the next generations of biological integration
systems.

The chapter is organized as follows. Various data models are presented in
Section 2. Section 3 successively addresses the problems of the mapping of
the conceptual model to underlying models and introduces three traditional
approaches to data integration: data warehouse, linked-based federation and
mediation. The problem of application integration is addressed in Section 4.
Section 5 is devoted to semantic issues related to data integration. In Section 6,
we discuss scientific workflows, which aim at combining data access, integra-
tion, analysis and visualization into an integrated whole.

2 Data Modeling

An issue critical to data integration is related to data models. As integrated
data are typically extracted from multiple resources, each having its own data
organization, data model and data structure, reconciling these different modes
of data modeling into a integrated model requires adequate understanding of
these three layers of data modeling. Although the terminology to distinguish
those three layers may differ in the literature, to clarify the discussion, we
define them as follows.

• Data organization (or conceptual model) pertains to the way data is under-
stood by the data providers. For example, GenBank is sequence-centric
(all information the data source provides is organized with respect to the
scientific object sequence).
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• Data model is one among various data management definition languages
offered (mostly) by the database community. They include relational model,
nested-relational model, object-oriented model, XML, etc. Each database
management system provides such a data model that captures the internal
representation of the data in the system.

• Data structure (or schema) is the chosen structure with respect to the orga-
nization and model. Once a data model is selected, it offers multiple ways
to represent internally the data. The data structure in the relational model
is defined with respect to the tables (relations) and columns (attributes)
of the relational schema. The data structure of the XML data model is
characterized by a document type definition (DTD) or a XML schema.

The selection of each of these layers of data representation may affect sig-
nificantly all aspects of data management including: data storage (ease of
entering the data and efficiency of storage), data access (expressive power of
query language), maintenance, etc.

2.1 Conceptual Model

The data organization may be represented with models designed not to man-
age the data, but to organize the data and represent their meaning. Such
models include the Entity–Relationship (ER) model and the Unified Modeling
Language (UML), respectively developed by the database community and by
the programming languages community. These models provide abstract data
representations that are not used to actually format the data (entities). Con-
ceptual models represent classes of scientific objects such as gene or sequence,
and their relationships and processes, but they do not represent the instances
of these scientific objects. Instances will be represented with respect to the
data structure, the third layer of data modeling.

2.1.1 ER

Schema diagrams were formalized in the 1960s by Charles Bachman who
used rectangles to denote record types and directed edges (arrows) from one
record type to another to denote relationships between instances of the two
types [2, 3]. Peter Chen later used a similar formalism called ER where rect-
angles formalize entity types (or entities) and edges labeled with a diamond
formalize relationship types (or relationships) between entities [21]. Although
relationships in the ER are not directed, their connectivity – the constraint on
the number of instances of entities they may connect – is specified with a num-
ber, e.g. 1, or a letter, e.g. M, that, respectively, expresses that a single instance
or multiple instances of the entity may be linked with the relationship. Both
entities and relationships may have attributes to describe their characteristics.
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Figure 1 ER diagram.

The ER model is simple and intuitive and thus is easily understandable by
database designers and users alike. The success of the ER model has lead
to multiple extensions of the original model, e.g. to model generalization,
specialization and aggregation, as published in numerous papers and books
( [14, 29, 42] and references therein).

We illustrate how ER may model biological information in Figure 1. Gene
and protein are defined as entities. Each entity is qualified by attributes repre-
sented in ovals linked to the entity they refer to. The relationship capturing the
scientifically meaningful relationship a gene codes for a protein is represented
with a connector between the two entities labeled codes. Although the model
defines a codes for relationship between the entities gene and protein, an in-
stance of the entity gene may encode no protein, one protein or many proteins.

Relationships may be characterized by one or several attributes in an ER di-
agram. For example, in a diagram aiming at representing literature references,
two entities, i.e. author and journal, may be linked by a relationship “publish”
with attributes date, volume, number, etc. These attributes characterize the
relationship, not the entities. The ER model allows n-ary relationships that
link n entities together, for any integer n > 1. For example, an alternative
representation of the literature references would be to define a relationship
“publish” between three entities: journal, date and author. In addition to these
powerful basic representation mechanisms, the ER model has been extended
to allow for the definition of a hierarchy of entity types (generalization hier-
archy). Two entities, e.g. DNA and RNA, may be sub-entities (subtypes) of
a common super-entity (supertype), e.g. sequence. When such a hierarchy is
defined, all the attributes defined at the super-entity are propagated down the
hierarchy to sub-entities. Like any modeling framework, there is no unique
way to model the information. Often a representation is best suitable for a
particular aim.
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The ER model is a formidable tool for conceptual modeling. Not only it is
easy to understand and use by both users and data providers, but it offers
valuable advantages. First, it captures adequately the level of complexity of
abstract objects that scientists need to represent. Then, unlike data models of-
fered by data management systems, ER is not biased towards a particular data
model and thus may be translated in the model of any computer system. This
is especially important, as we will see that each data model typically twists
the data with respect to its characteristics. Once an ER model is specified it is
easy to translate it into available data models including relational, XML, etc.
Many automatic and semiautomatic tools generate data structures from an
ER diagram. Finally, as we will present in Section 5, the need for semantic
integration raises the need for a formal conceptual model to represent the
data organization. The ER model seems to be little used in the biological
community. We find only 25 hits for “entity–relationship” retrieved from
PubMed in September 2006. Still, its ease and the various technological
support available make it a promising candidate for modeling conceptually
biological data as needed for data representation and integration.

2.1.2 Unified Modeling Language

UML is a notation that helps documenting system specifications [10, 51, 72].
The language provides various diagrams that characterize the structure (class,
composite, etc.), the behavior (use case, activity, state machine, etc.) and
the interactions (sequence, communication, etc.) a computer system aims at
achieving. The UML diagrams offer orthogonal abstractions or viewpoints of
a soon-to-be designed computer system that overlap significantly. Although
not all diagrams may be useful in every context, some of them appear to
be beneficial to the scientists to represent the data organization of the data,
but also to express the requirements of a system that will be designed to
support bioinformatics tasks (see, in particular, the UML use case and activity
diagrams).

The UML class diagram illustrates model elements such as classes and
types, their content, and their relationships. In order to create and evolve a
class diagram, the scientist needs to iteratively model the classes, responsi-
bilities, associations, inheritance relationships and composition associations.
We illustrate the expressive power of the UML class diagram with Figure 2
where seven classes are represented. It is worth noting that in Figure 2
all classes have the same weight and the diagram does not provide a data
organization that is gene-centric or biased towards other characteristics. How-
ever, when translating this overall abstract data organization into the data
structure related to a selected data model, the scientist may alter this uniform
representation to adapt the data to the selected data model or to improve
performance.
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Figure 2 UML class diagram representing biological objects.
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Although less critical for data integration, use cases are a powerful mech-
anism to characterize all interactions with the computer system which is
being designed. Use cases are defined by the actors (system, users, other
systems, organizations and groups) and the tasks (actions, interactions, and
associations) that the system is expected to perform [47]. For example, a use
case for searching the bibliographic references related to a particular genetic
disorder could be characterized by an actor scientist and the following six
tasks: (i) select the resource that provides information about genetic disorders,
e.g. Online Mendelian Inheritance in Man (OMIM), (ii) enter the keyword in
the form, (iii) click the search button, (iv) the search algorithm is executed, (v)
the results are returned to the actor and (vi) the bibliographic references are
extracted. In UML, a use case is characterized by a task linking two actors
or systems. The UML use case diagram represents each use case by ovals
labeled by the task it represents. In a use case, each system is represented by
a rectangle that may, itself, contain internal use cases, i.e. the tasks performed
by the system and the actors. The edges represent the interactions between
the actors and the system, or between systems. Each edge links an actor
(or a system) to a use case and a system. Tasks may exploit other tasks and
labeled edges between tasks express these paths between actors (or systems)
to systems.

The use of UML to model biological data and scientific activities is rather
limited (127 entries in PubMed in September 2006), but it offers promising
modeling for complex biological processes and systems [71] and efforts such
as the development of BioUML to support systems biology are encouraging
(http://www.biouml.org/model.shtml).

2.2 “Flat” Data Models

A flat data model uses a single mechanism (or container) to structure all
information. For example, a textual document, as a string of characters,
is a flat representation of information (flat file). The only level of structure
provided by such a model is given by the named container (here the document).
The relational model can be seen as a flat model as all information is contained
in relations (tables). As complex as the conceptual representation of the in-
formation may be, the complete diagram can be represented as a single table
(however, applying principles of database schema design and optimization [8]
will generally lead to a multi-table organization). For example, the diagram
shown in Figure 1 could be represented in a table with eight attributes –
gene name, organism, gene type, protein name, molecular mass, structure,
function and family. The relationship between two instances of, respectively,
a gene and a protein will be implicitly expressed for the instances of a protein
and gene on the same row. Such a row is also called a tuple. Alternative
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representations of information in the relational model rely on splitting the
information among multiple tables, at the cost of maintenance (there exist
various approaches to normalize schemata and minimize maintenance and
problems with update anomalies due to redundancy). Resulting tables may
be linked through foreign keys that express the relationship among scientific
objects split over multiple tables, creating a complex graph of linked tables.

A relational database schema obtained from an ER diagram or from any
other method, once used to structure data in a relational database system,
may need some transformations to improve performance, integrity and main-
tainability. For example, an instance of a table Reference with attributes title,
author, journal, date, and page number is likely to show a large amount of
redundant data as a reference authored by five people will be stored with
five rows each containing the same title, journal name, date, etc. In order to
avoid these situations, relational schemata are normalized [8]. Normalized
schemata gain in performance, but the resulting transformation often blurs
the conceptual understanding of the data set. When integrating relational
databases, approaches must extract (or reconstruct) from relational schema the
logical organization of the data. Techniques such as database views, schema
mapping (see Section 3.1) and semantic integration may facilitate the process.

2.3 Tree-structured Representations

Tree-like structures are often preferred by life scientists to represent scientific
data. Maybe the legacy of classification combined with the overwhelming tex-
tual information stored in flat files (often nested) can explain this infatuation.
Tree-like structures may be easily produced from an ER diagram by selecting
an entity for root – all entities linked to the root entity via relationships become
children of the root node, and so on. Illustrations of the process are given
in [68].

The recent advent of XML and the development of nested relational data
management system led to the development of the efficient management of
data stored in tree-like structures. In XML, data are represented by elements
and valued attributes in a tree. The XML data model was designed to accom-
modate the exchange of documents over the Internet. Markup languages such
as the Standard Generalized Markup Language (SGML) and the HyperText
Markup Language (HTML) were widely used to tag textual documents to
facilitate their processing and web publishing, respectively. To overcome the
limitations of HTML (where all tags are for display), XML was designed to
extend HTML while being significantly simpler than SGML. Later, the XML
data model was adapted for data management (see the XML schema and
XML Query Language working groups at the World Wide Web Consortium,
http://www.w3.org). Because of its legacy, the XML data model organizes
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data in a document (root of the XML tree), whose nodes are elements and
attribute values, organized with respect to the order of their occurrence and
depth of nesting in the document [1].

There are currently two categories of XML management systems: XML-
enabled and native XML [17], although the borderline between them can
sometimes be blurred. The first group includes traditional database systems
extended to an XML interface for data collection and publication. However,
the underlying representation is typically with tables. Examples of XML-
enabled systems are Oracle10i (http://www.oracle.com) and SQL Server
2000 (http://www.microsoft.com). These systems were mostly designed
to handle business tasks on the web. They have not yet been proven to
be useful in scientific contexts. Native XML systems such as Tamino (a
commercial XML management system from Software AG), ToX (an academic
XML management system being developed at the University of Toronto,
http://www.cs.toronto.edu/tox) and Galax (developed by Bell Laboratories
of Lucent Technology, see http://www.db.bell-labs.com/galax) rely on data
internally represented with XML trees, and should provide a flexibility
interesting in the context of scientific data management. The implicit order
of elements in a document, although very useful when handling textual data,
affects significantly data storage and processing of XML enabled relational
data management systems [61]. As biological data are for a large amount
textual and deeply nested, XML native systems may be favored to access and
store biological XML data.

The nested relational data model is an extension of the relational data model
that allows attribute domains to be either atomic (as in the relational model)
or valued (the value of the attribute is then a set of values, thus a relation). It
can be a more efficient storage model than flat relational databases, as the
nesting mechanism allows for implicit representation of relationships, and
avoids redundancy of data over multiple tuples and tables. While being
an extension of the relational data model, the nested relational data model
possesses a query language as mathematically sound as the relational calculus
[70]. The biological data management system BioKleisli [20, 26] uses the
nested relational data model and calculus to manipulate internally scientific
objects. Not only does the data model offer significant benefits, but the nested
relational calculus appears to be a suitable language for expressing scientific
protocols [34]. (See Ref. [49] for more information about those data models
and their used in scientific data management.)

2.4 Graph Representations

There is a large variety of scientific data which are naturally represented as
graphs. These data include all kinds of biological pathways and networks.
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Metabolic pathways represent chemical reactions used for energy production,
synthesis of proteins, carbohydrates, etc. Metabolic pathways can be rep-
resented by directed graphs, with nodes for reactions, inputs, outputs and
catalysts. Genes, gene regulatory sequences and signaling proteins, which
control the activation or suppression of gene expression, are structured in
gene regulatory networks whose graph structure is similar to metabolic path-
ways. Note that these graphs are usually directed and cyclic. Cyclic directed
graphs are typically difficult to query efficiently and also more difficult to
process with functional programming methods, which have traditionally been
developed for lists and trees. In contrast, protein interaction networks are
undirected graphs. Graph operations such as find a path between two nodes, find
the shortest path between two nodes, transitive closure (browsing through edges
until all connected nodes are met) or subgraph homomorphism (exact match of
graph structure – edges) express meaningful scientific queries.

Translating ER diagrams into graph-based data management systems is
rather straightforward. However, there are not many systems supporting rich
graph structure and graph query language such as needed in the life sciences.
Research projects such as the Biopathways Graph Data Manager (BGDM)
at Lawrence Berkeley National Laboratory (http://pueblo.lbl.gov/∼olken/
graphdm/graphdm.htm#graphDataModel) are devoted to the design and de-
velopment of a general purpose graph data management system to support
biochemical pathways and protein interaction network databases for micro-
bial organisms. A similar focus is the core of the MetaCyc effort at Stanford
Research Institute (http://metacyc.org).

The primary purpose of Object-Oriented Databases (OODB) is to design
a database that could easily model the world as classes of similar objects
while being compatible with declarations of an object-oriented programming
language such as Smalltalk or C++. In an OODB, the world is modeled in
terms of a hierarchy of object classes, valued and abstract attributes, and
collections [16]. A valued attribute assigns a value to an object, whereas an
abstract attribute links two objects. The object-oriented data model seems
similar to the ER conceptual model, but the differences between the two
models are significant. The translations from an ER diagram to an OODB
schema are straightforward as long as the ER diagram has been transformed
so that all n-ary relationships, all attributes characterizing a relationship and
all many-to-many relationships have been removed. Once the ER diagram
is defined with only one-to-one or one-to-many binary relationships with no
attribute, an OODB schema may be obtained by creating an object class for
each entity, an abstract attribute for each relationship and a class hierarchy for
each entity hierarchy. Unlike in the ER conceptual model, an object class can
inherit from multiple classes.
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The Object Protocol Model (OPM) is an object-oriented data model specifi-
cally designed to handle scientific data [19]. It allows for the definition of two
different types of classes: object and protocol classes. As in traditional object-
oriented data models, object classes in OPM are populated with identifiers
of objects of the same kind. In contrast, protocols classes are designed to
represent scientific experiments. An atomic protocol represents a process
instance, with its input and output. Expanded protocols are composed of a
complex network of connected atomic protocols. This expressive data model
is used to develop the OPM multi-database system [45] and Web mediator
[48]. The need to store scientific protocols together with the data they collect
is still critical and is currently addressed with solutions based on workflows,
as presented in Section 6.

2.5 Multi-dimensional Data Model

Scientific applications often generate large multi-dimensional arrays. These
large data sets are often stored in files or spreadsheets that provide little or
no meaningful structure. The multi-dimensional data model evolved from
the processing of data contained in spreadsheets and used by business ana-
lysts in specialized multi-dimensional databases such as Express. The multi-
dimensional data model consists of facts and dimensions. A fact can be re-
garded as an entity of an ER diagram and is represented graphically in the
multi-dimensional data model as a data cube. Each dimension corresponds to
a perspective under which facts can be analyzed, characterizing various mea-
surement data related to the fact. Dimensions can be structured in hierarchies
of levels for characterizing the modalities in which data can be grouped along
dimensions. In a dimension, there may be more than one path along which to
aggregate the data [82, 83]. Relational database systems often offer a multi-
dimensional data representation by way of the star schema that structures
the data in a cube. The star schema aims at structuring a set of mostly
numeric measures and a set of dimensions that provide the context for those
measures. A collection of dimensions uniquely defines each measure, while
each dimension is specified by a set of attributes or a hierarchy of attributes.
The star schema consists of a single fact table that contains the numeric or non-
numeric measures and several dimension tables. The fact table is usually very
large – the number of columns equals the number of dimensions it represents.
In contrast, the dimension tables are usually significantly smaller, as they
contain the non-numeric data associated with the attributes of the dimensions.
While the star schema offers great performance and is intuitive for users to
visualize, its limited multi-dimensional structure does not capture explicitly
the hierarchy between different levels of aggregations [82].
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Obviously, in the context of data integration it is critical to exploit the fact
that data are organized in a data cube or in a star schema so that the multi-
dimensional structure is understood when not made available to the user.

3 Data Integration

Once the data sources are selected, the first two challenges in data integration
are to understand the data structures of the sources to be integrated and
design a structure for the integrated data. When the analysis of the data
structure has generated a framework for structuring the data and suitable
mapping mechanisms for translating data from the remote sources to this inte-
grated structure, data integration approaches may be chosen. Data integration
approaches may be used to query heterogeneous resources or access data to
populate a local data repository. Here, we present three traditional integration
approaches: data warehouses, federations and mediations.

3.1 Scientific View of Data

There are multiple ways to represent data as presented in Section 2. Each data
source has its own data organization, data model and data structure. When
integrating these different data representation modes, integration methods
often assume a global schema, thus a selected data organization and data model
for representing integrated data. To provide the users with an integrated
view of the data, any approach needs some formalism. This integrated view
may be conceptual, if only the data organization is shown to the users, or
structural, if the data are organized and structured with respect to a data
model. Conceptual integration (illustrated in Figure 3a) maps integrated
concepts to those of the integrated resources. The approaches presented in
Section 5 typically use an ontology as a conceptual model and user interface
for accessing data. Successful integration systems such as Transparent Access
to Multiple Bioinformatics Information (TAMBIS) [76] and Knowledge-based
Integration of Neuroscience Data (KIND) [57] were developed combining
conceptual integration and mediation. Recent approaches aim at mapping not
only scientific concepts, but also scientifically meaningful relationships [50].

In this section, we will focus on approaches based on structural integration
(illustrated in Figure 3b). Although structural integration does not address
conceptual integration, it does not mean that the organizations of data within
the data sources to be integrated will correspond semantically, such that
structural integration will be facilitated. Indeed, some data organizations
maybe quite incompatible and require significant transformation in order to
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Figure 3 Conceptual integration (a) and structural integration (b).
The triangles represent the data structure (or schema), while the ovals
represent the conceptual diagram.

enable data integration. We list below some of the problems that the scientist
may meet while integrating heterogeneous data sets.

• What is the integration problem?

– Does the user already have an integrated data organization in mind?
(Thus the customization of the integrated data set will be achieved
with respect to users’ requirements.)

– Does the user wish to produce an integrated data organization that
best meets the existing data organizations of the data sources to be
integrated?

• What is the integrated data model?

– Is the data model specified for the integrated data set?

– Does it correspond to the underlying data sources to be integrated?

– Does the user wish to select the data model that best meets the existing
data models of the data sources to be integrated?

• What is the integrated data structure?

– Is the schema specified for the integrated data set?

– Does the user wish to produce an integrated schema that best map to
the schemata of the integrated data sources?
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Existing data integration approaches such as the ones presented in this section
offer limited support to the problems listed above. Most of them assume that
both the integrated schema and the mappings between the integrated schema
and the source schemata are provided. They also offer limited support for
maintaining the overall integrated architecture, e.g. with respect to changes at
the source schema affecting the integrated schema or changes at the integrated
schema affecting the mapping with source schemata. The development of
schema mapping tools, that semi-automate the mapping between schemata,
will improve this necessary support. Schema mapping tools typically assume
that the integrated schema is known and map each of the source schemata
to it by exploiting syntactic information (metadata) and semantic information
(instance) in order to generate correspondences between structural compo-
nents [28, 32, 84]. A general approach, applicable also in the context of data
integration is model management [7]. In this approach, general schemata or
“models” and mappings between them are considered as “first-class citizens”
that can be stored, discovered, reused, transformed, etc., thus providing a
useful data integration and transformation infrastructure. Recently, Clio, a
schema mapping tool developed at the University of Toronto in collaboration
with IBM, has been evaluated in the biological context of mapping the rela-
tional schema of GeneX (http://sourceforge.net/projects/genex) to the XML
schema developed to exchange gene expression data GeneXML, formerly
known as GEML [39].

Once the integrated schema and the mapping to (and from) all source
schemata are specified, a view of the integrated data sources is defined. The
notion of view was first introduced for relational database management sys-
tems to capture the customized transformation of an instance. A view is
obtained by changing the data structure such that a certain category of users
would only access the information they needed. Tables and attributes were
often hidden to some users for security reasons. In the context of data integra-
tion, the data set shown to the user is an integrated view of data sources. The
integrated schema is the structure of the view. A view may be materialized
or non materialized. A view is materialized when an instance is created,
accessing each integrated data source and loading the retrieved data into the
new structure to create a new data source (thus materialized). When users
query the view, they no longer access the integrated resources, but query the
materialized instance. A view is non materialized when the view is used
only as a querying interface and each time users query the view, queries are
propagated to the integrated resources, retrieved data are integrated before
being returned to the user.
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3.2 Data Warehouse

A data warehouse is a collection of data integrated from multiple sources
(databases, flat files, etc.) within a single system, usually a database. A data
warehouse is a materialized approach as integrated data are downloaded –
thus materialized – into the warehouse. Data from various sources usually
need to be cleansed and reconciled before being integrated into the data ware-
house. Maintenance is achieved at specified dates and within two updates the
data accessed by the user in the data warehouse may be out of date.

The development of a data warehouse typically requires the selection of
a data management system for storing the warehoused data and various
resources from which data are collected. A warehouse schema is designed in
order to structure the data in the system’s format with respect to their chosen
organization. The warehouse schema is a global schema as it structures data
retrieved from various data sources and integrated in the warehouse. Once
the warehouse schema is designed, queries or scripts are used to download
data from the data sources, and various mechanisms are applied to curate and
reconcile retrieved data that are reorganized with respect to the warehouse
data organization and translated into the warehouse format. The resulting
data source is independent from the resources from which it is generated.
Therefore mechanisms are needed for its maintenance. In addition, the de-
velopers of the warehouse are also responsible for adding computational and
analysis capabilities to the warehouse, capabilities that may be available at the
integrated resource, but no longer usable.

The effort needed to develop and maintain a data warehouse often moti-
vates the use of virtual integration frameworks such as a mediation approach
(see Section 3.4) or partially virtual ones such as link-driven federations.
Despite the additional workload, data warehouses are preferable in multiple
settings occurring when data require significant curation or when users need
privacy as well as for data mining. As data mining aims at discovering non-
obvious relationships or trends in the data, data mining algorithms typically
perform on data sets significantly less structured than in a traditionally data
management system. The development of GeneExpress [58] illustrates the
need for developing a data warehouse rather than using a virtual data inte-
gration system such as the OPM multi-database system.

When the data set includes statistics, a data warehouse exploiting the data
cube may be a suitable solution for enhancing the ability to analyze large
measurement data with respect to various orthogonal directions. On-line
analytical processing (OLAP) relies on a data structure in terms of data cubes
composed of data aggregated with respect to some parameters. In a nutshell,
a data cube is a multi-dimensional table (see Section 2.5). This data model was
introduced such as to overcome the limitations of the relational model which



3 Data Integration 1541

spreads the data over multiple two-dimensional tables and its query language
[structured query language (SQL)] which does not support the expression
of queries such as histograms, cross-tabulations, and roll-up and drill-down
features [18].

3.3 Link-driven Federations

Although the terminology of database integration is not commonly agreed
upon, we distinguish federations introduced in this section from mediations
treated in the next section. Here, a federation is a partially virtual integra-
tion approach. It has a non-materialized feature as the data are not down-
loaded into any system and remain in the various systems that host them. A
federation of databases is obtained by linking semi-autonomous, distributed
databases. Each database has significant autonomy in the distribution while
offering an interface to provide the user the capability to access integrated
resources in a unified manner. In a federation, databases do not have total
autonomy as they must maintain the links to the other members of the feder-
ation. These links constitute a materialized component of the integration and
can be seen as a data set (typically a set of indices) that characterize the way
data are integrated and need to be stored and maintained. Data providers
may develop a federation to link the data source they develop. An example of
such a federation for biological resources is Entrez developed at the National
Center for Biotechnology Information (NCBI). For the user, the federation
allows to query each of the integrated resources and conveniently navigate
from one to the other. There is no global view provided to the user. A system
such as the Sequence Retrieval System (SRS) was developed for maintaining a
federation of multiple flat file data sources [30]. The system has since evolved
to integrating flat files as well as structured databases and applications [31],
providing an object-oriented integration schema.

3.4 Mediations

The concept of mediation was first introduced by Wiederhold to provide
flexible modular solutions for the integration of large information systems
with multiple knowledge domains [89, 90]. A mediation system (or medi-
ator) integrates fully autonomous distributed heterogeneous data sources.
In contrast to federations, mediations do not materialize any information.
Instead they rely on wrappers to translate queries expressed with respect to the
integration schema into queries to an integrated data source and translate the
query results expressed in the source schema into data expressed with respect
to the integrated schema. In contrast to the multi-database approach, medi-
ators do not assume that all integrated sources will be relational databases.
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Instead integrated resources can be various database systems (relation, object-
relational, object, XML, etc.), flat files, etc. The major benefit of mediation
systems is to always provide access to up-to-date data. An example of me-
diator is DiscoveryLink (also known as the DB2 Information Integrator and
WebSphere) [38].

Although the approaches developed by the database community provide
a powerful and efficient interface for accessing and transforming integrated
biological data, they are often limited by the applications made available in
order to analyze, simulate, visualize, etc., biological data. This limitation is
due to the focus on data that ignores the integration of all resources, including
applications. In the next section, we investigate how integration approaches
developed for providing users access to all the useful applications they need
(see Chapter 44) address the issues specific to data integration.

All integration approaches require expertise in order to comprehend the
data organization, model and structure of each integrated resource. This ex-
pertise can be made available through valuable metadata (information about
the data) for automatic processing and semantic integration as presented in
Section 5.

4 Integrating Applications and Data

There are many technical solutions for integrating distributed resources into
one application. These can be seen as the “plumbing” that joins resources
together such that data can “flow” into one application. These technologies
are explored in detail in Chapter 44, but a brief overview is provided here.
These technologies for plumbing really address the lower levels heterogene-
ity: system and syntactic heterogeneity. At the system level, resources or
applications run on different platforms, use different protocols and languages,
and use a variety of call interfaces. At the syntactic level, the data are offered
in a variety of formats. To overcome these hurdles it is necessary to “include”
external resources into the local environment such that they appear to be
present within the local application. Further, these external resources need
to be “transformed” such that all resources appear to have the same syntax
and a common behavior within the host application.

Most programming languages now have the necessary libraries, etc., to
enable some sort of integration in an application setting. Java, for instance, has
Java Database Connectivity (JDBC) by which an application can connect to a
remote database and perform SQL queries upon that database. To overcome
the syntactic heterogeneity between the “Standards” in SQL, there are layers
such as Hibernate (http://www.hibernate.org) that will translate an incoming
SQL query to that hosted by the target database. Programming languages
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also usually have facilities for importing web pages and consequently running
services available via the Common Gateway Interface (CGI). All these facilities
give partial access to distributed data resources, but they do not provide
a complete or robust solution to the basic levels of heterogeneity that arise
through distribution.

In this section we will briefly review the idea of middleware and some
technical approaches to integration. By introducing some case studies from
bioinformatics, we will soon see that “plumbing is not enough” [35a]. These
technical approaches go as far as to bring all the data into one application, but
those data themselves are still heterogeneous at the level of their structure and
the values within this structure. This more difficult level of reconciliation will
be dealt with in Section 5.

4.1 Middleware

To a programmer attempting to integrate bioinformatics resources within a
single application, the fact that all the resources present different interfaces
implies that a considerable amount of effort has to be expended. For example,
consider the case when a Java program needs to access a remote database
written in C++ and feeds some of the results to another program written
in Perl. In order to do this the programmer must cope explicitly with the
different languages in question – the C++ will be invoked in one way, Perl in
another – and also deal with the distribution. The C++ program would likely
be invoked differently if it were available on the local machine. As well as
taking a large amount of effort, the resultant program is fragile. If it is decided
to mirror the database locally, the Java program will need rewriting. If the Perl
program is ported to C++, again the Java needs rewriting.

One solution to this problem is to use some middleware technology. As
the name suggests, this adds a middle architectural layer that abstracts away
from the different languages, systems and locations. It does what its name
suggests – it sits in the middle between the application layer and the under-
lying resource layer. Following the example above, instead of writing code
in Java to invoke the C++ database directly, both will be wrapped with the
middleware technology. This technology then has the task of managing the
communication between these wrappers. While this seems overly complex, it
actually simplifies many issues. The Java programmer no longer has to worry
whether the C++ database is local or remote nor does it matter that interaction
is needed with both C++ and Perl. Therefore, middleware technologies offer
an attractive solution to overcoming system and syntactic heterogeneity in a
distributed setting.
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4.2 CORBA

CORBA is one middleware solution to the problems of integration. It arose in
the 1990s, and is now a mature industry standard and was widely proposed
as a solution to the problem of integration [85], especially in bioinformatics
[78, 85].

CORBA attempts to present a common view of the world by presenting it
from an object modeling perspective. To continue the example introduced
earlier, to the Java program both the C++ database and the Perl program
would appear to be Java objects. Interaction with these objects would be
identical to interaction with any other Java object. Similarly, on the C++ side,
queries to the database would appear to be coming from a local C++ object
rather than from remote Java.

In order to enable this technology, the target resources can be described in a
common language. This common language can then be compiled automat-
ically into the programming language of choice, which then enables these
target resources to appear as if they were part of the local host application. A
core feature of the CORBA specification is this language – the Interface Defini-
tion Language (IDL) [78]. This language is used to describe what operations,
including return types and arguments taken, target resources perform, and it
can be used by CORBA compliant tools to generate code for both providing
access to the services and the means for the services to be accessed. One low-
level task performed by CORBA is to define how much memory is used for
primitive types such as real and integer numbers. Typically on a PC an integer
uses 2 bytes of memory and UNIX machine 4 bytes of memory. This system-
level heterogeneity needs to be smoothed away, otherwise numbers too big
for a platform will cause errors at the application level.

Once described in IDL, a platform-specific compiler takes this code, and
generates skeleton and stub code for each class, attributes and operations
upon that class. The skeleton code includes all the code needed to support
a server-side application for hosting the remote resource. There is code gen-
erated for the client side; it includes all code necessary for calling the remote
object and simply makes the remote objects appear as if they were located “in”
the host application. These requests from the application are all processed via
an Object Request Broker (ORB) which, as its name suggests, brokers requests
between objects. By this seemingly heavy and complex set of procedures,
it is possible to build robust, integrated applications including distributed
resources running on different platforms, using different languages.

The European Bioinformatics Institute (EBI), in particular, invested a great
effort in providing CORBA solutions for many services, including EMBL
(http://corba.industry.ebi.ac.uk) [40, 67, 69]. The Object Management Group
(OMG) formed the Life sciences Research Group (LSR) that has developed
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several standards for services including bibliography and sequence resources
(http://www.omg.org/lsr). However, the uptake of CORBA by the com-
munity has not been widespread. The main reasons for this have been the
perception that CORBA is too heavyweight a mechanism – the large effort re-
quired to develop the standards seen as necessary by the Object Management
Group (OMG) and the implementations themselves obstructed development.
Many of the early ORBs were expensive and focused on enterprise-level
computing, which did not fit well with the bioinformatics cottage industry.
In addition, many ORBs themselves did not actually inter-operate. Finally,
CORBA seemed to be plagued by continual problems with tunneling through
firewalls, defeating the promise of location independence.

4.3 Web Services

Web services [25] take the same basic approach to distribution as CORBA,
but with several significant differences. At heart, both take a description of a
service being offered, and produce code for developing clients and servers.
Web services takes the view that distributed tools and data are offered as
“services” to applications that wish to use them. Any such service-orientated
architecture has the following components:

• A standard communication protocol between services and host applica-
tions.

• A uniform data representation and exchange mechanism.

• A standard language for describing the service’s attributes and operations.

• A mechanism for registering and discovering web services.

All these have their counterparts in CORBA, but web services take advantage
of developments in web technology not apparent during CORBA’s earlier
development. These are the standard Internet protocol HyperText Transfer
Protocol (HTTP) and XML. The approach also tries to make delivering a Web
Service as lightweight as possible.

The Simple Object Access Protocol (SOAP) is the channel used for commu-
nication between a web services provider application and a client application
[25] (http://www.w3.org/TR/soap). SOAP re-uses HTTP for transporting
messages. Messages are passed between services using XML documents. The
structure for SOAP message includes an envelope and a body. The body itself
describes a message to a service, for instance, a call to a particular operation
or communicates failure. The envelope gives the metadata necessary for this
invocation.

As CORBA’s IDL is used to describe services, web services use another XML
document type to describe services – Web Services Description Language
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(WSDL). Just as with CORBA, these descriptions are compiled to generate
client and server code. These can be for a variety of programming languages
on a variety of platforms. Client and server, once deployed, are ready to pass
SOAP messages between one another. Finally, just like CORBA’s naming
and trading services, web services need to be discovered for use. WSDL
documents can be placed in a registry based on the UDDI framework and
these registries can be searched to retrieve WSDL descriptions of interest. A
user would then compile to generate a client and use information from the
WSDL description to locate and use the service.

Web services take a different technology approach to that of CORBA. While
the latter uses a remote object approach which provides the ability for passing
around data and subsequent fine grained client–server interaction with that
data, web services use a “document-based” paradigm. Here, potentially
complex structured data is passed between services in bulk. The hope is that
instead of a series of fine-grained interactions between client and server, fewer
coarser, but richer, interactions will happen – something of clear benefit when
faced with any serious problems of network latency or failure.

Web services have already seen a much higher uptake than did CORBA.
Taverna, a bioinformatics workflow editor [63], can currently access over
1000 web services, with many of these being third-party services. Stein [75]
sees web services as the technology that has the possibility of uniting the
fragmentary bioinformatics world. Where CORBA took the resources of a
large institution to deploy, web services can easily be provided by a single
user. This is why we already see many services provided by many institutions.

4.4 P2P

P2P architecture models a network of autonomous systems as a graph of
nodes called peers (Figure 4b). Unlike the client/server architecture (Fig-
ure 4a) used in distributed computing models where some computers are
dedicated to serving others, in the P2P architecture all participants can be
alternatively clients or servers in the network. In a P2P architecture partici-
pants rely on one another for service as each peer is expected to offer a service,
typically sharing its CPU with other peers.

Many P2P networks have been developed and the evaluation of such archi-
tectures has been published in multiple papers (a useful bibliography main-
tained until 2003 is available at http://www.cs.toronto.edu/db/hyperion/
bibliography.html). Often P2P systems have been developed for sharing data
over the web. For instance, Napster is a P2P network devoted to sharing
music. Still, such systems can also be used in domain-specific contexts such
as bioinformatics where scientists cannot only share their CPUs, but also
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Figure 4 (a) Client–server. (b) P2P

share integrated resources, access to databases or applications alike. Such
communities are implemented as grids.

4.5 Grid

It is easy to see how the Grid paradigm (see Chapter 44) of sharing resources
fits into the world of bioinformatics: a sophisticated, complex bioinformatics
in silico experiment may involve people, many forms of data, instruments, etc.,
and all of these could share resources in a Grid [36].

High-throughput biology is forcing bioinformaticians to adopt distributed
computing solutions, such as Grid, within bioinformatics – it simply has to
happen. In addition, many bioinformatics resources have realized the need
to overcome the problems of semantic integration (see Section 5). From
the technical side, web services and Grid computing are coming together to
form a potentially lightweight, transparent access to the problems of system
heterogeneity and distribution. On a more prosaic level, funding bodies see
the Grid as a potentially high-impact area and funds have been available
for large scale projects using these technologies. Finally, much of the Grid
and web world follows an open-source agenda, suggesting a larger uptake of
the technology. Despite the continuing problems described below, the cases
described in Chapter 44 suggest that some aspects of integration will become
much easier.

5 Semantic Integration

A challenge in data integration is to properly understand the data provided
by a resource such that they are meaningfully integrated. To address this
challenge, there is a need to integrate or at least make use of information and
knowledge rather than data only, and exploit all the information related to the
way the resource makes these data available. As illustrated in Figure 5, we
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Figure 5 From data to knowledge.

refer to data instance as a string of characters carrying no meaning, because
no context or metadata are given. In contrast, we speak of information and
knowledge when additional metadata and context information provide some
level of meaning or “understanding” of the data. For example, tp53 without
further context is only a data string of four characters, while gene TP53 can be
considered information, with “gene” providing a minimal context to help a
human or a system “interpret” the subsequent data string.

Metadata are data about data and thus are used to describe the content,
context, and “meaning” of a resource. Metadata add value to the data so that
together they define information. For example, a data source using a relational
table called “gene” with an attribute “symbol” provides the structural terms
gene and symbol as metadata. When extracting the value TP53 from the
resource, this is only a string of characters, but with the knowledge that
TP53 is the value of attribute symbol of table gene, we obtain information:
gene symbol TP53. (In a data integration context, the context/metadata string
“gene” might help the system determine which tables to access to find related
information. Moreover, “gene” might be a term from a controlled vocabulary
or a concept from an ontology, thus providing additional context information
about “TP53”.)

A complementary challenge in data integration is to provide users with a
meaningful view of the integrated data set. While data may be internally
represented and stored in a complex data structure poorly reflecting the users’
understanding of the data, it is critical that the users are provided a mean-
ingful view of the data set. Such a view is closer to the conceptual view as
expressed with ER. In this section we present some approaches that exploit
semantics to either provide useful metadata to facilitate data integration or to
specify the overall organization of integrated data to users.
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5.1 Identifying Objects

Each time a scientific object is stored in a data repository (e.g. a database)
it is typically assigned an identifier. The problem is that as the number
of resources providing information about each scientific concept (e.g. pro-
tein) increases, the number of identifiers for each instance of the concept
multiplies. Although two data sources may provide information about the
same concept, the challenge for integrating the data from the two resources
relies on the mapping of two different identifiers. Sometimes, a scientific
entity has not only as many identifiers as the number of data sources that
contain information about it, but it does not possess a name upon which
the entire community agrees. These combined discrepancies make it very
difficult for humans and systems alike to refer to entities without ambigu-
ity. To overcome the lack of naming process, the scientific community has
adopted identifiers to name, or to refer to in an unambiguous way, the
scientific objects. Examples of this adoption mechanism can be found with
literature references typically identified for PubMed identifiers and sequence
accession numbers from GenBank. Once these identifiers are adopted by the
community, they become new attributes for most of the resources providing
information about the scientific concept to which they refer. (In general, while
referring to the commonly accepted identifier, the data provider still keeps its
redundant internal identification process.) This avalanche of different ways
of identifying an instance may be overcome by various resources that aim
at providing for each entry the mapping between many existing identifiers
in various data sources. GeneCards [66] and Genew [86], both databases
of human genes, can be seen as playing this role. The effort to resolve
conflicts in identification in life sciences led the Object Management Group
(OMG) together with the Interoperable Informatics Infrastructure Consortium
(I3C) in conjunction with vendor members including Sun Microsystems
and IBM to design an identifying framework called Life Science Identifier
(LSID) that locates scientific entries within the resource that hosts them
(http://www.omg.org/technology/documents/formal/life_sciences.htm).
These identifiers play a role similar to URLs to locate web pages. LSID uses
a uniform resource name (URN) that contains five parameters that uniquely
identify the data of interest [73]. An example of an LSID is: urn:lsid:ncbi.nlm.
nig.gov:GenBank:T48601:2. The five parameters are: a mandatory pref-
ace for LSID data (urn:lsid), the Internet domain of the organization that
assigned the LSID to the data (ncbi.nlm.nig.gov), the name of the data
source (GenBank), and the last two parameters are the name or identifier
as defined by the data source authority (T48601) and version number (2)
of the scientific entry. The use of identification frameworks such as LSID
offers numerous benefits. It clarifies the identification of scientific objects with



1550 42 Integrating Biological Databases

respect to each data provider. Instead of refereeing to an often meaningless
string (e.g. T48601) whose interpretation may be ambiguous, identifiers
such as LSIDs carry enough context information to avoid misinterpretations
and ambiguity. Obviously, such identifiers will be valuable to express the
multiple links between entries among heterogeneous distributed resources.
Another advantage of LSID is that when automatically processed, systems
cannot only access the data source (the URL is included in the URN), but
also may link that resource with a known data entry format (e.g. a XML
DTD) in order to process automatically the entry once retrieved [73]. The
involvement of database management systems vendors in the design of
this identification format illustrates the need for meaningful identification
in the life science. However, using such a common format to identify
scientific objects does not resolve the problem of unique identification. For
example, the two distinct LSIDs urn:lsid:au.expasy.org:SwissProt:U64442:1
and urn:lsid:www.gene.ucl.ac.uk:HUGO:APC both refer to the same scientific
object hosted in two different data sources, respectively UniProtKB and
Genew. Resources aiming at maintaining identification mappings between
resources combined with a specific and meaningful identifier such as offered
by LSID may be the solution to the current challenge of identification and loca-
tion of scientific data. Although LSID will not solve the problem of redundant
identification of scientific objects, it will facilitate the unambiguous mapping
of equivalent identifiers for better data integration. Various viewpoints or
contexts may affect the meaning of scientific object identity and, thus, life
science identifiers should have the ability to match the different senses of
“sameness” that pervade the life sciences [68].

5.2 Representing Metadata

Data are only as useful as the metadata that accompany them. Metadata, the
data about data, inform the user, whether computer or human, about how to
interpret those data. We use metadata at every stage of any bioinformatics
representation or analysis. Take, for instance, a UniProt/Swiss-Prot record.
The real data, the sequence itself, is only a small proportion of the record. Most
of the record is taken up with management information (accession numbers,
identifiers, change dates, etc.), descriptive metadata (gene names, species,
organelles, keywords, meaningful names, etc.) and then broader and more
detailed knowledge about the sequence (individual features, comments on
disease and function, etc., cross-links to other databases, bibliographic refer-
ences, etc.). All this is metadata about the sequence. Of course, what is viewed
as metadata depends on where the user is standing – we are well acquainted
to using metadata as data. There is data about data about data, etc.
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How should all these metadata be represented so that they are most useful?
Data without metadata are almost useless, but the usefulness of those meta-
data very much depends on their representation. Metadata can be captured in
a whole spectrum of presentations: natural language (glossaries), structured
vocabularies, frame-based representations, formal systems, through to logic
representations. This spectrum covers the range from that only really inter-
pretable by humans to that interpretable by computers and, with some help,
by humans.

Bioinformatics metadata fall into two categories – the schema that struc-
tures the data and the values that describe the data. For most of its history,
the bioinformatics community has used natural language or stylized natural
language to describe its data. In the early days, with little data, this was easy,
as only humans used those metadata. With the growth of volumes of data
and creeping heterogeneity at the semantic level, this simple approach became
untenable.

Controlled vocabularies were the next step. Simple keywords were used
to describe database entries, such as Swiss-Prot keywords, and eventually
these keywords were defined. We now see the growing use of vocabularies
generated from ontologies to provide semantically rich, consistent metadata.
Similarly, structures for data have moved from proprietary ASCII encodings
to increased used of relational schemata, XML and also ontologies to provide
the structure in which values are placed. Various efforts to integrate data
demonstrated the role of generic schema and structured vocabularies, which
will be described below.

The Resource Description Framework (http://www.w3.org/TR/rdf-con-
cepts) is one of a range of technologies that aims to support the Semantic
Web. This is the vision for the next stage of the development of the web,
where it will move from an artifact only really interpretable by humans to one
interpretable by both humans and computers [6]. This move is predicated
upon the use of metadata that will describe both the content and services
available on the web. The Resource Description Framework (RDF) is the
means by which this metadata will be provided.

RDF uses a system of triples – a subject, a predicate and, finally, an ob-
ject – to describe resources. For example, a resource or subject might be a
UniProt/Swiss-Prot record, a predicate would be “has accession number” and
the object would be “P21598”. The object can be another resource, rather than
only a value, so we could describe that sequence A is similar to sequence B.
Each of these elements has its own URN (see above) to identify it. The mass of
triples forms a graph describing resources. What is important is that the RDF
triples have a simple, but formal semantics. This means that they are easily
exported from data sources into this simple format and then interpretable by
computers.



1552 42 Integrating Biological Databases

Graphs can be aggregated, stored in RDF stores [13, 91] and queried with
SPRQL – an RDF query language (see http://www.w3.org/TR/2005/WD-
rdf-sparql-query-20050721). We are beginning to see more data in bioinfor-
matics described using RDF – UniProt/Swiss-Prot (http://www.isb-sib.ch/
∼ejain/ rdf) and Affimetrix (http://www.affymetrix.com/community/
publications/affymetrix/tmsplice/index.affx) provide a great deal of ge-
nomic data described using RDF. YeastHub [22] is an example of integration
using RDF technology. Here, a series of third-party yeast resources are simply
transformed into RDF and automatically integrated by virtue of RDF’s simple
data model.

Whatever the representation for these metadata is, they have to represent
a shared understanding for their domain. As already described, one of the
main barriers to integration is the heterogeneity in the semantics of the data
being integrated. Integration becomes much easier if the semantics of those
data are described in a form that captures the understanding of their com-
munity [79]. The most conspicuous example of this is the Gene Ontology
(GO)’s use for describing the major attributes of molecular functionality across
bioinformatics [81]. Similarly, we see generic representation of schema for
certain domains, such as pathways in BioCyc [46], protein families [92] and in
XML schema for many domains [44,88]. One technique for describing both the
structure and values for a domain are ontologies and these will be described
in the following section.

5.3 Ontologies and Data Integration

In the following, we briefly introduce ontologies and describe the role they
play in the context of data integration; for a detailed exposition of ontologies
in molecular biology see Chapter 29. In computer science, ontologies are
artifacts used to (partially) formalize a domain of interest by identifying and
uniquely naming relevant concepts and the relationships between them. In
the broadest sense of the word, controlled vocabularies, thesauri and tax-
onomies (classification hierarchies), even database schemata are sometimes
called ontologies. In the narrower sense, ontologies are often defined to be
“explicit and formal specifications of a conceptualization” [37]. Description
logics (DLs) are decidable fragments of First Order (FO) logic that are often
used to define ontologies. [This means that there are algorithms for answering
certain questions, e.g. is concept C subsumed by concept D (an implication
problem), is a concept definition satisfiable or consistent with another concept,
etc.] The vocabulary of a DL ontology consists of a set of concept (or class)
names and a set of roles or relationships which are used to interrelate concepts.
Specifically, an ontology consists of a set of axioms interrelating concept names
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Figure 6 Ontology in graph form (a) and formalized in DL (b).

and relationships, thereby constraining the set of possible interpretations for
these symbols.

In the context of databases, ontologies may be used to describe the informa-
tion pertaining to a particular scientific object, thus providing the foundation
for data characterization and schema definition. Such usage is presented in
detail in Chapter 29. Another use of ontologies consists of the description of
how various scientific objects interact. With an ontology, one may define an
integrated conceptual model (see Figure 3 in Section 3.1). This second usage
mentioned in Chapter 29 is described in detail in this section.

5.3.1 Example

Figure 6 depicts an ontology in graph form (left) with oval nodes representing
concepts of interest (here from a neuroscience domain: Neuron, Axon, Den-
drite, etc.) and labeled directed edges expressing binary relationships between
concepts. For example, has(Neuron, Compartment) means that every Neuron
has some Compartment(s); the upward unlabeled arrow means “is a”, e.g.
isa(Soma, Compartment), i.e. soma is a compartment. In the center-right of
Figure 6 the ontology axioms are given as formulas in DL (logical constraints).
For example, the first line in the DL ontology is syntactic sugar for the FO logic
formula:
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∀x [Neuron(x)→ ∃ y has(x, y)∧ Compartment(y)],

which states that if x is a neuron, then there exists some y which is part of x
(i.e. “x has y”) and which is a compartment.

5.3.2 From Information to Reasoning

Domain knowledge expressed in DL can be seen as a kind of “formal meta-
data”, potentially capturing more semantics than their informal cousins, i.e.
controlled vocabularies, simple taxonomies and thesauri:

• As mentioned earlier, controlled vocabularies already provide a simple mech-
anism for uniquely and consistently naming object classes of interest. How-
ever, there is little additional functionality – beyond consistent naming,
which already is a significant achievement in practice – that is offered by
controlled vocabularies.

• A taxonomy provides a classification mechanism, typically expressed as a
subclass–superclass relationship. In biology, a taxonomical unit (taxon) is a
named group of organisms. Taxa are organized into a hierarchical scheme.
Traditionally, scientific names have been directly used as taxa, but this leads
to ambiguities due to changes in the naming schemes and the meaning of a
name over time [43].

• A thesaurus, creates relationships between terms of interest using special
relationships such as “broader_than(x,y)” and “synonym(u,v)”, stating that
the term/concept x is broader than y, and that u and v can be used in-
terchangeably. It is easy to see that an information retrieval system or a
database system can exploit such information when answering user queries.
In particular, when a user asks for information on x, then synonyms and
subconcepts of x (and sometimes even superconcepts) can be listed. (The
same is true for taxonomies.)

Ontologies can further refine the domain knowledge capture by providing
additional constraints that the other formalisms cannot provide. A basic idea
of ontologies, especially when formalized as DL axioms, is to define (new)
concepts in terms of other (given) concepts. For example, in Figure 6, we
define the constraint expressing that for something to be a Spiny_Neuron, it is
necessary and sufficient to be a neuron and to have spines; in DL:

Spiny_Neuron≡ Neuron ∩ ∃has.Spine.

Translated into FO logic this statement becomes:

∀x [Spiny_Neuron (x)↔ [Neuron(x) ∧ ∃y has(x, y) ∧ Spine(y)]].
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From this logic axiom it follows the following statement (among others): spiny
neurons are a subclass of neurons.

In order to compare the modeling capabilities of the different formalisms,
consider, for example, a controlled vocabulary that includes the terms Mono-
cyte, Leukocyte and Macrophage. The use of such a vocabulary limits (in
a positive sense) the number of “allowed terms”, e.g. when annotating a
microscopic image. A thesaurus or taxonomy based on this vocabulary can
add more information, e.g. by saying “isa(Monocyte, Leukocyte)” or “syn-
onym(Monocyte, Macrophage)”. In this way, when running a database search
for “Leukocyte” or “Macrophage” related information, a system can take the
information captured by the thesaurus or taxonomy to expand the search in a
way that guarantees that all relevant data is returned. Using an ontology, even
more information can be specified. For example, we might want to define that
macrophages are those monocytes that occur in tissue:

Macrophage≡Monocyte ∩ ∃occurs_in.Tissue.

Additional information could be captured in an ontology, e.g. on the process
that has a monocyte move into the tissue.

5.3.3 Biological Ontologies

Over the years, life science has generated multiple vocabularies and more
complex conceptual models to organize, represent, and share scientific
knowledge. The Medical Subject Heading (MeSH) published by the National
Library of Medicine is a controlled vocabulary used for indexing articles
of Medline/PubMed (the complete description of MeSH is available at
http://www.nlm.nih.gov/mesh/meshhome.html). The 22 568 MeSH de-
scriptors include broad headings (e.g. anatomy) and specific ones (e.g. ankle)
arranged in both an alphabetic and a hierarchical structure, and linked with
thousands of cross-references that assist in finding the most appropriate
MeSH Heading. An example of a large meta-thesaurus (i.e. combing informa-
tion from multiple thesauri) is the Unified Medical Language System (UMLS)
from the National Library of Medicine (http://www.nlm.nih.gov/research/
umls/umlsmain.html). A prominent biological ontology is GO. The GO
project is a collaborative effort to address the need for consistent descriptions
of gene products in different databases (http://www.geneontology.org). It
aims at capturing information about molecular functions, biological processes
and cellular components. Additional biological ontologies include RiboWeb
which structures the ribosome as well as supplementary functional data
(http://smi-web.stanford.edu/projects/helix/riboweb.html) and the Fun-
gal Anatomy Ontology (FAO) (http://www.yeastgenome.org/fungi/fungal
_anatomy_ ontology/index.html) which is a controlled vocabulary that de-
scribes the anatomy of fungi and other microbes.
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Conceptual models in all their forms, from the simpler vocabularies to the
most complex and expressive logics, are increasingly used for biological data
integration. They are used to provide meaningful annotations to biological
data to improve data access or data sharing and integration through textual
search engines. Examples of such uses include the interface provided by NCBI
to search PubMed visa MeSH terms (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db =mesh) and the annotations of EBI. UniProt UniProtKB/Swiss-
Prot has joined the GO Consortium and has adopted its standard vocabu-
lary to characterize the activities of proteins (http://www.ebi.ac.uk/GOA).
Ontologies may be used to provide users with a meaningful data repre-
sentation of integrated data as explained in Section 3.1 and illustrated in
Figure 3(a). A precursor was TAMBIS developed at the University of Manch-
ester (see http://imgproj.cs.man.ac.uk/tambis) [79]. More recently, KIND,
like TAMBIS, has combined mediation and ontology approaches to integrate
heterogeneous autonomous data sources [55]. KIND was developed at the
Super Computer Center of San Diego (http://www.npaci.edu/DICE/Neuro).
Current approaches aim at mapping not only scientific concepts, but also
scientifically meaningful relationships [50]. Conceptual models may also be
used to provide scientists valuable support when exploring the wide scope
of available resources to express their scientific protocols. Path-based guiding
systems use conceptual models to annotate the graph of existing biological re-
sources (databases and applications) and return paths on physical resources to
evaluate scientific protocols expressed against the conceptual model. BioGu-
ide [24] (http://www.lri.fr/∼cohen/bioguide/bioguide.html) and BioNav-
igation [50] (http://bioinformatics.eas.asu.edu/BioNavigation.html) are ex-
amples of such systems.

5.3.4 Ontologies and Data Integration

Figure 7 illustrates a number of uses of ontologies and articulations (mappings
between ontologies) in a data integration setting [11, 55]. Figure 7(a) shows
an architecture which includes, in addition to standard data access services
(e.g. to run SQL queries on a database), also “registration services” to register
schemata of data sources with one or more ontologies. Based on these source-
to-ontology mappings, a semantic mediation service can support interlinking
and grouping of data based on conceptual level information (Figure 7b).
Sometimes more than one ontology needs to be considered. In this case,
articulations, i.e., mapping between ontologies, can be employed, essentially
creating a “merged ontology”.

When resources already provide a description of their data with ontolo-
gies, these ontologies need to be integrated to integrate the underlying data
sets. When several ontology editors such as Protégé [60] (a free, open-source
ontology editor and knowledge-base framework developed at Stanford and
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Figure 7 Semantics-enhanced data integration architecture (a) and
integration mappings from the data domain to the ontological domain
(b) (see Ref. [11]).

available at http://protege.stanford.edu), Chimaera [59] (developed at Stan-
ford and is available at http://www.ksl.stanford.edu/software/chimaera) or
OilEd [4] (an ontology editor developed at the University of Manchester and
available at http://oiled.man.ac.uk) allow scientists to define and manage
their ontologies, systems such as PROMPT [62] and ONIONS [23, 35, 65]
(http://www.loa-cnr.it/Ontologies.html) allow the integration (merging) of
ontologies, thus facilitating the data integration process.

5.4 Semantic Web

The Semantic Web [6] is a project for developing technologies and standards
that capture some of the semantics of documents, particularly web docu-
ments. The vision is that Semantic Web technologies will enhance conven-
tional searching, browsing and integration techniques by taking advantage
of machine-processable annotations of documents and data. The Semantic
Web can be viewed as a set of standards including XML, RDF and OWL
(Web Ontology Language). A description of the features of the language
OWL is available at http://www.w3.org/TR/owl-features. In general, the
most up-to-date and complete information about the Semantic Web activity,
including documents and announcements regarding related implementation,
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is available at the working group web site hosted at the World Wide Web
Consortium (http://www.w3.org/2001/sw). XML, introduced in Section 2.3,
is a format developed to exchange data over the web. RDF introduced in Sec-
tion 5.2 is the framework developed to describe resources on the Web. OWL
is a family of web ontology languages, i.e. OWL-Lite, OWL-DL and OWL-
Full. OWL-Lite supports classification hierarchies and simple constraints and
is easy to process, whereas OWL-DL corresponds to a DL, i.e. a decidable
fragment of FO logic. OWL-DL is more expressive than OWL-Lite, while
retaining computational completeness, i.e. questions about whether an OWL-
DL formula is implied by a set of OWL-DL axioms (an ontology) are still
decidable. In contrast, OWL-Full offers maximum expressiveness, but is no
longer decidable. A logic is decidable if there exists an algorithm such that
for every formula the algorithm is capable of deciding in finitely many steps
whether the formula is valid or not. A decidable logic allows a mechanism
to answer questions expressed in the logic, thus validating or not any given
statement. As biological ontologies aim at allowing reasoning about scien-
tific objects, it is critical to provide a validation process, therefore to use a
decidable language to express statements. OWL constructs include mecha-
nisms for identifying resources (RDF schema features), property restrictions
(e.g. quantifications such as allValuesFrom), class interaction (e.g. intersection
Of), comparison operations (e.g. equivalentClass), restricted cardinality (e.g.
minCardinality), versioning (e.g. priorVersion), property characteristics (e.g.
SymmetricProperty) and annotations. All terms cited are OWL constructs as
specified in the OWL Guide (http://www.w3.org/TR/owl-guide). This set of
constructs allows the reasoning about resources and thus can be exploited to
achieve meaningful data integration.

Many technical issues underlying the Semantic Web, e.g. automated deduc-
tion and graph-based knowledge representations, have been studied exten-
sively. The importance of the Semantic Web lies in the adoption of standards
for metadata, knowledge representation and reasoning, and thus the potential
leverage for joint tools and services. For more information on the Semantic
Web, see http://www.w3.org/2001/sw and http://en.wikipedia.org/wiki/
Semantic_Web.

6 Scientific Workflows

Scientific workflows are becoming recognized as an important unifying mech-
anism for combining scientific data management, analysis, simulation and
visualization tasks, as witnessed by the following recent examples:
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Meetings

• Scientific Data Management Framework Workshop, Argonne National
Labs, August 2003, http://sdm.lbl.gov/∼arie/sdm/SDM.Framework.
wshp.htm

• Sixth Biennial Ptolemy Miniconference, Featuring the Kepler Project, May
2005, UC Berkeley;

• LINK-Up Workshop on Scientific Workflows, San Diego Supercomputer
Center, October 2004, http://kbis.sdsc.edu/events/link-up-11-04

Workshops

• Workflow in Grid Systems Workshop, GGF10, Berlin, March 2004,
http://www.extreme.indiana.edu/groc/Worflow-call.htm

• e-Science Grid Environments Workshop, e-Science Institute, Edinburgh,
May 2004, http://www.nesc.ac.uk/esi/events

Special issues devoted to the topic [27, 54].

Roughly speaking, the goal of scientific workflows is to capture scientific
data handling, processing, and visualization steps in a way that facilitates
repeated execution (often with different parameter settings or varying input
files), possibly “steered” and guided by runtime user interactions. Other
goals include reuse of workflows and workflow components (tasks, modules,
steps, or actors), documentation and sharing of workflows, and capturing
data provenance of the products created through a workflow. The various
aspects of data integration, as discussed above, can often be considered as
specific (often upstream) tasks of a larger workflow or data analysis pipeline,
with downstream analysis and visualization components. In a sense, sci-
entific workflows complement the more “static” data integration obtained by
wrapping scientific data sources at the schema or conceptual level (e.g. via
ontologies) and resulting in integrated or mediated data sources, by providing
a dynamic process integration which includes elements of data integration at
various stages or steps, but which also encompasses the overall scientific data
management and analysis workflows that scientists need to consider as part
of their scientific investigations.

6.1 Example: Promoter Identification Workflow (PIW)

Figure 8 shows a high-level, conceptual view of a typical scientific “knowl-
edge discovery” workflow that links genomic biology techniques such as
microarrays with bioinformatics tools such as BLAST to identify and char-
acterize eukaryotic promoters – we call this the PIW (see also Refs. [53, 64,
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Figure 8 Conceptual (“napkin drawing”) view of a PIW.

87]). Starting from microarray data, cluster analysis algorithms are used to
identify genes that share similar patterns of gene expression profiles that
are then predicted to be coregulated as part of an interactive biochemical
pathway. Given the gene identifiers, gene sequences are retrieved from a
remote database (e.g. GenBank) and fed to a tool (e.g. BLAST) that finds
similar sequences. In subsequent steps, transcription factor-binding sites and
promoters are identified using specialized tools to create a promoter model
that can be iteratively refined. While Figure 8 leaves many details open, some
features of scientific workflows can already be identified: there are a number
of existing databases (such as GenBank) and computational tools (such as
Clusfavor and BLAST) that need to be combined in certain ways to create the
desired workflow. Even at this “napkin-drawing” level, scientific workflows
are often data-centric, with edges corresponding to the dataflow between
different computational components or databases. Unlike conventional (e.g.
Unix) pipelines, scientific workflows may involve loops (such as the one from
Step 8 to Step 5 in Figure 8) and often include explicit user interaction, e.g. to
determine revised parameter settings, threshold values, etc., or the selection
of data objects to be passed on to downstream steps.

In the past, accessing remote resources often meant implementing a wrap-
per that mimics a human entering the input of interest, submitting an HTML
form, and “screen-scraping” the result from the returned page [52]. To-
day, more and more tools and databases become accessible via web services,
avoiding low-level screen-scraping steps. Another trend is the development
of web portals such as NCBI (http://www.ncbi.nlm.nih.gov). Nevertheless,
chaining together workflow components, whether they are web services or
other applications that are invoked, e.g. through shell commands or scripts,
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creates a number of problems that are similar to those found in data inte-
gration and thus can be similarly addressed, e.g. the various components are
typically developed by independent parties and thus often do not use the
same exchange format. Even if a common exchange (meta-)language such
as XML is used, the different concrete XML schemata or DTDs being used
require additional data transformation and schema mappings steps, such that
the output of component n – 1 fits the structure of the input required for
component n. Special intermediate components that can reconcile structural
and/or semantic heterogeneities are sometimes called shims [41] or adapters
[12] and can be seen as the workflow equivalents of wrappers or mediators in
“conventional” data integration.

Figure 9 depicts a snapshot of an implementation of (part of) PIW in Kepler
(http://kepler-project.org) [53]. Kepler is an extension of the Ptolemy II sys-
tem specifically designed for scientific workflows. The Ptolemy project studies
modeling, simulation and design of concurrent, real-time, embedded systems
with a focus on assembly of concurrent components (http://ptolemy.eecs.
berkeley.edu/ptolemyII). Using Ptolemy II terminology, we call the individual
workflow steps actors, since they act as completely independent components
which communicate with each other only through the dataflow channels
indicated in Figure 9. A mechanism for collapsing details of a sub-workflow
into an abstract component (called composite actor in Kepler) is essential to
tame complexity. The upper-right window in Figure 9 has well-defined in-
put and output ports, and thus corresponds to a (sub)-workflow that can
be collapsed into a more abstract, composite actor (called “Gene-Sequence-
Processing”) as shown. Also, backward loops as the one in Figure 8 can often
be avoided by incorporating higher-order collection programming constructs
(known from functional programming, e.g. “map” or “fold”) in the visual
workflow language, resulting in a more comprehensible overall workflow
model.

6.2 Scientific Workflow Requirements and Desiderata

Many scientific workflows exhibit a number of common “stages” or steps such
as the following: (i) discovery of data sets, often by browsing and searching
based on metadata of the data sets, (ii) querying and retrieval of the relevant
data sets or parts of them, (iii) application of an “analysis pipeline” – in one or
more analytical steps, e.g. cluster analysis – to the data sets, (iv) visualization
and comparison of the results by the user, (v) repetition of some or all of
the above, possibly with changed parameters and/or data sets until the user
achieves a satisfactory result, and (vi) registration and storage of the analysis
results along with workflow execution metadata (e.g. to facilitate repeatability
of a workflow run).
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Scientific workflows often exhibit particular “traits”, e.g. they can be data
intensive, computer intensive, analysis intensive and visualization intensive
[53]. Depending on the intended user group, one might want to hide or
emphasize particular aspects and technical capabilities of scientific work-
flows. For example, a computational biologist with extreme computational
requirements and producing very large volumes of data might be interested
in low-level workflow aspects such as data movement and remote job control.
Thus, having workflow components (or actors) that operate at this level will
be beneficial to the computational scientist. Conversely, a scientific workflow
system should hide such aspects from analytical scientists who do not need
specialized data and cycle management.

From a technical viewpoint, the following requirements and desiderata are
often found in connection with scientific workflows:

R1 Seamless access to resources and services. This is a very common re-
quirement, and web services provide a first, simple mechanism for remote
service execution and remote database access via service calls. However, web
services are a simple solution to a simple problem. Harder problems, e.g. web
service orchestration and third-party transfer, are not solved by “vanilla” web
services alone.

R2 Service composition and reuse, and workflow design. Since web services
emerge as the basic building blocks for distributed Grid applications and
scientific workflows, the problem of service composition, i.e. how to compose
simple services to perform complex tasks, has become an attractive research
topic [80]. Among the different approaches are those that view service com-
position as an artificial intelligence planning problem [9], a query planning
problem [55, 56] or a general design and programming problem. A related
issue is how to design components such that they are easily reusable and not
geared to only the specific applications that may have driven their original
development. By employing an actor-oriented approach at the design level
[12], but also flexible means for data transformations and data integration at
the “plumbing” level, the reusability of workflows and workflow components
can be improved.

R3 Scalability. Some workflows involve large volumes of data and/or
require high-end computational resources, e.g. running a large number of par-
allel jobs on a cluster computer. To support such data-intensive and computer-
intensive workflows, suitable interfaces to Grid middleware components
(sometimes called Compute-Grid and Data-Grid, respectively) are necessary.
For example, the Kepler system includes actors to launch and monitor Globus
jobs and to issue Storage Resource Broker (SRB; http://www.sdsc.edu/srb)
commands for that purpose.

R4 Detached execution. Long-running workflows require an execution mode
that allows the workflow control engine to run in the background on a remote
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server, without necessarily staying connected to a user’s client application that
has started and is controlling workflow execution.

R5 Reliability and fault-tolerance. Some computational environments are less
reliable than others. For example, a workflow that incorporates a new web
service can easily “break”, as the latter can often fail, change its interface or
just become unacceptably slow. To make a workflow more resilient in an
inherently unreliable environment, contingency actions must be specifiable,
e.g. fail-over strategies with alternate web services.

R6 User interaction. Many scientific workflows require user decisions and
interactions at various steps. For example, an improved version of PIW allows
the user to inspect intermediate results and select and re-rank them before
feeding them to subsequent steps. An interesting challenge is the need for
user interaction in a detached execution. Using a notification mechanism the
user might be asked to reconnect to the running instance and make a decision
before the paused (sub-)workflow can resume.

R7 “Smart” reruns. A special kind of user interaction is the change of a
parameter of a workflow or actor. For example, in a visualization pipeline or
a long running workflow, the user might decide to change some parameters
after inspecting intermediate or even final results. A “smart” rerun does not
execute the workflow from scratch, but only those parts that are affected
by the parameter change. In dataflow-oriented systems (e.g. visualization
pipeline systems such as AVS, OpenDX, SCIRun or Kepler) this is easier to re-
alize than in more control-oriented systems (e.g. business workflow systems),
since data and actor dependencies are already explicit in the system. Another
useful technique in this context is checkpointing, which allows for backtracking
to a previously saved state, e.g. in the case of a parameter change or even a
system failure, without starting over from scratch.

R8 “Smart” (semantic) links. A scientific workflow system should assist
workflow design and data binding phases by suggesting which actor compo-
nents might possibly fit together (this is also an aspect of R2) or by indicating
which data sets might be fed to which actors or workflows. To do so, some
of the semantics of data and actors has to be captured. However, capturing
data semantics is a hard problem in many scientific disciplines, e.g. mea-
surement contexts, experimental protocols and assumptions made are often
not adequately represented. Even if corresponding metadata are available,
it is often not clear how to best make it useable by the system. It seems
clear though that ontologies provide a very useful semantic type system
for scientific workflows, in addition to the current (structural) type systems
[5, 11, 12].

R9 Data provenance. Just as the results of a conventional wet lab experiment
should be reproducible, computational experiments and runs of scientific
workflows should be reproducible, and indicate which specific data products
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and tools have been used to create a derived data product. Beyond the
conventional capture of metadata, a scientific workflow system should be able
to automatically log the sequence of applied steps, parameter settings and
(persistent identifiers of) intermediate data products. A related desiderata is
automatic report generation: The system should allow the user to generate
reports with all relevant provenance and runtime information, e.g. in XML
format for archival and exchange purposes, and in HTML (generated from
the former, e.g. via an XSLT script) for human consumption.

6.3 Semantic Extensions and Scientific Workflow Design

One problem in designing scientific workflows lies in the increasing amount
of components (and possibly sub-workflows) made available, e.g. as web
services, SOAP-lab services [74], statistics packages (e.g. R packages) or as
other custom applications. While web services provide a minimalistic inter-
face definition of the various operations via the accompanying WSDL files,
there are no standard means of helping the scientist or a scientific workflow
system to determine whether two components/web service operations can
be chained together. One promising approach is to separate the concerns of
structural data typing and semantic data typing [5,12], i.e. to use conventional
structural typing mechanisms (such as XML DTDs or schemata) to describe
structural aspects of the data flowing between workflow components, but
to use a semantic typing mechanism, such as an OWL concept expression, to
describe what kind of data (at the conceptual level) is being exchanged.

Consider, for example, the Kepler workflow shown in Figure 10. A con-
nection has been identified to be structurally safe – an array of integers is
produced and consumed by the two connected actors – but semantically un-
safe – the type checking window of the highlighted connection indicates this
with a green, respectively red type status, next to the display of the structural
and semantic port types. Note that to guarantee semantic type safety, (i)
semantic types (concept expressions) have to be declared for actor ports and
(ii) a reasoning engine has to establish that the desired concept subsumption
relation holds. For structural type safety any of the common type systems can
be used, e.g. XML DTD, XML Schema, or even object-oriented or relational
schemata. For semantic types, concept expressions, e.g. from a DL ontology,
encoded in OWL can be used. The simple workflow in Figure 10, for example,
uses concepts from a biodiversity ontology Science Environment for Ecologi-
cal Knowledge (SEEK) project web site (http://seek.ecoinformatics.org).

Many other workflow systems have been developed by academic insti-
tutions and industry to address (often partially) the challenges presented
above. Among those designed to support scientific protocols, academic
systems include Triana an open-source problem-solving environment de-
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veloped at Cardiff University that combines an intuitive visual interface
with powerful data analysis tools (http://www.trianacode.org/index.html),
Kepler (based on the Ptolemy II system for heterogeneous, concurrent mod-
eling and design, http://kepler-project.org) criteria and Taverna (devel-
oped in the UK by a European team; http://taverna.sourceforge.net and
http://homepages.cs.ncl.ac.uk/peter.li/home.formal/tutorial).

7 Conclusion

Data integration is a critical issue for life science. Although many traditional
approaches such as data warehouses, federations and mediations provide
efficient integrated platform to query the data, there is a need for a broader
view on biological data integration. Although scientists need to integrate
data from multiple heterogeneous and autonomous sources, they also need
to integrate the various applications made available to them. Traditional
database integration approaches do not offer solutions to the complex prob-
lem of application integration. Today, the community seems to agree on one
fundamental fact: to enable efficient and meaningful integration, biological
resources – databases and applications alike – need to provide semantic infor-
mation. Many solutions are being developed to define, support and exploit
this semantic layer for data integration. Orthogonally, traditional database
approaches do not provide an access to data suitable to scientific protocols.
To allow scientists to express and execute scientific queries, systems based
on workflows are developed. This work in progress should result in a new
generation of data integration systems.
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43
Visualization of Biological Data
Harry Hochheiser, Kevin W. Eliceiri, and Ilya G. Goldberg

1 Introduction

Despite their considerable power, the computational techniques described
throughout this book are unlikely to replace direct visual examination of
biological data. High-resolution, interactive displays leverage the consider-
able processing power of the human visual system to help biologists identify
patterns, locate outliers and build hypotheses that would escape detection by
less-sensitive algorithmic approaches.

This chapter will examine two classes of visualizations of biological data,
and discuss some of the issues related to their use and interpretation. The
first class of data is generated by direct light-based microscopy imaging tech-
niques, which provide pictures and movies of biological phenomena. Al-
though traditional two-dimensional (2-D) images may be relatively straight-
forward to examine visually, 5-D (x,y,z, time and wavelength) data present
substantial visualization challenges. These advanced multidimensional mi-
croscopy techniques have proven to be powerful biological research tech-
niques, allowing scientists to record such phenomena as the dynamic process
of embryogenesis. Increasingly, these methods are beginning to show great
promise for medical imaging. While histopathology-based techniques are still
the mainstay microscopy techniques in medicine, light microscopy methods
such as fluorescence and multiphoton (MP) microscopy are being explored
to track key medical processes such as cancer metastasis. There is promise
that some light-microscopy modalities might be developed into diagnostic
methods to complement the more traditional medical imaging techniques
such as positron emission tomography (PET) and magnetic resonance imaging
(MRI).

The second class of visualization discussed in this chapter includes data
that are not amenable to the direct visual display used for microscopy data.
Despite the possibility of graphical depictions of DNA helices, genomic se-
quences are most easily interpreted as strings in the familiar four-letter al-
phabet. Derived data such as sequence alignments, high-dimensional repre-
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sentations of microarray gene expression data, pathways and other computa-
tionally derived data sets can also benefit from displays designed to highlight
trends and patterns. Drawing from recent work in the young field of infor-
mation visualization, systems for analyses of these data types use techniques
like interactive filtering and multiple coordinated displays to assist users.
This chapter surveys tools that apply these techniques to bioinformatics data,
including descriptions of systems for examination of genomic sequences, mi-
croarray data, proteomics, interaction networks and pathways, phylogenies
and taxonomies, and phenotypes and lineages.

Recent advances in the collection and storage of large collections of mi-
croscopy images have led to the advent of high-content screening (HCS), in
which collections of cells can be systematically examined for responses to
genetic and chemical stimuli. Management and interpretation of the resulting
large volumes of data requires visualization of image data, metadata describ-
ing both images and experimentally meaningful collections of those images,
and results of automated analyses. An examination of the image informatics
requirements of HCS illustrates some of the challenges involved in building
complete solutions.

Visualization of molecular structures is not discussed in this chapter. For
recent work in this area, see Ref. [127].

2 Microscopy Image Visualization

Current cell-based screening methods have evolved from simple nonimaged
light scattering or fluorescence measurements to cell imaging systems where
cells in individual wells of a multi-well plate are imaged using wide-field
fluorescence microscopy techniques. The challenge with these cell imaging
systems is to develop robust algorithms that can automatically extract mean-
ingful morphometric or spectral parameters from populations of cells. Due to
the vastly increased amount of data available from imaging, these screening
techniques are collectively called HCS. Several live cell imaging methods are
discussed below. While all are not standard HCS techniques – often because
of technical challenges – they are all proven methods to extract additional
information on dynamic in vivo processes.

2.1 Fluorescence Microscopy Techniques Applicable to HCS Screening

The availability of extensive sequence data from many organisms, including
humans, affords probes, such as fluorescent protein chimeras, to be made to
identify any protein; these chimeras can identify the location and distribution
of that protein within an organism. Furthermore, advanced optical techniques
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can yield information on the physiological state of a cell or the molecular
environment of a particular reporter probe. The challenge for the HCS re-
searcher is to harness all of these techniques in a manner that allows for the
effective identification of specific changes in cell architecture or physiology.
These techniques include the following.

2.1.1 Spectral Imaging

Fluorescence signals may be derived from probes such as fluorescent protein
reporters or endogenous fluorophores such as collagen or reduced nicoti-
namide adenine dinucleotide [143] (Figure 1). Fluorescence spectroscopy
studies using specimens in cuvettes have yielded a wealth of information
about how subtle fluorescence spectral shifts may be used to report on molec-
ular environments of fluorophores [110]. The availability of spectral analysis
on a pixel-by-pixel basis in an image could extend these analyses to molecules
in identified cellular or subcellular environments. Current cell-based HCS
screening systems have very limited spectral discrimination, having only
three or four spectral channels. Although this is adequate for identifying
fluorophores with well-separated emission spectra, difficulties arise when
spectra overlap or when it is necessary to measure the spectral shifts of
certain indicator probes. Double or triple fluorescence-labeling approaches
have great power to investigate complicated processes, as individual gene
products of interest can be tagged with different colors. This approach is often
complicated by overlapping emission spectra of many of the most popular
fluorophores such as cyan, yellow and green fluorescent protein (CFP, YFP
and GFP). Spectral imaging techniques can simplify multiple fluorescence
label experiments by allowing for fast, flexible probe separation unavailable
with traditional techniques of optical filter separation.

2.1.2 Lifetime Imaging

A fluorescence signal contains more information than just intensity and color.
The lifetime of the excited state, which gives rise to the fluorescence signal,
is diagnostic of the fluorophore and also of its microenvironment [11] (Fig-
ure 2). Factors such as ionic strength, hydrophobicity, oxygen concentration,
binding to macromolecules and the proximity of molecules that can deplete
the excited state by resonance energy transfer can all modify the lifetime of a
fluorophore. Measurements of lifetimes can therefore be used as indicators of
these parameters. Fluorescence lifetime measurements are generally absolute,
being independent of the concentration of the fluorophore. Furthermore,
lifetime properties may be particularly useful in identifying fluorophores
with significantly overlapping spectral properties. Fluorescence lifetime imag-
ing microscopy (FLIM) has been recently described and the potential of this
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Figure 1 Spectral imaging. Seventeen-
channel spectral image of a methyl
green-stained section of uterus imaged
with MP excitation. Displayed is image
chrominance as a weighted function of
wavelength values in each channel. The
left-hand image is colored according to
“best-guess” mapping, with the first third of
the channels equally weighted toward red,
the second third toward green, and the last
third toward blue. The right-hand image

illustrates the discrimination of nuclei by
overweighting the contribution of channel 1
(660 nm) and negatively weighting channel
5 (600 nm) with respect to the red color
component. This scheme reveals nuclei as
red and surrounding tissue as turquoise.
(Uterus section prepared by Al Kutchera,
Midwest Microtech; reproduced from Eliceiri
et al. 2005. Photochem. Photobiol. 81: 1116
with permission of the American Society for
Photobiology.)

technique demonstrated [66, 112, 190]. Practical applications include in vivo
mapping of the metabolic states of a cell by using FLIM to distinguish the
two forms (bound and free) of the intrinsic fluorophore NADH [16]. FLIM
is not currently available in a commercial HCS instrument due to technical
challenges such as the long photon counting times needed by FLIM. As the
electronics and detectors for FLIM continue to improve, the speed of this
technique should as well, making it more practical for HCS studies.

2.1.3 Fluorescence Resonant Energy Transfer (FRET)

FRET is a technique that can detect the close proximity of two fluorescently
labeled molecules [116,172]. Furthermore, this technique may be readily used
in vivo. If one of the fluorophores (the donor) has a fluorescence emission
spectrum that overlaps the excitation spectrum of the second fluorophore
(the acceptor), then fluorescence from the donor can be partially quenched
if the acceptor molecule is closer than the so-called Förster distance (around
10 nm). Energy is transferred to the acceptor molecule, which increases in
fluorescence; the effect varying as the sixth power of the distance separating
the two molecules. The technique is capable of detecting when a ligand binds
to a receptor and so can be a potent way of visualizing the activation of a signal
transduction pathway. However, often it is difficult to obtain reliable FRET es-
timations from measurements of fluorescence intensity changes, particularly
within intracellular domains. Selective bleaching or compartmentalization of
the two fluorophores can give rise to changes in relative fluorescence that are
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Figure 2 Lifetime imaging. GFP-R-
Ras(38V), a constitutively active mutant of
R-Ras, imaged at 900 nm using a Ti:sapphire
laser and lifetime detector. Color mapping
indicates changes in fluorescence lifetime
Note more blue/green (shorter) lifetime
values on vesicles (arrows near nucleus)
and orange/green (longer) lifetime values

at a membrane ruffle. Lifetime imaging can
be used to reveal information about the
dynamic interaction of labeled proteins or
endogenous fluorescence in the context of its
in vivo microenvironment. (Image courtesy
of Dr Patricia Keely, University of Wisconsin–
Madison.)

indistinguishable from those resulting from a FRET interaction. However,
lifetime imaging can potentially circumvent these problems. When a FRET
interaction occurs, the donor excited state lifetime increases. This is an abso-
lute change that is independent of intensity. Using lifetime measurements to
estimate FRET can potentially yield the percentage of the donor species that
is involved in the FRET interaction (ratio of the shorter to the longer lifetime
components) and the proximity if the two interacting molecules (degree of
lifetime shortening). Practical applications of FRET include the investigation
of protein–membrane interactions [118, 119, 197] and Ca2+ dynamics [187].

2.1.4 Optical Sectioning

Optical sectioning fluorescence microscopy has become the method of choice
for imaging living specimens as it offers high signal-to-background ratios and
the ability to spectrally discriminate between multiple fluorophores. Recently
developed techniques such as confocal [137,193] or MP [51,194] imaging allow
optical sections to be made of intact live specimens. These may be collected as
stacks of images at different focal depths to obtain 3-D structural data. Stacks
of images may be collected at regular time intervals in order to reveal the
dynamics of 3-D structures in living tissue [182]. Optical sectioning could
allow for cells in an HCS screen to be grown in a collagen gel, possibly a
more natural environment for some cells. Three-dimensional imaging could
be used to measure morphometric parameters of a cell. The association of cells
with an extracellular matrix could be also characterized. HCS systems that
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use optical sectioning such as differential interference (DIC) are being widely
used [94, 195]. These systems allow scientists to do high-content tracking of
phenomena in 4-D. There is also active development to utilize laser-scanning
methods such as confocal and MP laser-scanning microscopy that would
allow for better viability and deeper sectioning [78, 111].

2.1.5 MP Imaging

MP laser-scanning microscopy (MPLSM) uses laser raster scanning to as-
semble an image (Figure 3). At a very high photon density, two or more
photons may be simultaneously absorbed by an excitable molecule in order to
generate fluorescence emission. The sum of the individual photon energies is
equivalent to the energy transition of a single photon absorption event [51]. In
the case of two-photon imaging, the excitation wavelength is set to about twice
that of the absorption peak of the fluorophore being observed. Normally,
this wavelength would not produce any appreciable fluorophore excitation.
However, if a high-power, ultra-short pulse laser is used, it is possible to
achieve instantaneous photon densities that will give rise to a significant
yield of two-photon events at the focal volume of an objective lens, while
maintaining a mean power level that will not damage the specimen. In this
manner, fluorophore excitation is confined to the focal volume because the
photon density is insufficient to generate appreciable MP events outside of
this region. Optical sectioning is achieved because there is no appreciable
fluorophore excitation above or below the focal volume (i.e. the plane of
focus), thereby elegantly avoiding the problem of out-of-focus interference by
not generating it in the first place.

Since scattering is lower at the longer wavelengths of excitation used in
MP imaging, and also because there is no fluorescence excitation above the
plane of focus, there is significantly reduced extinction (relative to confocal
microscopy) of the excitation light from regions above the plane of sectioning.
In addition, the emission signal does not have to be imaged and is there-
fore relatively insensitive to scatter. These characteristics provide the deep
sectioning capabilities of MP imaging [33]. An additional advantage of MP
imaging for in vivo studies is that photo-toxic effects are minimized [167].
The benefits of deeper sectioning and improved viability have made MPLSM
the tool of choice for developmental biologists who can track fluorescently
labeled proteins in both space and time. MPLSM can be used effectively with
other techniques such as FLIM and spectral imaging, allowing the scientist to
peer deep into the cell and track complicated spatial and temporal processes
involving intrinsic (such as NADH) and extrinsic fluorophores (such as GFP-
labeled cells). This type of multi-modal experiment presents complex analysis
challenges, as multiple dimensions (space, time, lifetime and spectra) can be
simultaneously collected [15].
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Figure 3 Dynamics of the endoplasmic
reticulum in the early nematode embryo.
This MP image is of three living C. elegans
embryos expressing a fusion protein of SP12
(an endoplasmic reticulum protein) and GFP.
In these embryos, the endoplasmic reticulum
cycles between a highly organized reticulate
state during mitosis and a more dispersed
state during interphase. The top embryo
is a two-cell embryo in which one cell (left)

is in interphase and the other cell (right) is
entering mitosis. The middle one cell embryo
is in the first mitosis, with the endoplasmic
reticulum lining the mitotic spindle clearly
evident. The bottom one-cell embryo is just
post-meiotic and exhibits the more dispersed
endoplasmic reticulum organization. (Image
courtesy of Dr. Jayne Squirrell, University of
Wisconsin–Madison.)

2.1.6 Second Harmonic Imaging

Nonlinear optical effects other than MP fluorescence excitation can occur at
the very high photon densities attained at the focus of the scanning excitation
beam in a MP microscope (Figure 4). Molecular assemblies with high-order
structure, such as collagen matrices, can generate a second harmonic gener-
ation (SHG) signal at half the wavelength of the excitation [29]. Unlike MP
imaging, the SHG signal has a narrow spectral line-width (determined by the
excitation source) and a zero lifetime. These characteristics allow SHG signals
to be distinguished from MP signals in a laser scanning microscope with high
peak intensity, ultrafast pulse excitation, even if there are fluorescence signals
which overlap the SHG signal. These characteristics make SHG imaging a
very useful adjunct to MP imaging when observing cells that are embedded
in an extracellular matrix. SHG has proven to be effective in investigating
processes where collagen plays a critical role such as muscle development
[22, 23, 125, 142] and breast cancer progression [26, 148].
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Figure 4 Harmonic imaging. DsRed2-
expressing SCC13y cells embedded within
a collagen matrix. Collagen second harmonic
generation signal (SHG) (A) was collected
using a narrow bandpass filter centered at
445 nm and fluorescence from DsRed2 (B)
was collected using a 460-nm longpass filter.
A 580-nm longpass filter (excluding cellular

auto-fluorescence) confirmed that the origin
of the fluorescence was exogenous. Panels
(A) and (B) are merged in panel (C). This
demonstrates the power in live cell imaging of
combining endogenous signals such as SHG
with fluorescent labels such DsRed. (Image
courtesy of Erin Gill, University of Wisconsin–
Madison.)

2.2 Functional Genomics

HCS experiments are generally performed to screen through genomic libraries
in order to ascertain the function of genes or to screen through compound
libraries in order to identify biologically active compounds. Cells can be sys-
tematically manipulated either by using RNA interference (RNAi) to interfere
with their genes or by exposing them to chemical compounds [124, 153].

2.2.1 RNAi

RNAi is a genetic technique first demonstrated in the nematode Caenorhabditis
elegans [61, 74] that can be used to block the expression of a target gene by
introducing small fragments of double-stranded RNA (dsRNA) with a coding
sequence that blocks the gene of interest by binding to its mRNA transcript.
This method of DNA silencing has proven to be an extremely powerful tool in
C. elegans research and has recently been successfully extended to mammalian
systems. Four methods have been reported for dsRNA delivery in C. elegans
[189]: (i) dsRNA injection [61], (ii) feeding with bacteria producing dsRNA
[183], (iii) soaking in dsRNA [176] and (iv) in vivo production of dsRNA from
transgenic promoters [179].

Similarly to C. elegans, Drosophila melanogaster can also be readily used to
study the effects of silencing specific genes using RNAi. The advantage of
D. melanogaster is that there is a well-developed, cell-based system that can
absorb dsRNA directly from solution or when printed on microscope slides
using a microarray printer [192]. The combination of microarray technology
with this cell-based system allows for an extremely high-density form factor
where an entire genome can be assayed on five to 10 standard microscope
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Figure 5 A living cell microarray. On the left
is a schematic representation of a standard
microscope slide printed with dsRNA “spots”
using a standard microarray printer. The
spot density can be 2000–5000 per slide
depending on the spot size. On the right is a
phase-contrast image (×10) of cells growing
on top of and around two printed spots of
dsRNA that code for a required gene. The
phenotype displayed by the cells as a result
of “knock-down” of these required genes is
lack of growth. Much more subtle phenotypes

can be assayed by imaging the cells at higher
resolution (×100 is routinely possible), in 3-D,
time-lapse, multiple fluorescence channels
or a combination of these. As the platform
for the assay is a standard microscope
slide, 2000–5000 genes can be assayed for
one or more phenotypes using a standard
fluorescence or confocal microscope with
a motorized stage. An organism’s entire
genome can be represented on 5–10 slides
(Figure by Mark Eckley, NIH.)

slides. This platform, called “living cell microarrays”, also benefits from using
standard microscopes with computer-controlled stages and standard optical
equipment instead of the specialized robotics, liquid handling and imaging
equipment needed for optical high-density microtiter plates (Figure 5).

High-throughput techniques for RNAi in mammalian cells lag behind those
developed for worms and flies. However, several options are under develop-
ment that share the theme of introducing small interfering RNAs (siRNAs)
to cells directly rather than using large dsRNA and allowing the cells to
process it. These include digesting a dsRNA library with a nuclease prior
to transfection, synthesizing the siRNAs or producing constructs that express
siRNA in vivo [27, 57, 75, 134, 196].

2.2.2 Chemical Compound Libraries

Traditionally, chemical compound libraries have been used by the pharma-
ceutical industry and some academic laboratories to screen compounds for a
targeted biological function. With the advent of HCS, the same approaches
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can now be used for screening a morphological response of the cell to these
compounds. The most important aspect of HCS in this application is that
knowledge of a molecular target is no longer necessary in order to develop
an assay for the compound screen. In HCS, the target of the screen is a
morphology that can be reached via potentially many molecular pathways
and targets. In this way using HCS to screen chemicals potentially casts a
much wider net while simultaneously requiring that compounds are active in
cellular context [122, 124].

2.3 Tools for Scientist-driven Analysis Development and Deployment

By necessity, advances in imaging instrumentation have frequently been ac-
companied by the development of corresponding visualization tools. Al-
though often the visualization needs for these instruments can be met in
part by commercial image analysis tools, new instrumentation development
can rapidly generate new data types and analysis problems. As the driving
image technology is generally not commercially viable, these data types and
problems are often beyond the scope of current commercial development, and
more flexible, customizable visualization solutions are often needed.

In response to this need there has been a long tradition in the academic
microscopy community of the development of freely available image analysis
tools that can be harnessed by the microscopist and adapted for their needs.
Examples of these imaging tools include tools for 4-D visualization [60, 182],
measurement [36] and 3-D reconstruction [42, 109]. Of particular note are
tools that are designed to not serve just a specific analysis need, but serve as
a general imaging analysis frameworks. Below we discuss two such tools,
VisBio and ImageJ, that not only offer a defined set of features, but also
a flexible framework to allow additional image analysis techniques to be
developed and deployed. Rather than focusing on the development of novel
algorithms, these tools are designed to provide flexible environments that can
be used to harness existing algorithms.

2.3.1 ImageJ

ImageJ [1] is a public domain image analysis program written in Java, princi-
pally by Wayne Rasband of the National Institutes of Health (NIH). Originally
designed as a 2-D analysis tool, ImageJ provides image visualization facilities
that can be extended via a plugin architecture and by scripting tools accessible
to scientists without extensive programming experience. These facilities have
encouraged programming contributions from throughout user/developers in
the imaging community. Notable user-contributed plugins include the hyper-
volume browser (http://rsb.info.nih.gov/ij/plugins/hypervolume-browser.
html), which can be used to explore 3-D and 4-D data sets, and VolumeJ
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(http://bij.isi.uu.nl/vr.htm), a plugin for volume rendering. Developers in
the ImageJ community have also linked it to other visualization efforts in-
cluding open-source efforts such as VisAD and the Open Microscopy Envi-
ronment, and commercial packages such as VTK and MatLab. While ImageJ
was not intended as algorithm development project, it has become a highly
effective way for scientists to customize their analysis approaches in a way
that would often be outside the scope of commercial interests. Like many
of the visualization programs discussed below, ImageJ’s greatest strength is
its user developer group and perhaps more so than any it is designed to be
used by the nonprogrammer/developer as well as the experienced scientific
programmer.

2.3.2 VisBio

The Java-based VisBio (http://www.loci.wisc.edu/visbio) – principally de-
veloped by Curtis Rueden at the University of Wisconsin–Madison – is an
application for the interactive graphical display and quantitative analysis
of biological image data of arbitrary dimensionality [146]. The development
of a tool that has support for data of n-dimensionality was driven by the
emergence of a new class of microscopy data that goes beyond space and
time to include new dimensions such as spectra [15, 44, 52, 113] and lifetime
[11, 15, 45, 66,112, 190].

VisBio allows its users to interactively explore and measure the data within
4-D recordings of specimens. In addition to being specially tailored to the
demands of handling and animating massive data sets fluidly, VisBio enables
the interactive representation of recordings in which each spatiotemporal
pixel element contains multiple dimensions, e.g. emission intensity, color
spectrum and fluorescence excited state lifetime.

VisBio has been built with the VisAD scientific toolkit [80, 81] – a pro-
gramming suite that provides capabilities for the analysis and visualization
of numerical data (http://www.ssec.wisc.edu/∼billh/visad.html). VisAD’s
flexible data and display models provide an ideal base from which to design
complex applications for visualization and analysis. The data model can be
used to express virtually any numerical data, including multispectral images.
VisAD’s display model enables applications to define arbitrary mappings
from numerical variables to various display quantities, such as spatial coor-
dinates, color components, transparency, animation indices, range selectors,
contouring, etc. Furthermore, VisAD’s support for interaction with displays
enables users, for example, to interactively select a pixel in a spatial display
and see the corresponding spectrum in another display, and to select a spectral
band in the spectral display and see the corresponding image in a spatial
display. Other displays map image spatial coordinates to the x- and y-axes
and map spectral band to the z-axis, visualized as images stacked up along
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Figure 6 Volume Rendering in VisBio 3-D reconstruction of human
embryonic kidney cells (HEK293) transfected with a plasmid construct
which expresses GFP. The GFP signal is observed throughout the
cell. (Confocal data set provided by Dr Carrie Graveel, Mr Lance
Rodenkirch and Dr Peggy Farnham of the University of Wisconsin-
Madison.)

the z-axis. In some applications, user can interactively draw the outline of a
spatial image region, triggering computation of statistics involving only pixels
inside the selected region.

VisBio takes advantage of many VisAD features, with the current release
providing a general mechanism for handling image data in n dimensions
(in fact, it is the only biological imaging software of which we are aware
that does so). For example, the software can efficiently browse through a
data set consisting of multiple images across time, focal plane and spectral
channels, visualizing the images in both 2- and 3-D (Figure 6). The software
can understand data of any dimensional organization, including spectral and
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lifetime dimensions. See Section 4 for further discussion of image analysis
software and data management issues.

3 Biological Information Visualization

Familiar types of nonimage biological data share fundamental characteris-
tics that make interpretation and analysis inherently challenging. Annotated
sequences, gene expression profiles, pathways, protein interaction maps, phy-
logenies and other data sets have many data points with complex interactions
that are potentially of interest. As these data sets are essentially abstractions
that describe underlying physical phenomena, visual representations are not
given or necessarily obvious. Strings of nucleotides for sequence data, trees
for phylogeny and node–link graphs for pathways are starting points that
leave visualization designers with a number of challenges, including scaling
up to very large data sets and the appropriate use of available visual cues.

Recent research in the field of information visualization has focused on the
development of interactive tools to support the exploration and interpretation
of abstract data [164]. This work has involved the application of innovative
displays and interaction techniques to data sets from a wide variety of do-
mains [14, 31, 191]. Much of the recent work in bioinformatics visualization
builds upon these efforts, particularly with respect to visual encoding of data,
multi-scale displays and interaction techniques.

Visual encodings of data define the appearance of individual data items
and the relationships between them. Often, the location of items in 2- or
3-D embeddings is of primary importance, encoding either some specific
measurements in two or three dimensions (as in a scatter plot) or an indi-
cation of relatedness to other items in the data set (as in a graph or network
diagram). Size, color coding and shape of representation of data points and
connections between them (in graphs) can be used to display values of one or
more continuous or categorical attributes. In some cases, redundant coding
might be used to provide greater clarity. For data sets involving hierarchical
data, appropriate encodings can be used to display containment relationships.
Other possibilities include the use of orientation, texture, and animation [31].

Multi-scale displays are a class of strategies designed to address the chal-
lenges of interpreting data sets at vastly differing granularities. The classic
example of this problem in bioinformatics would be moving from overviews
of an entire genome to detailed examination of individual nucleotides. Ide-
ally, visualization systems provide overviews that are compact and usable,
detail views that present low-level information in context, and interaction
techniques for moving from one extreme to another (or to points in between).
Three classes of techniques are commonly used for managing multi-scale



1586 43 Visualization of Biological Data

displays. Semantic zooming involves modification of the amount of detail dis-
played to fit the space available: at low magnifications, high-level overviews
of large numbers of items can be provided, with detailed information about
fewer items at higher magnification [13]. Overview + detail displays provide
multiple, linked windows with displays at different scales [163]. Navigation
windows in page layout programs are a commonly used overview + detail
technique. For data sets involving larger ranges in magnification levels,
multiple overviews may be useful. Distortion, or focus + context, techniques
warp spatial embeddings to provide proportionately greater space to items of
interest, with contextual information displayed around the periphery, forming
a “fisheye” view of data [65].

Interaction techniques support browsing, searching and retrieval of details-
on-demand. Mouse-over tooltips, hyperlinks, search fields and other fairly
common approaches are used in many bioinformatics visualizations. Coordi-
nated multiple views clarify the relationship between differing perspectives
on a data set by linking selection across views: when an item is selected in
one view, its representation is highlighted in all other views [132]. This coor-
dination can be particularly useful for managing overview + detail displays.
Dynamic query tools combine interactive widgets for filtering data sets with
fast (below 100 ms) query results and display updates, providing essentially
instantaneous feedback [2].

Most tools support some sort of navigation, browsing and searching. Fa-
cilities for viewing detail at varying scales of resolution/magnification and
retrieving records of interest from related data sets are also common. Other
tasks that might be supported include integration of new data sets, statistical
analysis, data annotation and construction of scientific arguments. Some tools
also provide for the coordination of visualizations of multiple data types and
visualization of complex analysis protocols.

A 2001 discussion at the IEEE Information Visualization Conference iden-
tified three classes of challenges for bio- and cheminformatics visualization:
visual integration of analyses of diverse data sets, high-dimensional analytic
visualization and new visualization designs [114]. Although these challenges
have been addressed by many of the systems that have appeared in the
literature – including those described in this chapter – they are still active
problems in need of further research.

3.1 Genome and Sequence Data

With data granularities ranging anywhere from single nucleotides to billions
in a sequenced genome, sequence data demonstrates the difficulties of vi-
sualization of large data sets. Although tools for examination of synteny
at the genome level may not need to provide the nucleotide-level displays
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needed for analysis of single nucleotide polymorphisms, the ability to move
between multiple scales is clearly a useful feature in examining sequence data.
Annotations, alignments (local and global) and other task-specific types of
data often provide necessary context.

The constant evolution of complete genomes and their annotations makes
web interfaces particularly appropriate for genome visualization. Leading
web-based sequence visualizations include the University of California at
Santa Cruz (UCSC) genome browser (http://www.genome.ucsc.edu) [97] and
the Ensembl genome browser (http://www.ensembl.org) [17, 41, 89]. These
tools are based on a “track” metaphor: portions of one or more genomes
are shown in a horizontal line, with any number of annotations displayed in
parallel lines above or below the sequence itself. Information is presented in
a dynamically generated image. Users can click on the image to drill-down
for more details on any given feature. A desired location in the genome
can be accessed via search facilities, by navigating up- or downstream from
a given starting point, or by adjusting the magnification. Specific details
are given as magnification is increased – a form of semantic zooming. Both
tools support integration of tracks from multiple external databases including
synteny views for comparative genomics.

Given the wide variety of annotation data sets that might be viewed, con-
figurability is a major concern. Both the Ensembl and UCSC browsers support
manual selection of tracks of interest, along with either control over either the
decorations used on the tracks (Ensembl) or the density of information on a
track (UCSC). Text, graphic and other output formats are provided directly
from the browser or via a companion tool [98].

The Ensembl browser’s main sequence viewer (ContigView) provides an
example of a coordinated, multi-scale view of genomes. A series of views, i.e.
entire chromosome, overview, detailed view and base pair view (in the most
recent version), are linked together on the same page (Figure 7). Ensembl also
provides support for clickable browsing by chromosome location and a per-
chromosome synteny view.

Many other web-based track visualization tools have been built. GBrowse,
The Generic Genome Browser [169], is a web-based track visualization system
designed to generically support multiple model organism databases (MODs).

The track metaphor is also used extensively in sequence applets and stand-
alone tools. BioViews [79] was an early effort that used multiscale displays
and semantic zooming in an applet environment designed with a specific
focus on building reusable widgets. BioViews also provided hyperlinks to
external resources, and analysis tools for restriction site mapping and poly-
merase chain reaction primer design. The Neomorphic GeneViewer annota-
tion tool and ProtAnnot [120] tools are based on several proposed principles
for track-based presentations of genome information in stand-along browsers,
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Figure 7 The Ensembl genome browser ContigView display, with
chromosome, overview and detailed views of a genome (from Ref. [89]
by permission of Oxford University Press). The most recent version of
ContigView adds a fourth view of the actual base pair sequence.
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including continuous, interactive 1-D semantic zooming (as opposed to dis-
crete quantized zooms in response to button clicks), collapsible tracks that can
be manually reordered, and the use of color coding and icons to represent
alternative transcripts and genome annotations.

Track-based visualizations have also been used for sequence curation.
Apollo [117] combines multi-scale track-based views of sequences with drag-
and-drop facilities for creating and sequencing editing annotations. Dragging
a feature from Apollo’s sequence view into an annotation view creates a new
gene model, which leads to an annotation for the longest associated open
reading frame (ORF). A controlled vocabulary for annotation comments is
also provided.

Several tools have adapted the track metaphor to circular displays. The mi-
crobial genome viewer is a web-based viewer that displays circular genomes
and sequence annotations in concentric circles [101]. GenoMap displays se-
quence and array expression data on multiple concentric rings, with feature
details available on mouse click [152]. CGView [171] produces circular maps
that can be zoomed to show individual features (Figure 8). Circular views for
noncircular genomes have also been proposed as being useful for identifica-
tion of relationships between chromosomes [56].

Visualizations based on the embedding of sequences in 3-D space can be
useful for comparison and analysis of sequence composition properties. Z-
Curves [199] map sequences into curves in 3-D space, with coordinates of the
n-th position in the curve determined by the cumulative occurrence counts of
the four nucleotides in the first n bases in the sequence. Plotting of multiple
curves in a common space supports comparison between sequences.

Sequence alignments present additional visualization opportunities, either
as annotation tracks in track-based viewers like the UCSC and Ensembl
Genome browsers, or in special-purpose displays. The AlignmentViewer [39]
embeds alignment results in a 4-D (3-D and time) space. Any of 12 possible
dimensions of alignment data can be mapped to any of the three spatial
dimensions or time. When the position of the starting point is included,
the alignment is displayed as a 2-D graph. The position of the graph is
determined by the values of the remaining spatial axes. The graph extends
for the length of the alignment, with values at each position indicating the
strength of the alignment. Animation is used to display the time dimension.
Two-dimensional range filters can be used to restrict the range of values under
consideration for any dimension. Biological Arc Diagrams (BARD [165])
draws arc above (and below, for reverse-strand matches) sequences to link
regions with similarities that exceed a given threshold score (Figure 9). Similar
figures can also be found in Chapter 8.

A straightforward approach to comparing locations of similar genes or
regions in different genes or genomes is to render a single track for each item
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Figure 8a CGView output: full zoomed views
of Chlamydia trachomatis genome [171]. (From
http://wishart.biology.ualberta.ca/cgview/gallery.html, used by
permission.)

being compared, along with lines or other glyphs going between the tracks to
connect similar regions. This approach is used in the GenomePixelizer [106]
and Apollo [41].

The PIP (percent identity plot) displays homology by showing the position
in one sequence and the similarity (percentage) for each aligning segment
from the second sequence [155]. The MultiPip extends this idea to alignments
of multiple sequences [154]. A MultiPip contains individual pips comparing
sequences against a common reference sequence. Features including genes,
exons, and repeats can be displayed within each Pip (Figure 10).
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Figure 8b CGView output: Zoomed views of
Chlamydia trachomatis genome [171]. (From
http://wishart.biology.ualberta.ca/cgview/gallery.html, used by
permission.)

VISTA and related tools use similar identity plots to display global align-
ment results. VISTA Browser [64] is a web browser that displays percentage
similarities for two genomes. Similar regions are highlighted and color coded
for coding and noncoding, with zooming, drill-down and search facilities.
Given a multiple alignment and an associated phylogenetic tree Phylo-VISTA
[159] generates similarity ratings for each internal node in the tree. Thus, sim-
ilarities are defined relative to consensus sequences, as opposed to defining
one of the input sequences as a reference point. An interactive display of the
phylogenetic tree can be used to select the internal nodes that are displayed.
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Figure 9 A BARD view using arcs to link similar sequences in two
strains of Cryptococcus. (From Ref [165], c© 2003 IEEE, used by
permission).

Figure 10 MultiPip of the WNT2 region. Local alignments between
the human genome and each of eight other genomes are plotted.
For each genome, the percentage identity of each gap-free alignment
segment is plotted. Annotations above the plots indicate features in the
human genomes. Color coding in the plots indicates introns, exons,
noncoding regions and deletions. (From Ref. [154], by permission of
Oxford University Press.)
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Figure 11 A GenoPix2D dot plot of Arabadopsis chromosome
1. Three gene families are color coded in the axes. Vertical and
horizontal lines highlight homologs to the genes corresponding to the
selected dot. (From Ref. [30], used by permission).

Other approaches to displaying large-scale homologies have used different
perspectives include GenoPix2D [30], an interactive dot plot, which supports
querying, filtering, zooming and coloring of genes by family membership
(Figure 11), and DisplayMUMS, which shows alignments of individual shot-
gun sequences to a global alignment [108].

Noting the possibilities of a 3-D view, the Sockeye browser displays mul-
tiple genomes as parallel tracks in a projected 3-D space, using the height
of annotations to display values such as alignment scores and alignment site
confidence predictions [126]. As these scores are also color- coded, the height
coding is redundant.

A variety of tools have been created for visualizing more specific types and
applications of sequence data. viewGene [100] and GeneWindow [168] are
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track-based web browsers for SNP data. Gbuilder is a Java tool for visualiza-
tion of EST clusters [128], while ESTminer provides similar functionality in a
web interface [88]. ESTviewer displays ESTs that are conserved in the human
genome and alternatively-spliced variants [35]. The Maize Mapping Project’s
iMap Viewer [58] provides side-by-side displays of genetic and physical maps
of the maize genome, complete with links to external data. See Table 1 for
selected genome visualizations.

Table 1 Selected genome visualizations

System type Examples
Web-based
browser

UCSC Genome Browser [97], Ensembl [89]

Stand-alone
browsing and
annotation

Neomorphic GeneViewer/ProtAnnot [120], Apollo [117]

Circular
display

Microbial Genome Viewer [101], GenoMap [152], CGView [171],
ChromoWheel [56]

Local
alignments

Alignment Viewer [39], Biological Arc Diagram [165]

Large-scale
homology

GenomePixelizer [106], GenoPix2D [30], PipMaker [155],
MultiPipMaker [154], VISTA [64], Phylo-VISTA [159], DisplayMUMS
[108], Sockeye [126]

3.2 Gene Expression Data

Gene expression data sets from microarray experiments can involve mea-
surements for thousands of genes in dozens of cell conditions or cell states
(called treatments from now on). The interpretation challenge generally in-
volves identifying sets of genes with similar profiles, individual genes with
distinctive profiles and, possibly, samples with profiles that might indicate
the presence of a regulatory relationship (see also Chapters 24–27).

Classic approaches to visualizing microarray data are based on similarity
clustering of profiles.

Red–green expression maps involve a combination of hierarchical cluster-
ing represented by a dendrogram and a dense, color-coded display called a
heat map. Genes are clustered by calculating pairwise measures, replacing
the two most similar samples with a cluster represented by their average and
continuing until only one cluster remains. The genes are then ordered and
displayed in a table, with one row for each gene and one column for each
treatment. Each cell in the table contains a color-coded expression value, with
red indicating increased expression and green indicating decreased expression
[55] (Figure 12).
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Figure 12 Gene expression values for a
microarray time-course experiment. Each row
is a gene, and each column is a time point.
Cells are color coded to indicate expression
levels relative to time 0: green readings are
repressed, and red enhanced, with saturation
level indicating the magnitude of the change.

The dendrogram on the left groups the genes
into clusters, with the lengths of the branches
indicating levels of similarity. Five clusters
of interest are marked on the right. (From
Ref. [55], c© 1998, National Academy of
Sciences USA, used by permission.)

A wide variety of other clustering and dimensionality reduction tech-
niques have been applied to microarray data sets. Techniques including self-
organizing maps (SOMs) [105,177,184], multidimensional scaling [6,200], self-
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adaptive networks [188] and graph-theoretic methods [161] have been used
to generate graphical maps indicating relationships between individual genes
and clusters of genes. The MultiExperimentViewer (http://www.tm4.org/mev.
html) supports comparative visualization of clusters generated by many of
these algorithms.

Interactive array visualization tools provide user controls built upon the
(generally) static maps created by clustering algorithms. Examples include an-
imated SOMs to illustrate gene expression changes over multiple time points
[54], and navigable interactive plots of clustered results [162]. GeneXplorer
[144] provides linked dendrograms at multiple resolutions in a web-based
application. Java Treeview [149] extends Eisen’s original work with a multi-
scale view of a dendrogram, scatterplots, karyoscopes and links to external
web resources. VistaClara [102] takes a different approach to extending basic
heat maps, providing facilities for adding annotations, the ability to reorder
rows (and columns, for comparisons of multiple experiments) based on sim-
ilarity measures and an alternative rendering scheme that uses differentially
sized ink blots to indicate differences in expression values. Genesis [173] is a
Java tool that supports multiple clustering approaches and multiple views –
including dendrograms and 3-D projection plots. The Hierarchical Clustering
Explorer (HCE) [158] adds interactivity to dendrograms, including dynamic
query controls for selecting an appropriate number of clusters, coordinated
displays linking dendrogram views to 2-D scatter plots of arbitrary dimen-
sions and linked views for comparison of alternative clustering algorithms
(Figure 13). A version of the HCE for use in microarray probe design has also
been developed [157].

Many of these techniques for generating and displaying clusters suffer from
potentially misleading artifacts associated with the choices of color saturation
levels and display reference points. GeneVAnD supports coordinated views
of rank-based grayscale coloring of genes, views that indicate differences
between genes and cluster averages, and interactive principal components
analysis (PCA) projections [82].

Commercial products for visualizing microarray data include Spotfire De-
cision Site (http://www.sptofire.com), Agilent’s GeneSpring (http://www.
agilent.com), and OmniViz (http://www.omniviz.com). These products in-
clude support for data analysis and clustering along with customizable 2- and
3-D scatter plots and color-coded expression plots. Spotfire and GeneSpring
also provide support for workgroups and relational database storage of ex-
pression data.

Clustering-based approaches are useful for large-scale analysis of microar-
ray data sets. An alternative approach is the use of queries to search for
patterns of interest in subsets of the data. For time-course arrays, these
searches might involve, for example, the search for transcriptional targets via
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Figure 13 The HCE. An overview of a microarray data set is shown in
the top pane. The “minimum similarity bar” has been dragged to split
the dendrogram into multiple clusters. Details for the selected cluster
(highlighted in yellow) are shown in the bottom pane. A scatter plot of
items in that cluster is shown on the right. (From Ref. [158], c© 2003
IEEE, used by permission).

the identification of genes with expression patterns that change significantly
after changes in a known transcription factor. TimeSearcher is a general time
series analysis tool that uses rectangular regions drawn on time series plots
as queries, restricting results to items in a data set that have values in a
given value range during specified times. This approach has been used to
find regulatory targets for known transcription factors [83, 84] (Figure 14).
The Time-series Explorer presents an alternative view, using a scatter plot to
compare the change from normal expression over a selected interval (y-axis)
to the change in values from the beginning of the interval to its end (x-axis),
with animation conveying the changes in the interval [47].

Visual tools that place gene expression data in the context of annotations
from the Gene Ontology (GO) [4] (see also Chapter 29) can be useful for identi-
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Figure 14 TimeSearcher queries specifying genes with low
expression levels at the 10-h time point and higher levels at 12 h.
(From Ref. [84], reproduced with permission of Palgrave Macmillan.).

fying groups of genes with similar roles that have similar expression patterns.
GoSurfer is a Windows-based program that displays any one of the three
GO hierarchies in a traditional tree view, with branch color coding based on
relative expression levels [201]. Similar functionality is provided by GoMiner,
which displays scalar vector graphics (http://www.w3.org/Graphics/SVG)
trees with expression-level color coding alongside traditional tree-based
browsers of the GO tree, annotated with expression levels [198]. Treemap
is a space-filling hierarchy visualization. Given a hierarchy and a rectangular
space, Treemap recursively divides the space based on the size of the con-
tained nodes. Given an array data set, a Treemap display can use the relative
change in expression level to size each gene, and the significance value for
that gene as a color code, thus providing a concise view of GO categories with
highly expressed genes of differing significance [8] (Figure 15). GenePlace and
TreeMapClusterView [123] provide alternative uses of treemaps for GO and
microarray data.

Another class of visualization tools addresses the challenges of interpreting
comparative genomic hybridization (CGH) results. CGH uses microarray
analysis of complementary DNA of multiple genomes to identify regions with
sequence deletions or duplications [138]. These deletions and duplications
lead to changes “copy number”: deviations from expected DNA levels for
specific regions. As interpretation of these results often involves examinations
of copy numbers in a genomic context, visualization of CGH data often in-
volves displays of results alongside genomic maps. SeeGH [38] and CGHPRO
[37] combine displays of ratio information with individual chromosome maps
with an individual chromosome view and a variety of parameterized filters.

VistaChrom [103] extends this approach with additional views at the level
of individual genes and probes, with coordinated highlighting in the four
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Figure 15 Treemap view of gene ontology, coded with expression
values for a microarray data set. The rectangular space is recursively
divided into subregions for each of the children of a given GO node.
Individual genes are labeled with gene names, with the size of each
gene corresponding to the expression level and color indicating
significance level (black being insignificant). (From Ref. [8], used by
permission.)

views (Figure 16). VistaChrom also provides additional statistical views, a
summary “aberration view” and support for analysis of multi-array exper-
iments. Caryoscope [5] provides genomic overviews without actual chro-
mosome maps, with novel zooming techniques supporting the visualization
of individual features in context. CGHAnalyzer [72] provides views at the
chromosome level, with a focus on analysis of multiple experiments, with
companion tools CircleViewer and CGHBrowser, respectively, providing a
circular overview of a single experiment and high-resolution graphs of raw
array data. ChARMView [130] combines visualization of Array CGH and
gene expression array data from multiple experiments with a novel analysis
algorithm.
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Figure 16 VistaChrom visualization of array CGH data. In the
genome view, copy number variations are shown alongside
cytogenetic maps of each chromosome. Progressively greater levels
of detail are provided in the chromosome view and gene view, with full
details in the probe view. Linked interactions in all windows provide
contextual information. (Figure courtesy of Robert Kincaid [103].)

A variety of more specific microarray visualization tools have been devel-
oped for other data types. Examples include tools for data sets involving
circular genomes [101, 152] and SNPs [180]. ExpressionView combines mi-
croarray data with quantitative trait loci (QTL) information, showing loci from
different samples alongside chromosome maps [62]. Other tools overlay gene
expression level indicators on top of genetic maps [9] or microscopy images
[67]. See Table 2 for selected visualizations of gene expression data.
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Table 2 Selected visualizations of gene expression data

System type Examples
Interactive cluster
analysis

GEDI [54], NIA Array Analysis Tool [162], GeneXplorer [144], Java
TreeView [149], VistaClara [102], Genesis [173], HCE [156, 158],
GeneVAnD [82], Spotfire DecisionSite (http://ww.spotfire.com),
Agilent GeneSpring (http://www.agilent.com)

Time-series microarray
analysis

TimeSearcher [84], Time-Series Explorer [47]

Microarray and gene
ontology annotation

GoSurfer [201], GoMiner [198], Treemap [8], Gene-
Place/TreeMapClusterView [123]

ArrayCGH SeeGH [38], CGHPRO [37], VistaChrom [103], Caryoscope [5],
CGHAnalyzer [72], ChARMView [130]

3.3 Proteomics

Proteomics tools provides visualizations of proteomic information and protein
interaction data in a genomic context. The UCSC Proteome Browser [86]
displays protein information in a series of tracks, similar to those used in
genome browsers. Amino acid sequences are displayed along with tracks for
genomic sequences, exons, polarity, and other details. A variety of genome-
wide histograms are also available, along with external links to related re-
sources. PQuad [76] provides a varying perspective on the use of tracks for
protein data, using a “wrapped line” metaphor to display long sequences on
multiple lines that wrap like text on a page. PQuad provides linked views at
three scales (overviews, individual ORFs and peptide sequences), along with
filters, displays of predicted protein functions and difference visualizations
for comparing the output of multiple experiments.

Visualization of protein families can provide perspective on relationships
between proteins. TreeWiz [145] provides a tree visualization of more than
70 000 clustered proteins. Zooming and filters for subtrees are supported.

3.4 Interaction Networks and Pathways

Understanding the relationships between biological entities is clearly a core
challenge of bioinformatics. Visual depictions of interaction networks and
biological pathways are widely used to interpret this data. These visualiza-
tions are generally drawn as graphs, with proteins, genes or biological states
as nodes and edges connecting interacting nodes. The use of color coding
to indicate interaction confidence and GO annotations (e.g. Ref. [68]) can aid
interpretation, but these large, dense graphs with thousands of interactions
between thousands of proteins present significant challenges for visualiza-
tion and interpretation. Interactive tools (both standalones and applets) for
network visualization generally combine graph layouts with search facilities,
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zoom and pan, and filters based on confidence levels [46], GO annotations
[34], and other criteria.

Large interaction networks generated from protein–protein interaction in-
vestigations (e.g. Refs. [63,68]) and similar experiments can contain thousands
of nodes and a dense interaction structure. This complexity can be tamed
somewhat via techniques that identify potentially promising subgraphs. Pos-
sibilities include graph-theoretic analysis of network structure [28], and inte-
gration of interaction results from differing sources along with genetic and
gene expression data [7].

VisANT [87] is a web-based, database-driven interaction visualization sys-
tem that integrates data from a wide variety of sources, including pathway
and homology data. Osprey [25] combines color coding of interaction edges
based on the experimental system with the use of GO categories to color-
code nodes in interaction diagrams. Both types can indicate multiple values:
interactions from multiple systems are segmented into multiple colors, while
multi-colored pie charts are used for nodes with multiple GO categories.
ProViz [93] adds support for managing views of multiple subgraphs of a
network.

Cytoscape [160] is an extensible platform for integrating interaction net-
works with additional data sources, including expression profiles, pheno-
types, and databases of functional annotations (Figure 17). Cytoscape also
provides a plugin architecture that has been used to build bridges to the
Systems Biology Workbench [90] and the Biomolecular Interaction Network
Database [3].

Biological pathway diagrams are powerful tools for synthesizing experi-
mental results into models that describe complex cellular behaviors. Often
pathways are created by hand, and are therefore generally smaller than in-
teraction diagrams. Interactions in these diagrams often have associated
annotations, which are often visualized as edge decorations. Web-accessible
pathways databases, such as EcoCyc [99] and KEGG [96], combine searching
or browsing for pathways of interest with clickable pathway diagrams that
provide drill-down access to specific detail (see also Chapter 20). Interactive
pathway tools typically support both pathway creation and visualization. For
example, the Genomic Object Net (GON) provides tools that can be used to
both edit KEGG and other pathways and to create customized visualizations
of simulations [131].

Despite efforts to define a visual language for pathway representation [115],
pathway tools use differing techniques to encode information. Often the
appearance of nodes in links is customizable [85,160], although some tools use
customized glyphs [50]. Frequently, search facilities are provided for limiting
the display to items of interest. GSCope [185] augments search facilities with
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Figure 17 Cytoscape. (a) An interaction
network with a menu displaying available
layout algorithms. (b) Mapping control
associating node color with expression values
for an experimental condition. (c) Detailed

attributes for selected nodes and edges. (d)
Control for selecting a level in a hierarchy
to be used for node and edge annotations.
(Reprinted with permission from Ref. [160],
c© Cold Spring Harbor Laboratory Press.)

a fisheye display, which preferentially allocates space to a selected pathway
element and its immediate neighbors, pushing other nodes to the periphery.

The challenges of managing and interpreting increasingly complex inter-
action diagrams have led some researchers to develop formal languages for
pathway languages. PATIKA [50] defines a formal ontology for pathways,
with each state and transition as a separate node in the graph. This ontology
includes support of nested pathways and provisions for representation of
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incomplete information. CellDesigner is a network editing tool based on a
formal process diagram language that uses visual notations to differentiate be-
tween specific types of states, molecules, and reactions [104]. CellDesigner can
export model descriptions written in the Systems Biology Markup Language
[91] and integrate with the Systems Biology Workbench [90] for simulation of
models.

Integration of gene expression data can increase the utility of pathway
visualizations. GenMAPP [49] is a tool for creating pathways with nodes
that can be color-coded with gene expression values. An associated web site
(http://www.genmapp.org) provides a public pathway repository. The com-
panion program MAPPFinder [53] can be used to incorporate gene ontology
annotations with GenMAPP pathways visualization. VitaPad [85] supports
the creation and visualization of pathways that include edge decorations for
catalyzing enzymes or genes and microarray data, along with a relational
model for storage of pathway information. DRAGON View [24] is a web-
based tool that provides several displays of microarray data, including the
use of expression data to color-code nodes in KEGG pathways. ArrayXPath
[40] uses diverse databases to produce a generalizable scheme for pathway
visualization of microarray data. Given a microarray data set, ArrayXPath
uses public databases to resolve probe identifiers, finds appropriate pathways,
maps between the microarray data and the pathways, and produces a naviga-
ble annotated pathway.

GeneVis [10] uses a 3-D approach to display the hierarchical nature of some
regulatory networks. Individual levels in a hierarchical network are drawn as
rings, with links between rings indicating regulatory relationships. Distortion
can be used to allocate more screen space to levels of interest within the
hierarchy.

Several commercial products provide pathway and network visualizations.
PimRider and PimWalker (http://pim.hybrigenics.com) are interactive tools
for the exploration of protein–protein interaction networks. Pathway Enter-
prise from OmniViz (http://www.omniviz.com) is a pathway visualization
and editing tool that supports a wide variety of pathway content. Ariadne
Genomics (http://www.ariadnegenomics.com) provides a suite of tools –
PathwayExpert, PathwayStudio Central and PathwayAssist – to support the
visualization of pathways, including integration of experimental results and
literature analyses.

A comparative evaluation of pathway visualization systems identified sev-
eral requirements that would increase the utility of these tools for biologists.
Automated pathway construction and maintenance based on analysis of sci-
entific literature, linked overview and analysis of multiple pathways, and
support for higher-level of abstraction were seen as desirable features [151].
See Table 3.
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Table 3 Selected visualizations of interaction networks and pathways

System type Examples
Graph-based network
visualization

[34], PIMViewer [46] PIMWalker [63], VisANT [87], Osprey [25],
ProViz [93], Cytoscape [160], GSCope [185], PATIKA [50], GeneVis [10],
Genomic Object Net [131], CellDesigner [131]
PimRider and PimWalker (http://pim.hybrigenics.com)
Pathway Enterprise (http://www.omniviz.com)
Pathway tools (http://www.ariadnegenomics.com)

Network and gene
expression data

GenMAPP [49], MAPPFinder [53], VitaPad [85], DRAGON View [24],
ArrayXPath [40]

3.5 Phylogenies and Taxonomies

The examination of trees resulting from taxonomic classification and phy-
logenetic reconstruction is a long-standing challenge. Like protein–protein
interaction networks, these trees are often quite large, involving thousands
of nodes. Common user tasks generally involve browsing, searching for a
known item and examining it in context, filtering to specific subtrees, and
comparison of multiple trees [71, 129, 135, 145]. Although most of these tools
are based on variants of traditional 2-D tree layouts, alternatives such as
hyperbolic displays [92] and immersive virtual reality environments [147]
have also been proposed.

TaxonTree [135] combines integrated navigation and visualization of these
trees with smoothly animated transitions that illustrate how the tree changes
when subtrees are expanded and collapsed. TaxonTree also provides visual
context in the form of a highlighted path from the selected node back to the
root. Edges can optionally be annotated with markers for shared character-
istics used to diagnose phylogenetic relationships. A companion program,
DoubleTree, extends TaxonTree to support tree comparison in two adjacent
panes with linked coordination.

TreeJuxtaposer [129] takes a different approach to comparisons between
these large trees, through the use of a similarity measure between nodes
that allows for identification of a node that is most similar to another node.
Constant-time lookup of these nodes during interaction provides the basis for
linked highlighting of subtrees of other trees that are similar to a highlighted
tree (Figure 18). TreeJuxtaposer also provides a distorted display that empha-
sizes marked areas, guaranteeing that they are always displayed. Progressive
rendering features provide rendering times of less than 2 s for trees of 500 000
nodes. TreeJuxtaposer can be used to compare up to four trees at once.

Graham and Kennedy [71] propose an alternative approach to comparative
visualization of multiple taxonomies. Taking advantage of the n-ary nature of
taxonomies (as opposed to generally binary phylogenetic trees), their system
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uses horizontal labels to display internal nodes in taxonomies. Each label
spans the width of its enclosed subtrees, with leaf nodes displayed in grids.
Several taxonomies can be stacked vertically, with linked selection and mouse-
over brushing showing the position of nodes from a selected subtree in other
subtrees. Internal nodes are also annotated with bar charts indicating the
portion of a subtree that is currently selected and textures indicating changes
in a subtree.

3.6 Phenotypes and Lineages

Phenotypic and cell relationship information provide an ideal opportunity for
combining information visualization and microscopic visualization to provide
a unified visualization. The RNAi database [73] is a searchable, web-based
data repository which displays detailed information on RNAi experiments,
including clickable maps of genetic regions and movies of appropriate pheno-
types. The associated PhenoBlast tool compares RNAi experiments based on
similarity and provides a color-coded result grid that is similar to a heatmap.

The Open Microscopy Environment (OME, discussed below) [70] is a
database-driven system for imaging informatics, including tools for manually
or automatically classifying images by phenotype. Images can be viewed
in graphical browsers that use phenotypes to group images. BioSig [136]
provides similar functionality for displaying phenotypic characterizations,
using data-driven web interfaces, a navigable data model display, and a
query manager that supports “query by feature”, in which average values
of computed features are used as query values.

Other tools focus more specifically on visualizing the structure of phe-
notypic or development graphs. PGViewer [178] and CRAVE [69] provide
tree-based interfaces for accessing phenotype data from user-defined queries
on a data store and ontology, respectively. The Edinburgh Mouse Atlas
Projects’ prototype visualization of mouse embryo development stages [48]
displays developmental stages as acyclic directed graphs, with search filters,
region-of-interest selection and zooming facilities. A 3-D version of the tool
displays multiple data sets in parallel planes, with links between the planes
indicating relationships between data sets.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 18 TreeJuxtaposer. Subtrees in the left-hand tree are marked
in corresponding colors in the right-hand tree. Guaranteed visibility
ensures that these marked areas are visible in both trees. (From Ref.
[129], used by permission.)
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3.7 Visualization of the Scientific Process

Most of the visualizations described in this chapter focus on experimental
results. Tools for visualizing both the processes involved in scientific anal-
yses, and the conclusions that can be drawn from those analyses, can help
bioinformaticians bridge the gap between analysis and synthesis.

Data analysis often involves the repeated application of a series of processes
to new instances of a type of data. For example, genomics analyses might
involve searching for data in one or more databases, followed by one or more
transformation of results or subsequent searches [170]. Like raw experimental
data, these workflows are valuable artifacts of the scientific process. Graphical
tools for creating these workflows provide users with the ability to place com-
putational modules on a canvas and to connect them with links that specify
data flow. Examples include the Open Microscopy Environment’s “Chain
Builder” [70] (Figure 19) and the Taverna [133] tool for genomic analysis
workflows.

Once collected and analyzed, data must be interpreted to evaluate hypothe-
ses and develop new models. “Scientific notebook” tools attempt to augment
data storage and management with interpretive data and model construction.
Biological Storytelling [107] integrates a data display with a story editor that
can be used to collect evidence for and against various interpretations, and
a diagram editor for management of a network representation of the data
interpretation.

Other visualizations examine use the content of research publications
to inform further investigation. Cocitation analyses and related strategies
have been used to generate models and visualizations of relationships be-
tween terms and concepts in published research in bioinformatics (and many
other fields). Examples include networks of gene relationships based on co-
occurrences in Medline records and color coded based on gene expression
values [95], and networks that analyze publications trends over many years
[121].

4 Image Informatics

The microscopy image techniques described at the start of this chapter are
primarily concerned with data collection, whereas information visualization
tools support interpretation and analysis of data. Image informatics bridges
the gap between microscopy data collection and image interpretation by pro-
viding a framework for associating images with structured meta-data de-
scribing acquisition parameters. This information provides context that is
necessary for both manual and computational interpretation of the images.
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Figure 19 Visualization of microscopy data and analytic components
in the OME. (a) The Chain Builder: computational modules (left) can
be combined into analysis chains or workflows (right). (b) A data
manager for hierarchical navigation of projects and images sets, a view
of an individual image set, laid out according to manual categorization
and an image viewer. (From Ref. [70], used by permission.)

This requires tools such as VisBio for displaying the image content, analytic
tools for computational analysis of both images and meta-data, and informa-
tion visualization tools for examining meta-data associated with the images.

An image without meta-data is of little scientific value because it cannot
be meaningfully interpreted. Even a small collection of images requires at-
tached meta-data in order to provide context and allow the image contents
to be informative. What is this an image of? How was it acquired? By
whom? What was the experiment? With large collections of images from
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high-throughput or genomic studies, the scientific conclusions that an image
represents must also be recorded and associated with the relevant images
due to the sheer number of them involved. If a conclusion was arrived at
by image analysis, the steps taken to perform the analysis including any
parameters and intermediate results must similarly be associated with the
images analyzed. If the conclusion was arrived at by manual inspection, then
the identity of the person making the conclusion must be recorded, including
the option of maintaining multiple, possibly contradictory conclusions by
different individuals. The management of this information about images,
which is necessary for their scientific interpretation, is referred to as Image
Informatics.

The need to store, analyze, retrieve and interpret this information presents
significant challenges. The resulting systems have complex data models that
may in themselves require visualization – in addition to visualizing data, users
may need visual tools to inspect and explore data models, in order to find data
of interest and draw comparison between different data sets. An examination
of the specific issues associated with image informatics tools illustrates some
of the challenges presented by these systems

An image informatics infrastructure for HCS should use an extensible data
model to manage images and image meta-data. Extraction of scientifically
meaningful results from large image collections will require an image analysis
framework that allows for easy customization by the end-user biologist. The
infrastructure must maintain an audit trail of any results it maintains such
that everything can be traced back to an acquisition system or another entry
point into the system. Open access to raw data, meta-data and analysis results
will be needed to incorporate data from different acquisition systems and
technologies, to compare results from differing analytic techniques, and to
integrate image data with information in relevant external data sources. User
tools – including both microscopy and information visualization – will be
needed to allow scientists to easily manage, retrieve, manipulate, annotate,
and interpret this data.

In traditional software for microscopy many of these requirements are met
on an ad hoc basis. However, the high-throughput nature of HCS precludes
ad hoc solutions and demands that these issues be treated systematically. The
only known system to integrate all of these requirements in one place is the
OME (http://openmicroscopy.org [70, 175]). See Chapter 44 for additional
perspectives on workflow, provenance and other challenges addressed in this
section.
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4.1 Data and Information Management

All information for HCS must be stored in a relational database management
system (RDBMS). The structure of the RDMS (the DB schema) must be specif-
ically designed for HCS, which poses several challenges in DB design.

The first challenge is that image data comes in two highly distinct forms.
The pixel data is very large and relatively unstructured while the meta-data
and any extracted information is relatively smaller, but highly structured.
These two forms are sufficiently different that storing them in common is
impractical. Specifically, RBDMS binary data storage and retrieval facilities
do not provide the performance and accessibility needed to rapidly retrieve
arbitrary slices or time points from 5-D microscopy data. This shortcoming
can be addressed by storing meta-data in the RDBMS, along with appropriate
pointers to an image store on a private file system not accessible to normal
users (a pixel repository). A specialized image server can support flexible
retrieval of image data from the repository.

The second challenge is much harder to overcome and it is related to a
general problem of databases used in scientific research – it is not possible to
completely define the database structure when the database is being designed.
The database is used in the discovery process, which leads to new information
that must be stored in the same database. Although relational databases are
extensible, this flexibility is at too low a level to be useful to most users.
Augmenting the database with metadata that describes the structure of the
raw scientific data provides application software with information needed to
determine how to interpret and present that data. Interactive tools for creating
new data types can help biologists extend the database structure, without
having to learn the details of RDBMS query and data definition languages.

4.2 Image Analysis

Although image analysis has been around decades, the advent of HCS places
new demands on this traditional field. Image analysis for microscopy is
extremely difficult because of the bewildering variety of morphologies that
biology can produce. As attempts to provide all algorithms to address all
possible morphologies are unrealistic, a more flexible approach is necessary.
Specifically, basic tools can be combined with mechanisms for connecting
basic analyses and integrating external, possibly user-developed, possibly
legacy tools.

There are two fundamentally different approaches to image analysis: object
identification and scene-based analysis. Almost all image analysis software
for microscopy is based on object identification. In this approach, the object
of interest is identified and separated (segmented) away from its background.
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The object of interest can be a nucleus or a cell body, a subcellular organelle,
etc. This approach is very natural for fluorescence microscopy because a
specific fluorescent probe generates the contrast in the image, and it is natural
to extract everything possible about this fluorescence signal: its distribution,
intensity, shape, etc. In practice, however, the picture is never as clear as it
seems it should be. Segmentation algorithms to identify objects of interest
are easily fooled by irrelevant objects, fluctuations in pixel intensity that
must somehow be “normalized”, the object’s shape and other characteristics
that cannot be easily controlled experimentally. Algorithms that can reliably
identify individual cells regardless of cell type, the manner in which they
grow and the specific probe used to visualize them are extremely difficult to
develop. The advantage they have over scene-based analysis is that when
they do work, they can provide extremely valuable quantitative information
about the objects they identify [32, 140, 141].

Scene analysis is new to microscopy, but can be thought of as a natural
as well. Consider an image of a field of cells. Is it an image of one cell
repeated many times, or can we analyze the field of cells as a whole? Since
this approach does not rely on identifying specific objects, it can be much
more robust, i.e. applicable to a much wider array of phenotypes displayed
in HCS (Figure 20). Scene-based analysis relies on pattern recognition tech-
niques or machine learning to train an image classifier. In supervised machine
learning, the classifier is trained to distinguish classes of images defined as
a set of negative controls and one or more sets of target phenotypes (for
example, “Ruffled” and “Not Ruffled” in Figure 20). Once trained using
several example images of each class, the classifier can then be used in an
experiment to score images as being similar to the negative control or one of
the target phenotypes. There are presently no well-characterized examples
of unsupervised learning for biological image analysis, but if a reliable and
relevant measure of image similarity can be determined, standard clustering
algorithms can be used to automatically define phenotypic classes without
manual intervention [18–20].

Image analysis systems for biology must provide entry points for extension.
This requires that the data model upon which they operate must be open
and well documented. It must be possible for the end-users to interject their
own code at essentially any point in the analysis process. Closed monolithic
systems preclude this. If there are ways for the end-user to interject their own
code, then much of the system can still be used even if it was not designed to
solve the particular problem at hand.
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Figure 20 The ruffled appearance of these
cells is caused by the extension of filapodia,
which are used for locomotion. The filapodia
are visualized using a fluorescent probe for
the actin protein, which is a major component
of these structures. The image on the right
is the result of disrupting a gene required for
the formation of the morphologically normal
filapodia displayed on the left. These two

morphologies are easily distinguished using
a Bayes net classifier analyzing the field of
view as a whole (10/10 images classified
correctly with 85% confidence), while posing
a significant challenge to object identification
methods. (Images from Pamela Bradley,
Harvard Medical School; image analysis and
classification by the Goldberg lab at NIH.)

4.3 Analysis Workflows

Analysis protocols, in which independent computational algorithms are
chained together to derive desired results, have been effectively used in a
variety of fields, including genomic analysis [133, 170]. An image informatics
platform can store the definitions of these protocols along with the results they
produce, thus supporting reuse and comparison of results. Appropriate user
tools can be used to modify and extend existing workflows for new screens.
End-user tools for browsing, searching libraries of individual components and
workflows can give biologists complete control over the image analysis, and
a great deal of flexibility without necessarily involving additional software
developers.

4.4 Provenance

The challenge of data provenance (or lineage – the storage and retrieval of the
origins and computational history of data and results) has been extensively
studied [21].

HCS informatics systems contain many possible kinds of analyses that
can generate similar results. The results differ in their context even if they
carry the same semantic meaning. If two different segmentation algorithms
generate different particle counts, then neither count can be considered invalid
or meaningless – these two conflicting scores differ somehow in the data
dependency chain that led to the conflicting results. The ability to reconstruct
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these dependency chains and determine the provenance of a given piece of
information is an essential component of an HCS informatics system. The
visualization of these chains is an ongoing research effort, and it is expected
that direct visualization of information flow through an HCS system would
be an invaluable tool for the scientist to pick out new patterns of information
and make most effective use of existing analysis tools.

4.5 Federation

Federation of information with other information sources is necessary for link-
ing image information to data that are beyond the scope of the HCS system.
It is not possible to make hard and fast rules where this transition should take
place. The HCS system must be capable of maintaining references to external
data sources and providing them with sufficient context so that experimental
results can be easily viewed within the context of another informatics system.
For example, in a compound screen, it must be possible to take a collection
of hits determined by the HCS and send the list of compounds they resulted
from to a cheminformatics system in order to determine the structure–activity
relationships for these compounds. Similarly, for an RNAi or other genomic
screen, it must be possible to ascertain what is known about the functions of
the genes that were scored as hits. Clearly these are not within the scope of an
HCS system, so it must maintain references to compounds and genes in order
to perform these tasks using other information sources. For general issues in
data federation, see also Chapter 41.

4.6 Visualization and User Tools

Effective use of an informatics system for HCS requires tools that biologists
can use to locate, manage, manipulate, and interpret various types of data.
Given thousands of images, divided into hundreds of sets for various ex-
periments, simply locating raw data might be challenging, particularly when
the data is not recent. Similarly, the presence of numerous analytic modules,
workflows, and data types for analytic results poses challenges in navigation
and searching. An integrated, extensible environment that provides linked,
coordinated tools for these tasks will provide multiple perspectives on the var-
ious types, along with tools for manipulating them as necessary (Figure 20).

5 Conclusion: Research Questions and Challenges

Effective visualizations leverage the power of the human visual and percep-
tual system to amplify cognition [31]. Visualizations of biological data can
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help scientists interpret experimental results, evaluate hypotheses, generate
new hypotheses and build models. Maximizing the potential of these visual-
izations will require development of tools that are appropriately designed to
support meaningful tasks, flexible in their management and presentation of
data, and integrated with other visualizations, data sources and tools.

Appropriately designed tools will be based on detailed understanding of
user needs for specific data sets and tasks. Although most of the systems
described in this chapter were designed to meet specific needs, descriptions
of explicit needs assessments are relatively rare. Task-specific analyses of user
needs can provide invaluable guidance for visualization design. Question-
naires [170] and interviews [151] are standard techniques that have proven
useful for this purpose.

Evaluation is a crucial element of appropriate visualization design. Given
multiple different approaches to visualization of a given data type, which (if
any) is best? Two-dimensional [135], hyperbolic [92] and 3-D immersive [147]
approaches have been proposed for phylogenetic and taxonomic trees. Given
multiple different approaches to visualization of a given data type, which (if
any) best? Without some means of identifying strengths and weaknesses of
various techniques, researchers will be limited in their ability to constructively
build upon prior work, or to select the most appropriate tools for their own
analysis. Although controlled user studies [150] and heuristic evaluation by
expert users [48, 151] have been applied to some tools, evaluation is relatively
rare. Related work in human–computer interaction and information visualiza-
tion research may prove useful to developers of biological visualizations: the
relative strengths of 2- versus 3-D interfaces have been repeatedly examined
[43] and the development of evaluation techniques for visualizations has been
identified as a general challenge in information visualization [139].

Many of the visualization systems described above are limited in their
flexibility. Although some systems provide linked alternative views of a data
type, others are limited to a single visual representation. Many proposals
tightly couple a visualization tool to a novel analysis algorithm.

Tools that support the analysis of data via multiple different linked rep-
resentations may help users find patterns that would not have been visible in
any single view. Support for ad hoc coordination of alternative views might be
particularly powerful in this regard [132]. Decoupling of analysis algorithms
from visualization tools can help scientists make meaningful comparisons
between competing analytic approaches.

Extensible visualization environments and toolkits of reusable components
can facilitate development of these systems. Third-party developers have
used plugin architectures for Cytoscape [160] and ImageJ (http://rsb.info.nih.
gov/ij) to substantially augment the capabilities of the base tools. General-
purpose information visualization toolkits [12, 59, 77], as well as special-
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purpose toolkits for bioinformatics visualization such as GenoViz (http://
genoviz.sourceforge.net) and the genome data visualization toolkit [174], can
simplify system development substantially.

A final form of flexibility involves innovative use of display technologies.
Tools that take advantage of high-resolution desktop displays [129], wall-
sized displays [82] and immersive environments [147] provide opportunities
for display of larger data sets and increased collaboration between users.

Integrated visualizations of multiple data types can provide interpretive
power not available in simpler tools. Examples including multi-track genome
browsers [89, 97] and microarray visualizations augmented with GO annota-
tions [8] illustrate the possibilities, but much more can be done in this regard.
Approaches such as the “omic space” model [186], which integrates several
types of data in one display, may be quite powerful. Another useful approach
to integration might involve connections between visualizations and accepted
models for experimental and related data, perhaps including microarray [166]
and microscopy [70] data models.

Visualizations should also be integrated with the experimental process as
a whole. Combining with systems biology tools [90], analysis workflow tools
[70,133], and analysis and data storage platforms [181] raises a number of chal-
lenges similar to those described in the above discussion of image informatics.
However, the resulting systems will increase the power of visualization by
providing scientists with the ability to examine raw and interpreted data
and metadata in a coordinated manner. Such combinations will provide rich
context and interactivity necessary for active exploration and generation of
scientific insight.
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44
Using Distributed Data and Tools in Bioinformatics
Applications
Robert Stevens, Phillip Lord, and Duncan Hull

1 Introduction to Distributed Resources

The advent of the web has been both a great blessing and a bane for bioin-
formatics. While it has given researchers access to a large store of data
and tools with which to analyze these data, this wide access does have its
adverse consequences. The use of web technologies enable organizations and
individuals to provide and retrieve data cheaply. This obvious blessing is
accompanied by the drawback of distribution and autonomy: the need to join
together distributed resources that have developed along different lines. To
accomplish most bioinformatics analysis, it is necessary to use more than one
resource – a genomic DNA sequence is analyzed with a gene prediction pro-
gram, a hypothetical gene is translated into protein, that protein is searched
against a protein data bank for possible homologs and so on. Traditionally, a
bioinformatician has done this by manually cutting and pasting material from
page to page on the web. Doing this programmatically necessitates networked
applications or distributed computing.

This chapter explores the use of distributed and networked computing.
Many of the issues these raise, e.g. fault tolerance, network latency, etc., have
been discussed in detail elsewhere [27]; here, we consider those issues which
are specific to bioinformatics. We take a practical and historical view, describ-
ing how bioinformatics has developed in a networked environment, but we
then come right up to date by looking into the future of Grid computing.
We will describe the lessons both of failed attempts to address networked
applications and the success stories that have emerged.

The fundamental requirement for networked applications arises from the
distribution of the laboratories working in bioinformatics, which is character-
istic of biology as “small science” or a patchwork of “rival city states” [22].

When sequence data began to be generated, as long back as the late 1970s
and early 1980s, researchers wished to exchange data for comparison etc.
Distribution at that early stage was by means such as tape, disk and, finally,
CDs.
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Basic advances in infrastructure solved the problem of transferring data.
It was the advent of the web which reduced the requirement for specialist
knowledge to do so. Bioinformaticians and biologists were early adopters of
this technology. Most laboratories had relatively small amounts of data to
present and this was often achieved by use of a text editor, and then simple
use of active content via the Common Gateway Interface (CGI). The use of
common protocols [HyperText Transfer Protocol (HTTP)], a relatively sim-
ple language [HyperText Markup Language (HTML)] and simple user-facing
client tools ensured that this technology would become widely adopted.

One of the main virtues of the web is its lack of centralized control; this
makes it scalable as there is no single point of failure or bottleneck. Both ser-
vice providers and consumers are highly autonomous from each other. Bioin-
formatics has used this autonomy to the full; data was stored in nonstandard
file formats, with each entity structured using an ad hoc ASCII encoding de-
fined by the data holder. This result in a plethora of different file formats; the
classic example in bioinformatics is the many formats for biological sequences
such as nucleotide and proteins. Thus, for example, the program from EM-
BOSS seqret (http://emboss.sourceforge.net/apps/seqret.html) can take 28
different sequence formats as input and transform them to a format required
by subsequent analysis tools.

Many of these resources also grew at the time before relational databases
were widespread and scalable. A relational database management system
(RDBMS) does provide better data management and query facilities than
flat-file delivery, but at the time they were often expensive and lacked the
ability to efficiently deal with the large amounts of nonscalar data necessary
in biological databases. Even though many bioinformatics resources now use
RDBMs, the exchange format is still largely in the legacy flat file.

Tools working over these data have developed in a similar autonomous
manner. They take data in a particular format and deliver their results in
a nonstandard format. Again, this is usually as some formatted ASCII text.
This heterogeneity is one of the major hurdles in distributed computing within
bioinformatics.

As with the web, this large quantity of data available to the bioinformatician
is only really usable because of the use of massive hyperlinking, e.g. the
current release of UniProt maintains links to over 60 other resources by cross-
linking accession numbers and identifiers from each of these resources. These
are usually translated into HTML links when presented to users within a
browser.

There are now very many data sources and tools available. The 2005 edition
of the annual database issue of Nucleic Acids Research describes over 700 [10]
data resources, along with hundreds of analysis tools. As new biological
techniques develop, such as transcriptomics and proteomics, more resources



2 Heterogeneiety in Bioinformatics Resources 1629

are developed to accommodate their data. Combined with the desire to
perform more complex analyzes, the traditional cut and paste methods of
bioinformatics have become increasingly unusable.

Bioinformaticians, therefore, began to develop programs to automate the
process, gathering data and tools distributed around the network into single
applications. In doing so, they had to overcome a series of problems, and it
is these problems and their solutions that are the subject of this chapter. The
subjects to be covered are:

• Overcoming the problems of heterogeneity between tools and resources
(Section 2).

• the inclusion of data and tools hosted on another computer into an applica-
tion running on a local computer (Section 4).

• Technologies for this inclusion, such as Common Object Request Broker
Architecture (CORBA) and web services (Sections 4.1 and 4.3).

As we review these issues, many examples of distributed or networked appli-
cations will arise. In Section 5, we will review some case studies in networked
applications in bioinformatics. We finally conclude by introducing cutting
edge technologies such as the Grid. This chapter will explain the central
role that distributed computing has in modern bioinformatics and provide
the reader with the foundations of the field.

2 Heterogeneiety in Bioinformatics Resources

If all distributed resources worked with one standard data format and appli-
cation programme interfaces (APIs), the existence of the Internet would be
enough to deal with most of the problems manifest in distributed computing.
The common communication protocols would enable applications to access
distributed components running on a variety of machines and their various
operating systems. Sadly this is not the case, and considerable difficulties are
caused by their differing APIs, query languages, syntaxes, format differents
and, finally, but not least, their differing semantics for their content.

This heterogeneiety is the major barrier to distributed computing. Although
there is a common communication protocol through the Internet, networked
applications still have to deal with the following heterogeneities [18]:

(i) System heterogeneity.

(ii) Syntax heterogeneity.

(iii) Structure heterogeneity.
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(iv) Semantic heterogeneity.

System-level heterogeneity means that it is difficult to access and use appli-
cations residing on another type of computer and operating system. Recently,
quite a number of cross-platform languages have arisen, including Perl and
Java, which are widely used in bioinformatics. The use of these languages
solves some problems, but introduces others as it often becomes necessary to
get these cross-platform languages to interoperate with each other.

CORBA and web services are two technologies used to overcome these low-
level problems that have seen usage in the bioinformatics arena. These really
are the “plumbing” that connects distributed resources together. These will be
discussed further in Section 4.

System level heterogeneity can also impact on the other levels: the line
terminator differences between different platforms is really a syntactic prob-
lem; it is at this level that we start to find the examples of heterogeneity
which affect bioinformatics most heavily. A cynic might observe that one
necessary condition for being a bioinformatician is to have written parsers
for BLAST output or Swiss-Prot records. The syntactic differences between
bioinformatics resources means bioinformaticians are forever writing parsers
to convert results into a form suitable for their application. A common syntax
would mean that such conversions would be easier to achieve or indeed to
understand what the syntax actually means – most bioinformatics flat files
have no formal, computable description of their syntax.

Both the autonomy and legacy issues within bioinformatics, however, mean
that such common standards are difficult to achieve. ASN.1 [4] is one such
attempt at a standard syntax that was not widely adopted. eXtensible Markup
Language (XML), which is covered later in Section 4.2, has and is having
greater success in bioinformatics.

As well as myriad examples of syntactic heterogeneity, bioinformatics is
rife with structural heterogeneiety. Even if we had a common syntax, such
as XML, for formatting data, we would still have the problem of how we
structure this data within the syntax. A simple case in point is the represen-
tation of authors in a literature reference. For example, compare this XML
representation of one of the authors from UniProt:

<authorList>
<person name="Lord P."/>

</authorList>

with this from GenBank:

<Person-id_name>
<Name-std>

<Name-std_last>Lord</Name-std_last>
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<Name-std_initials>P.</Name-std_initials>
</Name-std>

</Person-id_name>

The former makes no attempt to structure the name, while the latter splits
initials and last names. To compare these two authors then to see if the name is
the same requires a set of rules to produce a normalized form. Communication
between distributed, autonomous resources requires the use of the structure
of the data in order to access just those parts required for analysis. Obviously,
differing structures to hold data means problems for using those data.

Much of system, syntactic and structural heterogeneity would be dealt with
by a common type system, as described in Section 3, and the lack of such a
common system and its consequences are manifest.

Lastly, and certainly not least, is semantic heterogeneiety. This is the dif-
ference in meanings between the representations held in different resources.
Karp [12] and Davidson and coworkers [6] identified semantic heterogeneity
as one of the major barriers to integrating bioinfformatics applications. On-
tologies, covered in Chapter 29, are seen as a technology for capturing the
semantics of a domain [26]. They offer a mechanism for creating a shared
understanding, via vocabulary terms, for a given domain. A particular data
resource either adopts the ontology and changes their data or maps their
current reprsentation into the ontology. Both of these can be seen with the
Gene Ontology [28]. Swiss-Prot uses GO terms directly and mapped its
current keywords into an ontology to achieve de facto semantic integration.

Much of the work in distributed computing or networked applications is in
overcoming these four levels of heterogeneity. Dealing with heterogeneity is a
prerequisite for any kind of data integration, as covered in Chapter 42. In this
chapter, we concentrate on the aspects of system and syntactic heterogeneiety.
The “upper” two levels of heterogeneiety are the subjects of Chapters 29
and 42.

3 Type Systems in Bioinformatics

In building bioinformatics applications, we are interested in manipulating
data, but how does a programme know what operations can be performed on
any given piece of data? In computer science, a type or datatype is a name for
a set of values with shared properties. A type system uses these types to con-
strain the operations that may be performed on the values of a given type [29].
So, for example, the type integer typically describes the set of natural numbers.
A type system then enforces that only integer operations such as division and
multiplication can be performed on integers, and prevents or warns against
nonsensical operations such as substring selection from being performed on
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integers. Type systems are implemented in many different ways, e.g. as part
of a programming language or in a database/schema language. This easily
leads to heterogeneiety when different type systems are used. Thus,it is worth
examining “type” in a little depth.

Type systems differ in their complexity and expressivity, but they generally
have several benefits:

• Type checking and safety – making sure only integer operations are per-
formed on integers or “protein operation” performed upon proteins.

• Optimization – manipulating each type and its operations in the most effi-
cient and effective manner possible on a machine.

• Abstraction – creating a model of a domain through a type system and
knowing, for example, that “DNA” and “RNA” are both kinds of “nucleic
acid”.

• Pipeline construction – using the type system to transfer data between
components with predictable outcomes.

The heterogeneity pervasive in bioinformatics means there is no globally
accepted type system for describing bioinformatics data. This forms a major
barrier against integration of distributed data and applications.

In a programming language, if a variable is declared to be of a given type,
then a program can check that declarations are valid and safe. Thus, for
example, in a statically typed language, a compiler would check that strings
were not assigned to variables of type integer, by type checking the statement:

Integer i = “this is a string”

The statement assigns the value this is a string to a variable i of type
Integer, which will cause problems when integer operations like division and
multiplication are performed on that string. In a statically typed language like
Java, a compiler will warn against these sorts of assignments at compile time.
In dynamically typed languages like PERL, this type checking is done at run
time by the interpreter and may involve automatic type coercion from one type
to another.

A type system can also help the programmer to abstract away from the
binary digits that the computer deals with when the program is executed.
In this sense, a type system is a model of the world, which helps users of
programmers to describe the data they are manipulating.

Most type systems allow further abstraction than primitive types like
string, integer and dates by allowing user-defined or complex types
to be built from primitive ones. So, for example, a bibliography might be
modeled in a type system as a list of references, each with authors of type
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string and publication dates of type date. Again, as well as having better
descriptions of the data, it is possible to define the operations performed on
those descriptions, as seen in object-orientated programming languages.

Joining the inputs and outputs of two programs together, as seen in net-
worked applications, can be facilitated by a type system. Given an instance of
a type, such as a UniProt record, a type system can help to:

• Infer its type by type inference – this automatically assigns a type if it is not
explicitly stated

• Identify a set of other types into which a UniProt record can be transformed

• Identify a set of processes that accept UniProt records as input. This in-
cludes processes that accepts parts of UniProt records, such as protein
sequences and database identifiers. This can be useful when constructing
programs or workflows that process data as it allows the programmer to
find out what they can plug in next, at any given point in the dataflow.

• Identify a set of processes which output UniProt records. This can be useful
in planning techniques, which start from an endpoint and work backwards
to a starting point [3].

As a consequence of the autonomy of bioinformatics, there is no globally
agreed upon and used type system for modeling bioinformatics data. Given
the autonomous and distributed nature of bioinformatics, this situation is
unlikely to change. Instead of a global type system, we have many different
type systems implemented in the various languages used in bioinformatics.
This causes heterogeneiety at the system level, as ‘integer’ may be represented
as 2 bytes on one system and 4 bytes in another, meaning operation of the
programme may not be the same. Also, complex types such as “protein Data
Bank entry” will be different in each application or tool. In addition, we have
the type systems of each of the 700+ [10] databases that exist in bioinformatics.

As well as having distributed data that is autonomously produced and
therefore heterogeneous, bioinformatics data is often semistructured and
weakly typed – the ubiquitous flat file being the best example of this. These
flat file entries will often be returned as “string” to a programme. The
structure and the type of the data are thus implicit, and usually have to be
parsed and transformed to some type system by the application developer.

An important consequence of the lack of a type system in bioinformatics
is that joining distributed resources together frequently requires the use of
“shims” to align the inputs and outputs of two closely related pieces of
data [14]. An example is shown in Figure 1.

These shims perform some of the operations associated with a type system
in an ad hoc manner. They achieve this by coercing, inferring, casting and
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Figure 1 A shimming scenario in bioinformatics. A GenBankService
(1) producing a GenBank record needs to be plugged into a BLASTp
service (3), which accepts a protein sequence. Getting services (1)
and (3) to interoperate requires an Accessor_mediator service (2) to
extract the protein sequence from the GenBank record.

constructing types when they process the weakly typed and semistructured
data that is common in bioinformatics.

A good type system is very helpful in manipulating data. Bioinformatics
application builders spend much of their time overcoming the consequences
of having no global type system. In the next section, we will see that describ-
ing the type of data being moved and dealing with system heterogeneity is
one of the major factors in achieving distributed computing.

4 Plumbing Bioinformatics Resources

When developing applications in a distributed environment, a fundamental
activity is to join resources, and pass data between data stores and analyt-
ical tools. To the programmer attempting to use distributed bioinformatics
resources within a single program in this way, the fact that different resources
present different programmatic interfaces (or none at all) implies that a con-
siderable amount of effort has to be expended. For example, consider the
case when a Java program needs to access a remote database written in C++
and feed some of the results to another program written in Perl. In order to
do this the programmer must cope explicitly with the different languages in
question – the C++ will be invoked in one way, Perl in another – and with the
distribution. The C++ program is likely to be invoked differently if it were to
be available on the local machine. This kind of coding requires a large amount
of effort and the resultant program tends to be fragile. If it is decided to mirror
the database locally, the Java program will need rewriting. If the Perl program
is ported to C++, again the Java needs rewriting.
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It would be possible to integrate all the required tools and databases in a
single place – in practice this is often impractical, so instead, interoperability,
providing the ability for resources to work together while remaining separate
or “loosely coupled” is often more desirable. One solution to this problem is to
use some middleware technology. As the name suggests, this technology adds
a middle architectural layer which abstracts from the different languages,
systems and locations. Following the example above, instead of writing code
in Java to invoke the C++ database directly, both will be wrapped with the
middleware technology. This technology then has the task of managing the
communication between these wrappers around the two different implemen-
tations. While this seems overly complex, it actually simplifies many issues.
The Java programmer no longer has to worry either whether the C++ database
is local or remote, nor does it matter that interaction is needed with both C++
and Perl. Therefore middleware technologies offer an attractive solution to
overcoming system and syntactic heterogeneity in a distributed setting.

In this section, we consider a number of middleware technologies and
their use within bioinformatics. First, we describe ww CORBA (Section 4.1).
This technology provides both a standard mechanism for data structuring
and for providing (relatively) transparent access to the structured data across
distributed systems. Second, we describe XML (Section 4.2) which provides
a common syntax for structuring data. Finally, we examine web services
(Section 4.3), which use HTTP – the protocol on which the web is built – to
overcome system level heterogeneity, leaving syntactic problems to XML.

4.1 CORBA

CORBA is one solution to the problems of system and syntax heterogeneity.
Its use in bioinformatics arose in the late 1990s and is now a mature industry
standard, and has been widely proposed as a solution to the problem of
distribution in bioinformatics.

CORBA attempts to present a common view of the world by presenting
it from an object-modeling perspective. To continue the example introduced
earlier, to the Java program using CORBA, both the C++ database and the
Perl program would appear to be Java objects. Interaction with these objects
would be identical to interaction with any other Java object. Similarly, on the
C++ side, queries to the database would appear to be coming from a local C++
object rather than from a remote Java program.

To enable this technology, the target resources can be described in a common
language. This common language can then be compiled automatically into the
programming language of choice, which then enables these target resources
to appear as if they are part of the local host application. A core feature of
the CORBA specification is this language – the Interface Definition Language
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(IDL). This language is used to describe the operations, including return types
and arguments taken, that the target resources perform and it can be used
by CORBA-compliant tools to generate code for both providing access to the
services and the means for the services to be accessed.

As the name suggests, IDL is a language that describes an object’s interface;
it does not, however, describe how the behavior offered by that interface
is implemented. Thus, it is independent of any individual programming
language, although, in practice, it looks somewhat like C++.

The actual work of enabling this interaction between different IDL-described
resources is a fairly complex procedure. By analogy to financial brokers
who organize complex financial transactions, requests between CORBA
objects are mediated by an object request broker (ORB). The CORBA bus
is the communication system between objects used by an ORB. Different
vendors supply their own ORBs, so one person’s client may, in theory, use
a different ORB to the one being used by the server with which they wish
to communicate. This is the importance of the common part of CORBA – it
is a common architecture for ORBs. One of the specifications in the CORBA
standard is that ORBs will interoperate. This means that one vendor’s ORB
will (hopefully!) work seamlessly with another vendor’s ORB. Figure 2 shows
the relationship between client and server objects, their ORBs and the CORBA
bus along which they communicate.

While the interaction between ORBs appears to be precisely specified, there
is actually considerable scope for variation between them. For most CORBA
applications, performance is constrained by network latency – the amount
of time it takes to make an initial connection. Theoretically, therefore, good
CORBA implementations should all have a similar performance bound by the
network; however, in practice, it can vary significantly.

Although CORBAs middleware technology offers a solution to system and
syntax heterogeneity, it does not of itself provide a solution to structure het-
erogeneity. There is nothing to prevent different resource providers modeling
objects in different ways. Again, considering the earlier example, the database
may return objects representing authors of bibliographic references, while the
Perl program may consume similar, but different, structured objects. The Java
programmer must therefore map between the different object representations.

The CORBA technology and specifications are overseen by the Object Man-
agement Group (OMG). In addition to the basic specifications, the OMG also
defines a complex social process for standardizing the IDL representations for
a specific domain.

Many of the standards produced by the OMG are specifications for services
which support the use of distributed objects. When, for example, objects are
distributed, they have to be found by programs which wish to use them. Thus,
the two fundamental services offered are the naming service, that finds objects
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Figure 2 The CORBA bus.

by name, and the trading service, that finds objects by the requests they answer.
Other services include object life cycle services, event services and security
services. Many other services are specified within the CORBA specifications,
but they all support the use of distributed objects and make use of the CORBA
bus to communicate.

In addition to these generic specifications, there are also a number of bioin-
formatics domain specifications. The European Bioinformatics Institute (EBI),
in particular, invested significant effort in providing CORBA solutions for
many services, including EMBL (http://corba.industry.ebi.ac.uk). The OMG
formed the Life Sciences Research Group (LSR) that has developed several
standards for services including bibliography and sequence resources [5,
19, 20]. However, the uptake of CORBA by the community has not been
widespread. The main reasons for this have been the perception that CORBA
is too heavyweight a mechanism – the large effort required to develop the
standards seen as necessary by the OMG and the implementations themselves
obstructed development. Many of the early ORBs were expensive and focused
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on enterprise-level computing, which did not fit well with the bioinformatics
cottage industry. In addition, many ORBs themselves did not actually inter-
operate. Finally, CORBA seemed to be plagued by continual problems with
tunneling through firewalls, defeating the promise of location independence.

Despite these difficulties, CORBA now offers a usable technology. Many
languages, such as Java, now provide basic ORBs which can be used for
free. If a fine-grained, object-based, platform- and language-independent
middleware is required, CORBA is probably still the best option.

4.2 XML in Bioinformatics

Syntactic heterogeneity is commonplace within bioinformatics. This situation
is made worse by the heavy use of “flat file” formats. Many of these have no
formal specification – an exact description of what is and is not allowed within
a file – meaning that parsers are both hard to write and standard tools, such
as lex and yacc [13], are not able to automate the process. This also creates a
huge versioning problem – when the format of a BLAST record, for instance,
changes there is nothing that tells you it has changed until all the software,
which depend on the format, breaks.

One standard syntax which is in common use is HTML. This does a rea-
sonably good job of describing documents so that they can be presented on
the web. However, this presentational format does not reveal the underlying
structure of the data, such as all the fields, etc., in a flat-file database entry. In
fact, it can make the situation worse. As quite a few bioinformatics resources
are available only through a web site, automated use can require “screen
scraping” techniques, i.e. using a program to make an interpretation of HTML
which is meant for presentation to humans. This works but is even more
fragile than flat-file technology. Every time the web site presentation changes,
it may potentially break downstream programs.

XML (http://www.w3.org/xml) is a potential solution to this problem.
Despite its name, it is not actually a markup language, but rather a description
of how to specify new markup languages or “application” of XML, such as
HTML. (This is not actually true. HTML is actually an application of SGML,
which is a somewhat more complex fore-runner of XML and HTML does not
quite conform to the restrictions of XML. There is a new version of HTML,
called XHTML, which is valid XML.) Languages such as the Standardized
General Markup Language (SGML) are “languages for languages” or meta-
languages. It can be used to define the structure of documents in a particular
domain. So, HTML describes the structure of a web page to have a header
and a body that may contain headings, paragraphs, tables, images, etc. With
SGML, it is possible to define a formal grammar which specifies which tags
are valid within a document and how these tags relate to each other. The meta-
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language is used to define what elements may appear in a document, where
they can appear and how often, etc. This grammar provides a schema for the
document – XML Schema.

XML is a lighter weight version of SGML, but it has a language for de-
scribing document structure – hence the term “extensible”. HTML, on the
other hand, is a document structure for a particular domain (presentation on
the web) and is not itself extensible to another domain. XML does, however,
provide a common syntax in the now familiar tree of nested elements (see
the description of names in Section 3 where elements are enclosed in angle
brackets, etc. This combination of document structure, common syntax and
available tools make XML a powerful tool. It is possible, for instance, to check
that a document is valid XML syntax – all elements are matched with closing
elements and elements are properly nested. etc. Tools are also provided that
take a document and together with its XML schema not only validate the
document, but verify it against the schema. Any part of the document that
contravenes the rules in the schema means a document will not verify.

Uptake of XML within the sciences has been widespread; the Chemical
Markup Language (CML) is widely recognized as one of the first substan-
tial uses of XML technologies (http://www.xml-cml.org/information/ posi-
tion.html).

When it was first introduced in 1996, initial uptake of XML in bioinformatics
was relatively slow, due to rapidly changing specifications and poor tool
support. XML is now, however, relatively mature. There are standard
parsers, APIs for the Document Object Model (DOM) and simple API for XML
(SAX), cross-linking and query standards (XPointer, Xquery) and stylesheet
and transformation languages (CSS and XSLT) (http://www.w3.org/xml).
Another large issue has been the substantial investment in legacy tools;
although both UniProt records (http://www.ebi.uniprot.org/support/docu-
ments.shtml) and National Center for Biotechnology Information (NCBI)
BLAST results (http://xml.coverpages.org/ncbiDataModel.html) have been
available as XML for a number of years, most tools still work on the original
flat-file formats.

It is notable, however, that for newer databases, such as Interpro
(http://www.ebi.ac.uk/interpro/), XML is increasingly becoming the repre-
sentation of choice. It is even more widely used as an interchange language,
often as a layer on top of a relational database, with languages such as Bioin-
formatics Sequence Markup Language (BSML) (http://www.visualgenomics.
com/products/) that is mostly aimed at describing sequence features rather
than sequences per se.

While XML has an important role to play in distributed resource manage-
ment, it is important to understand what it does and does not provide. It
does offer a standard syntax and language for describing and customizing the
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use of this syntax, i.e. it is extensible. It supplies a type system to the data it
describes. It does, however, provide a “self describing” format. The presence
of an <AUTHOR/> tag into a document is, intrinsically, no more informative
than <H1/>. For an XML format to be useful, therefore, it must be agreed
on by the entire community and the semantics, or meaning, of the individual
tags clearly defined. This degree of centralization and control, in many ways,
contradicts the distribution and decentralization which is characteristic of
bioinformatics.

XML is not a universal solution to the problems of distributed data integra-
tion [1], but by overcoming syntactic heterogeneity it does provide valuable
facilities for describing data structure which most bioinformaticians are likely
to use at some point.

4.3 Web Services

While CORBA proved technically successful, in recent years web services
(http://www.w3.org/TR/wsdl) have started to take over as the predominant
paradigm for client–server interactions. Perhaps, partly, in response to the
perceived complexity of CORBA, web services were designed to build on the
success of the world wide web and one of its key messages, that many things
can be achieved with a simple system. Since the initial advent of web services
a panoply of toolkits and specifications have arisen, provided a fully featured
and functional technology.

Web services take the same basic approach to distribution as CORBA, but
with several significant differences. At heart, both CORBA and web services
take a description of a service being offered and produce code for developing
clients and servers. Web services takes the view that distributed tools and
data are offered as “services” to applications that wish to use them. Any such
service-orientated architecture has the following requirements:

• A standard communication protocol between services and host application.

• A uniform data representation and exchange mechanism.

• A standard language to describe the service’s attributes and operations.

• A mechanism to register and discover web services.

The web services technology stack fulfills these goals. The Simple Object
Access Protocol (SOAP) is the channel used for communication between a
web services provider application and a client application. SOAP re-uses the
HTTP for transporting messages. Messages are passed between services using
XML documents. The structure for SOAP message includes an envelope and a
body. The body itself describes a message to a service, e.g. a call to a particular
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operation or communicate failure. The envelope gives the metadata necessary
for this invocation

As CORBA’s IDL is used to describe services, web services use another XML
document type to describe services. The Web Services Definition Language
(WSDL) is used to describe the operations and attributes for a service. A
WSDL description, like CORBA’s IDL, is used to generate both client and
server code for the service. WSDL can be used to generate a variety of
programming languages on a variety of platforms. Client and server, once
deployed, are ready to pass SOAP messages between one another.

Finally, just like CORBA’s naming and trading services, web services
need to be discovered for use. WSDL documents can be placed in a reg-
istry based on the Universal Description, Discovery and Integration (UDDI)
(http://www.uddi.org) framework, and these registries can be searched to
retrieve WSDL descriptions of interest. A user would then compile that file
to generate a client and use information from the WSDL description to locate
and use the service.

Web services take a different approach to that of CORBA. While the latter
uses a remote object approach which provides the ability for passing around
data and subsequent fine grained client–server interaction, with that data,
web services use a “document-based” paradigm. Here, potentially complex
structured data is passed between services in bulk. The hope is that instead of
a series of fine-grained interactions between client and server, fewer coarser,
but richer, interactions will happen – something of clear benefit when faced
with any serious problems of network latency or failure.

Ironically enough, this document based, service-orientated architecture
bears many similarities to the traditional bioinformatics approach of passing
complex data from Perl-driven CGI scripts. However, standard technologies
for describing service interfaces, for presenting these services, for structuring
the documents passed between services and for discovering services, were
all lacking in bioinformatics’ original ad hoc implementation of this service-
orientated architecture, and are all provided by the web services technologies.

Both web services and CORBA provide technical solutions to integration
and both have been deployed in bioinformatics (see Chapter 42). Web services
have had the greater uptake, due to their perceived lighter approach and
ability to do bulk transfer.

There have been a number of different projects, some of which are described
in Section 5, which use some or all of the web services technology stack. In
addition to these projects, quite a few service providers are now providing
programmatic interfaces as a web service, including for example Interpro (see
http://www.mygrid.org.uk for a list of available web services).

Although bioinformaticians are using web services, there are a number of
peculiarities in their usage within the domain. The intention of the design
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behind web services was that all the data would be modeled as XML. In
bioinformatics, this is a big requirement to place on service providers, as
presentation of many of the standard bioinformatics data types in XML is
nontrivial. In addition, there is a large legacy with which to deal. For this
reason, many of the web services use XML only as far as describing their
complex, structured, flat-file results as xsd:string – the XML string type.
In short, these web services look much like their CGI progenitors, but with a
thin web services veneer.

It seems likely that the uptake of web services will continue, as a result
of several synergistic advances: the web services specifications and toolkits
are stabilizing, standard XML representations for bioinformatics are becoming
more widespread, and, finally, client tools are becoming available.

5 Case Studies in Distributed Bioinformatics

In this section, we consider a number of different projects as case studies
for the use of distributed technologies within bioinformatics. All of these
projects have focused on providing a middleware layer to either integrate or
inter-operate over heterogeneous data sources and to provide some degree of
transparency to the distribution of the resources. Chapter 42 also describes
examples of integration of distributed resources in bioinformatics.

5.1 ISYS

ISYS is described as a decentralized, integration system, as opposed to a
distributed system per se [21]. The aim was to enable the integration of a
number of different components, to allow their interoperation without a tight
entanglement of their respective code bases. ISYS was particularly directed
at producing user interface-driven interoperation, enabling data to be passed
freely between components. ISYS achieves this with several key components:

• The ClientBus. The various components to be integrated can be registered
with the ClientBus. All communication between components then passes
through this system.

• An event model. The ClientBus is used to transfer Events between different
components. Components can produce or consume events of different
types. As ISYS is aimed at user-driven integration, these event types are
quite fine grained, describing, for example, selection or deselection of items
within the user interface.
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• A domain model. In order to enable different components to communicate
a common data model was defined using Java interfaces. Examples of the
kinds of data include ISYSSequence (for nucleotide sequence) or IsysTaxon.

While ISYS was not necessarily intended as a distributed system its loose
coupling does enable it to be used in this way. Distributed services can be
accessed by providing Java wrappers which then call out to these services.
For example, Access to the NCBI BLAST service was provided in this way.

5.2 BioMOBY

BioMOBY is an architecture for the discovery and distribution of biological
data through decentralized web services [30]. The BioMOBY project has a
dual development track with different architectures, known as MOBY-S and
S-MOBY (http://www.biomoby.org).

The project originated in the model organism communities where each com-
munity had developed standards for sharing data within their closed groups.
Many biologists, however, now wish to ask questions requiring data from
many different organisms. BioMOBY [30, 31] is an architecture for the discov-
ery and distribution of biological data through web services. As of November
2005 it provided around 400 services for analyzing genomic data. A key
feature of BioMOBY is the central registry of services, called “MOBY central”,
that allows different client programs (e.g. http://mobycentral.icapture.ubc.ca/
cgi-bin/gbrowse_moby) to search, browse and execute services that produce
or consume a given piece of data, e.g. a GenBank accession number.

5.2.1 MOBY-S

The core philosophy behind MOBY-S has been to ensure “simplicity and fa-
miliarity”; the second of these must be emphasized as MOBY-S has focused on
familiarity to the bioinformatician. In short, MOBY-S has sought to minimally
modify the way that bioinformaticians already work, which largely consists
of web-delivered services and CGI scripts. S-MOBY adds to this in three key
ways:

(i) A domain ontology. This describes the basic data types in bioinformatics
and the relationships between them. In keeping with the notion of famil-
iarity, the ontology is defined as a directed acyclic graph, a representation
popularized by the GO [28] (see Chapter 29).

(ii) Messaging. An XML messaging layer has been defined. This provides a
description of the wrapped data in terms of the domain ontology, as well
as defining some additional relationships between the wrapped data and
the information upon which it depends.
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(iii) A central discovery server. In addition to the use of the ontology to
describe the data provided by the services, the services themselves can
be defined in terms of this ontology. This then enables the population of
“Moby Central” using the ontology to describe the services.

In some ways, MOBY-S resembles web services architectures, although
it predates the widespread adoption of these technologies. Mostly for this
reason it does not use all of the web services technology stack.

One of the key decisions made by MOBY-S was to design for an open and
extensible system. Moby Central itself is freely accessible. The ontology is
accessible and extensible by service providers. MOBY-S itself does not impose
any standard for representing the data that it passes around, instead leaving
the structuring to the service providers and consumers. This open structure
has meant that the original notion of a single Moby Central repository has
become outdated; a number of different “in-house” repositories now exist.

5.2.2 S-MOBY

The S-MOBY project has been aimed at building on two key architectures.
The first of these is the REST architecture [8] and the second is the Semantic
Web [2].

As with MOBY-S, the basic idea is to produce middleware enabling the
presentation of services with a defined interface and then to augment this with
descriptions of these services defined in terms of an domain ontology. Un-
like MOBY-S, however, S-MOBY adopted a Resource Description Framework
(RDF) (http://www.w3.org/rdf/) representation for its messaging layer with
the intention of enabling much deeper structuring of the core bioinformat-
ics datatypes. Secondly with the adoption of OWL-DL (see Chapter 29)
as the main formalism for representation of the domain ontology, it should
be possible to enable more distribution in the development of the ontology,
i.e. different users of S-MOBY should be able to define their own ontology
for their own purposes. Finally, central registration of services was never
envisaged to be mandatory; descriptions would be published in a standard
format on the web, to enable the use of different search engines.

5.3 The Grid Future – the myGrid Project

The term “Grid” was coined in the mid-1990s, and is the focus of much
attention as a distributed computing infrastructure for advanced science and
engineering [9]. At its heart, the Grid is about sharing and the transient
creation of virtual organizations of these shared entities [9]. If this were to
happen, some of the same problems, but with different manifestations, are
encountered as with data distribution:
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• Accessing computational power of differing platforms.

• Scheduling usage across multiple resources.

• Moving data and resources to these platforms.

• Coping with issues of security and authorization.

This access to general resource sharing makes a Grid – defined as “flexible, se-
cure, coordinated resource sharing among dynamic collections of individuals,
institutions, and resources” [9]. It is easy to see how this paradigm fits into
the world of bioinformatics: A sophisticated, complex bioinformatics in silico
experiment may involve people, many forms of data, instruments, etc., and
all of these could share resources in a Grid [11].

5.4 The myGrid Project

An example of Grid development is myGrid (http://www.mygrid.org.uk), a
UK e-Science pilot project which is producing Grid middleware infrastructure
specifically to support in silico experiments in biology [24, 25].

From the issues facing a scientist performing in silico experiments come a
strong set of requirements to automate the experimental process, its repetition
and to support the management of the results. myGrid addresses these require-
ments by regarding in silico experiments as workflows [25]. These workflows
automate experiments by orchestrating the services that process data. myGrid
not only supports the creation of the experimental protocol (the workflow),
but also the management of the inputs, outputs, intermediates, hypotheses
and findings – for the individual and wider groups of scientists. This includes
an awareness of the experiments and data holdings of the user, his or her
colleagues and the wider scientific community. The aim is to place the scientist
at the center of a virtual bioinformatics organization and the flexibility of
data management that affords that scientist a personalized view of his or her
experiment holdings.

Each part of myGrid addresses the requirements of the research scientist,
either by automating tasks or supporting the overall management of experi-
ments and their results.

Service provision. To allow automated interaction with applications during
the in silico experiment we must provide programmatic access to those appli-
cations. this is achieved by making each bioinformatics application available
as a web service (see Section 4.3).

Writing the workflows. Automating the experimental process requires an
explicit representation of that process sufficient for a computer to execute. A
workflow represents a procedure, such as a bioinformatics analysis, as a set of
processes and the relationships between those processes (see Chapter 42). It
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is the level of abstraction that is an important aspect of workflows – the user
has a high-level rather than “assembly-level” access to the analysis. Thus, the
user describes what he or she wishes to accomplish, not how to accomplish the
goal. The myGrid team have developed the Simple Conceptual Unified Flow
Language (Scufl) and an application to edit workflows (Taverna Scufl Work-
bench) [17] to achieve this abstraction. Thus, a biologist or bioinformatician
does not need to write a large, bespoke application, but to simply describe
what needs to be done and the order in which it is to be done.

Running the workflows. A workflow enactment engine, Freefluo, has been
developed for the enactment of workflows written in Scufl [16]. The engine
automatically calls each service in the appropriate order and passes data
between services. For

Collating the results. Both final and intermediate results from running the
workflow are saved either in the users’ local file system or myGrid Information
Repository (mIR). A major requirement is to not only automate the experimen-
tal process, but also assist the scientist in recording the origin or provenance of
the large set of interrelated result files.

Automated provenance recording. The workflow environment has been built
to automatically generate two kinds of metadata. The first is called process
provenance and is analogous to a log – recording which services were used
to generate the data. The second provides relationships between data. In
most cases these are dependent on specific services, e.g. a BLAST service will
provide a report which has “similar sequences to” the input query sequence.
Therefore, each step of the workflow can be annotated with a provenance
template which describes the relationship between the data flowing in and
out of the process [32]. The recording of the provenance of actions taken in
“joining” services, together with the storage of intermediate results, means
that each run of an experiment can be fully validated by a user “tracing” back
through the coordinated set of results.

Viewing the results. As much of the information has been recorded by
machine it must be rendered in a human-readable form. The amount and
complexity of the information also require that it must be provided in filtered
views that help answer specific questions clearly.

All myGrid services can be seen in the myGrid services stack shown in
Figure 3. This shows the idea of middleware appearing again: we have
web services representing the distributed, heterogeneous resources. Various
services in layers on top of those resources provide a collection of APIs against
which a programmer can build applications. the main myGrid application is
Taverna – a workflow workbench [17]. Through these technologies myGrid
creates a virtual organization of bioinformatics resources in order to perform
in silico experiments. It is a flexible tool that allows experiments to be speci-
fied, modified and shared. Experiments can be run repeatedly and reliably.
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Figure 3 the myGrid technology stack.

Perhaps, this latter point appears no different from the bespoke solutions
so often used in bioinformatics. However, the use of standard web services
technologies ease the development of a workflow, compared to more bespoke
solutions. This is particularly true as additional services become available,
increase the scope of analyses which can be performed.

myGrid is not the only service-orientated architecture solution working
within this Grid paradigm. BIRN [15], PathPort [7], the cancer Biomedical
Informatics Grid (caBIG) (https://cabig.nci.nih.gov/) and the North Carolina
bioGrid (http://www.ncbiogrid.org/) are also using similar solutions within
a life science setting.

6 Discussion

In this chapter, we have explored distributed computing within bioinfor-
matics. Starting with a collection of autonomous groups producing data,
bioinformatics has a legacy of distributed, massively heterogeneous data and
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tools. Modern bioinformatics applications have to take this situation into
account by either integrating or interoperating between these heterogeneous,
autonomous and istributed resources. There is a great deal of technology
now on offer to support networked applications in bioinformatics. In this
final section, we will explore the question of whether plumbing is enough to
achieve the goals of complex, sophisticated bioinformatics analyzes.

Traditional techniques used to resolve syntactic heterogeneity are the devel-
opment of resource wrappers and exchange formats. Wrappers can transform
the appearance of a resource to the external world and dictate what services
are available. CORBA offers a standard mechanism by which object views
of resources may be developed [23]. Just as CORBA defines the syntactic
view of a resource’s services, XML can be used to define the syntax and
structure of a resource’s data. Again, such a technology works by the adoption
of standards, so that similar resources use the same data format. A WSDL
document describing the services can take this a stage further and we can see
that the system and syntactic levels of heterogeneiety can have solutions.

These technologies, however, only offer a mechanism for plumbing resources
together. A common structural view of a resource’s data does not necessarily
mean a common semantic view of the same information. At best, these
mechanisms offer only an intuitive semantics. For example, an XML tag
called <sequence/>, within a sequence database entry might have a com-
mon understanding, to humans if not machines, but it is unlikely that a tag
<gene/> would have such an intuitive understanding. These interoperation
technologies do not resolve any of the problems of heterogeneous conceptual-
izations or term usage, because they do not have a mechanism for describing
the meaning or knowledge associated with a term. Again, we are beginning
to see efforts to resolve this semantic level of heterogeneiety (see Chapter 29).

That individual resources provide access is not enough. For multi-resource
applications to be developed, many resources have to work together seam-
lessly, to cleanly interoperate. For interoperation to be available, the providers
of the common views have to describe their resources in such a manner that
part of one resource can be passed to another without the intervention of the
host developer. For example, the providers of a sequence similarity search tool
have to make available services that accept protein sequences in a common
form that can be adopted by providers of protein databanks. The alignments
returned would also comply to a common description.

Obviously, such a unified, generic approach needs much effort, cooperation
and planning. This presents considerable design problems. We are begin-
ning to see the erly stages of Stein’s bioinformatics nation [22], through the
adoption of web services, but as yet there is no common currency or even
agreement what the common language actually means. The sociology of
bioinformatics makes it unlikely that a central authority will impose common
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type systems, etc., but the open nature of the community and the desire for
computational solutions to problems will bring in de facto standards.
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Part 11 Outlook

45
Future Trends
Thomas Lengauer

1 Introduction

When this book was conceptualized the attempt was made to take into ac-
count the major issues pertaining to the computational support of research
in molecular biology, pharmaceutics and molecular medicine, and medical
practice. The preparation of the book took over 2 years. In a field as dynamic
as computational biology it is inevitable that new issues arise that could not
be incorporated into the concept of the book at the time of its inception, yet
that have gained relevance in the field and are likely to provide considerable
impetus to the field in the future.

The goal of this last chapter of the book is to address some of these issues.
Some of them are already quite well developed and would have deserved a
separate chapter in book; others are emerging and will be ready for separate
chapters in potential future editions.

Very likely, even the list of topics addressed in this book is incomplete. I ask
for understanding from all those readers that are missing subjects that they
feel important – I would like to hear from them!

In general, the development of computational biology follows the direction
from the genotype to the phenotype (Figure 1). Most of the activities in the
1990s were targeted at compiling the parts lists of an organism (for different
species). The main challenges were to list genes, identify protein sequences
and collect protein structures. At the turn of the century a growing number
of completely sequenced genomes were available, still mostly from simple
unicellular organisms, but the sequences of a few more complex organisms
were available (Caenorhabditis elegans, Drosophila melanogaster) and the human
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Figure 1 The development of computational biology.

genome sequence was around the corner. Furthermore, several technolo-
gies for transcriptomics had become available, enabling the investigation of
the difference between healthy and diseased cell states on the molecular
level. Today, the number of completely sequenced genomes reaches well
above 300 and the number of ongoing sequencing projects transcends 1700
(http://www.genomesonline.org). Computational biology has entered the
stage of uncovering the circuitry of life. The analysis of biochemical networks,
be it at the metabolic, gene regulatory or signaling level, can be regarded to
be central to present-day bioinformatics efforts. The investigation of protein
function in this context with computational biology methods involves a wide
variety of biological data, many of which would not have been envisaged
20 years ago. However, much of the research is still concentrated on intra-
cellular processes. The single cell is the universe of today’s computational
biology. The analysis of intercellular communication and the self-organization
of cellular communities has not yet reached the widespread attention of com-
putational biology research. The next levels above the cell – tissues and organs
– still await proper computational modeling.

We will now list a number of concrete fields of research that have recently
produced exciting research results and that promise to gain importance in the
field of computational biology in the future. We will only be able to hint at the
results obtained and the potential for the future, but we will point to references
that go into more detail on the respective subject.
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2 Building Blocks – Post-translational Modification of Proteins

Post-translational modification is a central molecular process for modulating
protein structure and function. However, to date, the analysis of protein
function based on computational biology methods does not fully incorporate
post-translational modification.

There are quite a number of post-translational modifications [69]. The most
important ones are phosphorylation and glycosylation. Phosphorylation in-
volves the attachment of phosphate groups (with the catalytic help of a protein
kinase) to specific side-chains in proteins, thus modifying their structure and
function, e.g. activating or inactivating the protein. Glycosylation adds mul-
timeric sugar molecules to certain side-chains in proteins that modulate the
function of the protein, e.g. in cell–cell adhesion, stabilize the protein or serve
as an aid in protein folding. Information on post-translational modifications
in proteins is collected in special databases [57].

Chapters 28 mentions relevant databases collecting information on post-
translational modifications as well as bioinformatics programs and servers
that predict sites of post-translational modifications in proteins (see also Ref.
[150]). A server that offers several prediction methods for different sites of
post-translational modification is available at the Technical University of Den-
mark (http://www.cbs.dtu.dk/services). Knowing these sites contributes to
understanding the function of the respective protein, specifically to resolve
its molecular function by manual inspection. In addition, the knowledge of
sites of post-translational modification can be used as additional input for
statistical learning techniques that use other inputs on the sequence, structure
and location of the protein in order to infer protein function automatically [84].
However, today, computational biology has not much surpassed the stage of
identifying the sites of post-translational modifications. Modeling of the often
very subtle structural consequences is in its infancy.

Protein phosphorylation is at the heart of signaling in eukaryotic cells.
Understanding phosphorylation involves studying the phosphorylating en-
zymes – the protein kinases. The collection of all kinases in an organism is
called its kinome. Kinomics is the quest of understanding these proteins and,
in this way, gaining a deeper understanding of the process of phosphorylation
and its impact on cell signaling. Bioinformatics can help by offering predic-
tions of substrates of kinases or identifying the kinase that is responsible for
phosphorylating a particular site [88].

The tremendous structural diversity of multimeric sugars, so-called gly-
cans, has motivated major efforts to understand structure–function relation-
ships of these molecules and their interaction with proteins. The correspond-
ing research area is called glycomics [142]. (More specifically, the area is called
glycoproteomics – as opposed to glycomics, which encompasses the study of
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sugars also independently of proteins. However, often the use of the term gly-
comics is tantamount to glycoproteomics.) Several large consortia have formed
for glycomics research, such as the US-based Consortium for Functional Gly-
comics (http://www.functionalglycomics.org/static/consortium), the Euro-
carbDB consortium funded by the EU (http://www.eurocarbdb.org) and the
Japanese Consortium for Glycobiology and Glycotechnology (http://www.
jcgg.jp/E/index.html). A recent review mentioning additional projects on
glycans is given by Borman and Washington [28].

Glycans are chain-like or tree-like molecules that have no unique three-
dimensional (3-D) structure. In contrast to protein–protein interactions that
have a digital character, i.e. two proteins bind or they do not bind at any
certain time, glycans bind in a more analog fashion, displaying more of a
continuum of binding strengths. Singular carbohydrate–protein contacts are
rather weak with association constants in the millimolar range. Nature affects
biological efficiency by establishing multivalent contacts – a principle that
allows for gradually increasing specificity as well as biological control and
fine-tuning. Thus, glycans often serve to fine-tune a biological response. A
changed glycosylation profile of proteins in a cell or at the cell surface is
indicative of many diseases, such that glycomics could possibly aid disease
diagnosis in similar ways as transcriptomics.

The major focus in the glycomics initiative is on measurement of glycan
structures that are attached to glycosylated proteins and collection of the
respective data in databases. However, first steps are also taken in the direc-
tion of analyzing these structures with bioinformatics methods [171]. Tools
have been developed for extracting glycosylated protein structures from the
Protein Data Base [115], modeling the structure of glycans [27] and attaching
modeled glycan structures glycosylation sites of structurally resolved proteins
[26] (Figure 2). Structure modeling is mainly done with molecular dynamics
methods. There is also progress in analyzing the similarities and relationships
between different glycans. Tree alignment algorithms have been developed
in order to compare different glycans [5] and represent complex patterns in
families of glycans [6]. A corresponding server is offered on the internet [7].
There are several servers that offers databases and tools for glycomics [71,114].
An up-to-date list on web links in the glymoics area is available, for instance,
at the EurocarbDB web site.

We can expect the computational analysis of post-translational modification
of proteins and their impact on protein function to gain in relevance signifi-
cantly as computational biology matures further.
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Figure 2 View of a glycosylated immunoglobulin receptor protein
(PDB identifier 1 J89). Some of the attached glycans have been taken
from the original PDB file; others have been added using the molecular
modeling tool GlyProt [26] (courtesy C. W. von der Lieth).

3 Regulation – Synthesis and Degradation Pipeline of RNA
and Proteins

Measuring gene and protein expression is such an effective tool for discerning
between different cell states that we have devoted several chapters – in fact,
all of Part VII of the book – to this topic. Here, measuring gene expression
on the level of mRNA transcripts has taken most of our attention. Tran-
scriptomics takes a lopsided view of protein expression, however, because
it only considers the first step in a pipeline that is responsible for the final
protein expression levels, i.e. transcription. This pipeline has two main stages
– mRNA expression regulation and protein expression regulation. In both
stages the resulting expression level is the result of production and degra-
dation procedures. Transcriptomics and proteomics measure the resulting
balance but, in general, they do not investigate the processes achieving this
balance directly. Insight into the regulatory processes achieving this balance is
highly desired, however. For instance, problems with degradation processes
are presumed to be at the heart of several severe diseases and ageing. Notably,
neurodegenerative diseases are caused by aggregating protein products that
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evade degradation and destroy cells in later stages in life [37]. Manipulating
protein degradation is also a target of oncogenic mutations [117]. Protein
degradation is also a key step in the destruction of foreign proteins by the
immune system (see also Section 8). Furthermore, deeper understanding of
regulatory processes in cells will have to involve an explicit account of all
steps influencing RNA and protein turnover.

In general, regulation happens at all stages of the pipeline, including mRNA
synthesis and degradation, as well as protein synthesis and degradation,
and the processes are more complex than originally thought. The findings of
the not yet fully understood role of the so-called P-bodies in the regulation
of mRNA present only one recent modification of our view of the protein
production pipeline [119]. A recent review on the mRNA life trajectory is
presented in Ref. [125].

There are a few studies that consider the effects of regulatory processes on
protein expression downstream of mRNA at a genome-wide scale. Beyer
and coworkers [18] have investigated this issue in yeast. They consider
the steps of mRNA expression, protein translation and protein degradation
explicitly. They also introduce a computational descriptor of the half-life of
a protein. In their analysis they detect significant variation between different
cellular compartments and different functional modules. Several case studies
points out the essential contribution of protein degradation processes in the
regulation of protein expression [91, 179].

There is an additional step that links mRNA and protein expression. This
is RNA interference (RNAi), the mechanism, by which small RNA can silence
already transcribed genes (or viral RNA). This topic is so important that it
deserves a separate subsection.

4 Regulation – RNAi

RNAi [53] has been one of the major biological discoveries of the past decade
[130]. RNAi is a mechanism by which small RNA double-stranded sequences
with 21 or 22 nucleotides [so-called short interfering RNA (siRNA)] cause the
cleavage of, or otherwise inhibit, other RNA (target RNA) in the cell, which
is complementary to the siRNA. Target RNA can be viral RNA, which is
assumed to be the evolutionary first target of the process. Thus, RNAi is a
powerful mechanism of the cell fighting RNA viruses. However, the target
RNA can also be mRNA of an expressed gene in the cell. Then, the siRNA
effectively silences already transcribed genes. In fact, it is assumed that
siRNA has the role of silencing transposable elements (jumping genes) and
repetitive genes, in addition to viruses. Subsequently, it has been found that a
special class of short single-stranded RNA, so-called micro-RNA (miRNA),
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with 19–25 nucleotides, is encoded in the genomes of most multicellular
organisms specifically to silence transcribed genes in order to regulate protein
translation. miRNAs are synthesized in a different but similar manner to
siRNA. miRNAs are assumed to silence genes partially complementary to
the miRNA sequence simply by hybridizing to them. There are several other
classes of short RNA in the cell, some of which have related functions and
some of whose function is not known [130].

The RNAi process is especially interesting because it is not only one of the
basic regulatory processes established by nature that is conserved over a wide
range of taxa, but it can also be employed effectively in the laboratory in order
to “reversely” knockout genes in species without a high reproductive rate [11],
is less labor-intensive than classical gene knockout and facilitates controlling
gene expression over time. The technology even bears a high promise of being
applicable in therapeutic settings [44, 116, 123].

The computational biology community has recently taken very strongly to
the topic of RNAi. Bioinformatics efforts can be grouped into (i) assembling
databases of (predicted and/or validated) short RNAs and their (predicted
and/or validated) targets [64,78,156,159], (ii) developing computational meth-
ods for finding miRNAs in genomes [16, 63, 157, 175], (iii) analyzing miRNAs
structurally, and (iv) searching for targets for miRNAs and analyzing miRNA–
target interactions [86, 109, 144, 163]. Some of the methods analyzing the
sequences, secondary structures and hybridization patterns of miRNAs are
addressed in Chapter 14, their role in the analysis of gene regulatory networks
is addressed in Chapter 21 and RNAi is mentioned as a novel screening
method in Chapter 43. A recent overview of computational methods for
predicting miRNAs and their targets is given in Ref. [15].

5 Regulation – Tiling Arrays, ChIP-on-chip and Array Comparative
Genomic Hybridization (Array-CGH)

Part VII of the book has concentrated on analyzing mRNA expression data.
In the past few years several variants of this technology have arisen that have
not been covered substantially in Part VII. The aim of this subsection is to give
an overview of these techniques and address relevant bioinformatics issues if
they go beyond what has been presented in Part VII.

The “traditional” view on microarrays is that they contain spots with cDNA
backtransribed from mRNA sequences that have been taken from expressed
genes in the cell (see Chapter 24). Thus, a microarray covers a (usually large)
number of genes that can be expressed in the cell. The microarray measure-
ment then reveals which of these genes are expressed to what levels in a given
cell state. The goal of these measurements is to get a cell-wide overview of the
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transcription profile of all (relevant) genes. However, in order to be put on a
microarray, a gene has to be known (or at least suggested) beforehand.

The so-called “tiling arrays” aim at covering not only previously known
transcribed regions, but all of a genome or a substantial part of it this way [17,
152]. This affords the search for transcribed regions of the genome that have
not been known beforehand. In this way, over 10 000 transcribed sequences
have been found that had not been known before [17]. These findings are the
starting point for finding out about the biological relevance of these previously
undetected transcripts. Possible roles include previously undetected protein-
coding genes, untranslated exons and RNAs with diverse functions.

A related microarray technology affords the genome-wide experimental
search for transcription factor binding sites. This technology is called ChIP-
on-chip – the first (ChIP) stands for “chromatin immunoprecipitation, the
second for the DNA chip. The basics of the procedure are as follows [30].
Cells (ranging from yeast to mammalian cells) are grown in culture and then
fixed, e.g. with formaldehyde. In this way, DNA and proteins bound to it, e.g.
transcription factors, are cross-linked. DNA fragments with the cross-linked
proteins attached are enriched using a procedure called immunoprecipitation.
The procedure employs monoclonal antibodies binding to the proteins. Thus,
the protein can be identified during enrichment. The cross-links are then
reversed and the DNA is purified enriched and labeled, e.g. with a fluorescent
dye. By hybridizing this DNA to a tiling microarray one can identify where
specific transcription factors bind. ChIP-on-chip technology has been ap-
plied successfully to finding binding sites for individual transcription factors
and mapping gene–regulator relationships cell-wide [104]. Specially config-
ured CHiP-on-chip experiments can reveal insights into the workings of the
transcription machinery and chromatin structure, where histone-modifying
proteins and other chromatin players replace transcription factors. A recent
overview of uses of the CHiP-on-chip technology is presented in Ref. [70].

Yet another array technology is array-CGH (CGH stands for comparative
genomic hybridziation) [111]. This technique uses a tiling array in order
to detect segment copy number alterations. In this case, nuclear DNA is
hybridized to a tiling array with the usual readout mechanisms. Here, the
resolution is a critical issue. This is the accuracy, in base pairs, to which
locations of changes in copy number can be detected. This figure is a pa-
rameter of the configuration of the tiling array. Meanwhile there are tiling
arrays for this purpose that cover the entire human genome down to 80-kb
resolution [83,158]. Alterations in chromosomal DNA copy number are at the
basis of the genomic aberrations that occur in cancer and genetically inherited
diseases. Their measurement is a very effective tool for assessing type and
progression state of a tumor [140]. DNA copy numbers in array-CGH data
are usually more or less constant over larger regions of a genome spanning
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multiple DNA fragments deposited on the array (Figure 3). This is a property
not usually shared by other microarray data. A characteristic bioinformatic
problem in analyzing array-CGH data is therefore to detect the locations in
the genome where copy numbers change. Since the data are noisy, this is a
statistical problem. Several bioinformatics platforms have been developed for
managing array-CGH data [34, 35, 92, 110, 118, 173]. Statistical methods for
identifying such points and the intermediate copy numbers have been put
forth in Refs. [90, 137, 174].

In summary, microarray technology is an effective method of measurement
of the presence and abundance of biomolecules on the genomic and transcrip-
tomic level with a wide variety of applications. The technological variants will
continue to be source of new kinds of bioinformatical analysis.

6 Regulation – Epigenetics

The epigenetics level is another level at which gene regulation takes place, and
which is just at the beginning of being investigated systematically with exper-
imental and bioinformatics methods. The term epigenetics covers all stable
and heritable (or potentially heritable) changes in gene expression that do not
entail a change in DNA sequence [85]. Such phenomena play a significant role
in development, ageing and disease.

In order for a gene to be expressed it must be accessible to the molecular
transcription machinery of the cell. However, chromosomes are packed up
in the chromatin in ways that are only partially understood today and are
beginning to be analyzed at a genome-wide scale [112]. Different molecular
mechanisms that are controlled enzymatically protect the gene from being
transcribed or expose it to the transcription machinery.

We summarize these processes as they are found in mammals. The process
that is closest to the DNA sequence is methylation. Methylation involves
the attachment of a methyl group to the cytosine in a CpG pair (Figure 4).
Methylation is catalyzed by the enzymes DNMT1, DNMT3A and DNMT3B,
i.e. several methyltransferases. In the human genome, almost all interspersed
CpG dinucleotides are methylated [149], which has been interpreted as a
host defense mechanism against retrotransposable elements. However, so-
called CpG islands which are characterized by a low degree of CpG depletion,
i.e. a comparatively large amount of CpG dinucleotides, often remain un-
methylated. Such islands tend to occur in the vicinity of gene promoters.
A methylated CpG island protects its nearby gene from being transcribed –
the gene is effectively switched off. Differential methylation of the maternal
and paternal allele of a gene is the basis for the mechanism of imprinting
that selectively switches off maternal or paternal genes during development.
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Figure 4 Rendering of a methylated CpG. The two methyl groups are
enlarged for better visibility.

There are several experimental methods for measuring methylation patterns
along DNA sequences with different levels of positional resolution along the
DNA sequence [127]. The process of bisulphate-assisted sequencing affords
single-base resolution, in principle [56, 68]. A method involving restriction
enzymes has low sequence resolution and is used to generate data only at the
CpG-island level rather than at higher resolution [182] – a disadvantage that is
mitigated by the fact that CpG-island methylation is highly bimodal (i.e. CpG
islands tend to be completely methylated or completely unmethylated). A
third method uses a micorarray-based immunocapturing approach similar to
the ChIP technology which achieves a resolution of about 80 kb [176] (see also
Chapter 21) and is expected to achieve a resolution of about 1 kb as genome-
wide high-resolution tiling arrays become available. For many questions a
resolution which is less than a single base is sufficient, since methylation
happens in clusters along the DNA sequence.

Methylation data are collected in several projects the most comprehensive of
which is the Human Epigenome Project (http://www.epigenome.org/index.
php) [141], which is carried out by an EU-funded consortium. Attempts to
further coordinate epigenetic data collection are underway [89]. An important
challenge to the epigenetics community will be to establish standardized
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data formats and quality control in a similar way as it was done within the
expression microarray community ([29] and also Chapter 24). Bioinformatics
can contribute to this process both by standardization, and by providing tools
and databases in order to simplify adhering to the standards [4, 23].

Bioinformatics analysis of biologically or medically relevant epigenetic
problems is a currently emerging field which has been named computational
epigenetics [22]. Relevant research problems in this direction include the
following. (i) Does DNA sequence influence methylation patterns? If so,
which aspect of DNA sequence is the most informative one for methylation
and how large is the respective correlation? Initial results indicate that DNA
sequence does influence methylation substantially. Feltus and coworkers
detected an influence of DNA sequence features on aberrant methylation [52].
Rollins and coworkers [149] have published a genome-wide analysis that
finds relations between methylation status and CpG depletion in different
cellular compartments based on data generated with the restriction enzyme
method. Bock and coworkers [22] have analyzed the data by Yamada and
from the Human Epigenome Project, and found that DNA sequence of a CpG
island and its neighborhood is quite indicative of methylation status. The
most informative aspects of sequence with correlation coefficients around
0.5 and higher include CG-rich sequence motifs, repetitive DNA and aspects
of DNA 3-D structure, notably the rise and the twist of the DNA double
helix [131]. (ii) Can we predict methylation state from sequence [19]? The fact
that aspects of sequence are informative about methylation status suggests
that we can predict methylation status from sequence [19]. In fact, Bock and
coworkers have devised a method based on support vector machines (SVMs)
that achieved more than 90% accuracy in both a cross-validation experiments
and a blind test [22]. (iii) In general, a wide host of data-mining methods
can and surely will be applied to finding patterns in methylation data and
investigate their correlation with phenotype. (iv) How can we support the
effective design of epigenetic cancer biomarkers with computational methods
[98]?

While methylation is at the center of current experimental and bioinfor-
matics efforts in epigenomics, there are other levels of regulation in epige-
nomics. Methylation only concerns a modification of the DNA molecule. In
chromatin the DNA is wrapped around histone in an intricate and, today,
quite well understood fashion. Making the DNA sequence accessible to
the transcription machinery involves unwrapping it. This process is much
less well understood, but elements of it are being uncovered. Certain post-
translational modifications of histone proteins that affect their structure and
thus the packing density of chromatin are a central element of this process.
The pattern of post-translational modification of the different histones in the
chromatin complex is called the histone code and is a major object of study in
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experimental epigenetics. The histone code is read by proteins with specific
domains – the bromodomain and the chromodomain. These proteins initi-
ate downstream biological responses pertaining to chromatin packing. The
whole process is of great importance in diseases like cancer. Modelling these
phenomena with computational methods and applying pattern recognition
methods to the relevant data is still in the future. The ENCODE Project [1]
is already producing a deluge of data in this area, for which efficient analysis
methods have yet to be devised.

In summary, epigenetics forms the bottom-most level of what can be con-
sidered a three-level hierarchy of gene regulation. Methylation and histone
modification provide the most durable control over time of which genes are
expressed. This is assumed to be the level on which cell types are being
defined. At the second level, transcription factor binding controls more short-
term expression levels by processes that react to changes in cell state and
environment. Finally, at the topmost level, RNAi secures the gene expression
process against external downstream manipulations (e.g. from pathogens)
and enables a more specific control than transcription factor binding (see
Section 5). Ultimately, gene regulation will only be understood by discov-
ering how these three levels interact and cooperate with mRNA degradation
processes and regulatory processes at the protein level (see Section 3).

7 Protein Function – Alternative Splicing

Alternative splicing is an essential ingredient of the biology of higher eukary-
otes. It is one of the two central processes by which the protein universe
is expanded beyond the number of genes (the other being post-translational
modification; see Section 2). Despite this, alternative splicing is only addressed
at one place in this book, i.e. in Chapter 3, and there it is mainly discussed as
an obstacle for accurate gene prediction. Therefore, we add a short section on
the topic here.

The estimated number of human genes that can be alternatively spliced
reach from 50% [128] to over 80% [120]. The average number of splice variants
per gene is around 3 [181]. The average number of splicing fragments per
multi-exon gene is 3.5 [181]. Genes from different functional classes tend
to have different numbers of splice variants [128]. Thus, there are about 3
times as many human proteins as there are genes, bringing the estimated
number of human proteins to about 80 000. (Post-translational modification
adds another factor of about 10 to this, resulting in just under 1 million protein
variants.) The number of splice variants can lie in the tens of thousands,
such as for the Dscam gene in D. melanogaster that is responsible for neural
development of the fly. Genes are spliced specifically, e.g. depending on
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cell type or developmental stage. Therefore, traditionally splicing has been
investigated in specific, usually simple model systems with few splice vari-
ants. Splicing is effected by a macromolecular complex called the spliceosome
which assembles around the (immature) pre-mRNA in order to implement the
splicing operations. The assembly of the spliceosome and binding to the pre-
mRNA is effected by a tissue-specific combinatorial interplay of sometimes
more, sometimes fewer regulators. Similar to transcription, regulators can
have a positive (agonistic, enhancer) or negative (antagonistic, silencer) effect.
This results in the implementation of what might be called “cellular splicing
codes”. However, exactly how these codes are defined remains unclear [120].

More recently, global approaches have been followed for identifying splice
variants. These approaches are traditionally based on the collection of ex-
pressed sequence tags (ESTs) [124]. Bioinformatic fragment clustering to-
gether with appropriate screening procedures in order to weed out false
positives reveals splice variants. More recently, microarrays have been ap-
plied [87]. Here, alternative splice forms show up as characteristic expression
profiles that, if there are only few variants, are qualitatively different and
thus can usually be easily discerned from changes in gene expression. As
the number of splice variants increases, the profiles are less and less easily
distinguished from changes in gene expression. Bioinformatics approaches to
this problem have been presented by Le and coworkers [100] and Pan and
coworkers [132]. Spliceforms can also be found via comparative genomics
[160]. Databases of splice variants of genes include ASD [162], ASP [181],
DEDB (for D. melanogaster) [101], FAST DB [42], HOLLYWOOD [77] and
SpliceInfo [79].

Splice variants of a gene can be visualized plausibly in a graph form (see
Figure 7 in Chapter 3). There are different approaches to constructing such
graphs [73, 102]. Splice forms are paths through this graph which can be
enumerated completely, in principle [107]. From this collection those splice
forms have to be deleted that are unlikely to be expressed. Several methods
have been devised for doing so [128, 181].

Most of the splice variants seem to have functional relevance, such as the in-
frame addition or removal of a functional unit. Here, the insertion or deletion
of complete functional domains occurs more frequently than expected by
chance, in contrast to the disruption of domains [95]. The resulting splice
variants can differ in structure not only marginally, but fundamentally [165].
However, there are also inclusions or excisions of short fragments during
splicing. Such variants choose between different alternatives for the N- or C-
terminus, for instance, or insert or delete short internal segments that tend to
have a nonloop structure and exert important influences on protein function
[177].
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The global investigation of splicing regulation is also underway. For in-
stance, given a regulating protein, one can search for regulatory sites in the
pre-mRNA to which it binds. In vitro approaches towards this goal include
SELEX (systematic evolution of ligands by exponential enrichment) by which
regulatory sequences are determined [31,93]. There are also in vivo approaches
based on the transfection of cells. Most interesting for us are the computa-
tional approaches. These are usually based on a data set of sequences that
are assumed to be enriched in binding sites of interest. Short motifs (e.g.
hexamers) are then searched in these data sets. Significantly enriched motifs
are assumed to be putative binding sites.

Conversely, given some regulatory sequence, one can search for the regu-
lating protein. Variants of the ChIP technology discussed in Section 5 can be
applied here. Combinations of the two techniques SELEX and CHiP can be
used to hone in on regulators and regulatory sequences in a more focused
fashion.

The hardest problem is to assign functions to regulators in terms of deter-
mining the resulting splicing pattern. This would be tantamount to resolving
the cellular splicing code. However, there is compelling evidence that this
code reaches beyond mRNA regulation and involves post-translational mod-
ification of regulators. Deciphering it will likely necessitate investigating the
kinetics of the whole process [120].

Reviews on alternative splicing are presented in Refs. [103, 120, 124].

8 Interaction Networks – Immunoinformatics

Immunoinformatics [24] is the term used for bioinformatics efforts that are
aimed at analyzing and modeling aspects of the immune system and its
components. The field is has been forming for over half a decade – it is also
called computational immunology [136] or immunological bioinformatics [113].
If applied on a cell-wide basis, one speaks of computational immunomics
(http://research.i2r.a-star.edu.sg/IIMMS/). This book handles important
aspects of immunoinformatics in Chapter 40.

Immunoinformatics aims at analyzing, modeling and predicting molecular
aspects of the immune system. A major goal of immunoinformatics is the
development of effective vaccines. Another is to understand the evolution
of a pathogen in the presence of selective pressure exerted by the host’s
immune system. A third can be to analyze the effect that the diversity of the
immunotypes in a population has for the spread of an epidemic.

Many people believe the immune system to be the most complex biological
subnetwork in mammals and bioinformatics of the immune system can be re-
garded as a limited variant of general bioinformatics that comprises all levels
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of analysis that we have discussed in this book, from the assembly of building
blocks via the analysis of binary and ternary interactions to the analysis of
interaction networks and the integrated simulation of several phases spanning
protein degradation, transport, molecular recognition and activation of down-
stream immune processes. The maturation of the field also mirrors that of all
of bioinformatics – a first emphasis is on the assembly of building blocks and
the analysis of molecular interactions. Interaction networks and integrated
simulation follow later, and are still in the early stages of development.

This section does not afford enough space to go into detail on this sub-
ject. Two books [24, 113] are suggested for a more detailed account of the
subject. However, we will touch briefly on those problems on which most
research efforts are expended. Very roughly, the immune systems affords
protection against foreign invaders and harmful mutants arising internally
(such as malignant tumor cells). The basic molecular processes of the immune
system comprise recognition of such harmful substances, specific constituent
molecules called antigens, and mounting an immune response as the result of
such recognition. Immunoinformatics today focuses on the first part – recog-
nition. This recognition can happen directly in the extracellular fluids, such as
the blood serum, by proteins termed antibodies (humoral immune response) or
on the surface of cells after the antigen has been processed internally to the cell
(cellular immune response). Cellular recognition is afforded by intracellular
processes that digest relevant proteins into small peptides that are presented
at the cell surface. In both cases, i.e. humoral and cellular immune responses,
recognition of the antigen is manifested by a binding event of an agent of the
immune system (an antibody for the humoral response and a T cell for the
cellular response) to the surface-presented antigen, which is then also called
an epitope. This binding event unleashes the cascade of immune responses.

Antigens can be recognized either in their complete form (in the case of
humoral response) or via short peptides resulting from the digestion of a pro-
tein antigen internally to a cell (in the case of cellular response). The digested
peptides are bound to specific molecules of the immune system belonging
to the so-called major histocompatibility complex (MHC). MHC molecules
are also equivocally called human leukocyte antigen (HLA) molecules. The
resulting MHC–peptide complex is then translocated to the cell surface. MHC
molecules are highly diverse throughout the human species. This diversity is
the major measure of security for the species to survive an epidemic mounted
by a new attacking pathogen – different individuals will be able to mount
differing immune responses to the same pathogen. Thus, while many in-
dividuals may not survive any specific attack, the pathogen is unlikely to
defeat the whole species. High HLA diversity thus also tends to correlate with
high pathogen diversity [138]. The diversity of the molecules is also a major
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obstacle in vaccine design, and thus an important topic of bioinformatics
study (see chapter 13 in Ref. [113]).

There are basically three classes of molecules that afford molecular recogni-
tion of antigens:

1. MHC class I molecules present intracellular antigens to cytotoxic T cells
(Figure 5a).

2. MHC class II molecules present endocytosed antigens to T helper cells
(Figure 5b).

3. Antibodies produced by B cells bind to undigested antigens during the
humoral response.

The tasks of these molecules dictate their shape and influence the difficulty
of the respective epitope prediction problem.

Ad 1: Endogenous antigens are processed by the MHC-I pathway which
first digests an intercellular protein with the proteasome and then uses the
peptide transporter TAP (transporter associated with antigen processing).
TAP delivers the digested protein fragment to the MHC-I molecule within
the endoplasmic reticulum, the MHC-I molecule binds to the peptide and the
resulting complex leaves the endoplasmic reticulum. It is then transported
though the Golgi apparatus and makes its way to the cell surface. The
resulting peptides almost always comprise nine amino acid residues. Thus,
the MHC-I molecule has a closed pocket that can accommodate a nonapep-
tide. This uniformity of the MHC-I binding sites also makes the bioinformat-
ics problem of determining just which peptides bind to it easiest. Binding
prediction is mostly performed by analyzing only sequence features of the
antigen and not modeling the molecular complex structurally. A variety of
machine learning methods have been applied to distinguish binders from
nonbinders and to estimate binding affinity (see Ref. [54] and chapter 6 of
Ref. [113]). During the final step of immunological recognition certain MHC-
bound peptides (the epitopes) are identified by T cell receptors (TCRs).

The binding event of the peptide to the MHC-I molecule is only the final
step in a cascade of processes that starts with the digestion of the relevant
antigenic protein by the proteasome of the cell and continues with the trans-
port of the peptide to the endoplasmic reticulum where it is loaded onto
the MHC-I molecule. Both steps have a significant influence on the final
epitope. The proteasome prefers certain peptide cleavage sites over others,
and the TAP transporter exerts additional specificity on certain peptides.
Both steps have been analyzed with sequence-based bioinformatics methods
(see chapter 7 of Ref. [113]). However, in contrast to MHC binding, the
data for proteasomal cleavage sites and for TAP-binding affinity are quite
sparse, leading to comparatively poor prediction performance. Nevertheless,
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Figure 5 (a) MHC-I molecule with bound peptide: MHC-I molecules
have a closed binding site and thus bind peptides with strongly
restricted lengths of around 9 amino acids. (b) MHC-II molecule with
bound peptide: MHC-II molecules have an open binding sites that
accommodates peptides with more widely varying lengths of antibody
(Images courtesy O. Kohlbacher).

solutions for an integrated analysis of all three steps of the MHC-I pathway,
i.e. proteasome cleavage, TAP processing and MHC-I binding, are under
development [46, 99]. See also Ref. [166] for a recent critical evaluation of the
existing approaches in the light of transplantation medicine.

Ad 2: Foreign invaders are not screened from the cytosol, but from endo-
cytosed proteins. The respective antigen-presenting pathway, i.e. the MHC-II
pathway, cannot guarantee a length of nine residues for the peptide. Rather,
peptides can be between eight and 20 residues in length. Thus, the pocket of
the MHC-II molecule is open at both sides, antigens bind to it more diversely
and the corresponding bioinformatics problem is harder. Also, integration of
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the analysis of the steps in the MHC-II pathway has not progressed as far
as for the MHC-I pathway (see Ref. [54] and chapter 8 of Ref. [113]). This is
mostly due to the lack of knowledge about the pathway.

So far, we have only discussed the analysis and prediction of surface pre-
sentation of peptides via binding of the peptide to an MHC molecule. The
final recognition event is facilitated by the TCR binding to the MHC–peptide
complex and eliciting an immune reaction, which qualifies the peptide as an
epitope. This final step excludes about half of the MHC binders. On the
basis of the respective immunological data one can use statistical learning
methods such as support vector machines to predict such T cell epitopes from
sequence [183, 185]. However, the TCR is extremely polymorphic, with up to
billions of variants in a single individual. This probably imposes natural limits
on the effectiveness and relevance of predicting binding to the TCR.

Ad 3: The humoral immune response is afforded by antibodies that are
produced by B cells. B cells bind to antigens by their immunoglobulin re-
ceptors. The antibody is a soluble form of the B cell receptor (BCR) that
is produced in large quantities during a humoral immune response. The
BCR does not bind to digested antigen in the form of short peptides, but to
the surface of undigested complex molecules. This also results in a higher
structural diversity of the BCR. One of the key differences to T cell epitopes
is that B cell epitopes need not be contiguous peptides. Rather, they can
consist of surface patches of the antigen that are comprised of noncontiguous
pieces of sequence. The bioinformatics analysis of the resulting recognition
event is very hard, probably requiring the incorporation of structure, with
few structure data being available Furthermore, the BCR is as polymorphic in
individuals as the TCR. Thus, it is not surprising that the epitope prediction
problem for the BCR is not very well understood to date ( [21], see also chapter
10 of Ref. [113]).

Organism-wide data on the molecular basis of the immune systems are
collectively called the immunome data [134]. Immunome data are collected
in a number of databases concentrating on immune molecules [105,147], their
binding antigens [143] and both [154, 168].

The prediction methods discussed so far focus on sequence features of the
epitope. Prediction methods including molecular modeling also exist, in-
cluding variants of the 3-D quaternary structure–activity relationship method
( [47, 186], see also Chapter 18). Structural analysis can also include docking
methods [148]. Full-fledged structural analysis with molecular dynamics
methods has been limited to single cases because of high computational de-
mand, e.g. Ref. [172].

The ultimate goal behind the identification of epitopes and the analysis of
their interaction with protein receptors of the immune system is the develop-
ment of effective vaccines [40] (see also chapter 11 of Ref. [113]). This goal
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essentially amounts to selecting a peptide that is close enough to a suitable
epitope from the proteome of the pathogen to be highly immunogenic, i.e. to
produce the desired immune response in the vaccinated host. At the same
time, the vaccine must be chosen such that a wide variety of HLA types
recognize it, i.e. that it is effective in a wide part of the population [41].
The T cell epitope is critical here, because T cells are needed to orchestrate
the “immune memory”. Here, a single epitope may be sufficient or several
selected epitopes may be necessary for eliciting immune response [126]. Not
every epitope that can bind to a receptor is relevant, though. For instance,
epitopes that are identical or highly similar to endogenous “self”-epitopes
will not elicit an immune response. We can try to trim down the set of
relevant epitopes by comparing the genomes of related virulent and avirulent
pathogens, and select those for screening that are unique to the virulent
strains. Comparative genomics can also help in selecting vaccine candidates
from an organism that is related to, but not identical to, the pathogen – as
in the case of smallpox vaccine which is taken from the cowpox virus – or
one can focus on pathogen-specific proteins or those that are preferentially
secreted by the pathogen in the host environment. On this selected set of
antigen candidates, epitope prediction can then ensue.

Immunoinformatics is still in its infancy. The level of bioinformatics meth-
ods is largely limited to sequence analysis. The data situation is sparse. How-
ever, the field is in the process of organizing itself and is maturing more and
more rapidly.

9 Cell Engineering – Synthetic Biology

Synthetic biology has been a dynamically rising paradigm in the past few
years, even though the idea has been around for several decades, and cor-
responding research has enriched biology and biotechnology for quite some
time. Synthetic biology is the result of marrying biology with engineering.
Both areas have fundamentally different character and this fact is at the foun-
dation of many of the complexities that underlie the quest of understanding
living systems. Let us contrast the evolutionary approach taken by nature
with the rational approach taken by an engineer. There are fundamental
differences on at least two counts. (i) The (human) engineer has comparatively
little resources to build a system (a few hundred or thousand person-years at
most, for a single design project). In contrast, Nature develops living systems
over thousands or millions of years within large populations. (ii) The engineer
requires understanding of his system. This is not an issue for Nature. Nature
is thought to work solely to optimize the fitness of the organism or species,
respectively, in its complex environment. As a result, engineered systems tend
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to be modular and exhibit high degrees of symmetry. For instance, computer
chips with many millions of transistors result from highly regular designs, in
which at most a few thousand transistors have been inspected individually
and the others arise by replication. Natural systems do display modularity,
at times, but have much less of a separation between different roles and func-
tions of their components. One example is the multiple functions observed for
many proteins.

Practically throughout the whole book we have stressed the analysis ap-
proach towards understanding the function of living systems. The only place
in which an engineering approach was followed was in drug design (Chapters
16, 18 and 19), which can be thought of as a variant of synthetic chemistry.
Still, an engineering approach can incur substantial benefits not only for
chemical, but also for biological systems. In an engineering approach to
biology we would not inspect the unaltered evolved biological system, but we
would change it, often with the idea to simplify it substantially. The goal of the
change would be to enhance desired properties of the system or to decouple
parts of it from the complex biological environment, in order to be able to
study them without undesired interference by processes that are not the object
of the current study. In the past several components of biological systems have
been the objects of an engineering approach, such as DNA and proteins. More
recently, biochemical networks were also subjected to engineering endeavors.
Today, there is significant effort in engineering cellular subsystems for various
purposes. This quest is still predominantly an experimental one, but it is
closely linked to modeling, which can serve as a rather easily manipulable
platform for early conceptualization and parameter analysis, and thus help to
guide experimentation. This is why this new approach to biology is also of
importance in the context of this book.

We will now briefly summarize some of the developments that have taken
place in synthetic biology [14].

9.1 Genetic Engineering

Recombinant DNA can be considered as an early and very effective applica-
tion of the engineering approach to genetics. The technology for manipulating
DNA sequences for biotechnology purposes is far advanced. Beyond directly
biotechnological purposes such as transporting genetic elements into host
organisms or knocking out specific genes attempts have also been made to use
DNA manipulation as a tool for performing computation (DNA computing [2],
see also Refs. [155, 167] for more recent variants on this theme), although
this quest has never matured to substantial applicability. Furthermore, en-
gineering projects have attempted to alter the DNA backbone such as to
lead to a molecule with comparable recognition properties that can more
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easily pass through cell membranes in order to silence DNA inside the cell
or expanding the nucleobase alphabet in synthetic approaches to systems
emergent properties of life [14].

9.2 Protein Engineering

Proteins also have been objects of engineering approaches. Biotechnological
objectives were to create proteins that fold more stably under natural or un-
natural conditions (e.g. with respect to temperature or pH [106]), or to design
proteins that selectively recognize target molecules [20] or have some desired
catalytic function [49]. Also, there is activity in the molecular engineering of
motor proteins [169]. This field overlaps with the field of nanobiotechnology
[10, 133]. In addition, many of the studies follow basic research goals of being
able to understand and predict protein-like behavior like folding properties
[96]. Proteins are engineered by modifying the amino acid chain of natural
proteins, either in an educated trial-and-error fashion or guided by design
principles such as rational design [76] or guided evolutionary design [50]
supported with laboratory or software tools [49]. Building units can be either
single amino acids or more complex subunits of the protein such as secondary
structure elements [62]. In general protein engineering is a high complex task,
because global properties of the protein cannot be expected to result from a
simple combination of independent contributions of its amino acids.

9.3 Genetic Networks

The recent surge in synthetic biology came as engineers first were able to
manipulate genetic networks according to preconceived design goals. One
breakthrough was the design of a genetic toggle switch using interacting
repressor genes in Escherichia coli [51, 59]. The toggle switch or flip-flop, as
it is called in engineering, is a bistable element that is a basic component of
many electronic systems involving memory. Logic gates such as AND, OR and
an inverter can be engineered as well [72], making the vision of engineering
general cellular logic approachable [67]. The interior calculation performed by
a gene network could be linked to phenotypic readout, thus making the result
of the calculations visible from the exterior world [94]. Furthermore, more
finely graded responses could also be evoked from the engineered operation
of genetic networks. One basis for this is to explore the analogous structure–
function relationships at the level of protein domains [48]. In general, an
entire engineering discipline is embarking on utilizing biological components
[121]. The field is embarking beyond the single cell onto controlling cell–cell
communication in multicellular systems. Modeling is an important aspect
of synthetic biology [9]. The handling of noise is a characteristic problem
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of developing circuitry that has to function in an intracellular environment
[161]. Understanding this phenomenon will help us greatly to advance our
understanding of intracellular processes.

One can envision three goals of synthetic biology of gene circuits. The
first is to study biological processes at the level of intentionally simplified
circuitry in order to better decouple phenomena that are highly intertwined
in evolved organisms. The resulting insights could be the basis for more
adequate models. The second is to design non-natural circuits that perform
as desired in vivo. By doing so one can investigate what are the advantages
of evolved circuits over engineered ones, thus again affording an avenue
towards understanding hidden secrets of biological design. Probably the most
challenging question is how an engineered circuit operates in the environment
of an evolved organism. The ultimate test here would be to replace an evolved
circuit with an engineered one [161]. While we would not expect this to lead
to better designs, we would certainly learn much about why Nature is doing
things the way she does.

10 Imaging

Imaging is rapidly rising in importance in bioinformatics. Since vision takes
such a large part of our sensory input, it is natural that we want to express
data in images. So far, molecular structures have been the prime target of
representation via (3-D) images (see Part IV of the book). The field is at the
brink of expanding efforts in imaging into many different areas, spanning the
cellular to the organism level. In fact, it is a plausible prognosis to make that
image analysis will be a substantial aspect of bioinformatics in the years to
come. Chapter 43 contains a technical discussion of some aspects of light
microscopy imaging. In this section we hint at a few additional results and
trends in the area of imaging biological systems.

10.1 Obtaining Pictures of Cellular Structures

There are several research efforts directed at getting more global images of
cellular structures. Here, we discuss an effort to get 3-D (still) images of
cells through electron tomography. In this approach, the cell is frozen and,
in this state, subjected to a variant of tomography that applies electron beams
instead of X-rays. Electron beams are applied in order to achieve higher res-
olution. Just as in traditional X-ray tomography, appropriate deconvolution
procedures on the resulting data afford a 3-D picture of the cell [12]. Current
technology is at a resolution of 40–50 Å. An improvement to 20 Å is considered
possible. The goal is to be able to discern macromolecular complexes, such as
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ribosomes, proteasomes, ion channels, components of the cytoskeleton and
the like. At 40-Å resolution, large complexes can be distinguished. At 20-
Å resolution, we should be able to discern medium-size complexes. Image
analysis then incorporates a template-based approach [25, 55], in which a
database of images of the relevant macromolecular complexes is available.
The templates are matched with relevant parts of the 3-D image in order
to identify the locations of the respective complexes. Then, if available, the
low-resolution structures can be overlaid with representative high-resolution
images of the complexes affording, in principle, a high-resolution image of
the complete cell. The construction of template libraries can be supported
with the data from structural genomics initiatives [151] (see Chapter 13).
Problems with low resolution, low signal-to-noise ratio, missing data re-
sulting in nonisotropic resolution and crowding of the macromolecules still
lie in the way of clearly separating different molecular complexes [66, 153].
Thus, intermittently, an approach mixing experimental with computational
procedures employs labeling proteins with accessible epitopes using ligands
carrying gold nanoparticles. Such proteins can then be identified more easily
in the macromolecular crowd. Labeling works better for membrane proteins
with extracellular epitopes than inside the cell, where it requires non-invasive
genetic manipulations.

Images of cells from Dictyostelium discoideum [122] and Spiroplasma mel-
liferum [97] have been generated in this way, and afforded unprecedented
insights into the internal organization of the cell (Figure 6). In general, it is
impressive how much our intuitive picture of a cell is changed by the avail-
ability of global cell images. The cell is an extremely crowded environment
– thicker than lentil soup – and notions like transport and diffusion receive a
different connotation in the presence of such images.

The EU is funding a Network of Excellence on 3-D electron microscopy that
bundles many of the European activities in the area
(http://www.3dem-noe.org).

There are also cell imaging efforts based on light microscopy [164]. With
the advent of green fluorescent protein (GFP) technology which can now
utilize several colors, fluorescence labeling in order to visualize intracellular
molecules, structures and processes has received a vital push. GFP is used
to visualize targeted structures in cells, such as G-protein activity, special sig-
naling events and calcium dynamics. Confocal light microscopy, which only
collects light emerging from the focal plane, yields 3-D images, but with live
samples the classical wide-field microscopy with subsequent computational
deconvolution of the data is still the preferable technology for this purpose.

In addition, special laser technology affords us with the facility to press the
resolution of light microscopy below the usual limit of about half the wave-
length of the applied light [74,75]. This technology, which is just emerging, has



10 Imaging 1675

Figure 6 Visualization of part of a cell with intracellular structures.
Actin filaments (reddish), other macromolecular complexes, mostly
ribosomes (green), and membranes (blue). (From Ref. [122].)

the advantage that, in principle, it is applicable to live samples rather than just
fixated cells. Making this technology work for biological specimens would be
no less than a breakthrough.

Chapter 43 contains a more detailed discussion of light microscopy imaging
of cellular structures and processes.

10.2 Movies of Cellular Processes

So far, we have discussed still imaging of cellular structures. Of course,
getting direct information along the time dimension is another very effective
input into the analysis of biological processes. Thus, 4-D imaging of cellular
structure, i.e. making movies of them, is a vivid research field [61]. The
restraint that the sample be viable throughout the experiment is mandatory
here, of course, and can be a great challenge. The other significant concern
is the limited amount of light output that is usually available in such an
experiment.

An especially attractive target for 4-D imaging has been the mechanics
of eukaryotic cell division. Movies have been made on how chromosomes
rearrange during the early stages of mitosis [61] and of the rearrangement
of the mitotic spindle during the later stages of mitosis [65]. The cytoskele-
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ton is an especially interesting target because of its relative rigidity [13].
Other cellular structures are more amorphous, making quantitative structural
measurements very difficult. In order to deal with this problem, artificial land-
marks can be introduced in cells in an approach called pattern photobleaching.
Virtual reality viewers are employed to visualize the resulting data [60]. The
resulting data can also be input to quantitative models of the investigated
cellular processes [65].

10.3 Organism Development

Imaging can go beyond single cells and cover the whole organism. One
special case is monitoring the location of prespecified expressed [184] genes,
the movement of cells [146,180] or the development of morphology of cellular
structures [178] during organism development. Such studies are being under-
taken, e.g. in Drosophila and Xenopus [170], with a certain focus on neuronal
development. The analysis of data resulting from in situ imaging of expressed
genes affords special bioinformatics techniques that merge image analysis
(Chapter 43) with the analysis of expression data (Chapters 24ff.). First steps
in this direction have been undertaken [135].

11 Modeling Organs

From a basic research point of view, the ultimate vision of computational
biology could be formulated as the ability to simulate biological processes
on a hierarchy of levels, starting from the bottom-most level that considers
molecular processes, and reaching to higher levels that, ultimately, represent
the macroscopic physiology and biomechanics of organ systems. The notion
of the physiome has been coined to encompass the totality of all physiologically
relevant information pertaining to this modeling hierarchy. While such a
comprehensive goal may seem utopic, there are actually concerted efforts
embarking along this path. The International Union of Physiological Sciences
has introduced the Physiome Project [38, 80, 81]. This project provides a
web site (http://www.physiome.org/) that collects world-wide contributions
towards filling in the gigantic simulation landscape presented by the goals
of the project. At heart, the Physiome Project is a computational project.
However, completing it requires a wide variety and large volume of new data.
In order to reach through the different model hierarchies, effective approaches
towards multiscale modeling are of central importance [39]. The Physiome
Project is structured into model subcategories. In the past, physiological mod-
eling has concentrated on a few organ systems. The heart is definitely one
of the best researched organs, in this respect, with detailed models being
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available from the electrophysiology of the heart at the molecular level over
the microstructure of cardiac tissue and the organization of fibers in the heart
muscle to mechanical models for heart beat that include the spread of elec-
trical activation wavefronts throughout the heart muscle and the pressures in
the coronary arteries [82, 129]. These models have to be linked together now.
Blood flow [32, 33] through the lung has also been modeled at an organ-wide
level. A proposal has been made to model bone [43].

Of course, physiome modeling has direct medical application, since disease
is an aberration of normal biology and can probably best be understood as
such. However, there are also modeling efforts that are directly targeted at
disease, i.e. the direct modeling of tumor growth. Tumor growth is the result
of several processes such as rapid cell proliferation with loss of apoptosis,
tissue invasion and angiogenesis. Lastly, the effect of radiation therapy and
chemotherapy can be modeled. Models for many of these aspects have been
developed independently, some of which are already quite interdisciplinary
(e.g. see Ref. [36] for cell proliferation, Ref. [139] for tissue invasion, Refs. [8,
108] for angiogenesis, Refs. [58, 145] for the effect of drug treatment and Ref.
[45] for radiation therapy). The adaptation of such models to each other and
their integration is still for the future, but people are working in this direction
[3].

12 Outlook

This points addressed in this chapter are by no means comprehensive. Rather,
they reflect the exposure and judgment of the author with respect to emerging
and promising themes. Many of the research activities in these areas are cur-
rently still driven by experimental issues, but all of them harbor great potential
for further bioinformatic development. Probably it would be a futile exercise
to attempt a comprehensive balanced overview of all promising open leads
in bioinformatics and the experimental technologies relevant for the field,
anyway. However, as a collection, these topics bear witness to the tremendous
dynamics of the field. Bioinformatics is going to continue for quite some
time to be a productive source of extremely exciting scientific problems that
combine great challenges for basic research with often immediate application
relevance. In the view of the author, these characteristics presently single out
bioinformatics among all scientific disciplines.
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References to introductory descriptions of
algorithmic and statistical bioinformatics
methods and concepts are given in italic
page numbers.
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A Genome Comparison Tool (ACT) 1503
a priori distribution 963
a priori knowledge 995 ff
A* docking algorithm 561, 619
ABA multiple sequence aligner 225
abacavir 1463
AbGene system 1273, 1287
ABNER tool 1273, 1284, 1287
A-Bruijn graph 225 ff
absence/presence analysis 1181
absorption, distribution, metabolism,

elimination (ADME) properties 546
– antitarget models 724, 728
– docking 580
– lead identification 659, 687
– lead optimization 706–743
– pharmacogenetics 1441
absorption-simulation models 722
abstraction 1632
abundance-based microarrays 1033
accepted point mutation (PAM) 63
accuracy
– genomic context predictions 1202
– protein functions 1091
– structure prediction 266, 273, 406
acetylation enzymes 1429
N-acetyltransferases (NATs) 1429
activation constants 787
active compounds 673
active sites 4, 432, 571, 1214, 1222
activity score 1478
actor–object relationship 1277
acute lymphoblastic leukemia (ALL) 901,

998
acute myeloblastic leukemia (AML) 901
ADAM docking program 554
ADAPT docking program 580, 1431

adaptive model selection 970 ff
additive–multiplicative error model

944 ff
adenine 26, 88, 494, 510 ff, 1336
adenosine 3’,5’-cyclic monophosphate

(cAMP) 829, 161, 857
adenylylcyclase (AC) 836
ADP byproducts 758
adrenocorticotropin 1077
adsorption liquid chromatography 1029
advanced compartmental absorption and

transit (ACAT) 722
AEROSPACI score 355
affected populations 1405
affinity 1091, 1124
affinity addressing, simultaneous 705–

754
affinity liquid chromatography 1029
Affymetrix GeneChip 901 ff, 918 ff, 930 ff,

942 ff
AFMoC procedure 713
agarose gel 28
Agavaceae 776
aged spots 1036
Agilent’s GeneSpring tool 1596, 1601
aginine/serine-rich (SR) proteins 814
agonists 6
agreement supertrees 112
Agrobacterium tumefaciens 1187
AIDS 7, 14, 1457 ff
AiSee program 1168
albumin 722, 1023
Aldente program 1043
aldose reductase 683
algebraic dynamic programming (ADP)

449, 466 f
algorithmics 33 ff, 199 ff, 633 , 639
alidot algorithm 458
alignment statistics 68 ff
– comparative genomics 1347 ff
– fold recognition 353 ff
– homology modeling 298 ff, 304 ff
– protein functions/structures 1226
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– repeats 208
– RNA secondary structures 457
– templates identification 356
– visualization 1355
Alignment Viewer 1594
alleles
– association studies 1407 ff
– complex diseases 1378
– frequencies 1389 ff, 1409 ff
– HIV drug resistance 1480 ff, 1487 ff
– pharmacogenetics 1447
ALLFuse database 1136
Aloe vera 774
α-shape algorithm 1218
α-helix 17, 264
alternative protein function splicing 1663
Alzheimer’s disease 4
aMAZE database 1138
AMBER docking program 548, 564 f, 569,

628
AmiGo browser 1076
aminergetic GPCRs 1326
amino acid motifs see: motifs
amino acid sequences 57 ff
– myo/hemoglobin 71
– phylogeny reconstruction 87
– protein function prediction 1297 ff
– templates identification 364 ff
amino acids
– metabolic network 2
– pharmacogenetics 1429
aminoglycosides 492
amino-pytazinone-acetamine scaffold

735
A-minor motif 510
analysis
– biological data visualization 1613
– pharmacogenetics 1450
– protein interaction networks 1121–1178
– proteomics 1026 ff
Analysis Tools and Visualization 1168 ff
Ananus comosus 776
ancestral residues 60
anchors 560, 1350
ancient taxa 85
Anfinsen principle 351
ankylosing sponsyliltis (AS) 1375
annealing simulation 566
annotation-relevant sentences 1275
annotations
– genes classification 1007
– protein interaction networks 1127, 1154
– proteomics 1037
– RNA tertiary structures 492 ff
annotated text corpora 1286
ANN-Spec gene regulation program 809

Anopheles gambiae 1364
antibiotics
– resistant genes 1194
– resistant isolates 1509
– RNA tertiary structures 492
– synthesis 756
antibodies 1330, 1666
anticonformations 500, 530
anticorrelated profiles 1199 f
antigen-presenting cells (APCs) 1480
antigens 1483, 1666
antihistaminic compounds 690
antiretroviral drugs/therapies 1457 ff,

1462 ff
antisense transcription 154
antisymmetry 950
antitargets 706, 716 ff, 724 f, 728 ff
antitumoral drugs 684
Apelon program 1437
Apollo program 1594
apoptosis 867
apparent size distribution 216
application program interfaces (API)

1629, 1639
applications
– comparative genomics 1361 ff
– distributed resources 1627–1650
– DNA microarrays 899–928
– drug design 582 f
– function prediction 1243
– rearrangements 249 ff
– structure prediction 274 ff, 389–418
– text mining 1282 f
approximate folding trajectories 478
approximation algorithms 371
APROPOS method 1218
Arabidopsis thaliana 203, 215 f, 228, 1593
Arachne assembler 48, 225
area under ROC curves (AUC) 1096, 1482
arginine biosynthesis 1186
Argos dot plots 59
Ariadne Genomics tool 1604
A-RNA double helix 498
aromatase 188
Arratia–Waterman theorem 70
array technology
– coating 939
– comparative hybridization 1657
– protein interaction networks 1124
– tiling 1657
ArrayExpress database 922
ArrayXPath 1604
Arrhenius equation 851
arrhythmia 1433
arrival statistics 40, 222
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artificial neural networks (ANNs) 659,
901, 1467, 1485

ASD database 1664
ASP database 1664
aspartyl proteases 1326
ASSAM descriptor 1227
assembly strategies 25 ff, 31 ff, 220 ff
association studies, complex diseases

1375–1426
asthma 1433
ASTRAL compendium 355
atazanavir 1463
atherosclerosis 1433
Atlas assembler 51
atmospheric ionization (API) 1030
atom contact potentials (ACPs) 631
atomic contact energy (ACE) 631
ATP
– binding cassette (ABC) 334
– genomic context 1192
– metabolic networks 2, 758, 766, 791
– protein functions/structures 1215
attachment, viral 862 ff, 873 f, 881 ff, 896
attack vulnerability 1151
attraction basin 478
A–U pairs 440, 446 ff
AUTODOCK program 566
automated functional prediction (AFP)

433
Available Chemicals Directory (ACD)

654, 659
average clustering coefficient 1148
AVID program 1348 ff

b
B cell receptors (BCRs) 1669
BABA receptor 663
Bacillus amyloliquefaciens 1089
Bacillus anthracis 198, 1502, 1510
Bacillus subtilis 781, 1196
back mutations 86
backbones
– comparison methods 1212, 1224 f
– fold recognition 353
– homology modeling 298 ff, 317 ff
– RNA tertiary structures 527 f
– structure prediction 407 f
background adjustment 931
background set, gene regulation 809
backtracking/backtracing 63, 449 f, 475,

522 ff, 529 ff
bacteria products 756
bacterial artificial chromosomes (BACs)

31, 202
bacteriophages 862 ff
baculoviruses 862

BADGER program 246 ff
BAE-Watch database 1504
bagging 967 f
balance equations 755, 959 ff
Barnacle assembler 49
barrier trees 478 ff
base fragments 560
base pairs 440, 446 ff, 498–533
base stacking 502
basic DNA terminology 129 f
basic immunology 1461
batch effects 938
Baum–Welsh algorithm 76, 365
Bayes classifier 960
Bayesian methods 46
– linkage disequilibrium 1386
– phylogeny reconstruction 99
– protein function prediction 1220, 1298,

1306
– statistics 99
Bayesian networks 1304
– cell signaling 839
– gene regulation 811 ff
– genes classification 1008
– protein functions 1089, 1100
– structure prediction 280
BCUT descriptors 661, 665
Bdellovibrio bacteriovorus 1196
Bergey’s Manual 1502, 1505
Berkeley Drosophila genome project

(BDGP) 1069
Berkeley Genome Pipeline 1354
Berkeley Madonna program 846
Bernoulli sequence 216
β−barrel membrane 280
β−strands 17
BHAIRPRED program 318
Biacore program 1124
bi-allelic markers 1397 f
biased probability Monte Carlo (BPMC)

conformation 626
bias-variance trade-off 970, 974
biclustering 980, 1002 f
Bielefeld tree 443
bifans 837
bifurcations 85, 103
bile-acid resorption inhibitors (BALIs)

740
binding affinity
– docking 542, 582
– druggability prediction 1317, 1329
– lead identification 652 ff
– lead optimization 710 ff
– protein functions 602, 1091
binding pockets 3 f, 12, 1319
binding sites
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– gene regulation 808
– genomic context 1201 f
– lead optimization 718
– protein functions/structures 1213, ,

1239
– protein–protein docking 601
– transcription factor 160 ff
bioavailability 655, 658 ff, 726, 733
BioByte program 658
BioCarta database 1138
biochemical building blocks 26
biochemical detection methods 1124
biochemical networks 755 ff
biochips 1033 f
BioCreative text mining assessment 1287
BioCyc database 789
BioGraphNet program 1168
BioGrid database 1136, 1647
BioIE system 1275
Bioinformatics Sequence Markup

Language (BSML) 1639
Biological Arc Diagrams (BARD) 1589,

1594
biological data visualization 1573–1626
biological genes classification 1007
biological interactions 1223
biological interferences 944
biological pathway diagrams 1602
biological text processing 1268
biology
– druggability prediction 1330
– homology modeling 297–350
– structural genomics 425 ff
– structure prediction 390 ff
biomarkers 916
biomedical NLP systems 1289
BioMoby series 1643
Biomolecular Interaction Database

(BIND) 1136, 1168, 1279, 1287
BioNetS program 849
bio-ontology communities 1069 f
BioPax program 1070, 1082, 1431, 1444
BioPerl program 1432
biophysical detection methods 1124
Bioverse database 1137, 1168
BioView tools 1587
BIRN tool 1647
bistability 836, 856
BitString descriptors 665
BLAST program 66, 69, 75
– bioinformatic applications 1630, 1639
– comparative genomics 1345 ff
– druggability prediction 1325
– genomic context 1196
– protein functions 1102, 1239, 1299
– protein interaction networks 1141

– repeats 200, 225
– RNA secondary structures 460
– templates identification 356, 361 f, 380
– text mining 1273, 1287
BLAT program 67
– comparative genomics 1345, 1348
– protein coding genes 149
– repeats 200, 225
blind data sets 268
blind prediction experiments 606
blocked translation 492
Blocks database 1094, 1102 ff, 1352
blood–brain partitioning 726
BLOSUM series 63, 356
bona fide research institution 1449
Bookshelf database 1257
Boolean cell signaling networks 839
Boolean model 1008, 1263
boosting 968
bootstrap aggregating (bagging) 967 f
bootstrapping
– infectious bacteria 1499
– patients classification 974
– phylogeny reconstruction 118
Bos taurus 1343
Boltzmann statistics 314, 368, 569
bound test 605, 610
boundaries 759
bovine rhodopsin 686
Bow text miner 1287
BPAnalysis tool 246
bracket notation 442 f
Bradorhizobuim japonicum 1187
Braess paradox 757
brake input 838
branch structures 39, 85, 444, 909, 1341 ff
branch-and-bound algorithm 104, 561,

619
branch-and-cut technique 622
breakpoint distance 236, 240 ff
breast cancer 958
BRENDA database 433, 768, 789
BRITE database 1138
B-RNA double helix 498
browsing 1446, 1585

see also: web resources, tools
BTPRED program 318
budding 876, 880 f, 897
BUILD phase 1001
BUILDER program 576
building blocks 15, 26, 1653, 1658
Burkholderia pseudomallei 1504
burn-in procedures 101
burst size 864
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c
Caco-2 cells 722
Caenorhabditis elegans
– biological data visualization 1580 f
– comparative genomics 1363
– DNA microarrays 921
– future trends 1651
– Markov chain model 136
– protein interaction networks 1125 ff,

1151 ff, 1161 ff
– regulatory regions 184
– repeats 206 f, 228
structural genomics 421
calmodulin (CaM) 830, 856
Calvin cycle 772
Cambridge Structure Database (CSD)

561, 668
cAMP (adenosine 3’,5’-cyclic

monophosphosphate) 829, 857
– response element-binding protein

(CREB) 161, 833
Campylobacter coli 1504
Campylobacter jejuni 1162, 1502 ff, 1519
cancatenated exons 130
cancer 7, 15
– genome rearrangements 235, 252
– HIV drug resistance 1461
– patients classification 958, 976 ff
– pharmacogenetics 1433
– protein kinase 324
cancer Biomedical Informations Grid

1647
Candida albicans 781
Canid familiaris 1343
capillary electrophoresis 1025
capsid protein production 876, 896
capture microarrays 1033
CARA program 310
carbohydrates 2, 758, 771
carcinoembryonic antigen (CEA) 916
cardiac myocytes 728
Caryoscope tool 1599, 1601
cascading techniques 653, 829
case folding 1263
case studies 1642 ff
casein kinase 682
Catalyst/HipHop program 669
catalytic RNAs (ribozymes) 513
catalytic site atlas (CSA) 1219, 1222, 1230,

1238
CATS program 689
Caulobacter crescentus 1188, 1196
CavBase method 1232
cDNA 149, 1657
Celera assembler 47, 221 ff, 225
cell attachment 863 ff

cell death 867
cell engineering 1670
cell infections 863 ff
cell penetration 1460
cell population 861 ff, 868 ff
cell signaling networks 829–860
cell transition 11
CellDesigner t 1604
CellML program 1083
cellular functional assays 1442
cellular immune response 1666
cellular processes movies 1676
cellular structure imaging 1674
CENSOR library 228
census population size 1470
Center for Biological Sequence Analysis

(CBS) database 1047, 1102
central nervous system (CNS) 901
CGView tool 1589, 1594
Chain Builder 1608
CHAOS program 1348 ff
character states 85 ff, 492 ff
CHARMM program 315, 548, 628
ChARMView 1599, 1601
ChemDiverse program 661
chemical compound libraries 1581 f
chemical constraints 130
chemical entities of biological interest

(ChEBI) 1071
chemical environment 1231
chemical interactions 491
chemical ionization 1030
Chemical Markup Language (CML) 1639
chemical properties 1316
chemical structure 494
cheminformatics 13
chemokine receptors 1482
ChemScore tool 715
χ2 test 1389 ff
chicken’s genomic sequence 1343, 1356
Chilibot application 1279,1287
chimeric fragments 30
chimeric reads 28
chimp’s, genomic sequence 1343, 1356
CHk-1 kinase 683
Chlamydophila pneumoniae 1501
Chlamydya trachomatis 1590
chloroplasts 236
Chomsky normal form 465
chromatin 168, 186, 810
chromatin immunoprecipitation (ChIP-on-

chip) 160, 1657
chromatography methods 1028 f
chromosomes
– association studies 1378 ff
– docking 563
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– location data 994
– mammalian 252
– microarray experiments 941
– pharmacogenetics 1440
chromosomes mutations see: mutations
ChromoWheel visualization program

1594
Ciona intestinalis 1363
circular genomes 237
circular matchings 440, 455
circulating recombinant forms (CRF)

1459
cis/trans base orientations 508
cis-regulatory modules (CRM) 808
citric acid cycle 2
Clark’s algorithm 1385 f
class, architecture, topology, homologous

superfamilies (CATH) 355, 1102, 1110 f
classification
– DNA microarrays 906 ff, 911 ff
– genes 993–1022
– HIV drug resistance 1468
– lead identification 673
– patients 957–992
– protein function prediction 1297,

1301 ff
classification and regression trees

(CART) 912
ClassPharmer program 676
cleave messages 818
clefts 1218 ff, 1222
Clest method 1016
ClientBus 1642
clinical candidates
– association studies 1375 ff
– HIV drug resistance 1477 f
– lead optimization 708, 733
– pharmacogenetics 1441
clinical microarray studies 899 ff, 957
clique search approaches 553, 611, 1232 f
CLIX docking program 554
clone-by-clone approach (CBC) 31
cloning vectors 30
Clostridium acetobutylicum 1187
Clostridium tetani 1196
Clusia minor 775 ff
ClustalW program 305, 359 ff, 1094, 1102
cluster affinity search technique (CAST)

636, 1004, 1218, 1241
cluster identification via connectivity

kernels (CLIK) 1003
clustering 905 ff
– biological data visualization 1596
– cell signaling networks 834
– comparative genomics 1349
– DNA microarrays 905 ff

– docking 555, 561, 604
– genes classification 994–1017
– HIV drug resistance 1468
– lead identification 660 ff, 673
– model-based 1001 f
– patients classification 976 ff
– phylogeny reconstruction 95, 121
– protein interaction networks 1147
– rearrangements 249 ff
– repeats 199 ff, 207 ff
– structure prediction 394, 405 f
coalescence-based methods 1386
coaxial stacking 447
Cocke–Younger–Kasami (CYK)

algorithm 465
CODEHOP database 1102
coding domain sequences (CDS) 131 ,

137, 147
coding genes 131 ff,236
Codon model 91 ff, 131 ff
coevolution 1516
cofactors 4
COG database 79, 1205
coherent feedforward loops (FFLs) 837,

856
coimmunoprecipitation (coIP) 1128
collision-induced dissociation (CID) 1031
colorimetry 1124
CombiDOCK program 573
combination therapies 1476 ff
combinatorial chemistry 12
combinatorial explosion 848
combinatorial libraries 571
COMBINE approach 714
common gateway interface (CGI) 1628
common object request broker architecture

(CORBA) 1629 ff, 1635 ff
comparative gene analysis 11
comparative genomic hybridization on

arrays (CGH) 920, 1598 f, 1601, 1657
comparative molecular field analysis

(CoMFA) 670
comparison, methods
– infectious bacteria 1507
– microarray experiments 937 ff
– protein functions/structures 1212, 1224
compartment model 856
COMPEL database 163
comparative genomics 185 f, 1335–1374
comparative modeling
– fold recognition 352 ff
– regulatory regions 173
– RNA secondary structures 468 ff
– structure prediction 390
comparative molecular field analysis

(CoMFA) 713
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comparative molecular similarity indices
analysis (CoMSIA) 671, 715 ff

complementary DNA (cDNA) 147
complementary strand viral RNA 873 f
complemented repeats 204
complex diseases, association studies

1375–1426
component pathways 769, 829, 1063
composite enzymes 1192
composite promoters 164 ff
composition vector tree method

(CVTree) 1505
compound analysis 581, 654, 684, 733
Comprehensive Medical Chemistry

(CMC) 655
Comprehensive Microbial Resource

(CMR) 1503
computational epigenetics 1661
computational immunology 1665
computer analysis 1034 ff
concatenated alignments 112
concept definitions, ontologies 1077
ConceptMarker algorithm 1281
CONCEPTS/CONCERTS program 577
CONCORD program 657
conditional error rate 959, 973
conditional random fields (CRFs) 1273
conflicting links 223
Confmat program 310
conformational analysis 318, 558, 655
Congreve rules of three 580
congruent matrix method 114
conjugation enzymes 1428
ConsDock approach 675
Consensus Coding Sequence (CCDS)

database 1321
consensus dinucleotides 131
consensus methods
– lead identification 675 f
– patients classification 984
– phylogenetic trees 110
– protein functions 1090
CONSENSUS program 809
consensus RNA secondary structures

456, 459 ff
consensus sequences 33, 45 ff, 169, , 1219
conservation methods
– ATP recognition 1215
– comparative genomics 1359 ff
– genome rearrangements 236, 240, 244 f
– genomic neighborhood 1183 ff
– metabolic networks 755, 762 ff
– protein functions/structures 1087,

1215–1224
– protein interaction networks 1153
– rearrangements 245

– RNA secondary structures 456 ff
conserved noncoding sequences (CNS)

152, 1363
constrained docking 632
constraint satisfaction problem (CSP)

522, 527
constraint-based modeling 757
ConStruct program 458
ConSurf program 1220, 1241
contact surfaces 550
context dependency 174
context-free grammars (CFGs) 463 f
context-specific transcripts 187
contextual features 1261
contigs 3– 42, 224 f
contiguous rDNA cassettes 197
contiguous ungapped regions 1094
ContigView tool 1587
continuous profiles 1196
controlled vocabulary 1072, 1075
convergent evolutions 86, 1200
co-occurrence analysis 1181 f, 1194 ff,

1279
Co-ODE project 1068
coomassie blue staining 1027
cophenetic distance 1015
copurification 1122
core genes 1498
core promoters 162 ff, 1337
COREGEN program 578
CORINA program 657
correlated mutations 1200
correlation techniques 606 ff, 639, 1380
Corynebacterium diphteriae 1514
cosubstrates 4
cotranscriptin factors (CTFs) 808
Coulomb potential 313, 548
covalent binding 496, 544
CPCA loadings 719
CpG islands 173, 1659
CPHmodels program 322
Crassulacean acic metabolism (CAM) 772
CRAVE tool, biological data

visualization 1607
critical assessment of fully automatic

structure prediction (CAFASP) 399
critical assessment of prediction of

interactions (CAPRI) 606, 636 f
critical assessment of protein structure

prediction (CASP) 268, 308, 336
– fold recognition 354, 367 ff, 378 ff
– structure prediction 393 ff, 427 ff
critical surface points 614
Crixivan 1463
Crohn’s disease 1382
cross-linking 1124
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cross-match algorithm 228
cross-resistance 1464
cross-talk 833, 1188
cross-validation 914, 965, 972, 1014, 1093
cruciform DNA 161
Cryptococcus neoformans 1592
crystallography/NMR system (CNS) 533
crystallomics 354, 428 ff, 1126
CSA program 1241
CSS language 1639
curing diseases 6 f
customized treatment strategy for HIV

(CTSHIV) 1479
CVODE networks 785
cyan fluorophores 1575
cybernetics 856
cyclin-dependent kinase (CDK) 1164
cystic fibrosis transmembrane conductance

regulator gene (CFTR) 1341
CYP substrates 729 ff
CYP19A gene 188
cysteine proteases 1326
cytocrome P450 enzymes 723
cytokines 1462
cytoplasm endocytosis 873 ff
cytoplasmic message 130, 519
Cytoscape tool 1168, 1602, 1615
cytosine 26, 88, 494, 1336, 1462
cytosol 1669
cytotoxic killer T cell (CTLs) 1461, 1667

d
3-D shape descriptors 1236
DAG-Edit program 1068
Danio rerio 1343
Dasypus novemcinctus 1343
data-driven docking 632, 643
data-generating distribution 959
data integration, protein function

prediction 1297–1314
data transfer
– bioinformatic applications 1627–1650
– DNA microarrays 916
– pharmacogenetics 1450
Database of Interacting Proteins (DIP)

1127, 1136, 1144
databases
– biological data visualization 1613
– cell signaling networks 850
– DNA microarrays 902
– docking 573
– future trends 1664
– infectious bacteria 1502
– metabolic networks 788
– pharmacogenetics 1430 ff –1440
– protein functions 1101, 1240 ff, 1241 ff

– protein interaction networks 1131,
1136, 1165 ff

– proteomics 1034 ff, 1038 f
– structural genomics 428 ff
– text mining 1274, 1287
Dayhoff matrix 59, 62 f, 358
Daylight Chemical Information System

665, 691
DBSolve program, metabolic networks

782
DCA program 73
Dcam gene 1664
de novo drug design 572 ff
de novo lead identification 654
de novo sequencing 1045
de novo structure prediction 18, 389–418
dead-end elimination (DEE) 312 ff, 561,

618 ff
decision stumps 968
decision trees 1467
decomposition
– metabolic networks 769
– protein–protein docking 612, 628
– RNA secondary structures 444, 451 ff
Decorate program 310
DeCyder, program 1035
DEDB database 1664
defaults 208
defined nucleotide positions (DNPs) 42
degradation
– cell signaling networks 841
– future trends 1655
– metabolic networks 762 f
Deinococcus radiodurans 226 f
delaviridine 1463
deletions
– comparative genomics 1338
– homology modeling 298, 333
– protein functions 1088
– rearrangements 239
– repeats 204
– RNA secondary structures 470
– templates identification 364
Delta2D program 1035
dendrograms 976 f, 998
denoised centroids 965
depression 7, 1433
derivation rules 463
Derwent World Drug Index 1316
descriptions logics 1065
descriptors
– lead identification 660 f, 664 ff
– lead optimization 725
– protein functions/structures 1225 ff,

1231 ff
design-of-experiment (DOE) method 550
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Desulfovibrio vulgaris 1196
detection methods
– infectious bacteria 1506
– microarray experiments 932, 949 ff
– protein interaction networks 1124
– regulatory regions 175 ff
deterministic dynamic network models

843, 856, 1471
DFIRE program 641
diacylglycerol (DAG) 830, 856
diagnostic model 970
diagonal discriminant analysis (DDA)

964, 978
DIALIGN program 73, 1348, 1094, 1102
diauxic shift 11
diazepam-insensitive enzodiazepine

receptors 718
dictionaries 1260
dictionary of structure of proteins

(DSSP) 263 ff
Dictyostelium discoideum 792, 1674
3DID database 1137, 1241
didanosine 1462 ff, 1475 ff
difference gel electrophoresis (DIGE)

1028
differential interference 1578
diffraction patterns 354
diffuse large B cell lymphomas

(DLBCLs) 900, 957
digestion 12, 1025 ff, 1042 ff, 1510
digital libraries 1256, 1287
dihydrofolate (DHF) 4 ff
dihydrofolate reductase (DHFR) 4 ff
1-2-dimensional electrophoresis 1025
dimers 305
Dirichlet prior probabilities 1094 f
DISCO database 669 f, 689, 1328
discrete profiles 1196
discriminant analysis 912, 961, 964 ff
discriminant motif finders 809
diseases 1375 ff
– entities 974
– markers 1024
– molecular basis 1 ff
– structural genomics 425 ff
– susceptibility 1388
disordered regions 284 ff
dispersed repeats 197 ff, 209 ff
DisplayMUMS program 1593 ff
dissociation constants 761
distance-based approach 565
– clustering 977
– docking 565, 633
– genes classification 996 f
– genome rearrangements 236, 240 ff,

246 ff

– genomic context 1181, 1185, 1197
– infectious bacteria 1499
– linkage disequilibrium 1380
– phylogeny reconstruction 84, 95
– protein functions/structures 1219, 1222
– protein interaction networks 1145
distant homologs, fold recognition 351–

388
distributed resources, bioinformatic

applications 1627–1650
Ditags program 252
divergence 362, 1160, 1353
divergent transcriptions 1187 ff
diversifying selection 1338
diversity argument 1315,
diversity of haplotypes 1384 ff
DME/DMOTIFS program 809
DNA chips 9 ff, 1658
– immunoprecipitation (DIP) 809
– microarray experiments 929 ff
– transcription control 188
DNA computing 1672
DNA gyrase 710
DNA level transcription control 186
DNA microarray technology 899–928
DNA sequences 3 ff, 25 ff, 57, 66 f
– evolution models 88
– infectious bacteria 1498 ff
– pharmacogenetics 1427
– phylogeny reconstruction 83 ff, 87 ff
– protein coding genes 129
– proteomics 1023–1060
DNA transposons 1337
DNA variations 1378 f
DNA-binding templates 1231
DNAml-based programs 108
DOCK program 553, 558 ff, 564 f, 611
3D-Dock Suite database 1137
docking 12, 19
– lead identification , 678
– protein interaction networks 1135
– structure-based drug design 541–600
Document Object Mode (DOM) 1639
document type definition (DTD) 1258
dog’s genomic sequence 1343, 1356
DOLOP database 1052
domains
– fold recognition 355
– genomic context 1193 f
– protein interaction networks 1138 ff
– RNA tertiary structures 517 ff, 524 ff,

530 ff
– structural genomics 432
– structure prediction 285, 399 ff
dopamine 720
dot plots 58 ff, 64 f, 1355
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DOT program 634
dot-parenthesis grammar 463
double-barreled shotgun sequencing 42
double-helix structure 26
double-negative regulation 836
DoubleScan program 151
double-stranded RNA (dsRNA) 132 ff,

1580
Down’s syndrome 198
Dracaenacea 776
Dragon program 175, 1604
Drosophila melanogaster 16, 26
– biological data visualization 1580 f
– cell signaling networks 851
– DNA microarrays 921
– comparative genomics 1363
– future trends 1651,1664,1676
– genome rearrangements 235
– protein coding genes 145 f
– protein interaction networks 1125, 1151
– regulatory regions 184, 818
– repeats 228
Drug Data Report (MDDR) 655, 659
drug development 12 ff
– cell engineering 1671
– HIV drug resistance 1462 ff
– lead identification 653 ff
– lead optimization 706 ff, 711 ff
– pharmacogenetics 1429 ff
– structure-based 541–600
drug efficacy 1427, 1441
drug-likeness 655, 659 ff
drug molecules 6 ff
drug names 1437 f
drug resistance, HIV 1457–1496
drug response 1428, 1441
drug screening 19
drug toxicity 1427, 1441
drug/nondrug classification 659
drug–drug interactions 728
druggability prediction, molecular basis

22, 1315–1334
DrugStore database 719, 1322
duplications
– comparative genomics 1338, 1344
– evolutionary processes 838
– protein interaction networks 1159 f
– rearrangements 239
– repeats 198
DWE program 809
dynamic programming 58 ff, 61 ff, 142 ff,

1088
dynamic query tools 1585
dynamic simulation 782 ff
dynamics
– embryogenesis 1573

– microarray experiments 933
– pharmacogenetics 1441
– virus–host cell interactions 861–891

e
early-level combination 110
EASE program 921
EBIMed tools 1287
eclipse period 864 ff, 869 ff
EcoCyc tool 1082, 1602
edit distance 204 ff, 1277
efavirenz 1463
effectors 757
efficacy, pharmacogenetics 1427, 1441
efflux discrimination 722
eF-site database 1234
electron tomography 1674
Electronic cell 794
electrophoresis 1025
electrospray ionization (ESI) 1030
electrospray ionization Fourier transform

mass spectrometry (ESI-FTMS) 533
element analyses 159 ff, 169, 178
elementary modes 755, 770
ELISA 1124
eMATRIX database 1102, 1108 f
embedded methods 969, 1300, 1589
EMBL database 1062, 1637
EMBOSS program 134, 1628
embryogenesis 1573
emopamil binding protein (EBP) 688
empirical potentials 628
empirical risk 959
empirical scoring 550
emtricitabin 1463
Emtriva 1463
ENCODE project 1663
End Sequence Profiling program 252
endocytosed proteins 1669
endocytosis 873 f, 881 ff
endogenous retroviruses 1337
endoplasmic reticulum 1579, 1668
endoproteolytic cleavage 1025
endosomes 874, 881 f
energy minimization 444, 450
enfuvirtide 1463
enhancers 177, 814
Ensembl genome browser 1345 ff, 1439,

1587 ff, 1594
ensemble methods 443, 558, 1301
Enterococcus faecium 1504
Entrez Gene program 1143, 1254, 1257 f,

1439
entropic determinants 405
entropy function 1392, 1401 ff, 1416
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entry/entry inhibitors 862 ff, 875, 895,
1463

env gene 1460
envelope proteins 498, 880, 897
environment genomics 1207, 1231
enzyme active site residues 1222
enzyme catalytic sites 1238
enzyme classifier 1235
Enzyme Commission (EC) classification

920, 1064, 1111, 1299
Enzyme database 788
enzymes
– druggability prediction 1326
– genomic context 1192
– inhibitor complexes 637
– kinetics 755, 760 ff
– pharmacogenetics 1428
– substrate complexes 761
epidemiological patterns 1500
epigenetics 818, 1338, 1659 ff
epinephrine 829
epithelial growth factor receptor (EGFR)

1429
epitopes 1483, 1666
Epivir 1463
EPMR program 431
Eponine program 175
Eponym program 183
ERGO program 1203
EROS program 581
error models 33, 40
– microarray experiments 931, 943 ff
– patients classification 959, 971 ff
– protein interaction networks 1150 ff
erythrocythes 790
escape mutations 1485 ff
Escherichia coli
– cell signaling networks 852
– future trends 1672
– genes classification 1008
– genomic context 1185, 1196
– homology modeling 331
– infectious bacteria 1501, 1508, 1511 ff
– lead identification 685
– metabolic networks 2, 772, 779, 782
– ontologies 1082
– protein functions/structures 1221
– protein interaction networks 1125 ff,

1143
– proteomics 1033, 1051
– structural genomics 421, 428 f
– virus–host cell interactions 864 ff
EST–DNA alignment 149
EsyPred program 322
ether-á-go-go-related gene (ERG) 688
Euclidean distance 664, 996 f, 977

EUDOC program 559
eukaryotes
– future trends 1653, 1663
– genomic context 1180, 1189 ff
– repeats 197
– templates identification 373
– virus–host cell interactions 866 ff
eukaryotic genomes 31, 235, 1343, 1354
– assembler 47
– protein interaction networks 1134
– regulatory regions 159
eukaryotic promoter database 178
eukaryotic transcription 130 ff
Euler assembler 224 ff
EurocarbDB web site 1654
European Bioinformatics Institute (EBI)

1637
EVA server 268, 277, 399
E-value 69
– homology modeling 303
– protein interaction networks 1141
– repeats 207
– structure-based function prediction

1242
– templates identification 359
event models 1642
evolution
– genomes 1335–1374
– HIV drug resistance 1457–1496
– infectious bacteria 1497–1524
– phylogeny reconstruction 86
– protein interaction networks 1127 f,

1158 ff
– structure prediction 269, 281
evolutionary programming 563, 579
evolutionary signal tracing 92 ff
evolutionary trace (ET) method 1219
examples, genomic sequences 1356
examples, TDT statistics 1415
expected error 973
exhaustive search methods 103
exocyclic hydrogen donor groups 505
exons
– comparative genomics 1336, 1345
– intron interactions 147 ff
– protein coding genes 130 ff, 137 ff, 153
– repeats 198 ff
ExPASy Server 788
expectation maximization (EM) algorithm
– genes classification 1002, 1013
– HIV drug resistance 1473
– linkage disequilibrium 1386
– templates identification 365
exponential loss function 968
exponential transformation 1392, 1401 ff,

1416
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expressed sequence tags (ESTs) 11, 31 f,
67

– DNA microarrays 921
– future trends 1664
– pharmacogenetics 1451
– protein coding genes 147
– regulatory regions 185
expression profiles
– analysis 899–928
– genes classification 996, 1007
– patients classification 958
– protein functions 1090
– reliability (EPR) 1126
eXtensible Markup Language (XML)
– bioinformatic applications 1630, 1638 ff
– pharmacogenetics 1432, 1450
– text mining 1258
external metabolites 759
extreme pathways 777
extreme value distribution 68 f, 376

f
Factor V/Leiden R506 mutation 300
false discovery rate (FDR) 953, 1388
false negatives/positives 602, 656, 1092,

1122
false-color representation 934 ff
families of structurally similar proteins

(FSSP) 355
family-based association studies 1406 ff
family-wise comparisons 1088
family-wise error rate (FWER) 953, 1388
FAMS program 322 ff
FarWestern program 1124
fast atom bombardement (FAB) 1030
FastM program 180
FAST DB 1664
FASTA package 65 f, 75, 200 ff, 356
FatiGO program 1010, 1282
feature-based systems
– druggability prediction 1071, 1320, 1327
– ontologies 1071
– patients classification 964 f
– protein function prediction 1300
– text mining 1268
FEATURE program 1231, 1241
feedforward loops (FFLs) 837, 856
feline immunodeficiency (FIV) 512 ff
Felsenstein substitution 91
FetchProt corpus 1287
fFLASH fragmentation 668
FGENES program 146, 152
fifth order coding 133 ff, 148 f
filter methods
– lead identification 655
– patients classification 969 f

– protein function prediction 1124, 1300
– protein interaction networks 1124
– protein–protein docking 603
fingerprint mapping 30
finite state automation (FSA) 144
FinMod program 1046
first messengers 829
FirstExonFinder program 175, 183
first-in-class compounds 684
Fisher score 366
fissions 239, 1190 ff
fitness function
– docking 563, 607
– infectious bacteria 1499
– protein functions/structures 1213, 1310
– protein interaction networks 1161
– repeats 213
FLASH program 67
flavin monooxygenase (FMO) 723
flavonoid molecule 663
Flexibase/FLOG program 558
flexibility
– disordered regions 284 ff
– docking 558, 603, 615, 642
– protein functions/structures 1225
flexible superpositioning (FlexS) 668
FlexX program 561, 573, 683, 686
FLOG programs 558, 719
fluorescence lifetime imaging microscopy

(FLIM) 1575
fluorescence microcopy 1573–1626
fluorescence resonant energy transfer

(FRET) 1576 f
fluorescence staining 1027
fluorescent labeling 28, 930 ff, 1675
fluorimetric assays 723
fluorophores 1575
flux balance analysis (FBA) 778 ff, 796
flux mode 765, 768 f
fly-casting 616
fold coverage 420
fold recognition, distant homologs 304,

351–388, 402
fold-change 951
folding algorithms 285, 455 f
folding energy landscapes 476 f
Food and Drug Administration (FDA)

1430
FootPrinter program 171
force fields 548
FOREL method 976
forest representation 443 ff
formalization 492 ff
Förster distance 1576
Fortovase 1463
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foundational model of anatomy (FMA)
1071

four point condition 97
Fourier transform 609
Fragile-X mental retardation 197
fragment screening 685 f
fragmentation 199
fragmentation-based flexible docking

559, 574 ff, 582
fragments sequencing 27
frame-based systems 1065
FrameWorker program 180
FRED program 557, 691
free energy perturbation (FEP) 548
freedom degrees 568
free-shift alignments 356
frequency profile methods 357, 372 f,

1408 ff
frequent hitters 656
frequently observed pairs (FOP) 1132
frog’s genomic sequence 1343, 1356
frozen approximation algorithms 371
fructose-6-phosphate 758
FTDOCK program 634, 640
full-presence profiles 1195
full-tree representation 443 ff
function words 1270
functional annotations
– genes classification 995
– protein functions/structures 1225
– protein interaction networks 1127 f
– structural genomics 428, 432
functional bindings 1201
functional enzymes 1428
functional genes classification 1010
functional genomics 1580
Functional Glycomics Consortium 1654
functional groups 545 f, 656
functional modules 850
functional RNA molecules 439
functional sites 1213, 1224, 1236 f
function-based microarrays 1033
function-to-structure prediction,

proteins 1211–1252
fundamentals, metabolic networks 756
FungalWeb library 1255
furanose ring 496
fusion analysis 239, 1181, 1190 ff
fusion proteins 1122
FusionDB 1136, 1203
future trends 1651–1686
Fuzeon 1463
fuzzy adaptive lest squares 722

g
gag gene 1459

gain rates 1159
GALA genome aligner 1354
galled trees 120
Gallus gallus 1343
GAML program 108
Gamma-distribution 90
gap penalty 61 ff, 70 f, 213, 356
gap statistics 1016
gap–gap combinations 459
gaps 60 ff, 353, 1218
GAPSCORE tagger 1273
gas chromatography (GC) 1028
GASP program 668 f
GATE program 1287
Gaussian clustering 1001
Gaussian densities 964
Gaussian distribution 316, 501
Gaussian function 663 ff, 1392 ff
Gaussian mixture model 1478
Gauss–Seidel method 966
GCG program 1432
GeConT program 1203
GEDI tool 1601
GEISHA system 1281
gel electrophoresis 1026, 1034 ff, 1049 f
GEMS launcher 181
GENATLAS program 1439
GenBank
– bioinformatic applications 1630
– pharmacogenetics 1432, 1439, 1450
– text mining 1257, 1273
gene content 135 ff, 238
gene dictionaries 1260
gene duplications 198, 1159 f

see also: duplications
gene expression data 11
– biological data visualization 1594
– DNA microarrays 903
– metabolic networks 762
– patients classification 958
– protein function prediction 1304
– protein interaction networks 1157

see also: expression
gene feature integration 141 ff
gene finding 456, 460 ff
gene fission 1190 ff
gene fusion 1305
gene grammars 143 f
Gene Information System (GIS) 1276
gene islands 1513
gene names 1437 f
gene neighborhood 1139, 1240
Gene Ontology (GO) terms 1069, 1072 ff
– biological data visualization 1597, 1601
– DNA microarrays 920
– druggability prediction 1330
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– gene regulation 811
– genes classification 994, 1005, 1009
– genomic context 1205
– patients classification 981
– pharmacogenetics 1439
– protein functions 1111 f, 1299, 1309
– text mining 1256, 1276
gene pairs 1187
gene regulatory networks (GRNs) 601,

807–828
gene selection 934, 964 f, 968 ff
gene shaving 1004
gene signals 137 ff
gene trees see: trees or sequence trees
GeneCards program 1439
gene–drug–disease interactions 1433 f,

1438 f
GeneExplorer tool 1601
GeneMine program 310
GeneNet database 1137
GenePlace tool 1598, 1601
general disease model 1376 ff
general promoter recognition 177
general time reversible model (GTR) 91
generalized hidden Markov method

(GHMM) 144
generalized log-ratio 951
generalized parsimony 93
generalized T2 test statistics 1404 ff
generalized tree alignment 74
generating optimal linear PLS estimations

(GOLPE) 671
Generic Genome Browser 1587
generic NLP tools 1286 ff
genes, classification 993–1022
genes, interactions 1128, 1404
genes, arrangements 1179
Genes3D database 1102
GeneSplicer program 139
GeneSpring tool 1596
genes–transcripts–promoters 184
genetic algorithms 563 ff, 579
genetic arms race 1517
genetic association studies, complex

diseases 1375–1426
genetic barrier 1473 ff, 1478 ff
genetic code 26
genetic distance 1401 ff
genetic engineering 1671
genetic factors 13
genetic interactions 1128
genetic linkage analysis 1375
genetic markers 1377
genetic networks 1672
GeneVis tool 1604
GeneWindow program 1593

GENIA corpus 1287
GenMAPP tool 921, 1604
Geno2pheno server 1489
Geno3D program 322
GenoMap tool 1589, 1594
Genomatix collection 189
genome annotation 391
genome assembly algorithms 25 ff, 220 ff
Genome Browser (UCSC)
– biological data visualization 1587, 1594
– comparative genomics 1344, 1353 ff
– pharmacogenetics 1439
GenomeAtlas 1504
GenomePixeliner 1594
genomes 1–24, 863, 1329
– alignment 150, 1348
– data visualization 1585
– evolution 1335–1374
– HIV drug resistance 1459
– metabolic networks 796
– rearrangements 17, 235–260
– regulatory regions 159–196
– sequencing 1062, 1343 ff
– structure prediction 410
– transcription control 186
Genomesonline website 1652
genome-wide association studies 1416
genomic context, protein functions 1138,

1179–1210
genomic hybridization 1657
Genomic Object Net (GON) 1602
Genomics Information Extraction System

(GENIES) 146, 150 ff, 1280
GenoPix2D program 1593
genotype–phenotype data
– docking 564
– HIV drug resistance 1465 ff
– pharmacogenetics 1437, 1442
genotypes 16, 1408 ff, 1440, 1651
GenoViz tool 1616
GenStar program 578
GenTHREADER program 374
GEO database 922
Geobacter sulfurreducens 1196
geodesic distance 1222
geometric hashing 554, 614, 640
geometric properties, protein

functions/structures 1213
GEPASI program 782, 794, 846, 852
Gibbs sampling 74, 809, 1308
Gibson enhancement 847
Giegerich’s encoding 472
GigAssembler 48
Gillespie algorithm 846
GLASS program 1348
glial fibrillary acidic protein (GFAP) 181
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GLIDE program 559
global alignment 356, 1347, 1350 ff
global homology modeling 308
global minimum-energy conformation

(GMEC) 617 ff
global structure prediction 394
globular proteins 355
glucagon 829
glucocorticoid-responsiv element (GRE)

163
gluconeogenesis 773
glucose 2, 9, 758, 765
glucuronidation enzymes 1429
GLuskap program 1168
glutaraldehyde 1027
glutathione 1429
glycolysis 2, 10
– gene classification 1011
– metabolic networks 764, 790 ff
– protein interaction networks 1152
glycomics/glycoproteomics 1653
GlycoMod program 1047
glycoproteins 1459
glycosaminoglycan 1080
glycosides 492, 496, 500
glycosylated proteins (AGP) 722
glycosylation 1046
GMAP program 149
GO Next generation (GONG) 1078
GO/OBO tool 1287
GOA database 1282
GOLD program 564, 691
gold standard
– comparative genomics 1343 f, 1353
– protein functions 1092 ff
– protein interaction networks 1125 ff
– text mining 1283 f
Golden Path position 1440
Golgi apparatus 874, 1155, 1667
GOMiner program 921, 1010, 1598, 1601
Google Scholar 1256
Google searches 1446
GOstat program 1010
GoSurfer tool 1598, 1601
GO-TermFinder program 1010
Gotoh algorithm 63
GOTREE program 246 ff
G-protein-coupled receptor kinase

(GRK) 835
G-protein-coupled receptors (GPCRs)
– druggability prediction 1320, 1326
– homology modeling 334
– lead identification 686
– lead optimization 708 ff, 719 ff
GRAM program 813
grammars 463 ff

grammatical constraints 143
grammatics 1258
graph theory
– cell signaling networks 835
– protein functions/structures 610 ff,

1232
– protein interaction networks 1145 f
– proteomics 1046
Graphbrowse program 1168
Graphviz program 1168
GRAPPA program 246
Gravisto program 1168
greedy approaches 44, 105 f, 458
Greer model 297
grey-scale representation 932
Gribskov codon preference statistics

133 f
Grid computing 1627 ff, 1644
GRID program 549, 577, 671, 719, 725
grid-based correlation methods 607,

610 ff, 929
GRIMM program 242, 246
GROMOS program 548
GROW program 560, 578
GrowMol program 577
growth phase 864, 880
GSCope tool 1602
GTP binding proteins 830, 857
G–U pairs 440, 446 ff
guanine nucleotide exchange factors

(GEFs) 830, 856
guilt-by-association rule 1307 ff
Gumbel form 376
gypsy-like retrotransposon family 203
gyrase 710

h
HADDOCK program 634
Haemophilus influenzae 26
– genomic context 1196
– infectious bacteria 1504–1519
– metabolic networks 781
– structural genomics 422
hairpin loop 445, 450 f, 512
Haloarcula marismortui 411, 501, 509, 514
Halobacterium NRC-1 395, 410 f
Hammet constant 670
Hamming distance 95, 204 ff
Hannenhalli–Pevzner (HP) theory 242 ff
Hansch analysis 670
haplotypes 1378–1413
HapMap project 1377 ff, 1383 ff, 1387 ff
Hardy–Weinberg equilibrium (HWE)

1385
harmonic imaging 1580
Hasegawa–Kishino–Yano substitution 91
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hash functions 554, 614, 640, 656, 665
HCAD database 1282
heat maps 1594 f
helical structures 264
helicopter view technique 567
Heliobacter pylori
– genomic context 1187, 1196
– infectious bacteria 1501 ff, 1519
– metabolic networks 781, 796
– protein interaction networks 1125,

1143, 1151, 1162 f
– structural genomics 422
helper T cells 1461
hemagglutination assay 870
hemoglobin 58, 71, 306
heparin biosynthesis 1080
heterodimers 1459
heterogeneity, bionformatics resources

1628
heterogeneous nuclear ribonuleoproteins

(hnRNPS) 814
heteroskedasticity 936, 950 f, 964
heterotrimetric G-proteins 830
heterozygotes 1385, 1408
Het-PDB Navi database 1137
hexokinase 758, 768
hexose synthesis 776
hidden Markov models (HMMs) 74 ff
– fold recognition 365
– gene finding 150
– homology modeling 305
– protein coding genes 139
– protein functions 1094, 1098 ff
– proteomics 1047
– repeats 229
– structure prediction 271, 281, 404
– templates identification 363 f
– text mining 1266, 1272
– HIV drug resistance 1476 f, 1485
hierarchical clustering
– DNA microarrays 906 ff
– genes classification 997 ff
– lead identification 660 f
– patients classification 976
Hierarchical Clustering Explorer (HCE)

1596
Higgins–Selkov oscillator 787
high resolution structure prediction 407
high-content screening (HCS) 1574,

1610 f
highly active antiretroviral therapy

(HAART) 1463, 1476 ff, 1487 ff
high-order RNA components 492
high-resolution radiation-hybrid maps

(cat-dog-cow-pig-horse) 251
high-throughput detection 1125

high-throughput screening (HTS) 12
– docking 545
– lead identification 652–693
– lead optimization 705
– proteomics 1033
high-throughput mass spectroscopy

1129 ff
hill climbing methods 105
Hill kinetics 793
hinge-bending 559, 624, 682
HINT program 671, 716
Hirschsprung disease 1365, 1416
histamine 720
histidine kinase 1193
histopathology-based techniques 1573
hit lists
– lead identification 653 ff, 672 ff
– lead optimization 709 ff
– phylogeny reconstruction 95
Hivid 1463
HMMer home database 77, 1102, 1109 f
HMM–HMM comparisons 365
HMS protein complex identification (HMS-

PSI) 1129 ff
HOLLYWOOD database 1664
Holophaga foetida 780
Homo sapiens 16, 26
– protein interaction networks 1125
– proteomics 1051
– structural genomics 411, 421
homocysteine 300
homodimers 1133
homogeneous Poisson process 88
homologous interactions 1135, 1141 ff
homologous sequences 60
homology models 18, 297–350
– comparative genomics 1335
– druggability prediction 1320 ff
– fold recognition 351–388
– infectious bacteria 1506
– lead identification 686
– markers 238
– protein coding genes 147
– protein functions/structures 1212, 1224
homology synteny blocks (HSBs) 249
homomultimers 305
Hoogsteen A–U base pairs 505 ff
HOOK docking program 578
Hopkins–Groom method 1320
horizontal gene transfer 87, 1512
hormones 829
host cells 13
host genetic profiles 1480 ff
host genomes 1460
host population 861 ff, 868 ff
host–bacteria coevolution 1516
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host–pathogen interactions 84, 1497 ff,
1517

Hough transform 624
housekeeping loci 1510
hox gene clusters 1180, 1189 f
hp-DPI/HPID/HPRD 1136
HSA binding 726
H-type pseudoknots 441
human embryonic kidney cells 1584
Human Epigenome Project 1661
human ether-á-go-go-related gene

(hERG) 728
human genes 921
human genome 1335 ff, 1362 ff
– druggability prediction 1330 ff
– mammalian evolution 250
– sequencing 8 ff
Human Genome Organization (HUGO)

1143, 1431
Human Genome Organization

nomenclature committee (HGNC)
1432, 1438 f

human immunodeficiency virus (HIV)
23, 172

– docking 542
– drug resistance 1457–1496
– HIV Interactions database 1136
– phylogeny reconstruction 118
– protease inhibitors 715
– virus–host cell interactions 861 ff
human leukocyte antigen (HLA) 1461,

1480, 1666 f
Human Proteome Organization (HUPO)

1050
human readable definitions 1072
human–chimp orthologous regions 1342
humoral immune response 1666, 1669
Huntington’s disease 197, 215
hurdles 242
hybrid methods
– cell signaling networks 849, 857
– docking 570, 640
– protein interaction networks 1122
– templates identification 372 ff
hybridization
– DNA microarrays 902
– future trends 1657
– homology modeling 311
– microarray experiments 930 ff
– phylogeny reconstruction 120
– RNA secondary structures 453 ff
hydrocarbon bonds 265
hydrogen bonding
– docking 554, 629
– lead identification 658, 674 f
– protein functions/structures 1091, 1235

– RNA structures 445, 505
– structure prediction 397 ff, 407 ff
hydrogenase 1187
hydrolase 1227, 1326
hydrolysis enzymes 1428
hydrophilic residues 61
hydrophobic amino acids 61
hydrophobic effects 630, 1213, 1316
hypergeometric distribution 1408
hypertension 1433
hypertext markup language (HTML)

1628
hypertext transfer protocol (HTTP) 1628
hypervirulence 1509
hypothesis-driven approaches 994, 1156

i
ICAass program 200 ff, 230
identifying splits with clear separation

(ISIS) 978
identity matrix 1402
iHop program 1277 ff, 1287
image analysis 932, 939, 1608 ff, 1673 ff
ImageJ tool 1582, 1615
ImageMaster program 1034 ff
imaging techniques 1573–1626
IMGT/HLA database 1489
imidazole ring 494
immobilized artificial membranes (IAM)

727
immobilized membrane chromatography

(ILC) 727
immobilized pH gradient (IPG) 1027
immunoinformatics 1665, 1670
immunologic assays 1027
immunology 1461 ff, 1480
immunome data 861, 1670, 1666, 1669
immunoregulatory cells 1482
IMPALA program 361
in silico models
– cell signaling networks 834
– comparative genomics 1353
– HIV drug resistance 1479
– infectious bacteria 1504, 1509
– lead optimization 708 ff, 721 ff, 729 ff
– promoter recognition 177
– protein interaction networks 1121
– two-hybrid methods 1140
in vitro/in vivo testing 8
in vivo imaging 1576
incoherent feedforward loops (FFLs) 837,

856
incomplete cross-validation 974
incomplete multilocus datasets 112
incremental construction algorithms

560 ff, 572 f, 1068, 1071 f
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indels (insertions/deletions) 60, 204
independent folding units 285
indexing 1262
indinavir 1463
induced fit 602, 1213
infections 13
– HIV drug resistance 1457, 1461 ff
– virus–host cell interactions 861 ff
infectious bacteria, evolution 1497–1524
inferences 84 ff
inferring gene regulatory networks

(GRNs) 807–828, 994
inferring protein function
– from genomic context 1179–1210
– from protein structure 1211–1252
– from sequence 1087–1120
inflammation 13, 1375 ff, 1482
influenza A virus 861, 871–891
information extraction (IE) 1253–1296
information leak 974
information retrieval (IR) 1255–1296
information visualization see:

visualization
inhibitors 6
– docking 542
– HIV drug resistance 1462 ff, 1475 ff
– lead identification 652 ff, 682, 685 ff
– lead optimization 715 , 730 ff
– protein–protein docking 637
initiator region (INR) 164 ff
inosine-5’-monophsophate dehydrogenase

(IMPDH) 685, 710
insertion methods
– comparative genomics 1338
– homology modeling 298
– phylogeny reconstruction 106
– protein functions 1088
– rearrangements 239
– repeats 204
– RNA secondary structures 470
– templates identification 364
insertion/deletions gaps (indels) 1088
inside and outside algorithms 465
insulin sequences 1162
IntAct database 1136, 1144
integer linear programming (ILP) 618,

621 ff, 1631
integrase 1459
integrated multiple protein–protein

interactions 1154
integration methods
– genomic context 1204
– lead optimization 732
– microarray experiments 949
– protein coding genes 153

– protein functions/structures 1239,
1297–1314

interacting domain profile pair (IDPP)
method 1143

interaction networks 1665
interaction surfaces 556
interactions
– docking 601
– molecular 15, 541–754
– networks 1122, 1160
– RNA tertiary structures 535
interactomes, protein interaction

networks 1121–1178
intercalators 544
Inter-Chain/InterDom database 1137
Inter-Class Report 1036
interior loops 444, 450 f
interologs 1141 f
interleukin-2 enhancer 161
intermediate phenotypes 1375 f
internal metabolites 759
internal ribosome entry site (IRES) 815
internalization 863
International Classification of Medicine

tools 1431
International Union of Pure and Applied

chemistry (IUPAC) 496
InterPreTS database 1137
InterPro database 78 ff, 1102, 1110 f, 1639
interresidue contacts 282 ff
intersection theorem 481
intersequence repeats 200 ff
interspersed repetitive elements (IREs)

1337 ff, 1358 ff
InterWeaver database 1137
intestinal absorption 724
intracellular interactions 862
intrasequence repeats 200 f
intrinsically disordered regions 284 ff
intrinsically ordered region 373
introns 130 ff, 135 ff, 198 ff, 1336
inverse Boltzman principle 368, 630
inverse screening 545
inversions 239
inverted repeats 204
Invirase 1463
ion channels 1326
ion-exchange liquid chromatography

1029
ionization techniques 1030
iProClass database 1102
IQPNNI program 109
irinotecan pathways 1444
irreversible reactions 761, 770
IslandPath database 1504
isoelectric focusing (IEF) 1026 f
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isoforms 154
isolated vertex 1145
isolates 1509 f
isoleucine 61, 133
isopropyl-β-D-galctoside (IPTG) 332
isosteric base pairs 508
isothermal titration 1124
isotopic-coded affinity tag (ICAT) LC-MS

spectra 1050
ISYS system 1642 ff
iterative group analysis (IGS) 1011
iterative profile alignment 74
iterative signature algorithm 1008
IUPAC nucleotide nomenclature 170, 496

j
Jacobian matrix 766
Jarnac program 784
JASPAR database 809
Java compilers 1632 ff
Java TreeView tool 1601
Jazz assembler 49
Jena Link list 1138
Jensen–Shannon divergence 362
Jess method 1229, 1240
JGraph library program 1168
jigsaw homology modeling 308, 322, 335
JJJ web simulator 784
Joe Felsenstein collection 1505
Joint Center for structural Genomics

(JCSG) 419 ff
Jukes–Cantor model 91

k
Kaletra 1463
KDBI database 1138
KEGG database
– biological data visualization 1602
– DNA microarrays 920
– genomic context 1205
– lead identification 689
– metabolic networks 768, 788
– text mining 1283
kernel methods 366, 966, 1297, 1302 ff
Kimura two parameter model 91
kinases 660, 682, 1320, 1326
kinetic folding 476 ff
kinetics/pharmacogenetics 1441
kinomics 1653
Kluyveromyces 780
k-means clustering
– DNA microarrays 907 ff
– genes classification 999, 1015
– patients classification 976
k-mer counts 221

k-nearest neighbor (kNN) classification
912, 1299

knobs 614
knowledge-based methods
– docking 551, 630
– ontologies 1064
– templates identification 368
KOG database 79
Kolgomorov–Smirnov test 1036
Krebs cycle 1152
K-turn motif 513
Kyoto Encyclopedia of Genes and

Genomes see: KEGG database

l
labeling 930 ff, 958
Laboratory Information Management

System (LILMS) 1038
Lac repressor function 331
lactate 764
lag phase 864 ff
Lagan program 1348 ff
Lagrange multipliers 557
lamivudine 1463, 1475 ff
language, computing, integrated ontology

development environment (IODE) 1069
Laplace matrix 1310
large genomic sequences 182 ff, 249
large-scale techniques 1278
late logarithmic phase 864
LEA3D program 580
lead identification, virtual screening

651–704, 1316
lead optimization 705–754
LeadNavigator program 676
LeadScope program 673
least squares methods 98
leave-k-out cross-validation (LKOCV)

914
leave-one-out cross-validation (LOOCV)

914, 974
LEGEND program 578
Lennard–Jones potential
– docking 548, 641
– homology modeling 312
– structure prediction 389, 400 f
Leonis–Westhof nomenclature 494, 504 ff,

530 ff
leukemia 901, 958, 985
leukocytes 1461
LGL program 1168
libraries selection 656, 677
life cycles 863, 873 f, 877, 1460
life science libraries 1257
Life Sciences Research Group (LSR) 1637
lifestyle drugs 7
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lifetime, protein functions/structures
1223

lifetime imaging 1575
LifPrep program 657
ligand-binding sites 1217
ligand-binding templates 1231
ligand–receptor interactions 710 ff
ligands
– docking 542
– HIV drug resistance 1482
– homology modeling 305
– lead identification 655, 678, 692
– lead optimization 717
– protein functions/structures 1212–1231
– virtual screening 653, 662 ff
LigBuilder program 580
light-based microscopy imaging 1573–

1626, 1673
LIGIN program 565
LIGSITE method 1219, 1232
likelihood approach
– genome rearrangements 236 ff
– patients classification 961
– phylogeny reconstruction 84, 98
– protein coding genes 145
– protein functions 1093
lineages 1607, 1613 f
linear discrimination analysis (LDA) 690,

961
linear genomes 237
linear interaction energy (LIE) method

549
linkage analysis 1375 ff
linkage clustering 74
linkage disequilibrium (LD) 1378 ff
linkages 496, 907
lipids 2
Lipinski’s rule of five 658, 709, 721–739,

1315–1334
lipophilic contact surfaces 550
liquid chromatography (LC) 1025, 1028 ff
literature databases
– biomedicine 1256
– pharmacogenetics 1437
– text mining 1286
LiveBench server 268, 399
living cell microarray 1581
LLL05 dataset 1287
local alignment 64, 69, 1347 ff
localization
– comparative genomics 1363
– functional sites 1217 ff
– phylogeny reconstruction 105
– protein coding genes 141
– protein interaction networks 1127
– RNA tertiary structures 519

lock-and key principle 12 f, 602, 1213
locus control regions (LCRs) 817
log odds 964
logistic regression 965
LogitBoost algorithm 968
log-likelihood scoring
– protein coding genes 135
– protein functions 1094, 1305
– templates identification 361 f, 365, 1305
LogOddsMultin score 362
log-ratio 935, 950
long terminal repeats (LTRs) 202
look-ahead techniques 1478
loop homology modeling 317 ff, 353
loop-based energy model 440, 444
loop–loop interactions 517
Loopy program 319
lopinavir 1463
Los Alamos HIV database 1488
loss function 960, 966, 1159
low-complexity compounds 710
low-complexity regions 392
low-level analysis 929–956
low-resolution methods 393 ff, 406
Loxodonta africana 1343
LSODA program 785
LUDI program 550, 556 ff, 578
Lyme disease spirochete 197
lymphocytes 867 ff, 1461 f
lytic bacteriophages 864

m
Macaca mulatta 1343, 1343, 1356
machine learning
– HIV drug resistance 1458
– patients classification 958
– PreBIND text miner 1279, 1287
– protein functions 1087, 1111 f
macromolecular conformations by

symbolic programming (MC-SYM)
524, 530 ff

macromolecular crystallographic
information file (mmCIF) 431

macromolecular structure database
(MSD) 331, 1237

macromolecular targets 681
macrostates 479
Madin–Darby canine kidney (MDCK)

869
MAGIC system 1305
magnetic resonance imaging (MRI) 1573
Mahalanobis distance 965
major histocompatibility complex

(MHC) 1383, 1480, 1666 f
majority-rule consensus 116
malate dehydrogenase 1067
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mammalian populations 1340
see also: population

mammalian sequences 145 f
Manhattan distance 997
MANIP program 516, 522
Mann–Whitney test 952
MAPK network 841
MAPPFinder tool 921, 1604
MapQuant program 1038
MARIX SEARCH, program 170
markers
– association studies 1377 ff, 1396 ff
– fluorescent 28 ff
– infectious bacteria 1500
– proteomics 1024
– rearrangements 238
MarkerView program 1038
Markov models 477, 569
– fifth order 133 ff, 148 f
– HIV drug resistance 1475
– Monte Carlo (MCMC) simulation 100,

107
– Monte Carlo (MCMC) simulation,

sampling 118
– phylogeny reconstruction 89 ff
– random field (MRF) 1308
– weight matrix 137

see also: hidden Markov models
markup language 1074
Marna program 476
Mascot program 1043
MaskerAid program 228
mass spectrometry (MS)
– protein interaction networks 1124
– protein–protein docking 633
– proteomics 1023, 1030–1047
master–slave alignment 359
MATCH program 171
matching
– association studies 1402
– comparative genomics 1349
– RNA secondary structures 440
– templates identification 364
mate-pairs/edges 27 ff, 33, 43
mathematical models
– HIV drug resistance 1464
– virus–host cell interactions 868 ff
MathWorld program 1148
MatInspector library 170, 180
MatLab imager 846, 852, 1583
matrix metalloproteinase inhibitors 718,

741
matrix models 1131 ff
matrix protein production 876, 896
matrix-assisted laser desorption ionization

(MALDI) 1030

Matthew’s correlation coefficients 265
Mauve database 1503
MAVID program 1348
maximal dependence decomposition tree

(MDD) 139
maximal gap-less aligned segment pairs

(MSPs) 201
maximal spanning tree 38
maximum a posteriori (MAP) estimate 963
maximum common subgraph (MCS)

search 674
maximum lead identification 661
maximum likelihood estimation 961
– genome rearrangements 236 ff, 248 ff
– infectious bacteria 1499
– linkage disequilibrium 1379
– patients classification 961
– protein coding genes 145
– protein functions/structures 1220
maximum parsimony approach 236,

241 f, 247 f
Maxsprout/Torso program 310
MC algorithms, docking 568 ff
MC-Annotate program 494, 509
MCH-1R antagonists 688
MCSS program 577
MD simulation 567
MDDR database 659
MDL Screening Compounds Directory

(SCD) 654
MDR algorithm 205
MDR1 proteins 722
mean residential time (MRT) 740
measurements 1379, 1387
MedBlast 1273
median networks 117
Medical Knowledge Explorer (MeKE)

1277
Medical Subject Headings (MeSH)
– DNA microarrays 919
– ontologies 1075
– pharmacogenetics 1432, 1437 ff
– text mining 1257
medium-level combination 115
Medline Plus program 1439
MedPost/MeH tool 1287
Medstract corpus 1287
MEF2 program 180
meiotic recombination 198
membrane–protein interactions 392
MEME program 74, 809
Mendelian diseases 1404
6-mercaptopurine (6MP) 1428
Mesembryanthemum crystallinum 774
messengers 502, 829
meta-analysis 917 ff
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metabolic networks 2, 11, 20, 755–807
metabolic pathways 777
– genes classification 1011
– genomic context 1192
– infectious bacteria 1516
metabolics
– DNA microarrays 899
– lead optimization 723
– structural genomics 424 f
metabolizing enzymes 1428
metagenomics 1207
metalloproteases 1326
META-PredictProtein server 272, 277
metaservers 375
METATOOL program 784, 796
Methanococcus jannaschii 1240
Methanosarcina mazei 1187
methylation 1338, 1659
METIS tool 1276, 1287
MGR program 246, ff
Michaelis–Menten kinetics
– cell signaling networks 843 ff
– influenza A virus–host cell interactions

877 ff
– metabolic networks 760 ff, 787 ff
microarray (mRNA) expression data 20
microarray analysis
– biological data visualization 1601
– low-level 929–956
– transcription control 187
Microarray Gene Expression Data (MGED)
– DNA microarrays 916
– ontologies 1069 ff
– pharmacogenetics 1432
Microarray Gene Expression Object model

(MAGE-OM) 1074
microarray technology 11, 20
– biological data visualization 1581 f
– DNA 899–928
– gene regulation 814
Microbial Genome Viewer 1594
microheterogeneity 41
microrearrangements 249 ff
microRNA (mcRNA) 1656
microRNA Registry 816
microsatellites 197 ff, 215 ff
microscopy imaging 1573–1626
midpoint rooting 102
migration, HIV drug resistance 1472
MIMUMBA program 561
MINCUT method 113
minimal empirical risk 961
minimum cost edit script, RNA secondary

structures 471
Minimum Information about Microarray

Experiment (MIAME)

– DNA microarrays 916 ff
– ontologies 1073
– pharmacogenetics 1432
minimum information about proteomics

experiments (MIAPME) 1050
minimum similarity bar 1597
MINT database 1136
MIPS database
– genes classification 1005 ff
– protein function prediction 1303, 1309
– protein interaction networks 1144
miropeats program (printrepeats) 200 ff
mismatches 366, 905
mitochondria 236, 756
mitogen-activated protein (MAP) 736
mixed promoters models 178
mixed regulatory models 168
mLagan program 1348
MMP-8-inhibitors 736
MMR algorithm 204
mobility 284
MOBY-S program 1643
ModBase database 1102
model organism databases (MODs) 1587
model quality assessment programs

(MQAPs) 376 f
ModelGenerator program 178
modeling
– cell signaling networks 829–860
– influenza A virus–host cell interactions

895 ff
– metabolic networks 755–807
– organs 1676
– RNA tertiary structures 492, 521 ff
ModelInspector, regulatory regions 175
MODELLER program 308 ff, 319–325, 335
ModLoop program 319
MODMINCUT method 113
modules
– cell signaling networks 850
– core promoters 163
– genomic context 1204
– microarray experiments 949
– protein interaction networks 1152
ModWeb program 322
Modzinger program 322
molar yields 778
molecular basis
– diseases 1 ff
– druggability prediction 1315–1334
molecular biology 22, 1061–1086
molecular bonds 311 ff
molecular clock 101 ff
molecular descriptors 664
molecular diagnosis 958
molecular disease entities 975 ff
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molecular diversity 655, 660 ff
molecular docking 12
molecular dynamics 548
molecular evolutionary theory 1498 ff
molecular functions 15
– pharmacogenetics 1442
– protein structures 1224
molecular interactions 15 ff, 541–754, 861
molecular markers 1500
molecular networks 755–898
molecular phylogenies 83 ff, 1498 ff
molecular replacement 430
molecular sequence analysis 16
molecular structure data 22, 261–296,

1102
molecular superimposition techniques

666 ff
molecular surface area 1317
molecular switches 1506
molecular symptoms 981
molecular targets 1326 ff
molecular weight 658 f, 1317
MollDE program 323
Mollicutes database 1502
Molligen database 1503
MolProbity program 336
MOLREP program 431
Molscript program 498
Monodelphis domestica 1343
monomeric G-proteins 830
Monte Carlo algorithms 548
Monte Carlo monomer selection

(MCMS) 737
MONTY program 640
Moraxella catarrhalis 1504
morphology
– infectious bacteria 1498
– text mining 1259 f, 1288
mosaic nature 225 ff
motifs
– cell signaling networks 835, 857
– databases 1101 ff, 1107 f
– fold recognition 366
– infectious bacteria 1510
– protein coding genes 139
– protein functions 1087–1114, 1216 ff,

1238
– protein interaction networks 1152
– RNA tertiary structures 492, 508 ff
mountain representation 443, 460
mouse Sasquatch (Ssq) mutation 1366
mouse’s genomic sequence 1343, 1356
MPact/MPPI database 1136
MrBAYES program 108
mreps program 219 f, 230
MRF flip method 113

mRNA
– comparative genomics 1336, 1362
– gene regulation 816
– pharmacogenetics 1427
– protein coding genes 130
– secondary structures 481
– transcription 186, 410, 1655, 1664
MRP parsimony method 113
MRP proteins 722
MSA2 program 72
MSDsite program 1241
MSD-Viewer 1038
MSight program 1038
Mucor racemosus 780
mucosal candidiasis 1458
Mügge potentials-of-mean forces (PMFs)

551
multi(branched)loops 445, 450 f
multichromosomal genomes 237
MultiCoil database 1102
multidimensional optimization (MDO)

707
multidimensional protein identification

technology (MudPIT) 1033
multidomain proteins 334, 1138
multidrug resistant protein (MRP) 334
multi-exon gene 1664
MultiExperimentViewer 1596
multifactor dimensionality reduction

(MDR) 1435
multifurcations 85
multilocus datasets 109 f
multilocus sequence typing (MLST)

1498 ff
multilocus variable number tandem repeat

analysis (MLVA) 1500, 1510 f
multimeric states 432
multimers 305
multinucleoside resistance 1471
multiphoton (MP) microscopy 1573,

1578 ff
MultiPipMaker 1357, 1590, 1594
multiple alleles 1407 ff, 1413
multiple conserved sequences (MCS)

1352 ff, 1360 ff
multiple evidence approach 185 f
multiple feature trees 691
Multiple Genome Aligner (MGA) 1503
multiple hierarchies 1076
multiple sequence alignment 71 ff, 74 ff
– biological data visualization 1591
– comparative genomics 1351
– protein functions/structures 1090, 1219
– RNA secondary structures 475
– structure prediction 277
– templates identification 359 ff
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multiple sequence homologies 304, 1155
multiple-testing problem 1388
multiresistance 1466
multistability 836, 856
multivariate adaptive regression splines

(MARS) 811
multivariate normal distribution 1390,

1406
MultiZ program 1348, 1354
Mus musculus 26
MUSCLE program 73
mutagenesis 632, 1473
mutations
– association studies 1388 ff
– comparative genomics 1338, 1358, 1366
– genomic context 1200
– HIV drug resistance 1461, 1470 ff
– homology modeling 298 f, 304 ff
– infectious bacteria 1499 ff, 1517 ff
– pharmacogenetics 1440
– phylogeny reconstruction 86 f
– protein functions 1091
– rearrangements 239
– rearrangements 239
MutDB database 1439, 1451
mutual information score 456
Mycobacterium smegmatis 1051
Mycobacterium tuberculosis 1506
Mycoplasma 790, 1501–1510
Mycoplasma genitalium 410, 421, 1144
Mycoplasma pneumoniae 421
Mycoplasma pulmonis 1196
myelosuppression 1428
myGrid project 1644
Myobacterium tuberculosis 301, 425, 436
myocytes 728
MyoD program 180
myoglobin sequences 71
Myristoylator 1047

n
N-acetyltransferases (NATs) 1429
NADP/NADPH 4, 790
naive Bayes algorithm 1299, 1306
named entity recognition (NER) 1264 ff,

1271 ff
naming service 1636
National Cancer Institute (NCI) 1437
National Center for Biotechnology

Information (NCBI)
– bioinformatic applications 1639
– infectious bacteria 1502, 1505
– nr database 305
– ontologies 1074
– pharmacogenetics 1431 ff
– text mining 1257

National Heart Lung and Blood Institute
(NHLBI) 1437

National Human Genome Research
Institute (NHGRI) 1344

National Institute of Health (NIH) 1257,
1416, 1582

National Library of Medicine (NLM)
1257

Natural Language Generation (NLG)
1261 ff, 1268 ff

Natural Language Processing (NLP)
1143, 1255, 1258 ff

natural selection 1335
navigation windows 1585
NCBC database 1041
Nebulon program 1203
Needleman–Wunsch algorithm 35, 63
– comparative genomics 1350
– RNA secondary structures 469
– templates identification 356, 371
nef gene 1460
negative feedback loop (NFBL) 835
neighborhood methods
– genomic context 1181 ff, 1187 ff
– HIV drug resistance 107, 1467
– lead identification 662
– phylogeny reconstruction 96 ff, 107
– protein interaction networks 1128,

1139, 1145
– structure-based function prediction

1240
Neighbor-Net program 118 ff
Neisseria meningitidis 1504, 1512, 1519
nelvinavir 1463
nematode embryo 1579
Neomorphic Gene Viewer 1594
nest program 322, 335
nested loop cross-validation 974
Net alignments (UCSC) 1346
NetChop method 1484
network modules 1099 f
Network of Excellence on 3-D electron

microscopy 1674
NETWORK program 118
networks
– biological data visualization 1601
– cell signaling networks 835, 857
– metabolic 762 ff
– molecular 755–898
– phylogeny reconstruction 116 ff
– protein function prediction
– protein functions/structures 1222, 1298,

1307
– protein interactions 1148, 1152, 1159
neural networks
– HIV drug resistance 1484
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– protein structures 270 f, 281 ff
– protein functions 1089, 1100 f
neurodegenerative diseases 13
Neurospors Varcud Satellite (VS)

ribozyme 516
neurotransmitters 829
neutral theory 1499
nevirapine 1463
new biological entities (NBEs) 1322 ff
new chemical entities (NCEs) 705, 1322 ff
new molecular entities (NMEs) 1322 ff
newborn spots 1036
next-reaction method 847
Neyman–Pearson lemma 361
NIA array analysis tool 1601
Nice stemmer 1287
NIST database 768
NLProt database 1273, 1287
NLTK tool 1287
NMMer program 380
noise
– genomic context 1198
– microarray experiments 943
– phylogeny reconstruction 109
noncanonical pairs 440
noncanonical splice sites 153
noncentrality parameter 1394 ff, 1414 ff
noncoding RNA (ncRNA) 459 f, 468, 807,

1005
noncontiguous sites 1088
nondecomposability 770
nonlinear T2 test 1406
nonlinear test statistics 1393 ff
nonlinear transmission/disequilibrium test

(TDT) 1410 ff
NONMEM program 1431
nonnucleotide RT inhibitors (NNRTIs)

1463, 1471 ff
nonobligate, obligate, crystal-packing

classification (NOXC) 1223
nonterminals 463
norepinephrine (NE) 833
normalization 931, 947 ff
normalized linkage disequilibrium 1379
North Carolina bioGrid 1647
Northern analysis 917
Norvir 1463
NOXclass program 1241
NP hard problem 33, 368, 618
nuclear hormone receptors 1320, 1326
nuclear magnetic resonance (NMR)
– docking 541, 633
– lead identification 685
– protein functions/structures 1211
– protein interaction networks 1124
– structural genomics 427

– templates 354
nuclear Overhauser enhancement (NOE)

633
nuclear transport proteins 874
nucleotide RT inhibitors (NRTIs) 1462 ff,

1475 ff
nucleotide weight matrix (NWM) 170,

809
nucleotides 28, 83 ff
– comparative genomics 1336
– homology modeling 298 ff
– metabolic network 2
– phylogeny reconstruction 89 ff
– protein coding genes 133 ff
– RNA secondary structures 440
– RNA tertiary structures 494, 501, 525
– weight matrices 357
– RNAi 1657
– transcriptional initiation 162
null core promoter 165
nullspace 755, 767 ff, 771 ff

o
Object Management Group (OMG) 1636
object request broker (ORB) 1636
octanol–water partitioning coefficients

658 f
O-GLYCBASE database 1052
oligocapping method 183
oligonucleotides 902
OMEGA program 559, 658
one window free energy grid (OWFEG)

method 549
OneTree approach 113
Online Mendelian Inheritance in Man

(OMIM) 307
– comparative genomics 1364 f
– pharmacogenetics 1439
– structural genomics 425, 434
online resources, infectious bacteria 1502
ontologies 22
– molecular biology 1061–1086
– RNA tertiary structures 493
– text mining 1274, 1287
open microscopy environment (OME)

1583, 1607 ff
Open Proteomics database (OPD) 1051
open reading frame (ORF) 132, 874, 1589
open-bio-ontology language (OBOL)

1070, 1080
operons 1181, 1185 ff
OPHID program 1137
opossum’s genomic sequence 1343, 1356
OPSL-AA program 548
optical sectioning 1577
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optimized potential for liquid simulations
(OPLS) 321

OptiSim program 661
oral administration 706
oral ingestion 658
Oral Pathogens database 1503
ordinary differential equations (ODEs)

840, 857, 877, 895
Oreas program 1168
organ modeling 1676
organism development 424 f, 1676
organizational regulatory regions 162,

169
orthologous DNA 150
orthologs
– comparative genomics 1340
– druggability prediction 1326
– genomic context 1182 ff, 1196
– homology modeling 299 f, 304 ff
– protein interaction networks 1153
Oryctolagus cuniculus 1343
Oryzias latipes 1343
Osprey program 1168
osteocalcin promoter 168
outer-planar graphs 441
outgroup rooting 101
overfitting 970, 1014
oxidation enzymes 1428
oxidoreductases 1326

p
pair interaction potentials 369 f
PairCoil database 1102
paired end shotgun sequencing 27, 42
pairwise distances 907
pairwise linkage disequilibrium 1384 ff
pairwise sequence alignment 58 ff
– comparative genomics 1355
– genes classification 1003
– homology modeling 304
– microarray experiments 937
– protein functions 1087, 1306
– repeats 199 f
Pajek program 1168
palindromic repeats 204
PALS (pairwise alignment of long

sequences) program 210
PAMPA program 722
Pan troglodytes 1343
Panchenko score 362
Panther database 1102, 1110f
paralogous verification method (PVM)

1127
paralogs 299 f, 304 ff, 1127, 1340
parameter identification
– cell signaling networks 850

– leads 677, 687
– RNA secondary structures 466
parmodel program 322
paRNA 481
parse tree 464
parsimony methods 93, 1499
partial differential equations (PDEs) 840,

857
partial least squares (PLS) analysis
– HIV drug resistance 14835
– lead identification 670
– lead optimization 714 ff
partitioning
– genes classification 999
– lead identification 658 f, 661 f
– lead optimization 726
– patients classification 978
– protein functions/structures 1219
– RNA secondary structures 449 f, 480
– templates identification 369
partitioning around medoids (PAM) 1001
partitioning liquid chromatography 1028
part-of-speech (POS) tagger 1258 ff,

1262 ff
PASA program 149
PASBio program 1287
PASS method 1219
patchy presence patterns 1195
Pathblast 1152 ff
PathCalling program 1168
Pathema database 1503
Pathogen Sequence Unit 1503
pathogens 1497, 1504
– HIV drug resistance 1457
– infectious bacteria 1497 ff
– phylogeny reconstruction 84, 1517
– RNA tertiary structures 512
PathPort tool 1647
pathway representation
– biological data visualization 1601 ff
– HIV drug resistance 1472
– infectious bacteria 1516
– metabolic network 2, 755
– pharmacogenetics 1444
PathwayExpert/PathwayAssist 1604
patients classification 957–992
PATIKA tool 1603
pattern recognition 174
pattern-based detection 1506
PatternHunter program 200 f, 225
patterns in nonhomologous tertiary

structures (PINTS) 1228
Pauli exclusion 311
Pawson Lab (link-list) 1138
PAX6 gene 1359
PCAP assembler 50
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PCONS metaserver 375
PDP program 1048
PDQuest, program 1035
PDZBase 1137
PEAKS program 1045
Pearson’s correlation coefficient
– DNA microarrays 906, 913 f
– genes classification 996
– linkage disequilibrium 1380
– patients classification 977
penalized logistic regression 965
pentose phosphate pathways 771
PEP program 580
pep spot 1124
Pep3D program 1038
peptidase 1227
peptides
– drug developing 12
– fragment fingerprinting (PFF) 1041
– HIV drug resistance 1483
– immunoinformatics 1667
– mass fingerprinting (PMF) 1041
– protein coding genes 129
peptidomimetics 12
percent identity plots (PIPs) 1355, 1590
perfect match, DNA microarrays 905
performance
– protein coding genes 145 ff
– structure prediction 265 ff
PERL language 1632 ff
permutations 237, 244, 952
per-residue accuracy 265 f, 272
personalized medicine 8,15
Peutz–Jeghers syndrome 324
Pfam database 78
– protein functions 1102, 1110 f, 1304
– structural genomics 433
– templates identification 357
PGViewer tool 1607
pH gradient 1026 f
phages 1124, 1513
pharmacodynamics 1441
pharmacogenetics/pharmacogenomics

1427–1456
pharmacokinetics 705–754, 1441
pharmacophore searches 571 f, 669 ff, 688
PharmGKB tool 1433–1452
PHASE program 1386
phaseknown haplotypes 1407 ff, 1413
phastCons tool 1361
PHD programs 270 ff, 276 ff, 281 ff
Phenotype and Trait Ontology (PATO)

1432
phenotypes 16, 1651
– association studies 1375 ff
– biological data visualization 1607, 1612

– patients classification 958, 964
– pharmacogenetics 1442
– resistance testing 1465
phenylalanine 440, 756
Phenyx, program 1044
pheromones 1009
Phoretix program 1035
phosphatase 841
phosphodiesterases (PDEs) 1320, 1326
phosphoenol pyruvate (PEP) 771 f
phosphoglucoisomerase 758
phosphorylation 10, 1653
– protein interaction networks 1152
– proteomics 1052
PhosphoSite database 1052
Phrap window 51
Phusion assembler 50
phycoerythrin 932
phylogenetic distances 1181, 1185,

1335 ff
phylogenetic methods
– analysis using parsimony (PAUP) 1505
– biological data visualization 1605
– genome rearrangements 236, 245 ff
– HIV drug resistance 1471, 1776 ff
– RNA secondary structures 456 f
phylogenetic profiles
– comparative genomics 1339 ff
– genomic context 1194 ff, 1206 ff
– protein function prediction 1305
– protein interaction networks 1128, 1139
phylogenetic relationships
– infectious bacteria 1500 ff
– protein interaction families 1162 ff
phylogenetic shadowing 1342 f, 1360 ff
phylogenetic trees
– biological data visualization 1591
– comparative genomics 1341
– infectious bacteria 1498 ff
– lead identification 674
– protein functions/structures 1219
Phylogenomic Display of bacterial genes

(Phydbac) 1203, 1503
phylogenomics database, protein

functions 1102
phylogeny reconstruction 83–128
Phylo-VISTA browser 1591, 1594
PhyMe program 171
PhyNav(ML) 109
physical maps 30 ff
physicochemical properties
– docking 580
– druggability prediction 1319
– lead optimization 706, 721 ff, 724 ff
– protein functions/structures 1213
– templates 352 ff
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Physiome project 1083, 1677
PIBASE program 1241
π−helix 264
PILER programs 209 ff, 230
PimRider/PimWalker tools 1168, 1604
PINdb 1137
PINT database 1138, 1241
PipMaker 1594
π−stacking 729
place-and-join algorithms 559, 572, 577 f
plasmids 30, 197, 1513
Plasmodium falciparum 301, 683, 1125
PLOP program 310, 319
PMID identifiers 1257 ff
PML program 1450
pmmulti program 475
Pneumocytis carinii 1458
pocket and void surfaces of amino acid

residues (pvSOAR) method 1235
Poepsdorff’s nomenclature 1031
point mutations 239, 300, 1464
Point2005 database 1137
Poisson distribution 1342
Poisson process 88, 222
Poisson–Boltzmann equations
– loop homology modeling 321
– protein–protein docking 629
– structure prediction 408
pol gene 1459
polar surface area (PSA) 658, 722
polar/hydrophobic balance 1316
polygon descriptors 612
polymachine first-order association rule

mining (PolyFarm) 1007
polymerase
– gene regulation 808
– protein interaction networks 1126
– regulatory regions 159, 162 ff, 178
polymerase chain reaction (PCR) 31
– comparative genomics 1363
– microarray experiments 930, 939
– RNA tertiary structures 519
polymeric molecules 494
polymorphism
– HLA molecules 1481
– infectious bacteria 1498, 1512
– pharmacogenetics 1428
polynomial functions, allele/haplotypes

1392 ff
polypeptides
– genomic context 1181
– protein functions/structures 262, 403 f,

1212
– proteomics 1027
population
– association studies 1378, 1387 ff, 1405

– genomic context 1183
– HIV drug resistance 1471
– infectious bacteria 1500
– patients classification 959
pose clustering 542, 555, 561
position-specific scoring matrix (PSSM)
– fold recognition 352 ff, 357 ff
– gene regulation 809
– HIV drug resistance 1482
– homology modeling 332
– protein functions 1094–1110
positive predictive value (PPV) 1091
positron emission tomography (PET)

1573
posterior densities 960
postprocessing in lead identification

672 ff, 680
postseparation proteomics analysis 1025
posttranslational protein modifications

1023, 1653
potential energy surface (PES) 476
potentials-of-mean forces (PMFs) 551,

630
PowerBioNE protein tagger 1284, 1287
PPI Server/Viewer database, protein

interaction networks 1136 f
PPI-Pred method 1223, 1241
Pquad tool 1601
PREBIND machine learning 1279
precision–recall curves 1091, 1264
preclinical candidates 708, 733
predators 793, 1513
Predictome database 1136, 1203
PredictProtein server 277, 281
preinitiation complex (PIC) 808
presence/absence analysis 1181
principal components analysis (PCA)

670, 1596
PRINTS database 1102 ff, 1110 f
priors 961
privacy protection 1447
PROBCONS program 73
probe specificity 942
probit regression 966
ProCheck program 336
PRODOCK program 569
ProDom database 1102, 1110 f
profiles alignment 304
– hidden Markov models (HMMs) 363 f,

372 f
– patients classification 959
– templates identification 360 ff
ProFunc program 1239 ff
Progenesis program 1035
progeny virions 864, 873 f
programmed cell death 867
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progressive alignment 73 ff, 475
Project Gutenberg 1256
prokaryotes
– virus–host cell interactions 864 ff
– genomic context 1184 f
– repeats 197
prokaryotic genomes 31
– comparative genomics 1344
– protein interaction networks 1134
prokaryotic ribosomes 492
ProKnow program 1239 ff
PRO-LIGAND program 578
Prolinks database 1136, 1203
ProMiner protein tagger 1281
promiscuous binders 656
Promolign program 1439
ProMoT/Diva 784 ff
PromoterFinder/PromoterInspector

163 ff, 175
promoters 162–182, 1223
PromoterScan 181
property-based design (ADMET) 724
PRO-SELECT program 573
Prosite database 78, 1046 f, 1088, 1101 ff
PROSPECTOR programs 374
prostate-specific antigens (PSA) 916
Prot/Annot 1594
protease inhibitors 715, 1459, 1462
protected hurdles 242
Protege program 1068
protein binding microarrays (PBM) 809
protein chips 1033 f
protein coding genes 16, 129–159
protein complex identification (PCI) 1129
protein coordinates 678
Protein Data Bank (PDB)
– docking 541, 639
– druggability prediction 1327 ff
– fold recognition 355
– future trends 1654
– homology modeling 297–350
– protein functions 1102, 1213
– protein interaction networks 1165
– RNA tertiary structures 492 ff
– structural genomics 420, 431
– structure prediction 389 ff
– templates identification 380
protein degradation 762 f
protein domain prediction 285
protein engineering 1672
Protein Expression Purification and

Crystallization Database (PEPCdb)
432

protein families/domains 78 ff, 285
protein fold recognition, distant

homologs 351–388, 405

protein function–protein structure
relations 1211–1252

protein functions
– alternative splicing 1663
– ontologies 1061 ff
– phylogeny reconstruction 91 f
– sequence-inferred 1087–1120
– text mining 1255 ff
protein health 336
protein inhibitors 7
protein interaction data 1124 ff
protein interactions
– homology modeling 305, 331
– network analysis 1121–1178
– text mining 1279
protein kinase
– (PKA) 830, 857
– (PKC) 841, 857
– druggability prediction 1320, 1326
– lead identification 682
– STK11/LBK1 324 ff
protein link explorer (PLEX) 1137, 1139,

1203
protein modifications 1653
protein phosphorylation 1052
Protein Quaternary Structure (PQS)

database 306, 1223, 1241
protein separation 1023 ff
protein sequence databases 1048 f
Protein Structure Initiative (PSI) 420
protein structure prediction 11, 261–296
protein synthesis 863, 1655
protein tagging 1271
protein targets 8 f
protein–DNA docking 19, 601, 638–650
protein–DNA interactions
– gene regulation 807 ff
– structure prediction 393, 410 ff
protein–enzymes reactions 756
protein–GO association 1285
protein–ligand complexes
– docking 19, 542–580, 601 ff, 624 ff
– lead identification 674 ff
– lead optimization 713
– protein functions/structures 1212
protein–nucleic acid interactions 373
ProteinProspector Server 1043
protein–protein binding sites 1239
protein–protein complexes, docking

541–580
protein–protein docking 19, 601–650
protein–protein interactions
– data integration 1297 ff
– genes classification 1014
– genomic context 1180 ff
– networks 1604 f



1716 Index

– protein functions/structures 1212,
1223 ff

– structural genomics 432
– structure prediction 393, 410 ff
protein–RNA interactions 807 ff
protein-term associations 1275
protein threading 367
PROTEOME database 1102, 1107 ff,

1047 ff
proteomics/proteomes 2 ff, 10 ff, 1023–

1060
– biological data visualization 1601
– DNA microarrays 899
– infectious bacteria 1498 ff
– structure prediction 392
Proteomweaver program 1035
proteasome 1483
PROTINFO program 323
protonation states 655
Protonet program 78
provenance of data 1613, 1646
provider autonomy 1628
ProViz program 1168
PROWL program 1043
pseudocenters 1232
pseudocounts 77, 1094 ff
pseudodynamics 840
pseudogenes 153 ff, 1337, 1359
pseudoknots 441, 454 f, 512 ff, 533 ff
Pseudomonas amiC gene 134
Pseudonomas aeruginosa 1187
pseudosatellites PILER-PS 211
PSIbase 1137
PSI-BLAST program 77
– homology modeling 301 ff, 325
– protein functions 1094
– structure prediction 271 f, 281, 402, 1305
– templates identification 359 ff, 374
– text mining 1283
PSORTdb 1137
pSTIING database 1138
PTM databases 1051 f
PubMed (Central) database 1253–1287
PubMed Id program 1437 ff
pufferfish’s genomic sequence 1343, 1356
pull-down detection 1124
purifying selections 1339
purines 494, 508, 525
Purvis scheme 114
putative complex structures 603, 614
putative drugs 652
p-value 69
PyMOL program 434, 498
PyPhy database 1503
pyramidal clustering techniques 121
pyrimidimes 494, 502, 508, 525

Pyrococcus furiosus 421, 1196
Pyrococcus horikoshii 1196
pyruvate 764
PySCeS program 784

q
Q-matrix 89 f
QRNA program 461
quadratic discriminant analysis (QDA)

964
quadupole mass filter 1031, 1039
qualitative relationships, cell signaling

networks 850
quality control 11, 28 ff, 59, , 931, 944
quantification 932
quantile normalization 945 ff
quantitative descriptors 725
quantitative dynamics 841
quantitative reverse transcription

polymerase chain reaction (qRT-PCR)
917

quantitative specifications (of signaling
networks) 851

quantitative structure–activity
relationships (QSARs) 665–687, 706–
724

quantitative trait loci (QTL) 813, 919 f,
1600

QUASAR program 67
quasi-equilibrium approximations 755
quasi-random gene selection 934
quasi-steady-state approximations 755,

761 ff, 785 ff
3D-quaternary structure–activity

relationship 1670
querying 1446
question answering (QA) 1261 ff, 1266 ff

r
radio-labeled proteins 1027
Ragan–Baum scheme 114
Ramachandran map 318 ff, 404
RAMP program 310, 323
random forest methods 1301
random networks 1149
random search 565
random walk distributions 216
RankVISTA tool 1361
rapid protein threading by operation

research (RAPTOR) 371
Rapper program 319
RASSE program 578
Raster3D program 498
rat’s genomic sequence 1343, 1356
rate heterogeneity in genome evolution

90 f
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rate laws in enzyme kinetics 760
rational drug design 12
RAxML program 109
16SrDNA 1500 ff
reaction kinetics 756 f, 760 f, 765
reaction probability 847
Reactome database 789, 1138
reading frames 132 f
reads 27 ff, 33 ff, 220
real world ontologies 1067 ff
rearrangements, genomes 235–260
RECAP program 575, 581
receiver operating characteristics (ROC)

curves 1096, 1300, 1304, 1468
receptor tyrosine kinase (RTK) 833
receptor–ligand complexes
– docking 550 ff
– HIV drug resistance 1482
– lead optimization 720
receptor-mediated endocytosis 873 f,

881 ff
receptors 6 f
– association studies 1416
– cell signaling networks 830
– druggability prediction 1320
– HIV drug resistance 1461 ff, 1482
– lead identification 663, 686
– lead optimization 718 ff
reciprocal functions, allele/haplotype

1392, 1401 ff, 1416
recombination 120, 198, 1512
RECON program 207, 230
recursive dynamic programming (RDP)

370 f
recursive feature elimination (RFE) 969,

1301
recursive partitioning 673
red blood cells 790
redocking 605
REDUCE program 811
reductases 682
reduction enzymes 1428
Reference Sequence (RefSeq) project

1431, 1439
refinement of molecular structures 394,

428 ff, 494
regression methods 811 f, 965, 1467
regular expressions 1090
regular grammars 143
regularization 831, 961 f, 970, 1655 ff
regulatory networks 2, 11, 20, 807–828
regulatory region analysis 17, 159–196
regulatory sequences recognition 177 ff
related article search 1264
relational database management system

(RDBMS) 1611, 1628

release mechanism 862 ff, 876, 880 f, 897
reliability, structure prediction 273
Relibase 1232, 1237
Repbase 228, 1358
repeat annotation 227
Repeat Pattern Toolkit 206
repeat placement 223 ff
repeat resolution 33, 40, 224 ff
RepeatFinder program 206 ff, 230
RepeatGluer program 225, 230
RepeatMasker 228, 1353, 1358
repeats (repetitive sequences) 33, 135 f,

197–234
RepeatScout program 212 f
replication
– gene classification 998
– HIV drug resistance 1457 ff, 1472
– patients classification 974
– protein coding genes 129
– virus–host cell interactions 862, 875 ff,

896
repositories 1051, 1435 ff
repressor genes 1672
RePS assembler 49
REPuter program 202 ff, 230
reranking 604, 676
Rescriptor 1463
Research Collaboratory for Structural

Bioinformatics (RCSB) 420
RESI program 1051
residual dipolar coupling 633
residues 440 ff, 1213 ff, 1220 ff
resistance, HIV drugs 1464–1478
resolution 406, 1674
Resource Description Framework (RDF)

1640
restriction fragment length polymorphisms

(RFLPs) 1510
restriction mapping 30
RET gene 1416
reticulate evolution reconstruction 119
retrotransposons 203, 1337
Retrovir 1463
rev gene 1460
reversals 239
reverse transcriptase (RT) 818, 1459 ff,

1470
reversed repeats 204
reverse-phase microarrays 1033
reversible reactions 761
Reyataz 1463
Rfam program 816
R-group selection 572
Rhodopseudomonas palustris 1193
rhodopson-like receptors 686
ribbon diagram 265
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RiboDock program 685
ribonucleotides 494
Ribosomal Database Project (RDP) 1502
ribosomes 130, 492 ff, 528
riboswitch aptamer 504
ribotyping 1500, 1510 f
ribozymes 492, 513, 818
Rickettsia conorii/prowzekii 1188, 1196,

1517
RigFit program 668
rigid-body docking (RBD) 544, 552 f,

576 ff, 602–618
rigid-body superimposition 667
RIGOR database 1228
rise period 864
risk assessment 732, 959
ritonavir 1463
RNA 18 f
– comparative genomics 1362
– DNA microarrays 902
– gene regulation 813 ff
– hybridization 453 ff, 902
– infectious bacteria 1502
– protein coding genes 129
– protein interaction networks 1126
– secondary structures 439–490
– synthesis 1655
– tertiary structures 491–540
RNA interference (RNAi)
– biological data visualization 1580 ff,

1607
– gene regulation 818
– regulation 1656
– tertiary structures 491
RNAML format 509
RNAView program 494
RNAz program 461
Robetta program 322
robustness 781
decode-Roche alliance 1430
rock-and-stones approach 223
rooting trees 85, 101
root-mean-square deviation (RMSD) 557,

580, 635 ff, 1226
Rosetta de novo protocol 392–402
Rosetta stone method 1138 ff
ROSPath database 1138
rotamers
– enumeration tree 619
– fold recognition 354
– homology modeling 311 ff
– protein–protein docking 617
– structure prediction 400
ROTATE program 559
rRNA
– gene regulation 816

– secondary structures 439, 468, 816
rule-based methods
– genes classification 1006
– HIV drug resistance 1479
– patients classification 959
– protein functions/structures 1224
– text mining 1265, 1275

s
Saccharomyces cerevisae 11
– gene classification 997, 1005 ff
– microarray experiments 942
– protein interaction networks 1125 ff,

1151, 1162
– proteomics 1051
– regulatory regions 169
– RNA tertiary structures 518 ff
– virus–host cell interactions 868
– metabolic networks 779, 796
Saccharomyces paradoxus 1162
SAGE-tag sequencing 810
Salmonella 1185, 1504, 1514
SAMhome database 77, 380, 1102
sampling
– DNA microarrays 915
– infectious bacteria 1501, 1507 f
– lead identification 655
– microarray experiments 932, 939
– proteomics 1024
– structure prediction 406
Sankoff algorithm 475
saquinavir 1463
sarcin/ricin motif 509
SARIG program 1241
Sasquatch (Ssq) mutation 1366
satellite DNA 197
saturated RNA secondary structures 455
SAWTED system 1283
scaffolds

– genome assembly 28, 42
– lead identification 666, 689
– lead optimization 735
– matrix attachment regions (S/MARs)

176
scale-free networks 834, 1150
SCAMP program 784
ScanBalt Clinical Research Network 1430
SCAP program 310
SCAP protein 1155
SCATD program 310
scatterplots 934 ff, 1578
scene analysis 1612
Schizosaccharomyces pombe 421, 868, 1162
scientific process visualization 1608
scientific-driven analysis 1582
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scintillation proximity assay 1124
SCOPPI database 1239 ff
ScorePAGE algorithm 1012
scoring functions 60 ff, 68 ff
– docking 607, 616, 627, 641
– genomic context 1204
– HIV drug resistance 1477
– lead identification 679, 691
– lead optimization 713 ff
– protein coding genes 135
– protein functions/structures 1094,

1221 ff, 1225
– proteomics 1042
– repeats 213
– Rosetta protocol 396
– structure prediction 407
– structure-based drug design 541–600
– templates identification 360, 377
screening
– biological data visualization 1574 ff
– docking 545, 570 ff
– virtual 651–704
ScrumPy program 784
SCWRL program 310, 315 ff, 335
SDSC program 322
search for tandem repeat in genomes

(STRING) 218, 230
Search tool for the retrieval of interacting

genes/proteins (STRING) 1136 ff, 1203
search statistics, sequence alignment

68 ff,
second harmonic generation (SHG)

imaging 1579
second messengers 829, 836 ff
secondary structures
– matching (SSM) 1240 ff
– prediction 262 ff
– RNA 439–490
– templates identification 367, 372 f
secreted proteins 1330
SEED database 433, 1203
seed-and extend-and-refine paradigm

34 ff
SeeGH tool 1598, 1601
segment statistics 266–272, 932
segmental duplication 1344
selection modes 1339, 1357
selectivity addressing, simultaneous

705–754
SELEX program 809, 815
self-backbone prediction, homology

modeling 310
selfish elements, repeats 198
self-organizing maps (SOMs)
– biological data visualization 1595
– DNA microarrays 900, 911

– genes classification 1001
– lead identification 689
– protein functions/structures 1235
self-organizing trees (SOTA) 911
self-replication RNA molecules 1471
semantic heterogeneity 1630
semantic representation 1260, 1266
semantic zooming 1585
semidefinite programming (SDP) 1303
semistrict consensus, phylogeny 111
semisupervised methods 981
Semliki Forest virus 862, 866
sensitivity
– cell signaling networks 853
– microarray experiments 942
– protein functions 1092, 1096
– proteomics 1034, 1045
– regulatory regions 182
separated proteins identification 1039
separation techniques, proteins 1023 ff
sequence alignment 57–82
– comparative genomics 1335 ff, 1347
– fold recognition 352 ff, 256
– homology modeling 309
– templates identification 367
sequence analysis, biological 57–260
sequence data 22, 57–82
– biological data visualization 1585
– gene classification 1009
sequence ontology (SO) 1069
sequence, secondary structure profiles, and

residue level knowledge-based energy
score (SPARKS) 374

sequence-based methods
– genomic context 1200, 1205 f
– protein functions/structures 1087 ff,

1224
– templates identification 356, 376
sequences 15, 25–56
– HIV drug resistance 1475 f
– infectious bacteria 1450
– phylogeny reconstruction 83 ff
– protein interaction networks 1160
– regulatory regions 161, 174
sequence-type analysis and

recombinational tests (START) 1505
Sequest program 1044
Ser–His–Asp catalytic triad 432, 1224,

1229
serial analysis of chromatin occupancy

(SACO) 810
serine protease 718, 1320, 1326
serotonin 720
service-oriented architecture 1640
SGP2 program 150
shallow parsing 1262
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shape comparison 557
SHAPES generation procedure 612
Shapiro–Zhang tree 444
She2p-binding motif 520 f
Shewanella oneidensis 1187
shortest common superstring (SCS) 33
short-interfering RNA (siRNA) 816, 1656
shotgun proteomics 1032
shotgun sequencing 27, 42, 1343
3D-SHOTGUN metapredictor 375
shrunken centroids 965, 983
sib-transmission/disequilibrium test

1408
side chain rotamers 354
side chains 306 ff, 309 ff
side-chain interactions 1091 ff, 1100 ff,

1201 f
side-chain placement (SCP) 616 ff, 1226
side-effects, drug therapy 13, 545
SIFT program 1451
σ1 receptor 688
sigmoid functions, allele/haplotype

1392, 1401 ff, 1416
SIGNAL SCAN program 170
signal transduction 6
signaling networks 829–860
signal-to-noise ratio 109, 1088, 1674
signature performance 972
signed permutations 237, 244
significance analysis of microarrays

(SAM) 912
significant genes 1010
silencers 177, 814
Silicon cell 794
silver staining 1027
simian immunodeficiency viruses (SIVs)

1458 ff
similar phylogenetic trees (SPT) 1140
similarity methods
– association studies 1400
– biological data visualization 1597
– genes classification 996
– genomic context 1184
– lead identification 662 ff, 673
– protein functions 1087, 1216–1233, 1305
simple homology modeling 308
simple hurdle 242
Simple Object Access Protocol (SOAP) web

service 1435, 1640 ff
simple sequence repeats (SSRs) 197 ff,

215 ff
simplicity condition 770
simplified molecular input line entry

system (SMILES) 656
simulated annealing 566
simulated noise 984

simulation methods
– docking 566, 576 f
– metabolic networks 755–807
– ontologies 1082
single expansion interpretative pattern

(SIP) 219
single locus/two alleles 1407, 1412
single nucleotide polymorphism (SNP)

41
– association studies 1377 ff, 1381 ff
– biological data visualization 1600
– comparative genomics 1365
– infectious bacteria 1498 ff
– pharmacogenetics 1437, 1442 ff, 1451 ff
single-cell dynamics 808
single-gene diseases 756
single-residue statistics, protein secondary

structure prediction 269
single-stranded RNA (ssRNA) 1460
singly observed pair (SOP) 1132
singular value decomposition (SVD)

1281
site directed mutagenesis 632
site localization 1217
SiteEngine method 1232, 1241
sLagan program 1348 ff
SLAM program 151
slice decomposition, protein-protein

docking 612
SLIDE program 574
small ncRNAs 816 f, 1656
small-molecule docking 543
small-world networks 834, 1149
SMART program 921
SMD program 310
Smith–Waterman algorithm 64 ff, 69 f
– fold recognition 366
– protein functions 1087, 1305
– repeats 200 ff, 213 ff
S-MOBY program 1643
SMoG program 577
smoothing 974, 1095, 1310
SNaP program 1392
Socckeye browser 1593 ff
sodium dodecylsulfate (SDS) 1027
soft docking 615
soft margin loss 967
software see: tools, web resources
solubility 1316
solvent accessibility 280
Sonic Hedgehog (SHH) gene 1340, 1356,

1366
SOURCE program 1439
spacers 160
spatial arrangements of side-and main-

chains(SPASM) descriptor 1227, 1241
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spatial effects, gene expression data 933
Spearman’s correlation coefficient 1164
specific locus studies 1364
specificity
– protein functions 1092, 1096
– proteomics 1045
– regulatory regions 182
spectral imaging 1575 f
SpectroArray program 1038
Spectronet program 118
sphere matching 554
Spiroplasma melliferum 1674
SPLICE program 578
SpliceInfo database 1664
splicing
– gene regulation 814
– protein coding genes 129–155
– protein function 1663
– proteomics 1023
splits, phylogeny 110–120
splits identifying (ISIS) 978
SplitsTree program 118
Spoke model 1131 f
Spotfire Decision Site tool 676, 1596, 1601
spotting
– microarray experiments 939
– protein interaction networks 1124
– proteomics 1033, 1056
SPRESI program 654, 659
SPROUT program 577
spur read 30
SQUID approach 689
SREBP proteins 1155
SSAHA program 67, 1345
SSEARCH program 65
stability analysis 764, 983
stable complexes 1123
stacked pairs 445
staining 1027
standard χ2 test statistics 1393 ff
standard scientific English 1270
Standardized General Markup Language

(SGML) 1638
Stanford HIV Drug Resistance database

1488
Stanford Lexical Parser 1287
Stanford Microarray Database 921
Staphylococcus aureus 683, 864, 1501–1513
Staphylococcus epidermidis 1504
Staphylococcus pneumoniae 683, 1504
starch synthesis 776
StARLITe database 1322 ff
state-duration hidden Markov model

(HMM) 144
stationary states 764
stationary time-reversible models 90

statistical models
– HIV drug resistance 1458
– promoters 178
– regulatory regions 168
statistical significance 174, 983
stavudine 1463
steady-state approximations 755, 769
Steiner tree problem 247
stem–loop interactions 517, 440
stemming 1262
stepwise homology modeling 308
stepwise insertion method 106
stereoisomers 657
steric electrostatic alignment (SEAL) 667
stiff differential equations 785, 846
STK1 kinase 324 ff, 328 ff
stochastic backtracking 451
stochastic context-free grammars (SCFG)

463 ff
stochastic errors 943
stochastic models 755 ff, 846, 858
stochastic roadmap simulation (SRS) 569
StochSim program 847
strand viral RNA 873 f
strategic pooling 656
Streptococcus agalactiae 1504
Streptococcus pyogenes 1501, 1504 ff, 1514
strict consensus 111
string kernels 366
string-based alignments 469
structural analysis of residue interacting

groups (SARIG) 1222
structural classification of proteins

(SCOP) 78, 1165, 1240 ff, 1328
– fold recognition 355, 366 f, 380
– structural genomics 422, 434
– superfamily 1300
structural genomics 419–438
structural identification method

(STRIDE) 264
structural templates, fold recognition

351–388
structure data file (SDF) 15, 22, 657
structure heterogeneity 1629
structure solution, protein 428 ff
structure–activity relationship (SAR) 670,

1322 ff
structure-based methods 161, 172, 1211,

1238
– conserved protein interactions 1165
– drug design 12, 541–600
– druggability prediction 1320, 1327
– HIV drug resistance 1459
– lead identification 653 ff
– lead optimization 712
– protein interaction networks 1140 ff
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– templates identification 367
– virus–host cell interactions 861, 869 ff
structure-based virtual screening 544 f,

570 ff
structured controlled vocabulary 1075
structure–frequency profiles 374
STS marker 31
substitutions
– comparative genomics 1353
– phylogeny reconstruction 83, 88
– protein functions 1088
– RNA secondary structures 470
substrates 756
subsumption hierarchy 1075
subtree prunin-and-regrafting 107
suffix tree 202
suicide inhibitors 6
sulfaphenazole 731
sulfation enzymes 1429
Sulfinator 1047
SuMo method 1229, 1241
sum-of-heads distribution 216
sum-of-pairs (SOP) scores 71 ff
supercontigs see: scaffolds
SUPERFAMILY program 1240
superhurdle 242
superposition techniques 557, 666 ff
supermatrix approaches 109 ff
supernetworks 118
superposition problem 557
superquartet puzzling (SQP) 113 ff
supersites 1217
SuperStar program 719
supertrees 112
supervised classification 963
supervised learning 958, 1087, 1111 f
support vector machines (SVMs) 966
– DNA microarrays 901, 912
– fold recognition 365 ff
– future trends 1662
– gene classification 1006
– HIV drug resistance 1467, 1477
– lead identification 659
– patients classification 962, 966
– protein coding genes 139
– protein functions/structures 1223,

1300 ff
– secondary structures 462
– structure prediction 271
– text mining 1266
suppressor T cells 1461
SURFACE database 1238, 1241
surface geometry 1218, 1231, 1317
surface plasmon resonance 1124
SURFCOMP program 672
Surflex program 562

SURFNET program 1218, 1240 ff
surrogate contigs 223
survey sequencing 1206
survival prediction 981 ff
susceptibility assays 1388, 1464–1477
Sustiva 1463
SWAP phase 1001
SWISS-2DPAGE program 1025–1049
SWISS-MODEL database 322 ff, 335,

1102, 1110 f
Swiss-Prot database
– bioinformatic applications 1630
– druggability prediction 1330
– ontologies 1061
– pharmacogenetics 1439
– protein functions 1102, 1300
– proteomics 1041, 1046 ff
– structural genomics 433
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